1
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
2
|
Liu H, Wang H, Feng Y, Yang Y, Feng C, Li J, Zaman QU, Kong Y, Fahad S, Deng G. Integrated physiological, transcriptomic and metabolomic analyses reveal potential mechanisms of potato tuber dormancy release. PHYSIOLOGIA PLANTARUM 2025; 177:e70081. [PMID: 39868643 DOI: 10.1111/ppl.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/16/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025]
Abstract
Regulating potato tuber dormancy is crucial for crop productivity and food security. We conducted the first comprehensive physiological, transcriptomic, and metabolomic investigations of two varieties of long and short dormant potato tubers in order to clarify the mechanisms of dormancy release. In the current study, three different dormant stages of UGT (ungerminated tubers), MGT (minimally germinated tubers), and GT (germinated tubers) were obtained by treatment with the germination promoter gibberellin A3 and the germination inhibitor chlorpropham. The results revealed that the contents of reducing reducing sugar, sucrase, glutamine synthetase, and nitrate reductase were increased in the dormancy release stages, whereas the contents of sucrose and starch were decreased, leading to a change in the phenotype of the potato tuber bud eyes. According to transcriptomic and metabolomic investigations, four metabolomic pathways were impacted by the dormancy release process. Zeatin biosynthesis was identified in both potato varieties in the dormant release stage (trans-zeatin riboside, isopentenyl adenosine, 5'-methylthioadenosine, IPT, CYP735A, CKX, and UGT73C); glutathione metabolism was identified in short-dormant potato varieties ((5-L-Glutamyl)-L-amino acid, oxidized glutathione, GPX, IDH1, GGT1_5, and GST); and the pentose phosphate pathway (D-Xylulose 5-phosphate, ribose 1-phosphate, PGD, and RPIA) and the phenylpropanoid biosynthesis (caffeic acid, sinapine, CYP98A, and CSE) were identified in long-dormant potato varieties. In conclusion, the four pathways mentioned above involve DEGs and DEMs that are crucial to the control of tuber dormancy release. This work offers a theoretical foundation and useful recommendations for potato tuber quality improvement and molecular breeding.
Collapse
Affiliation(s)
- Hao Liu
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
- Southwest United Graduate School, Kunming, China
| | - Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan, China
| | - Youhong Feng
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Yan Yang
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Cai Feng
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Junhua Li
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Qamar Ur Zaman
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan
| | - Yunxin Kong
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University, Mardan, Pakistan
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Monthony AS, de Ronne M, Torkamaneh D. Exploring ethylene-related genes in Cannabis sativa: implications for sexual plasticity. PLANT REPRODUCTION 2024; 37:321-339. [PMID: 38218931 DOI: 10.1007/s00497-023-00492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
KEY MESSAGE Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species. Sexual plasticity is a phenomenon, wherein organisms possess the ability to alter their phenotypic sex in response to environmental and physiological stimuli, without modifying their sex chromosomes. Cannabis sativa L., a medically valuable plant species, exhibits sexual plasticity when subjected to specific chemicals that influence ethylene biosynthesis and signaling. Nevertheless, the precise contribution of ethylene-related genes (ERGs) to sexual plasticity in cannabis remains unexplored. The current study employed Arabidopsis thaliana L. as a model organism to conduct gene orthology analysis and reconstruct the Yang Cycle, ethylene biosynthesis, and ethylene signaling pathways in C. sativa. Additionally, two transcriptomic datasets comprising male, female, and chemically induced male flowers were examined to identify expression patterns in ERGs associated with sexual determination and sexual plasticity. These ERGs involved in sexual plasticity were categorized into two distinct expression patterns: floral organ concordant (FOC) and unique (uERG). Furthermore, a third expression pattern, termed karyotype concordant (KC) expression, was proposed, which plays a role in sex determination. The study revealed that CsERGs associated with sexual plasticity are dispersed throughout the genome and are not limited to the sex chromosomes, indicating a widespread regulation of sexual plasticity in C. sativa.
Collapse
Affiliation(s)
- Adrian S Monthony
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, Québec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada.
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada.
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
4
|
Barmukh R, Roorkiwal M, Dixit GP, Bajaj P, Kholova J, Smith MR, Chitikineni A, Bharadwaj C, Sreeman SM, Rathore A, Tripathi S, Yasin M, Vijayakumar AG, Rao Sagurthi S, Siddique KHM, Varshney RK. Characterization of 'QTL-hotspot' introgression lines reveals physiological mechanisms and candidate genes associated with drought adaptation in chickpea. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7255-7272. [PMID: 36006832 PMCID: PMC9730794 DOI: 10.1093/jxb/erac348] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 05/16/2023]
Abstract
'QTL-hotspot' is a genomic region on linkage group 04 (CaLG04) in chickpea (Cicer arietinum) that harbours major-effect quantitative trait loci (QTLs) for multiple drought-adaptive traits, and it therefore represents a promising target for improving drought adaptation. To investigate the mechanisms underpinning the positive effects of 'QTL-hotspot' on seed yield under drought, we introgressed this region from the ICC 4958 genotype into five elite chickpea cultivars. The resulting introgression lines (ILs) and their parents were evaluated in multi-location field trials and semi-controlled conditions. The results showed that the 'QTL-hotspot' region improved seed yield under rainfed conditions by increasing seed weight, reducing the time to flowering, regulating traits related to canopy growth and early vigour, and enhancing transpiration efficiency. Whole-genome sequencing data analysis of the ILs and parents revealed four genes underlying the 'QTL-hotspot' region associated with drought adaptation. We validated diagnostic KASP markers closely linked to these genes using the ILs and their parents for future deployment in chickpea breeding programs. The CaTIFY4b-H2 haplotype of a potential candidate gene CaTIFY4b was identified as the superior haplotype for 100-seed weight. The candidate genes and superior haplotypes identified in this study have the potential to serve as direct targets for genetic manipulation and selection for chickpea improvement.
Collapse
Affiliation(s)
- Rutwik Barmukh
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Manish Roorkiwal
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Girish P Dixit
- ICAR - Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Prasad Bajaj
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Jana Kholova
- Crops Physiology & Modeling, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Information Technologies, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Czech Republic
| | - Millicent R Smith
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Australia
| | - Annapurna Chitikineni
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Chellapilla Bharadwaj
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- ICAR - Indian Agricultural Research Institute (IARI), Delhi, India
| | - Sheshshayee M Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Abhishek Rathore
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Mohammad Yasin
- RAK College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, India
| | | | | | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Rajeev K Varshney
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
5
|
Barmukh R, Roorkiwal M, Garg V, Khan AW, German L, Jaganathan D, Chitikineni A, Kholova J, Kudapa H, Sivasakthi K, Samineni S, Kale SM, Gaur PM, Sagurthi SR, Benitez‐Alfonso Y, Varshney RK. Genetic variation in CaTIFY4b contributes to drought adaptation in chickpea. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1701-1715. [PMID: 35534989 PMCID: PMC9398337 DOI: 10.1111/pbi.13840] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/28/2022] [Indexed: 05/26/2023]
Abstract
Chickpea production is vulnerable to drought stress. Identifying the genetic components underlying drought adaptation is crucial for enhancing chickpea productivity. Here, we present the fine mapping and characterization of 'QTL-hotspot', a genomic region controlling chickpea growth with positive consequences on crop production under drought. We report that a non-synonymous substitution in the transcription factor CaTIFY4b regulates seed weight and organ size in chickpea. Ectopic expression of CaTIFY4b in Medicago truncatula enhances root growth under water deficit. Our results suggest that allelic variation in 'QTL-hotspot' improves pre-anthesis water use, transpiration efficiency, root architecture and canopy development, enabling high-yield performance under terminal drought conditions. Gene expression analysis indicated that CaTIFY4b may regulate organ size under water deficit by modulating the expression of GRF-INTERACTING FACTOR1 (GIF1), a transcriptional co-activator of Growth-Regulating Factors. Taken together, our study offers new insights into the role of CaTIFY4b and on diverse physiological and molecular mechanisms underpinning chickpea growth and production under specific drought scenarios.
Collapse
Affiliation(s)
- Rutwik Barmukh
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- Department of GeneticsOsmania UniversityHyderabadIndia
| | - Manish Roorkiwal
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- Khalifa Center for Genetic Engineering and BiotechnologyUnited Arab Emirates UniversityAl‐AinUnited Arab Emirates
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Vanika Garg
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Aamir W. Khan
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Liam German
- Centre for Plant ScienceSchool of BiologyUniversity of LeedsLeedsUK
| | - Deepa Jaganathan
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Annapurna Chitikineni
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Jana Kholova
- Crop Physiology and ModellingInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Himabindu Kudapa
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Kaliamoorthy Sivasakthi
- Crop Physiology and ModellingInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Srinivasan Samineni
- Crop BreedingInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Sandip M. Kale
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Pooran M. Gaur
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
- Crop BreedingInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | | | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- The UWA Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
- Murdoch’s Centre for Crop & Food InnovationState Agricultural Biotechnology CentreFood Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| |
Collapse
|
6
|
Sun W, Zhou XJ, Chen C, Zhang X, Tian X, Xiao K, Liu C, Chen R, Chen S. Maize Interveinal Chlorosis 1 links the Yang Cycle and Fe homeostasis through Nicotianamine biosynthesis. PLANT PHYSIOLOGY 2022; 188:2131-2145. [PMID: 35099564 PMCID: PMC8968279 DOI: 10.1093/plphys/kiac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 05/15/2023]
Abstract
The Yang cycle is involved in many essential metabolic pathways in plant growth and development. As extended products of the Yang cycle, the function and regulation network of ethylene and polyamines are well characterized. Nicotianamine (NA) is also a product of this cycle and works as a key metal chelator for iron (Fe) homeostasis in plants. However, interactions between the Yang cycle and NA biosynthesis remain unclear. Here, we cloned maize interveinal chlorosis 1 (mic1), encoding a 5'-methylthioadenosine nucleosidase (MTN), that is essential for 5'-methylthioadenosine (MTA) salvage and NA biosynthesis in maize (Zea mays). A single base G-A transition in the fourth exon of mic1 causes a Gly to Asp change, resulting in increased MTA, reduced Fe distribution, and growth retardation of seedlings. Knockout of ZmMIC1 but not its paralog ZmMTN2 by CRISPR/Cas9 causes interveinal chlorosis, indicating ZmMIC1 is mainly responsible for MTN activity in maize. Transcriptome analysis showed a typical response of Fe deficiency. However, metabolic analysis revealed dramatically reduced NA content in mic1, suggesting NA biosynthesis was impaired in the mutant. Exogenous application of NA transiently reversed the interveinal chlorosis phenotype of mic1 seedlings. Moreover, the mic1 mutant overexpressing a NA synthase gene not only recovered from interveinal chlorosis and growth retardation but was also fertile. These findings provide a link between the Yang cycle and NA biosynthesis, which highlights an aspect of Fe homeostasis regulation in maize.
Collapse
Affiliation(s)
| | | | - Chen Chen
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Xin Zhang
- Crop Functional Genomics Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolong Tian
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | - Ke Xiao
- Crop Functional Genomics Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenxu Liu
- National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100194, China
| | | | | |
Collapse
|
7
|
Pattyn J, Vaughan‐Hirsch J, Van de Poel B. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. THE NEW PHYTOLOGIST 2021; 229:770-782. [PMID: 32790878 PMCID: PMC7820975 DOI: 10.1111/nph.16873] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
The gaseous plant hormone ethylene is produced by a fairly simple two-step biosynthesis route. Despite this pathway's simplicity, recent molecular and genetic studies have revealed that the regulation of ethylene biosynthesis is far more complex and occurs at different layers. Ethylene production is intimately linked with the homeostasis of its general precursor S-adenosyl-l-methionine (SAM), which experiences transcriptional and posttranslational control of its synthesising enzymes (SAM synthetase), as well as the metabolic flux through the adjacent Yang cycle. Ethylene biosynthesis continues from SAM by two dedicated enzymes: 1-aminocyclopropane-1-carboxylic (ACC) synthase (ACS) and ACC oxidase (ACO). Although the transcriptional dynamics of ACS and ACO have been well documented, the first transcription factors that control ACS and ACO expression have only recently been discovered. Both ACS and ACO display a type-specific posttranslational regulation that controls protein stability and activity. The nonproteinogenic amino acid ACC also shows a tight level of control through conjugation and translocation. Different players in ACC conjugation and transport have been identified over the years, however their molecular regulation and biological significance is unclear, yet relevant, as ACC can also signal independently of ethylene. In this review, we bring together historical reports and the latest findings on the complex regulation of the ethylene biosynthesis pathway in plants.
Collapse
Affiliation(s)
- Jolien Pattyn
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - John Vaughan‐Hirsch
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| |
Collapse
|
8
|
Guo T, Zhang X, Li Y, Liu C, Wang N, Jiang Q, Wu J, Ma F, Liu C. Overexpression of MdARD4 Accelerates Fruit Ripening and Increases Cold Hardiness in Tomato. Int J Mol Sci 2020; 21:ijms21176182. [PMID: 32867065 PMCID: PMC7503420 DOI: 10.3390/ijms21176182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Ethylene plays an important role in stress adaptation and fruit ripening. Acireductone dioxygenase (ARD) is pivotal for ethylene biosynthesis. However, the response of ARD to fruit ripening or cold stress is still unclear. In this study, we identified three members of Malus ARD family, and expression profile analysis revealed that the transcript level of MdARD4 was induced during apple fruit ripening and after apple plants were being treated with cold stress. To investigate its function in cold tolerance and fruit ripening, MdARD4 was ectopically expressed in Solanum lycopersicum cultivar ‘Micro-Tom’, which has been considered as an excellent model plant for the study of fruit ripening. At the cellular level, the MdARD protein expressed throughout Nicotiana benthamiana epidermal cells. Overexpression of MdARD4 in tomato demonstrated that MdARD4 regulates the ethylene and carotenoid signaling pathway, increases ethylene and carotenoid concentrations, and accelerates fruit ripening. Furthermore, MdARD4 increased the antioxidative ability and cold hardiness in tomato. To conclude, MdARD4 may potentially be used in apple breeding to accelerate fruit ripening and increase cold hardiness.
Collapse
Affiliation(s)
- Tianli Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiuzhi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Chenlu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Na Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qi Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Junyao Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Brault A, Labbé S. Iron deficiency leads to repression of a non-canonical methionine salvage pathway in Schizosaccharomyces pombe. Mol Microbiol 2020; 114:46-65. [PMID: 32090388 DOI: 10.1111/mmi.14495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
The methionine salvage pathway (MSP) regenerates methionine from 5'-methylthioadenosine (MTA). Aerobic MSP consists of six enzymatic steps. The mug14+ and adi1+ genes that are involved in the third and fifth steps of the pathway are repressed when Schizosaccharomyces pombe undergoes a transition from high- to low-iron conditions. Results consistently show that methionine auxotrophic cells (met6Δ) require iron for growth in the presence of MTA as the sole source of methionine. Inactivation of the iron-using protein Adi1 leads to defects in the utilization of MTA. In the case of the third step of the pathway, co-expression of two distinct proteins, Mta3 and Mde1, is required. These proteins are interdependent to rescue MTA-dependent growth deficit of met6Δ cells. Coimmunoprecipitation experiments showed that Mta3 is a binding partner of Mde1. Meiotic met6Δ cells co-expressing mta3+ and mde1+ or mta3+ and mug14+ produce comparable levels of spores in the presence of MTA, revealing that Mde1 and Mug14 share a common function when co-expressed with Mta3 in sporulating cells. In sum, our findings unveil several novel features of MSP, especially with respect to its regulation by iron and the discovery of a non-canonical third enzymatic step in the fission yeast.
Collapse
Affiliation(s)
- Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Riyazuddin R, Verma R, Singh K, Nisha N, Keisham M, Bhati KK, Kim ST, Gupta R. Ethylene: A Master Regulator of Salinity Stress Tolerance in Plants. Biomolecules 2020; 10:E959. [PMID: 32630474 PMCID: PMC7355584 DOI: 10.3390/biom10060959] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Salinity stress is one of the major threats to agricultural productivity across the globe. Research in the past three decades, therefore, has focused on analyzing the effects of salinity stress on the plants. Evidence gathered over the years supports the role of ethylene as a key regulator of salinity stress tolerance in plants. This gaseous plant hormone regulates many vital cellular processes starting from seed germination to photosynthesis for maintaining the plants' growth and yield under salinity stress. Ethylene modulates salinity stress responses largely via maintaining the homeostasis of Na+/K+, nutrients, and reactive oxygen species (ROS) by inducing antioxidant defense in addition to elevating the assimilation of nitrates and sulfates. Moreover, a cross-talk of ethylene signaling with other phytohormones has also been observed, which collectively regulate the salinity stress responses in plants. The present review provides a comprehensive update on the prospects of ethylene signaling and its cross-talk with other phytohormones to regulate salinity stress tolerance in plants.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary;
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Radhika Verma
- Department of Biotechnology, Visva-Bharati Central University, Santiniketan, West Bengal 731235, India;
| | - Kalpita Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India;
| | - Nisha Nisha
- Department of Integrated Plant Protection, Plant Protection Institute, Faculty of Horticultural Sciences, Szent István University, Páter Károly utca 1, H-2100 Gödöllo, Hungary;
| | - Monika Keisham
- Department of Botany, University of Delhi, New Delhi 110007, India;
| | - Kaushal Kumar Bhati
- Louvain Institute of Biomolecular Science, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium;
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
11
|
Rice Senescence-Induced Receptor-Like Kinase ( OsSRLK) Is Involved in Phytohormone-Mediated Chlorophyll Degradation. Int J Mol Sci 2019; 21:ijms21010260. [PMID: 31905964 PMCID: PMC6982081 DOI: 10.3390/ijms21010260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023] Open
Abstract
Chlorophyll breakdown is a vital catabolic process of leaf senescence as it allows the recycling of nitrogen and other nutrients. In the present study, we isolated rice senescence-induced receptor-like kinase (OsSRLK), whose transcription was upregulated in senescing rice leaves. The detached leaves of ossrlk mutant (ossrlk) contained more green pigment than those of the wild type (WT) during dark-induced senescence (DIS). HPLC and immunoblot assay revealed that degradation of chlorophyll and photosystem II proteins was repressed in ossrlk during DIS. Furthermore, ultrastructural analysis revealed that ossrlk leaves maintained the chloroplast structure with intact grana stacks during dark incubation; however, the retained green color and preserved chloroplast structures of ossrlk did not enhance the photosynthetic competence during age-dependent senescence in autumn. In ossrlk, the panicles per plant was increased and the spikelets per panicle were reduced, resulting in similar grain productivity between WT and ossrlk. By transcriptome analysis using RNA sequencing, genes related to phytohormone, senescence, and chlorophyll biogenesis were significantly altered in ossrlk compared to those in WT during DIS. Collectively, our findings indicate that OsSRLK may degrade chlorophyll by participating in a phytohormone-mediated pathway.
Collapse
|
12
|
Abstract
Multiple factors involving the methionine salvage pathway (MSP) and polyamine biosynthesis have been found to be involved in cancer cell proliferation, migration, invasion and metastasis. This review summarizes the relationships of the MSP enzyme acireductone dioxygenase (ARD), the ADI1 gene encoding ARD and other gene products (ADI1GP) with carcinomas and carcinogenesis. ARD exhibits structural and functional differences depending upon the metal bound in the active site. In the penultimate step of the MSP, the Fe2+ bound form of ARD catalyzes the on-pathway oxidation of acireductone leading to methionine, whereas Ni2+ bound ARD catalyzes an off-pathway reaction producing methylthiopropionate and carbon monoxide, a biological signaling molecule and anti-apoptotic. The relationship between ADI1GP, MSP and polyamine synthesis are discussed, along with possible role(s) of metal in modulating the cellular behavior of ADI1GP and its interactions with other cellular components.
Collapse
|
13
|
Şahin-Çevik M, Sivri ED, Çevik B. Identification and Expression Analysis of Genes Induced in Response to Tomato chlorosis virus Infection in Tomato. THE PLANT PATHOLOGY JOURNAL 2019; 35:257-273. [PMID: 31244571 PMCID: PMC6586192 DOI: 10.5423/ppj.oa.12.2018.0287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 05/05/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most widely grown and economically important vegetable crops in the world. Tomato chlorosis virus (ToCV) is one of the recently emerged viruses of tomato distributed worldwide. ToCV-tomato interaction was investigated at the molecular level for determining changes in the expression of tomato genes in response to ToCV infection in this study. A cDNA library enriched with genes induced in response to ToCV infection were constructed and 240 cDNAs were sequenced from this library. The macroarray analysis of 108 cDNAs revealed that the expression of 92 non-redundant tomato genes was induced by 1.5-fold or greater in response to ToCV infection. The majority of ToCV-induced genes identified in this study were associated with a variety of cellular functions including transcription, defense and defense signaling, metabolism, energy, transport facilitation, protein synthesis and fate and cellular biogenesis. Twenty ToCV-induced genes from different functional groups were selected and induction of 19 of these genes in response to ToCV infection was validated by RT-qPCR assay. Finally, the expression of 6 selected genes was analyzed in different stages of ToCV infection from 0 to 45 dpi. While the expression of three of these genes was only induced by ToCV infection, others were induced both by ToCV infection and wounding. The result showed that ToCV induced the basic defense response and activated the defense signaling in tomato plants at different stages of the infection. Functions of these defense related genes and their potential roles in disease development and resistance to ToCV are also discussed.
Collapse
Affiliation(s)
- Mehtap Şahin-Çevik
- Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology, 32260 Isparta,
Turkey
- Corresponding author: Phone) +902462118544, FAX) +902462114885, E-mail)
| | - Emine Doguş Sivri
- Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology, 32260 Isparta,
Turkey
| | - Bayram Çevik
- Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Plant Protection, 32260 Isparta,
Turkey
| |
Collapse
|
14
|
Liang S, Xiong W, Yin C, Xie X, Jin YJ, Zhang S, Yang B, Ye G, Chen S, Luan WJ. Overexpression of OsARD1 Improves Submergence, Drought, and Salt Tolerances of Seedling Through the Enhancement of Ethylene Synthesis in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:1088. [PMID: 31552078 PMCID: PMC6746970 DOI: 10.3389/fpls.2019.01088] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/09/2019] [Indexed: 05/20/2023]
Abstract
Acireductone dioxygenase (ARD) is a metal-binding metalloenzyme and involved in the methionine salvage pathway. In rice, OsARD1 binds Fe2+ and catalyzes the formation of 2-keto-4-methylthiobutyrate (KMTB) to produce methionine, which is an initial substrate in ethylene synthesis pathway. Here, we report that overexpression of OsARD1 elevates the endogenous ethylene release rate, enhances the tolerance to submergence stress, and reduces the sensitivity to drought, salt, and osmotic stresses in rice. OsARD1 is strongly induced by submergence, drought, salinity, PEG6000, and mechanical damage stresses and exhibits high expression level in senescent leaves. Transgenic plants overexpressing OsARD1 (OsARD1-OE) display fast elongation growth to escape submergence stress. The ethylene content is significantly maximized in OsARD1-OE plants compared with the wide type. OsARD1-OE plants display increased shoot elongation and inhibition of root elongation under the submergence stress and grow in dark due to increase of ethylene. The elongation of coleoptile under anaerobic germination is also significantly promoted in OsARD1-OE lines due to the increase of ethylene content. The sensitivity to drought and salt stresses is reduced in OsARD1-OE transgenic lines. Water holding capacity is enhanced, and the stomata and trichomes on leaves increase in OsARD1-OE lines. Drought and salt tolerance and ethylene synthesis-related genes are upregulated in OsARD1-OE plants. Subcellular localization shows that OsARD1 displays strong localization signal in cell nucleus, suggesting OsARD1 may interact with the transcription factors. Taken together, the results provide the understanding of the function of OsARD1 in ethylene synthesis and abiotic stress response in rice.
Collapse
Affiliation(s)
- Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Wei Xiong
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Cuicui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Xie
- College of Agriculture, Resources and Environmental Sciences, Tianjin Agricultural University, Tianjin, China
| | - Ya-jun Jin
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Bo Yang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Guoyou Ye
- Genetics and Biotechnology Division, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Shouyi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-jiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
- *Correspondence: Wei-jiang Luan,
| |
Collapse
|
15
|
OsARD4 encoding an acireductone dioxygenase improves root architecture in rice by promoting development of secondary roots. Sci Rep 2018; 8:15713. [PMID: 30356087 PMCID: PMC6200752 DOI: 10.1038/s41598-018-34053-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023] Open
Abstract
This study was aimed at unravelling the molecular basis of root growth behavior in a drought-tolerant upland rice genotype, Nootripathu. Root tips of Nootripathu were found to possess shorter root caps and a greater number of dividing cells, favoring faster elongation compared to shallow-rooted IR20. Width and length of cortical cells in the roots of rapidly growing Nootripathu were found to be two to three times higher than IR20. Evaluation of shallow-rooted IR20, deep-rooted Nootripathu and their Recombinant Inbred Lines (RILs) for root characteristics revealed the presence of genetic variation for root traits among RILs. 2D-PAGE analysis of proteins in roots of IR20, Nootripathu and bulks of extreme RILs differing in root traits resulted in the identification of proteins co-segregating with root growth behavior and co-localized with QTLs for root traits. A putative candidate gene, OsARD4, encoding an "acireductone dioxygenase" was validated for its role in modulating the root growth pattern through genetic transformation. Transgenic ASD16 rice plants engineered for the overexpression of OsARD4 exhibited root growth characteristics similar to those of Nootripathu, including faster radical emergence, more rapid elongation of primary roots, early initiation of crown/lateral roots, and higher root biomass than the non-transgenic plants.
Collapse
|
16
|
Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu J, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S, Yamasaki M, Yokoyama R, Nishitani K, Mochizuki T, Tamiya G, McCouch SR, Ashikari M. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 2018; 361:181-186. [PMID: 30002253 DOI: 10.1126/science.aat1577] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023]
Abstract
Most plants do poorly when flooded. Certain rice varieties, known as deepwater rice, survive periodic flooding and consequent oxygen deficiency by activating internode growth of stems to keep above the water. Here, we identify the gibberellin biosynthesis gene, SD1 (SEMIDWARF1), whose loss-of-function allele catapulted the rice Green Revolution, as being responsible for submergence-induced internode elongation. When submerged, plants carrying the deepwater rice-specific SD1 haplotype amplify a signaling relay in which the SD1 gene is transcriptionally activated by an ethylene-responsive transcription factor, OsEIL1a. The SD1 protein directs increased synthesis of gibberellins, largely GA4, which promote internode elongation. Evolutionary analysis shows that the deepwater rice-specific haplotype was derived from standing variation in wild rice and selected for deepwater rice cultivation in Bangladesh.
Collapse
Affiliation(s)
- Takeshi Kuroha
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan.
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Rico Gamuyao
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Diane R Wang
- Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tomoyuki Furuta
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Masanari Nakamori
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Takuya Kitaoka
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Keita Adachi
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Anzu Minami
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Yoshinao Mori
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Kiyoshi Mashiguchi
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan
| | - Yoshiya Seto
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan
| | - Shinjiro Yamaguchi
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Jianzhong Wu
- Institute of Crop Science, NARO, Ibaraki 305-8518, Japan
| | - Kaworu Ebana
- Genetic Resources Center, NARO, Ibaraki 305-8518, Japan
| | | | - Masaru Ohme-Takagi
- Bioproduction Research Institute, AIST, Ibaraki 305-8566, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masanori Yamasaki
- Graduate School of Agricultural Science, Kobe University, Hyogo 675-2103, Japan
| | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan
| | - Kazuhiko Nishitani
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan
| | | | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi 980-8575, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Susan R McCouch
- Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan.
| |
Collapse
|
17
|
Deshpande AR, Pochapsky TC, Ringe D. The Metal Drives the Chemistry: Dual Functions of Acireductone Dioxygenase. Chem Rev 2017; 117:10474-10501. [PMID: 28731690 DOI: 10.1021/acs.chemrev.7b00117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acireductone dioxygenase (ARD) from the methionine salvage pathway (MSP) is a unique enzyme that exhibits dual chemistry determined solely by the identity of the divalent transition-metal ion (Fe2+ or Ni2+) in the active site. The Fe2+-containing isozyme catalyzes the on-pathway reaction using substrates 1,2-dihydroxy-3-keto-5-methylthiopent-1-ene (acireductone) and dioxygen to generate formate and the ketoacid precursor of methionine, 2-keto-4-methylthiobutyrate, whereas the Ni2+-containing isozyme catalyzes an off-pathway shunt with the same substrates, generating methylthiopropionate, carbon monoxide, and formate. The dual chemistry of ARD was originally discovered in the bacterium Klebsiella oxytoca, but it has recently been shown that mammalian ARD enzymes (mouse and human) are also capable of catalyzing metal-dependent dual chemistry in vitro. This is particularly interesting, since carbon monoxide, one of the products of off-pathway reaction, has been identified as an antiapoptotic molecule in mammals. In addition, several biochemical and genetic studies have indicated an inhibitory role of human ARD in cancer. This comprehensive review describes the biochemical and structural characterization of the ARD family, the proposed experimental and theoretical approaches to establishing mechanisms for the dual chemistry, insights into the mechanism based on comparison with structurally and functionally similar enzymes, and the applications of this research to the field of artificial metalloenzymes and synthetic biology.
Collapse
Affiliation(s)
- Aditi R Deshpande
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Thomas C Pochapsky
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Dagmar Ringe
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| |
Collapse
|
18
|
Deshpande AR, Pochapsky TC, Petsko GA, Ringe D. Dual chemistry catalyzed by human acireductone dioxygenase. Protein Eng Des Sel 2017; 30:197-204. [PMID: 28062648 DOI: 10.1093/protein/gzw078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/15/2016] [Indexed: 11/14/2022] Open
Abstract
Acireductone dioxygenase (ARD) from the methionine salvage pathway of Klebsiella oxytoca is the only known naturally occurring metalloenzyme that catalyzes different reactions in vivo based solely on the identity of the divalent transition metal ion (Fe2+ or Ni2+) bound in the active site. The iron-containing isozyme catalyzes the cleavage of substrate 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, whereas the nickel-containing isozyme uses the same substrates to catalyze an off-pathway shunt to form methylthiopropionate, carbon monoxide and formate. This dual chemistry was recently demonstrated in vitro by ARD from Mus musculus (MmARD), providing the first example of a mammalian ARD exhibiting metal-dependent catalysis. We now show that human ARD (HsARD) is also capable of metal-dependent dual chemistry. Recombinant HsARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. As with MmARD, the Fe2+-bound HsARD shows the highest activity and catalyzes on-pathway chemistry, whereas Ni2+, Co2+ or Mn2+ forms catalyze off-pathway chemistry. The thermal stability of the HsARD isozymes is a function of the metal ion identity, with Ni2+-bound HsARD being the most stable followed by Co2+ and Fe2+, and Mn2+-bound HsARD being the least stable. As with the bacterial ARD, solution NMR data suggest that HsARD isozymes can have significant structural differences depending upon the metal ion bound.
Collapse
Affiliation(s)
- Aditi R Deshpande
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Thomas C Pochapsky
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02454, USA.,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454, USA
| | - Gregory A Petsko
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02454, USA.,Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Dagmar Ringe
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02454, USA.,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
19
|
Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology. Curr Opin Chem Biol 2016; 31:126-35. [PMID: 27015291 PMCID: PMC4879150 DOI: 10.1016/j.cbpa.2016.02.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
Current evidence for iron-oxo reactive intermediates is reviewed. In crystallo intermediates detected in a native extradiol dioxygenase reaction. Carotenoid cleavage dioxygenases catalyse strigolactone biosynthesis. Identification of plant cysteine oxidases involved in the plant hypoxic response. Applications of enzyme manipulation to plant biology and agriculture are discussed.
Non-heme iron-dependent oxygenases catalyse the incorporation of O2 into a wide range of biological molecules and use diverse strategies to activate their substrates. Recent kinetic studies, including in crystallo, have provided experimental support for some of the intermediates used by different subclasses of this enzyme family. Plant non-heme iron-dependent oxygenases have diverse and important biological roles, including in growth signalling, stress responses and secondary metabolism. Recently identified roles include in strigolactone biosynthesis, O-demethylation in morphine biosynthesis and regulating the stability of hypoxia-responsive transcription factors. We discuss current structural and mechanistic understanding of plant non-heme iron oxygenases, and how their chemical/genetic manipulation could have agricultural benefit, for example, for improved yield, stress tolerance or herbicide development.
Collapse
|
20
|
Deshpande AR, Wagenpfeil K, Pochapsky TC, Petsko GA, Ringe D. Metal-Dependent Function of a Mammalian Acireductone Dioxygenase. Biochemistry 2016; 55:1398-407. [PMID: 26858196 PMCID: PMC5319410 DOI: 10.1021/acs.biochem.5b01319] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella oxytoca are the only known pair of naturally occurring metalloenzymes with distinct chemical and physical properties determined solely by the identity of the divalent transition metal ion (Fe(2+) or Ni(2+)) in the active site. We now show that this dual chemistry can also occur in mammals. ARD from Mus musculus (MmARD) was studied to relate the metal ion identity and three-dimensional structure to enzyme function. The iron-containing isozyme catalyzes the cleavage of 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, which is the penultimate step in methionine salvage. The nickel-bound form of ARD catalyzes an off-pathway reaction resulting in formate, carbon monoxide (CO), and 3-(thiomethyl) propionate. Recombinant MmARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. The Fe(2+)-bound protein, which shows about 10-fold higher activity than that of others, catalyzes on-pathway chemistry, whereas the Ni(2+), Co(2+), or Mn(2+) forms exhibit off-pathway chemistry, as has been seen with ARD from Klebsiella. Thermal stability of the isozymes is strongly affected by the metal ion identity, with Ni(2+)-bound MmARD being the most stable, followed by Co(2+) and Fe(2+), and Mn(2+)-bound ARD being the least stable. Ni(2+)- and Co(2+)-bound MmARD were crystallized, and the structures of the two proteins found to be similar. Enzyme-ligand complexes provide insight into substrate binding, metal coordination, and the catalytic mechanism.
Collapse
Affiliation(s)
| | | | - Thomas C. Pochapsky
- Department of Biochemistry, Brandeis University, Waltham, MA 02454,Department of Chemistry, Brandeis University, Waltham, MA 02454,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454
| | - Gregory A. Petsko
- Department of Biochemistry, Brandeis University, Waltham, MA 02454,Department of Chemistry, Brandeis University, Waltham, MA 02454,Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Dagmar Ringe
- Department of Biochemistry, Brandeis University, Waltham, MA 02454,Department of Chemistry, Brandeis University, Waltham, MA 02454,Rosenstiel Institute for Basic Biomedical Research, Brandeis University, Waltham, MA 02454,Corresponding Author. To whom correspondence should be addressed. . Phone: 781-736-4902
| |
Collapse
|
21
|
Vigani G, Bashir K, Ishimaru Y, Lehmann M, Casiraghi FM, Nakanishi H, Seki M, Geigenberger P, Zocchi G, Nishizawa NK. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1357-68. [PMID: 26685186 PMCID: PMC4762380 DOI: 10.1093/jxb/erv531] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2-20133 Milano, Italy
| | - Khurram Bashir
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, , Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Science, Tohoku University, 6-3, Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Martin Lehmann
- Plant Molecular Biology (Botany) and Plant Metabolism, Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, D-82152 Planegg-Martinsried, Germany
| | - Fabio Marco Casiraghi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2-20133 Milano, Italy
| | - Hiromi Nakanishi
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, , Yokohama, Kanagawa 230-0045, Japan CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Peter Geigenberger
- Plant Molecular Biology (Botany) and Plant Metabolism, Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, D-82152 Planegg-Martinsried, Germany
| | - Graziano Zocchi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria 2-20133 Milano, Italy
| | - Naoko K Nishizawa
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan
| |
Collapse
|
22
|
Bernsdorff F, Döring AC, Gruner K, Schuck S, Bräutigam A, Zeier J. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. THE PLANT CELL 2016; 28:102-29. [PMID: 26672068 PMCID: PMC4746677 DOI: 10.1105/tpc.15.00496] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/30/2015] [Accepted: 12/13/2015] [Indexed: 05/18/2023]
Abstract
We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants.
Collapse
Affiliation(s)
- Friederike Bernsdorff
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Anne-Christin Döring
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Katrin Gruner
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Stefan Schuck
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute for Plant Biochemistry, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
23
|
Byun MY, Lee J, Cui LH, Kang Y, Oh TK, Park H, Lee H, Kim WT. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:61-74. [PMID: 26025521 DOI: 10.1016/j.plantsci.2015.03.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/07/2015] [Accepted: 03/26/2015] [Indexed: 05/23/2023]
Abstract
Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress.
Collapse
Affiliation(s)
- Mi Young Byun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jungeun Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Li Hua Cui
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Yoonjee Kang
- Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Tae Kyung Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyun Park
- Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea.
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
24
|
Ellens KW, Richardson LGL, Frelin O, Collins J, Ribeiro CL, Hsieh YF, Mullen RT, Hanson AD. Evidence that glutamine transaminase and omega-amidase potentially act in tandem to close the methionine salvage cycle in bacteria and plants. PHYTOCHEMISTRY 2015; 113:160-169. [PMID: 24837359 DOI: 10.1016/j.phytochem.2014.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/07/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
S-Adenosylmethionine is converted enzymatically and non-enzymatically to methylthioadenosine, which is recycled to methionine (Met) via a salvage pathway. In plants and bacteria, enzymes for all steps in this pathway are known except the last: transamination of α-ketomethylthiobutyrate to give Met. In mammals, glutamine transaminase K (GTK) and ω-amidase (ω-Am) are thought to act in tandem to execute this step, with GTK forming α-ketoglutaramate, which ω-Am hydrolyzes. Comparative genomics indicated that GTK and ω-Am could function likewise in plants and bacteria because genes encoding GTK and ω-Am homologs (i) co-express with the Met salvage gene 5-methylthioribose kinase in Arabidopsis, and (ii) cluster on the chromosome with each other and with Met salvage genes in diverse bacteria. Consistent with this possibility, tomato, maize, and Bacillus subtilis GTK and ω-Am homologs had the predicted activities: GTK was specific for glutamine as amino donor and strongly preferred α-ketomethylthiobutyrate as amino acceptor, and ω-Am strongly preferred α-ketoglutaramate. Also consistent with this possibility, plant GTK and ω-Am were localized to the cytosol, where the Met salvage pathway resides, as well as to organelles. This multiple targeting was shown to result from use of alternative start codons. In B. subtilis, ablating GTK or ω-Am had a modest but significant inhibitory effect on growth on 5-methylthioribose as sole sulfur source. Collectively, these data indicate that while GTK, coupled with ω-Am, is positioned to support significant Met salvage flux in plants and bacteria, it can probably be replaced by other aminotransferases.
Collapse
Affiliation(s)
- Kenneth W Ellens
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | - Lynn G L Richardson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Océane Frelin
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Joseph Collins
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Cintia Leite Ribeiro
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Yih-Feng Hsieh
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
25
|
Matienko L, Binyukov V, Mosolova L, Mil E, Zaikov G. Some Supramolecular Nanostructures Based on Catalytic Active Nickel and Iron Heteroligand Complexes. Functional Models of Ni(Fe) Dioxygenases. CHEMISTRY & CHEMICAL TECHNOLOGY 2014. [DOI: 10.23939/chcht08.03.339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 2014; 4:2792. [PMID: 24253678 PMCID: PMC3905729 DOI: 10.1038/ncomms3792] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 10/18/2013] [Indexed: 01/04/2023] Open
Abstract
Iron is essential for most living organisms. Plants transcriptionally induce genes involved in iron acquisition under conditions of low iron availability, but the nature of the deficiency signal and its sensors are unknown. Here we report the identification of new iron regulators in rice, designated Oryza sativaHaemerythrin motif-containing Really Interesting New Gene (RING)- and Zinc-finger protein 1 (OsHRZ1) and OsHRZ2. OsHRZ1, OsHRZ2 and their Arabidopsis homologue BRUTUS bind iron and zinc, and possess ubiquitination activity. OsHRZ1 and OsHRZ2 are susceptible to degradation in roots irrespective of iron conditions. OsHRZ-knockdown plants exhibit substantial tolerance to iron deficiency, and accumulate more iron in their shoots and grains irrespective of soil iron conditions. The expression of iron deficiency-inducible genes involved in iron utilization is enhanced in OsHRZ-knockdown plants, mostly under iron-sufficient conditions. These results suggest that OsHRZ1 and OsHRZ2 are iron-binding sensors that negatively regulate iron acquisition under conditions of iron sufficiency. Plants activate a gene transcription response under low iron conditions but how they sense insufficient iron levels is unclear. In this study, Kobayashi et al. identify two iron-binding proteins that possess ubiquitin ligase activity and are negative regulators of the iron deficiency response.
Collapse
|
27
|
Zhang Q, Marsolais F. Identification and characterization of omega-amidase as an enzyme metabolically linked to asparagine transamination in Arabidopsis. PHYTOCHEMISTRY 2014; 99:36-43. [PMID: 24461228 DOI: 10.1016/j.phytochem.2013.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/11/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
In higher plants, asparagine (Asn) is a major form of organic nitrogen used for transport and storage. There are two pathways of Asn metabolism, involving asparaginase and Asn aminotransferase. The enzyme serine:glyoxylate aminotransferase encoded by AGT1 has been identified as an asparagine aminotransferase in Arabidopsis. The product of asparagine transamination, alpha-ketosuccinamate, can be hydrolyzed by the enzyme omega-amidase to form oxaloacetate and ammonia. A candidate gene was identified in Arabidopsis based on its sequence similarity with mouse omega-amidase. Recombinant omega-amidase exhibited comparable catalytic activities with alpha-hydroxysuccinamate, alpha-ketosuccinamate and alpha-ketoglutaramate, the product of glutamine transamination. A mutant with a T-DNA inserted in the first exon accumulated alpha-ketosuccinamate and alpha-hydroxysuccinamate as compared with wild-type, both under control conditions and after treatment with Asn. Treatment with Asn led to decreased transcript levels of omega-amidase in root, while transcript levels of AGT1 are increased under these conditions, suggesting that excess Asn may lead to the accumulation of alpha-ketosuccinamate and alpha-hydroxysuccinamate.
Collapse
Affiliation(s)
- Qianyi Zhang
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada; Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Frédéric Marsolais
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada; Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, ON N5V 4T3, Canada.
| |
Collapse
|
28
|
Lasanajak Y, Minocha R, Minocha SC, Goyal R, Fatima T, Handa AK, Mattoo AK. Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene. Amino Acids 2013; 46:729-42. [PMID: 24337930 DOI: 10.1007/s00726-013-1624-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/04/2013] [Indexed: 01/05/2023]
Abstract
S-adenosylmethionine (SAM), a major substrate in 1-C metabolism is a common precursor in the biosynthetic pathways of polyamines and ethylene, two important plant growth regulators, which exhibit opposing developmental effects, especially during fruit ripening. However, the flux of various substrates including SAM into the two competing pathways in plants has not yet been characterized. We used radiolabeled (14)C-Arg, (14)C-Orn, L-[U-(14)C]Met, (14)C-SAM and (14)C-Put to quantify flux through these pathways in tomato fruit and evaluate the effects of perturbing these pathways via transgenic expression of a yeast SAM decarboxylase (ySAMDC) gene using the fruit ripening-specific promoter E8. We show that polyamines in tomato fruit are synthesized both from Arg and Orn; however, the relative contribution of Orn pathway declines in the later stages of ripening. Expression of ySAMDC reversed the ripening associated decline in spermidine (Spd) and spermine (Spm) levels observed in the azygous control fruit. About 2- to 3-fold higher levels of labeled-Spd in transgenic fruit (556HO and 579HO lines) expressing ySAMDC confirmed the enzymatic function of the introduced gene. The incorporation of L-[U-(14)C]Met into Spd, Spm, ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) was used to determine Met-flux into these metabolites. The incorporation of (14)C-Met into Spd/Spm declined during ripening of the control azygous fruit but this was reversed in fruits expressing ySAMDC. However, incorporation of (14)C-Met into ethylene or ACC during ripening was not altered by the expression of ySAMDC in the fruit. Taken together these results show that: (1) There is an inverse relationship between the production of higher polyamines and ethylene during fruit ripening, (2) the inverse relationship between higher polyamines and ethylene is modulated by ySAMDC expression in that the decline in Spd/Spm during fruit ripening can be reversed without significantly altering ethylene biosynthesis, and (3) cellular flux of SAM in plants is homeostatically regulated based on its demand for competing pathways.
Collapse
Affiliation(s)
- Yi Lasanajak
- Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Alberton D, Müller-Santos M, Brusamarello-Santos LCC, Valdameri G, Cordeiro FA, Yates MG, de Oliveira Pedrosa F, de Souza EM. Comparative Proteomics Analysis of the Rice Roots Colonized by Herbaspirillum seropedicae Strain SmR1 Reveals Induction of the Methionine Recycling in the Plant Host. J Proteome Res 2013; 12:4757-68. [DOI: 10.1021/pr400425f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dayane Alberton
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | - Marcelo Müller-Santos
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | | | - Glaucio Valdameri
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | - Fabio Aparecido Cordeiro
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | - Marshall Geoffrey Yates
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | - Fabio de Oliveira Pedrosa
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry
and Molecular Biology, Federal University of Paraná, Rua
Francisco H. dos Santos s/n Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| |
Collapse
|
30
|
Barry KP, Taylor EA. Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6. Biochemistry 2013; 52:6724-36. [PMID: 23977959 DOI: 10.1021/bi400665t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LigAB from Sphingomonas paucimobilis SYK-6 is the only structurally characterized dioxygenase of the largely uncharacterized superfamily of Type II extradiol dioxygenases (EDO). This enzyme catalyzes the oxidative ring-opening of protocatechuate (3,4-dihydroxybenzoic acid or PCA) in a pathway allowing the degradation of lignin derived aromatic compounds (LDACs). LigAB has also been shown to utilize two other LDACs from the same metabolic pathway as substrates, gallate, and 3-O-methyl gallate; however, kcat/KM had not been reported for any of these compounds. In order to assess the catalytic efficiency and get insights into the observed promiscuity of this enzyme, steady-state kinetic analyses were performed for LigAB with these and a library of related compounds. The dioxygenation of PCA by LigAB was highly efficient, with a kcat of 51 s(-1) and a kcat/KM of 4.26 × 10(6) M(-1)s(-1). LigAB demonstrated the ability to use a variety of catecholic molecules as substrates beyond the previously identified gallate and 3-O-methyl gallate, including 3,4-dihydroxybenzamide, homoprotocatechuate, catechol, and 3,4-dihydroxybenzonitrile. Interestingly, 3,4-dihydroxybenzamide (DHBAm) behaves in a manner similar to that of the preferred benzoic acid substrates, with a kcat/Km value only ∼4-fold lower than that for gallate and ∼10-fold higher than that for 3-O-methyl gallate. All of these most active substrates demonstrate mechanistic inactivation of LigAB. Additionally, DHBAm exhibits potent product inhibition that leads to an inactive enzyme, being more highly deactivating at lower substrate concentration, a phenomena that, to our knowledge, has not been reported for another dioxygenase substrate/product pair. These results provide valuable catalytic insight into the reactions catalyzed by LigAB and make it the first Type II EDO that is fully characterized both structurally and kinetically.
Collapse
Affiliation(s)
- Kevin P Barry
- Department of Chemistry, Wesleyan University , 52 Lawn Avenue, Middletown, Connecticut 06459, United States
| | | |
Collapse
|
31
|
Nakano T, Ohki I, Yokota A, Ashida H. MtnBD is a multifunctional fusion enzyme in the methionine salvage pathway of Tetrahymena thermophila. PLoS One 2013; 8:e67385. [PMID: 23840871 PMCID: PMC3698126 DOI: 10.1371/journal.pone.0067385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
To recycle reduced sulfur to methionine in the methionine salvage pathway (MSP), 5-methylthioribulose-1-phosphate is converted to 2-keto-4-methylthiobutyrate, the methionine precursor, by four steps; dehydratase, enolase, phosphatase, and dioxygenase reactions (catalyzed by MtnB, MtnW, MtnX and MtnD, respectively, in Bacillus subtilis). It has been proposed that the MtnBD fusion enzyme in Tetrahymena thermophila catalyzes four sequential reactions from the dehydratase to dioxygenase steps, based on the results of molecular biological analyses of mutant yeast strains with knocked-out MSP genes, suggesting that new catalytic function can be acquired by fusion of enzymes. This result raises the question of how the MtnBD fusion enzyme can catalyze four very different reactions, especially since there are no homologous domains for enolase and phosphatase (MtnW and MtnX, respectively, in B. subtilis) in the peptide. Here, we tried to identify the domains responsible for catalyzing the four reactions using recombinant proteins of full-length MtnBD and each domain alone. UV-visible and ¹H-NMR spectral analyses of reaction products revealed that the MtnB domain catalyzes dehydration and enolization and the MtnD domain catalyzes dioxygenation. Contrary to a previous report, conversion of 5-methylthioribulose-1-phosphate to 2-keto-4-methylthiobutyrate was dependent on addition of an exogenous phosphatase from B. subtilis. This was observed for both the MtnB domain and full-length MtnBD, suggesting that MtnBD does not catalyze the phosphatase reaction. Our results suggest that the MtnB domain of T. thermophila MtnBD acquired the new function to catalyze both the dehydratase and enolase reactions through evolutionary gene mutations, rather than fusion of MSP genes.
Collapse
Affiliation(s)
- Toshihiro Nakano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| | - Izuru Ohki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| | - Akiho Yokota
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| | - Hiroki Ashida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
32
|
Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 2013; 451:145-54. [PMID: 23535167 DOI: 10.1042/bj20121744] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Both Met (methionine) and SAM (S-adenosylmethionine), the activated form of Met, participate in a number of essential metabolic pathways in plants. The subcellular compartmentalization of Met fluxes will be discussed in the present review with respect to regulation and communication with the sulfur assimilation pathway, the network of the aspartate-derived amino acids and the demand for production of SAM. SAM enters the ethylene, nicotianamine and polyamine biosynthetic pathways and provides the methyl group for the majority of methylation reactions required for plant growth and development. The multiple essential roles of SAM require regulation of its synthesis, recycling and distribution to sustain these different pathways. A particular focus of the present review will be on the function of recently identified genes of the Met salvage cycle or Yang cycle and the importance of the Met salvage cycle in the metabolism of MTA (5'-methylthioadenosine). MTA has the potential for product inhibition of ethylene, nicotianamine and polyamine biosynthesis which provides an additional link between these pathways. Interestingly, regulation of Met cycle genes was found to differ between plant species as shown for Arabidopsis thaliana and Oryza sativa.
Collapse
|
33
|
Van de Poel B, Bulens I, Markoula A, Hertog ML, Dreesen R, Wirtz M, Vandoninck S, Oppermann Y, Keulemans J, Hell R, Waelkens E, De Proft MP, Sauter M, Nicolai BM, Geeraerd AH. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. PLANT PHYSIOLOGY 2012; 160:1498-514. [PMID: 22977280 PMCID: PMC3490579 DOI: 10.1104/pp.112.206086] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/12/2012] [Indexed: 05/18/2023]
Abstract
The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis. Ethylene production is shut down at the level of 1-aminocyclopropane-1-carboxylic acid oxidase. At the same time, 1-aminocyclopropane-1-carboxylic acid synthase activity increases. Analysis of the Yang cycle showed that the Yang cycle genes are regulated in a coordinated way and are highly expressed during postclimacteric ripening. Postclimacteric red tomatoes on the plant showed only a moderate regulation of 1-aminocyclopropane-1-carboxylic acid synthase and Yang cycle genes compared with the regulation in detached fruit. Treatment of red fruit with 1-methylcyclopropane and ethephon revealed that the shut-down mechanism in ethylene biosynthesis is developmentally programmed and only moderately ethylene sensitive. We propose that the termination of autocatalytic ethylene biosynthesis of system 2 in ripe fruit delays senescence and preserves the fruit until seed dispersal.
Collapse
|
34
|
Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:131-52. [PMID: 22404471 DOI: 10.1146/annurev-arplant-042811-105522] [Citation(s) in RCA: 682] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Iron is essential for the survival and proliferation of all plants. Higher plants have developed two distinct strategies to acquire iron, which is only slightly soluble, from the rhizosphere: the reduction strategy of nongraminaceous plants and the chelation strategy of graminaceous plants. Key molecular components-including transporters, enzymes, and chelators-have been clarified for both strategies, and many of these components are now thought to also function inside the plant to facilitate internal iron transport. Transporters for intracellular iron trafficking are also being clarified. A majority of genes encoding these components are transcriptionally regulated in response to iron availability. Recent research has uncovered central transcription factors, cis-acting elements, and molecular mechanisms regulating these genes. Manipulation of these molecular components has produced transgenic crops with enhanced tolerance to iron deficiency or with increased iron content in the edible parts.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan.
| | | |
Collapse
|
35
|
Friedman EJ, Wang HX, Jiang K, Perovic I, Deshpande A, Pochapsky TC, Temple BRS, Hicks SN, Harden TK, Jones AM. Acireductone dioxygenase 1 (ARD1) is an effector of the heterotrimeric G protein beta subunit in Arabidopsis. J Biol Chem 2011; 286:30107-18. [PMID: 21712381 PMCID: PMC3191050 DOI: 10.1074/jbc.m111.227256] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/27/2011] [Indexed: 01/30/2023] Open
Abstract
Heterotrimeric G protein complexes are conserved from plants to mammals, but the complexity of each system varies. Arabidopsis thaliana contains one Gα, one Gβ (AGB1), and at least three Gγ subunits, allowing it to form three versions of the heterotrimer. This plant model is ideal for genetic studies because mammalian systems contain hundreds of unique heterotrimers. The activation of these complexes promotes interactions between both the Gα subunit and the Gβγ dimer with enzymes and scaffolds to propagate signaling to the cytoplasm. However, although effectors of Gα and Gβ are known in mammals, no Gβ effectors were previously known in plants. Toward identifying AGB1 effectors, we genetically screened for dominant mutations that suppress Gβ-null mutant (agb1-2) phenotypes. We found that overexpression of acireductone dioxygenase 1 (ARD1) suppresses the 2-day-old etiolated phenotype of agb1-2. ARD1 is homologous to prokaryotic and eukaryotic ARD proteins; one function of ARDs is to operate in the methionine salvage pathway. We show here that ARD1 is an active metalloenzyme, and AGB1 and ARD1 both control embryonic hypocotyl length by modulating cell division; they also may contribute to the production of ethylene, a product of the methionine salvage pathway. ARD1 physically interacts with AGB1, and ARD enzymatic activity is stimulated by AGB1 in vitro. The binding interface on AGB1 was deduced using a comparative evolutionary approach and tested using recombinant AGB1 mutants. A possible mechanism for AGB1 activation of ARD1 activity was tested using directed mutations in a loop near the substrate-binding site.
Collapse
Affiliation(s)
| | - Helen X. Wang
- From the Department of Biology
- SmileNature Corporation, San Diego, California 92129
| | | | | | - Aditi Deshpande
- Biochemistry, Brandeis University, Waltham, Massachusetts 02454, and
| | | | - Brenda R. S. Temple
- R. L. Juliano Structural Bioinformatics Core Facility
- Departments of Biochemistry and Biophysics and
| | | | - T. Kendall Harden
- Pharmacology, and
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | | |
Collapse
|
36
|
Pommerrenig B, Feussner K, Zierer W, Rabinovych V, Klebl F, Feussner I, Sauer N. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. THE PLANT CELL 2011; 23:1904-19. [PMID: 21540433 PMCID: PMC3123959 DOI: 10.1105/tpc.110.079657] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 03/14/2011] [Accepted: 04/15/2011] [Indexed: 05/19/2023]
Abstract
The 5-methylthioadenosine (MTA) or Yang cycle is a set of reactions that recycle MTA to Met. In plants, MTA is a byproduct of polyamine, ethylene, and nicotianamine biosynthesis. Vascular transcriptome analyses revealed phloem-specific expression of the Yang cycle gene 5-METHYLTHIORIBOSE KINASE1 (MTK1) in Plantago major and Arabidopsis thaliana. As Arabidopsis has only a single MTK gene, we hypothesized that the expression of other Yang cycle genes might also be vascular specific. Reporter gene studies and quantitative analyses of mRNA levels for all Yang cycle genes confirmed this hypothesis for Arabidopsis and Plantago. This includes the Yang cycle genes 5-METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE1 and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1. We show that these two enzymes are sufficient for the conversion of methylthioribose-1-phosphate to 1,2-dihydroxy-3-keto-5-methylthiopentene. In bacteria, fungi, and animals, the same conversion is catalyzed in three to four separate enzymatic steps. Furthermore, comparative analyses of vascular and nonvascular metabolites identified Met, S-adenosyl Met, and MTA preferentially or almost exclusively in the vascular tissue. Our data represent a comprehensive characterization of the Yang cycle in higher plants and demonstrate that the Yang cycle works primarily in the vasculature. Finally, expression analyses of polyamine biosynthetic genes suggest that the Yang cycle in leaves recycles MTA derived primarily from polyamine biosynthesis.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Kirstin Feussner
- Abteilung Biochemie der Pflanze, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, 37077 Gottingen, Germany
| | - Wolfgang Zierer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Valentyna Rabinovych
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Franz Klebl
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Ivo Feussner
- Abteilung Biochemie der Pflanze, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, 37077 Gottingen, Germany
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| |
Collapse
|
37
|
Ahmad MSA, Ashraf M. Essential roles and hazardous effects of nickel in plants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 214:125-167. [PMID: 21913127 DOI: 10.1007/978-1-4614-0668-6_6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
With the world's ever increasing human population, the issues related to environmental degradation of toxicant chemicals are becoming more serious. Humans have accelerated the emission to the environment of many organic and inorganic pollutants such as pesticides, salts, petroleum products, acids, heavy metals, etc. Among different environmental heavy-metal pollutants, Ni has gained considerable attention in recent years, because of its rapidly increasing concentrations in soil, air, and water in different parts of the world. The main mechanisms by which Ni is taken up by plants are passive diffusion and active transport. Soluble Ni compounds are preferably absorbed by plants passively, through a cation transport system; chelated Ni compounds are taken up through secondary, active-transport-mediated means, using transport proteins such as permeases. Insoluble Ni compounds primarily enter plant root cells through endocytosis. Once absorbed by roots, Ni is easily transported to shoots via the xylem through the transpiration stream and can accumulate in neonatal parts such as buds, fruits, and seeds. The Ni transport and retranslocation processes are strongly regulated by metal-ligand complexes (such as nicotianamine, histidine, and organic acids) and by some proteins that specifically bind and transport Ni. Nickel, in low concentrations, fulfills a variety of essential roles in plants, bacteria, and fungi. Therefore, Ni deficiency produces an array of effects on growth and metabolism of plants, including reduced growth, and induction of senescence, leaf and meristem chlorosis, alterations in N metabolism, and reduced Fe uptake. In addition, Ni is a constituent of several metallo-enzymes such as urease, superoxide dismutase, NiFe hydrogenases, methyl coenzyme M reductase, carbon monoxide dehydrogenase, acetyl coenzyme-A synthase, hydrogenases, and RNase-A. Therefore, Ni deficiencies in plants reduce urease activity, disturb N assimilation, and reduce scavenging of superoxide free radical. In bacteria, Ni participates in several important metabolic reactions such as hydrogen metabolism, methane biogenesis, and acetogenesis. Although Ni is metabolically important in plants, it is toxic to most plant species when present at excessive amounts in soil and in nutrient solution. High Ni concentrations in growth media severely retards seed germinability of many crops. This effect of Ni is a direct one on the activities of amylases, proteases, and ribonucleases, thereby affecting the digestion and mobilization of food reserves in germinating seeds. At vegetative stages, high Ni concentrations retard shoot and root growth, affect branching development, deform various plant parts, produce abnormal flower shape, decrease biomass production, induce leaf spotting, disturb mitotic root tips, and produce Fe deficiency that leads to chlorosis and foliar necrosis. Additionally, excess Ni also affects nutrient absorption by roots, impairs plant metabolism, inhibits photosynthesis and transpiration, and causes ultrastructural modifications. Ultimately, all of these altered processes produce reduced yields of agricultural crops when such crops encounter excessive Ni exposures.
Collapse
|
38
|
Bürstenbinder K, Waduwara I, Schoor S, Moffatt BA, Wirtz M, Minocha SC, Oppermann Y, Bouchereau A, Hell R, Sauter M. Inhibition of 5'-methylthioadenosine metabolism in the Yang cycle alters polyamine levels, and impairs seedling growth and reproduction in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:977-88. [PMID: 20345605 DOI: 10.1111/j.1365-313x.2010.04211.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The methionine or Yang cycle recycles Met from 5'-methylthioadenosine (MTA) which is produced from S-adenosyl-L-methionine (SAM) as a by-product of ethylene, polyamines, and nicotianamine (NA) synthesis. MTA nucleosidase is encoded by two genes in Arabidopsis thaliana, MTN1 and MTN2. Analysis of T-DNA insertion mutants and of wt revealed that MTN1 provides approximately 80% of the total MTN activity. Severe knock down of MTN enzyme activity in the mtn1-1 and mtn1-2 allelic lines resulted in accumulation of SAM/dSAM (decarboxylated SAM) and of MTA in seedlings grown on MTA as sulfur source. While ethylene and NA synthesis were not altered in mtn1-1 and mtn1-2 seedlings grown on MTA, putrescine and spermine were elevated. By contrast, mtn2-1 and mtn2-2 seedlings with near wt enzyme activity had wt levels of SAM/dSAM, MTA, and polyamines. In addition to the metabolic phenotypes, mtn1-1 and mtn1-2 seedlings were growth retarded, while seedlings of wt, mtn2-1, and mtn2-2 showed normal growth on 500 microm MTA. The double knock down mutant mtn1-1/mtn2-1 was sterile. In conclusion, the data presented identify MTA as a crucial metabolite that acts as a regulatory link between the Yang cycle and polyamine biosynthesis and identifies MTA nucleosidase as a crucial enzyme of the Yang cycle.
Collapse
Affiliation(s)
- Katharina Bürstenbinder
- Physiologie und Entwicklungsbiologie der Pflanzen, Botanisches Institut, Universität Kiel, Am Botanischen Garten 5, 24118 Kiel, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xu L, Jia J, Lv J, Liang X, Han D, Huang L, Kang Z. Characterization of the expression profile of a wheat aci-reductone-dioxygenase-like gene in response to stripe rust pathogen infection and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:461-468. [PMID: 20381366 DOI: 10.1016/j.plaphy.2010.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 03/03/2010] [Accepted: 03/05/2010] [Indexed: 05/29/2023]
Abstract
The methionine salvage pathway is conserved from prokaryotes to high eukaryotes. The reaction catalyzed by aci-reductone-dioxygenase (ARD) represents a branch point in the methionine salvage pathway. A novel aci-reductone-dioxygenase gene, designed as TaARD, was identified in a subtraction library constructed with RNA isolated from wheat leaves infected with the stripe rust pathogen. TaARD was predicted to encode a 197 amino acid protein that belongs to the cupin superfamily. In transient expression assays with onion epidermal cells, the TaARD-GFP fusion protein localized to the nucleus and cytoplasm. Southern blot analysis showed that the wheat genome had multiple copies of TaARD. Quantitative real-time RT-PCR (qRT-PCR) analyses revealed that the TaARD transcript was induced in wheat leaves infected with a compatible stripe rust strain. However, its expression was reduced or suppressed in incompatible interactions and by ABA, ethephon (ET), or salicylic acid (SA) treatments. With methyl jasmonate (MeJA) treatment, TaARD transcript level was suppressed in the first 6h but increased afterwards. The expression of TaARD also was inhibited by wounding and environmental stimuli, including high salinity and low temperature. Because of the role of ARD in the methionine salvage pathway, these results suggest that TaARD may be involved in ethylene synthesis and ethylene signaling in response to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Liangsheng Xu
- College of Life Sciences and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling, 712100 Shaanxi, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5â²-methylthioadenosine. IUBMB Life 2009; 61:1132-42. [DOI: 10.1002/iub.278] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Beatty PH, Shrawat AK, Carroll RT, Zhu T, Good AG. Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:562-76. [PMID: 19508275 DOI: 10.1111/j.1467-7652.2009.00424.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Crop plants require nitrogen for key macromolecules, such as DNA, proteins and metabolites, yet they are generally inefficient at acquiring nitrogen from the soil. Crop producers compensate for this low nitrogen utilization efficiency by applying nitrogen fertilizers. However, much of this nitrogen is unavailable to the plants as a result of microbial uptake and environmental loss of nitrogen, causing air, water and soil pollution. We engineered rice over-expressing alanine aminotransferase (AlaAT) under the control of a tissue-specific promoter that showed a strong nitrogen use efficiency phenotype. In this study, we examined the transcriptome response in roots and shoots to the over-expression of AlaAT to provide insights into the nitrogen-use-efficient phenotype of these plants. Transgenic and control rice plants were grown hydroponically and the root and shoot gene expression profiles were analysed using Affymetrix Rice GeneChip microarrays. Transcriptome analysis revealed that there was little impact on the transgenic transcriptome compared with controls, with 0.11% and 0.07% differentially regulated genes in roots and shoots, respectively. The most up-regulated transcripts, a glycine-rich cell wall (GRP) gene and a gene encoding a hypothetical protein (Os8823), were expressed in roots. Another transgenic root-specific up-regulated gene was leucine rich repeat (LRR). Genes induced in the transgenic shoots included GRP, LRR, acireductone dioxygenase (OsARD), SNF2 ATP-translocase and a putative leucine zipper transcription factor. This study provides a genome-wide view of the response to AlaAT over-expression, and elucidates some of the genes that may play a role in the nitrogen-use-efficient phenotype.
Collapse
Affiliation(s)
- Perrin H Beatty
- Department of Biological Sciences, CW 405, Biological Sciences Center, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | |
Collapse
|
42
|
Chapin LJ, Jones ML. Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPT1) during petunia corolla senescence. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2179-90. [PMID: 19380421 PMCID: PMC2682506 DOI: 10.1093/jxb/erp092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 05/20/2023]
Abstract
The programmed degradation of macromolecules during petal senescence allows the plant to remobilize nutrients from dying to developing tissues. Ethylene is involved in regulating the timing of nucleic acid degradation in petunia, but it is not clear if ethylene has a role in the remobilization of phosphorus during petal senescence. To investigate ethylene's role in nutrient remobilization, the P content of petals (collectively called the corolla) during early development and senescence was compared in ethylene-sensitive wild type Petunia x hybrida 'Mitchell Diploid' (MD) and transgenic petunias with reduced sensitivity to ethylene (35S::etr1-1). When compared to the total P content of corollas on the day of flower opening (the early non-senescing stage), P in MD corollas had decreased 74% by the late stage of senescence (advanced wilting). By contrast, P levels were only reduced by an average of 32% during etr1-1 corolla (lines 44568 and Z00-35-10) senescence. A high-affinity phosphate transporter, PhPT1 (PhPht1;1), was cloned from senescing petunia corollas by RT-PCR. PhPT1 expression was up-regulated during MD corolla senescence and a much smaller increase was detected during the senescence of etr1-1 petunia corollas. PhPT1 mRNA levels showed a rapid increase in detached corollas (treated at 1 d after flower opening) following treatment with low levels of ethylene (0.1 microl l(-1)). Transcripts accumulated in the presence of the protein synthesis inhibitor, cycloheximide, indicating that PhPT1 is a primary ethylene response gene. PhPT1 is a putative phosphate transporter that may function in Pi translocation during senescence.
Collapse
|
43
|
Polyamine Biosynthesis Regulated by StARD Expression Plays an Important Role in Potato Wound Periderm Formation. ACTA ACUST UNITED AC 2008; 49:1627-32. [DOI: 10.1093/pcp/pcn115] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
44
|
Siu KKW, Lee JE, Sufrin JR, Moffatt BA, McMillan M, Cornell KA, Isom C, Howell PL. Molecular determinants of substrate specificity in plant 5'-methylthioadenosine nucleosidases. J Mol Biol 2008; 378:112-28. [PMID: 18342331 PMCID: PMC2908701 DOI: 10.1016/j.jmb.2008.01.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
5'-Methylthioadenosine (MTA)/S-adenosylhomocysteine (SAH) nucleosidase (MTAN) is essential for cellular metabolism and development in many bacterial species. While the enzyme is found in plants, plant MTANs appear to select for MTA preferentially, with little or no affinity for SAH. To understand what determines substrate specificity in this enzyme, MTAN homologues from Arabidopsis thaliana (AtMTAN1 and AtMTAN2, which are referred to as AtMTN1 and AtMTN2 in the plant literature) have been characterized kinetically. While both homologues hydrolyze MTA with comparable kinetic parameters, only AtMTAN2 shows activity towards SAH. AtMTAN2 also has higher catalytic activity towards other substrate analogues with longer 5'-substituents. The structures of apo AtMTAN1 and its complexes with the substrate- and transition-state-analogues, 5'-methylthiotubercidin and formycin A, respectively, have been determined at 2.0-1.8 A resolution. A homology model of AtMTAN2 was generated using the AtMTAN1 structures. Comparison of the AtMTAN1 and AtMTAN2 structures reveals that only three residues in the active site differ between the two enzymes. Our analysis suggests that two of these residues, Leu181/Met168 and Phe148/Leu135 in AtMTAN1/AtMTAN2, likely account for the divergence in specificity of the enzymes. Comparison of the AtMTAN1 and available Escherichia coli MTAN (EcMTAN) structures suggests that a combination of differences in the 5'-alkylthio binding region and reduced conformational flexibility in the AtMTAN1 active site likely contribute to its reduced efficiency in binding substrate analogues with longer 5'-substituents. In addition, in contrast to EcMTAN, the active site of AtMTAN1 remains solvated in its ligand-bound forms. As the apparent pK(a) of an amino acid depends on its local environment, the putative catalytic acid Asp225 in AtMTAN1 may not be protonated at physiological pH and this suggests the transition state of AtMTAN1, like human MTA phosphorylase and Streptococcus pneumoniae MTAN, may be different from that found in EcMTAN.
Collapse
Affiliation(s)
- Karen K. W. Siu
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8
| | - Jeffrey E. Lee
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8
| | - Janice R. Sufrin
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Barbara A. Moffatt
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Martin McMillan
- National Synchrotron Light Source, Brookhaven National Laboratory, 75 Brookhaven Avenue, Building 725B, Upton, NY 11973-5000, USA
| | - Kenneth A. Cornell
- Department of Chemistry and Biochemistry, Boise State University 1910 University Dr., Boise, Idaho 83725-1520, USA
| | - Chelsea Isom
- Department of Chemistry and Biochemistry, Boise State University 1910 University Dr., Boise, Idaho 83725-1520, USA
| | - P. Lynne Howell
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
45
|
Chai SC, Ju T, Dang M, Goldsmith RB, Maroney MJ, Pochapsky TC. Characterization of metal binding in the active sites of acireductone dioxygenase isoforms from Klebsiella ATCC 8724. Biochemistry 2008; 47:2428-38. [PMID: 18237192 PMCID: PMC2267756 DOI: 10.1021/bi7004152] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella ATCC 8724 present an unusual case in which two enzymes with different structures and distinct activities toward their common substrates (1,2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene and dioxygen) are derived from the same polypeptide chain. Structural and functional differences between the two isozymes are determined by the type of M2+ metal ion bound in the active site. The Ni2+-bound NiARD catalyzes an off-pathway shunt from the methionine salvage pathway leading to the production of formate, methylthiopropionate, and carbon monoxide, while the Fe2+-bound FeARD' catalyzes the on-pathway formation of methionine precursor 2-keto-4-methylthiobutyrate and formate. Four potential protein-based metal ligands were identified by sequence homology and structural considerations. Based on the results of site-directed mutagenesis experiments, X-ray absorption spectroscopy (XAS), and isothermal calorimetry measurements, it is concluded that the same four residues, His96, His98, Glu102 and His140, provide the protein-based ligands for the metal in both the Ni- and Fe-containing forms of the enzyme, and subtle differences in the local backbone conformations trigger the observed structural and functional differences between the FeARD' and NiARD isozymes. Furthermore, both forms of the enzyme bind their respective metals with pseudo-octahedral geometry, and both may lose a histidine ligand upon binding of substrate under anaerobic conditions. However, mutations at two conserved nonligand acidic residues, Glu95 and Glu100, result in low metal contents for the mutant proteins as isolated, suggesting that some of the conserved charged residues may aid in transfer of metal from in vivo sources or prevent the loss of metal to stronger chelators. The Glu100 mutant reconstitutes readily but has low activity. Mutation of Asp101 results in an active enzyme that incorporates metal in vivo but shows evidence of mixed forms.
Collapse
Affiliation(s)
- Sergio C. Chai
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Tingting Ju
- Department of Chemistry, MS 015, Brandeis University, Waltham, Massachusetts 02454
| | - Marina Dang
- Department of Chemistry, MS 015, Brandeis University, Waltham, Massachusetts 02454
| | | | - Michael J. Maroney
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Thomas C. Pochapsky
- Department of Chemistry, MS 015, Brandeis University, Waltham, Massachusetts 02454
- Department of Biochemistry, MS 015, Brandeis University, Waltham, Massachusetts 02454
- Department of Rosenstiel Basic Medical Sciences Institute, MS 015, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
46
|
Kobayashi T, Nishizawa NK. Regulation of Iron and Zinc Uptake and Translocation in Rice. RICE BIOLOGY IN THE GENOMICS ERA 2008. [DOI: 10.1007/978-3-540-74250-0_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Metabolism of Methionine in Plants and Phototrophic Bacteria. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
48
|
Ku SY, Cornell KA, Howell PL. Structure of Arabidopsis thaliana 5-methylthioribose kinase reveals a more occluded active site than its bacterial homolog. BMC STRUCTURAL BIOLOGY 2007; 7:70. [PMID: 17961230 PMCID: PMC2194712 DOI: 10.1186/1472-6807-7-70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 10/25/2007] [Indexed: 11/30/2022]
Abstract
Background Metabolic variations exist between the methionine salvage pathway of humans and a number of plants and microbial pathogens. 5-Methylthioribose (MTR) kinase is a key enzyme required for methionine salvage in plants and many bacteria. The absence of a mammalian homolog suggests that MTR kinase is a good target for the design of specific herbicides or antibiotics. Results The structure of Arabidopsis thaliana MTR kinase co-crystallized with ATPγS and MTR has been determined at 1.9 Å resolution. The structure is similar to B. subtilis MTR kinase and has the same protein kinase fold observed in other evolutionarily related protein kinase-like phosphotransferases. The active site is comparable between the two enzymes with the DXE-motif coordinating the nucleotide-Mg, the D238 of the HGD catalytic loop polarizing the MTR O1 oxygen, and the RR-motif interacting with the substrate MTR. Unlike its bacterial homolog, however, the Gly-rich loop (G-loop) of A. thaliana MTR kinase has an extended conformation, which shields most of the active site from solvent, a feature that resembles eukaryotic protein kinases more than the bacterial enzyme. The G- and W-loops of A. thaliana and B. subtilis MTR kinase adopt different conformations despite high sequence similarity. The ATPγS analog was hydrolyzed during the co-crystallization procedure, resulting in ADP in the active site. This suggests that the A. thaliana enzyme, like its bacterial homolog, may have significant ATPase activity in the absence of MTR. Conclusion The structure of A. thaliana MTR kinase provides a template for structure-based design of agrochemicals, particularly herbicides whose effectiveness could be regulated by nutrient levels. Features of the MTR binding site offer an opportunity for a simple organic salt of an MTR analog to specifically inhibit MTR kinase.
Collapse
Affiliation(s)
- Shao-Yang Ku
- Program in Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, CANADA.
| | | | | |
Collapse
|
49
|
Gotoh I, Uekita T, Seiki M. Regulated nucleo-cytoplasmic shuttling of human aci-reductone dioxygenase (hADI1) and its potential role in mRNA processing. Genes Cells 2007; 12:105-17. [PMID: 17212658 DOI: 10.1111/j.1365-2443.2006.01035.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial aci-reductone dioxygenase (ARD), a member of the cupin superfamily, has evolutionarily primitive protein folding and functions in the methionine recycling pathway. Recently, a human ARD orthologue (human ADI1, hADI1) has been identified and exhibits functions other than ARD activity. The hADI1 localizes mainly to the cytoplasm, but a substantial fraction is nuclear, suggesting functions in both cellular compartments. In this study, we report that nucleo-cytoplasmic transport of hADI1 is regulated by a non-canonical nuclear export signal (NES) located in the N-terminal region of hADI1. The NES is composed of multiple basic amino-acid residues instead of the canonical leucine-rich sequence. Nuclear export of hADI1 was not mediated by CRM1, a major transporter that binds to leucine-rich NES. Substitution of the basic residues with alanines abolished NES activity. Mutant hADI1 accumulated in the nucleus and formed speckles frequently observed with splicing factors and some transcription factors. Indeed, hADI1 specifically co-localized with the splicing factor U1-70K to the nucleus but not with another splicing factor, SC35. U1-70K over-expression induced nuclear accumulation of hADI1. Nuclear hADI1 expression significantly altered the splicing pattern of the adenovirus E1A mini-gene, which generates multiple alternatively spliced transcripts. Thus, hADI1 may have acquired a novel role in nuclear mRNA processing possibly by modulating U1-70K-related functions, an activity negatively regulated by a non-classical NES sequence.
Collapse
Affiliation(s)
- Isamu Gotoh
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
50
|
Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura SI, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8'-hydroxylase in rice. PLANT & CELL PHYSIOLOGY 2007; 48:287-98. [PMID: 17205969 DOI: 10.1093/pcp/pcm003] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A rapid decrease of the plant hormone ABA under submergence is thought to be a prerequisite for the enhanced elongation of submerged shoots of rice (Oryza sativa L.). Here, we report that the level of phaseic acid (PA), an oxidized form of ABA, increased with decreasing ABA level during submergence. The oxidation of ABA to PA is catalyzed by ABA 8'-hydroxylase, which is possibly encoded by three genes (OsABA8ox1, -2 and -3) in rice. The ABA 8'-hydroxylase activity was confirmed in microsomes from yeast expressing OsABA8ox1. OsABA8ox1-green fluorescent protein (GFP) fusion protein in onion cells was localized to the endoplasmic reticulum. The mRNA level of OsABA8ox1, but not the mRNA levels of other OsABA8ox genes, increased dramatically within 1 h after submergence. On the other hand, the mRNA levels of genes involved in ABA biosynthesis (OsZEP and OsNCEDs) decreased after 1-2 h of submergence. Treatment of aerobic seedlings with ethylene and its precursor, 1-aminocyclopropane-1-carboxylate (ACC), rapidly induced the expression of OsABA8ox1, but the ethylene treatment did not strongly affect the expression of ABA biosynthetic genes. Moreover, pre-treatment with 1-methylcyclopropene (1-MCP), a potent inhibitor of ethylene action, partially suppressed induction of OsABA8ox1 expression under submergence. The ABA level was found to be negatively correlated with OsABA8ox1 expression under ACC or 1-MCP treatment. Together, these results indicate that the rapid decrease in ABA levels in submerged rice shoots is controlled partly by ethylene-induced expression of OsABA8ox1 and partly by ethylene-independent suppression of genes involved in the biosynthesis of ABA.
Collapse
Affiliation(s)
- Hiroaki Saika
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|