1
|
Pang W, He W, Liang J, Wang Q, Hou S, Luo X, Li J, Wang J, Tian S, Yuan L. Disruption of ClOSD1 leads to both somatic and gametic ploidy doubling in watermelon. HORTICULTURE RESEARCH 2025; 12:uhae288. [PMID: 39882171 PMCID: PMC11775614 DOI: 10.1093/hr/uhae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 01/31/2025]
Affiliation(s)
- Wenyu Pang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Wenbing He
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jing Liang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Qiaran Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Shengcan Hou
- Melon Institute, Kaifeng Academy of Agriculture and Forestry Sciences, Xinghuaying Street, 475000, Kaifeng, China
| | - Xiaodan Luo
- Melon Institute, Kaifeng Academy of Agriculture and Forestry Sciences, Xinghuaying Street, 475000, Kaifeng, China
| | - Junhua Li
- Melon Institute, Kaifeng Academy of Agriculture and Forestry Sciences, Xinghuaying Street, 475000, Kaifeng, China
| | - Jiafa Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Shujuan Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Li Y, Zhang P, Wang G, Zhao W, Bao Z, Ma F. FvUVI4 inhibits cell division and cell expansion to modulate fruit development in Fragaria vesca. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108804. [PMID: 38852237 DOI: 10.1016/j.plaphy.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Fruit development is mainly regulated by cell division and expansion. As a negative regulator of the anaphase-promoting complex/cyclosome, UVI4 plays important roles in plant growth and development via coordinating cell cycle. However, currently there is no report on UVI4's functions in regulating fruit development in strawberry. Here, Fragaria vesca homolog FvUVI4 is identified and localizes in the nucleus. FvUVI4 has high gene expression in roots, leaves, flower, buds and green fruits, and low expression in petiole, stem, white and yellow fruit. Fruit development of F. vesca 'Hawaii4' is regulated by endoreduplication, and the expression of FvUVI4 is negatively correlated with fruit cell size. Overexpression of FvUVI4 inhibits endoreduplication of leaves, flowers and fruits in both Arabidopsis and F. vesca 'Hawaii4', thereby limiting cell expansion and decreasing cell area. Overexpression of FvUVI4 also inhibits mitotic cell cycle leading to decreased cell number, and ultimately affects the growth of leaves, petals and seeds or fruits. Arabidopsis uvi4 mutants obtained via CRISPR-Cas9 technology display opposite growth phenotypes to Arabidopsis and F. vesca 'Hawaii4' overexpression lines, which can be restored by overexpression of FvUVI4 in Arabidopsis uvi4 mutants. In conclusion, our study indicates that FvUVI4 inhibits cell expansion and cell division to modulate receptacle development in woodland strawberry.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Peng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ge Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Zhilong Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
3
|
Banerjee S, Agarwal P, Choudhury SR, Roy S. MYB4, a member of R2R3-subfamily of MYB transcription factor functions as a repressor of key genes involved in flavonoid biosynthesis and repair of UV-B induced DNA double strand breaks in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108698. [PMID: 38714132 DOI: 10.1016/j.plaphy.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Plants accumulate flavonoids as part of UV-B acclimation, while a high level of UV-B irradiation induces DNA damage and leads to genome instability. Here, we show that MYB4, a member of the R2R3-subfamily of MYB transcription factor plays important role in regulating plant response to UV-B exposure through the direct repression of the key genes involved in flavonoids biosynthesis and repair of DNA double-strand breaks (DSBs). Our results demonstrate that MYB4 inhibits seed germination and seedling establishment in Arabidopsis following UV-B exposure. Phenotype analyses of atmyb4-1 single mutant line along with uvr8-6/atmyb4-1, cop1-6/atmyb4-1, and hy5-215/atmyb4-1 double mutants indicate that MYB4 functions downstream of UVR8 mediated signaling pathway and negatively affects UV-B acclimation and cotyledon expansion. Our results indicate that MYB4 acts as transcriptional repressor of two key flavonoid biosynthesis genes, including 4CL and FLS, via directly binding to their promoter, thus reducing flavonoid accumulation. On the other hand, AtMYB4 overexpression leads to higher accumulation level of DSBs along with repressed expression of several key DSB repair genes, including AtATM, AtKU70, AtLIG4, AtXRCC4, AtBRCA1, AtSOG1, AtRAD51, and AtRAD54, respectively. Our results further suggest that MYB4 protein represses the expression of two crucial DSB repair genes, AtKU70 and AtXRCC4 through direct binding with their promoters. Together, our results indicate that MYB4 functions as an important coordinator to regulate plant response to UV-B through transcriptional regulation of key genes involved in flavonoids biosynthesis and repair of UV-B induced DNA damage.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India
| | - Puja Agarwal
- Constituent College in Purnea University, Purnia, 854301, Bihar, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
4
|
Banerjee S, Mondal S, Islam J, Sarkar R, Saha B, Sen A. Rhizospheric nano-remediation salvages arsenic genotoxicity: Zinc-oxide nanoparticles articulate better oxidative stress management, reduce arsenic uptake, and increase yield in Pisum sativum (L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169493. [PMID: 38151134 DOI: 10.1016/j.scitotenv.2023.169493] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Pea (Pisum sativum L.), a legume, has a high nutritional content, but arsenic (As) in the agro-ecosystem poses a significant bottleneck to its yield, especially in South East Asia, by severely hampering ontogeny. The present study proposes a rhizospheric nano-remediation strategy to evade As-genotoxicity and improve crop yield using biogenic zinc-oxide nanoparticles (ZnONPs). Similar to any other source of environmental stress, As-toxicity caused rapid oxidative bursts with deterioration in morpho-physiological attributes (germination rate, shoot length, and root length decreased by 62 %, 16 %, and 14.9 % respectively in the negative control, over normal control). Reactive oxygen species (ROS) accumulation (12.8 and 9-fold increase in leaves and roots) overburdened antioxidative defense, and loss of cellular homeostasis resulted in membrane damage (82.75 % increase) and electrolyte-leakage (2.6-fold increase) in negative control. The study also reveals a significant increase in nuclear area, nuclear fragmentation, and micronuclei formation in root tip cells under As-stress, indicating severe genomic instability and increased programmed cell death (3.3-fold increase in early apoptotic cells) due to leaky plasma membrane and unrepaired DNA damage. Application of ZnONPs significantly reduced As-toxicity in peas due to its adsorption in the rhizosphere, causing diminished As-uptake and better antioxidant response. Improved phytochelatin synthesis enhanced vacuolar sequestration of arsenic, which reduced As-interference. Comparatively better flowering time (7.74-19.36 % reduction in flowering delay) with greater transcript abundance of GIGANTIA (GI), CONSTANS (CO), and FLOWERING LOCUS T (FT) genes; better photosynthetic activity (1.3-1.9-fold increased chlorophyll autofluorescence); increased pollen viability; lesser genotoxicity (decreased tail DNA in comet assay) was noticed. A maximum increase of 37.5 % in pod number and seed zinc content (1.67-fold) was observed while seed arsenic content decreased under ZnONPs treatment. However, the highest dose of ZnONPs (400 mg L-1) induced NP-toxicity in pea plants under our experimental conditions, while optimum stress-alleviation was observed up to 300 mg L-1.
Collapse
Affiliation(s)
- Swarnendra Banerjee
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Sourik Mondal
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Jarzis Islam
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Rajarshi Sarkar
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization (ARO), Ramat Yishay 3009500, Israel
| | - Arnab Sen
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India.
| |
Collapse
|
5
|
Vladejić J, Kovacik M, Zwyrtková J, Szurman-Zubrzycka M, Doležel J, Pecinka A. Zeocin-induced DNA damage response in barley and its dependence on ATR. Sci Rep 2024; 14:3119. [PMID: 38326519 PMCID: PMC10850495 DOI: 10.1038/s41598-024-53264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
DNA damage response (DDR) is an essential mechanism by which living organisms maintain their genomic stability. In plants, DDR is important also for normal growth and yield. Here, we explored the DDR of a temperate model crop barley (Hordeum vulgare) at the phenotypic, physiological, and transcriptomic levels. By a series of in vitro DNA damage assays using the DNA strand break (DNA-SB) inducing agent zeocin, we showed reduced root growth and expansion of the differentiated zone to the root tip. Genome-wide transcriptional profiling of barley wild-type and plants mutated in DDR signaling kinase ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED (hvatr.g) revealed zeocin-dependent, ATR-dependent, and zeocin-dependent/ATR-independent transcriptional responses. Transcriptional changes were scored also using the newly developed catalog of 421 barley DDR genes with the phylogenetically-resolved relationships of barley SUPRESSOR OF GAMMA 1 (SOG1) and SOG1-LIKE (SGL) genes. Zeocin caused up-regulation of specific DDR factors and down-regulation of cell cycle and histone genes, mostly in an ATR-independent manner. The ATR dependency was obvious for some factors associated with DDR during DNA replication and for many genes without an obvious connection to DDR. This provided molecular insight into the response to DNA-SB induction in the large and complex barley genome.
Collapse
Affiliation(s)
- Jovanka Vladejić
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Martin Kovacik
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jana Zwyrtková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia.
| |
Collapse
|
6
|
Guo X, Zhang X, Jiang S, Qiao X, Meng B, Wang X, Wang Y, Yang K, Zhang Y, Li N, Chen T, Kang Y, Yao M, Zhang X, Wang X, Zhang E, Li J, Yan D, Hu Z, Botella JR, Song CP, Li Y, Guo S. E3 ligases MAC3A and MAC3B ubiquitinate UBIQUITIN-SPECIFIC PROTEASE14 to regulate organ size in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:684-697. [PMID: 37850874 PMCID: PMC10828200 DOI: 10.1093/plphys/kiad559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.
Collapse
Affiliation(s)
- Xiaopeng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Qiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Bolun Meng
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xiaohang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yanan Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Kaihuan Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yilan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Tianyan Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yiyang Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Mengyi Yao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xuan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xinru Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Erling Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - José Ramón Botella
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| |
Collapse
|
7
|
Tourdot E, Mauxion JP, Gonzalez N, Chevalier C. Endoreduplication in plant organogenesis: a means to boost fruit growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6269-6284. [PMID: 37343125 DOI: 10.1093/jxb/erad235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Endoreduplication is the major source of somatic endopolyploidy in higher plants, and leads to variation in cell ploidy levels due to iterative rounds of DNA synthesis in the absence of mitosis. Despite its ubiquitous occurrence in many plant organs, tissues, and cells, the physiological meaning of endoreduplication is not fully understood, although several roles during plant development have been proposed, mostly related to cell growth, differentiation, and specialization via transcriptional and metabolic reprogramming. Here, we review recent advances in our knowledge of the molecular mechanisms and cellular characteristics of endoreduplicated cells, and provide an overview of the multi-scale effects of endoreduplication on supporting growth in plant development. In addition, the effects of endoreduplication in fruit development are discussed, since it is highly prominent during fruit organogenesis where it acts as a morphogenetic factor supporting rapid fruit growth, as illustrated by case of the model fleshy fruit, tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Edouard Tourdot
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| |
Collapse
|
8
|
Luo R, Yang K, Xiao W. Plant deubiquitinases: from structure and activity to biological functions. PLANT CELL REPORTS 2023; 42:469-486. [PMID: 36567335 DOI: 10.1007/s00299-022-02962-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This article attempts to provide comprehensive review of plant deubiquitinases, paying special attention to recent advances in their biochemical activities and biological functions. Proteins in eukaryotes are subjected to post-translational modifications, in which ubiquitination is regarded as a reversible process. Cellular deubiquitinases (DUBs) are a key component of the ubiquitin (Ub)-proteasome system responsible for cellular protein homeostasis. DUBs recycle Ub by hydrolyzing poly-Ub chains on target proteins, and maintain a balance of the cellular Ub pool. In addition, some DUBs prefer to cleave poly-Ub chains not linked through the conventional K48 residue, which often alter the substrate activity instead of its stability. In plants, all seven known DUB subfamilies have been identified, namely Ub-binding protease/Ub-specific protease (UBP/USP), Ub C-terminal hydrolase (UCH), Machado-Joseph domain-containing protease (MJD), ovarian-tumor domain-containing protease (OTU), zinc finger with UFM1-specific peptidase domain protease (ZUFSP), motif interacting with Ub-containing novel DUB family (MINDY), and JAB1/MPN/MOV34 protease (JAMM). This review focuses on recent advances in the structure, activity, and biological functions of plant DUBs, particularly in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Runbang Luo
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
9
|
Tabeta H, Gunji S, Kawade K, Ferjani A. Leaf-size control beyond transcription factors: Compensatory mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1024945. [PMID: 36756231 PMCID: PMC9901582 DOI: 10.3389/fpls.2022.1024945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Plant leaves display abundant morphological richness yet grow to characteristic sizes and shapes. Beginning with a small number of undifferentiated founder cells, leaves evolve via a complex interplay of regulatory factors that ultimately influence cell proliferation and subsequent post-mitotic cell enlargement. During their development, a sequence of key events that shape leaves is both robustly executed spatiotemporally following a genomic molecular network and flexibly tuned by a variety of environmental stimuli. Decades of work on Arabidopsis thaliana have revisited the compensatory phenomena that might reflect a general and primary size-regulatory mechanism in leaves. This review focuses on key molecular and cellular events behind the organ-wide scale regulation of compensatory mechanisms. Lastly, emerging novel mechanisms of metabolic and hormonal regulation are discussed, based on recent advances in the field that have provided insights into, among other phenomena, leaf-size regulation.
Collapse
Affiliation(s)
- Hiromitsu Tabeta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kensuke Kawade
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
10
|
Jiang S, Meng B, Zhang Y, Li N, Zhou L, Zhang X, Xu R, Guo S, Song CP, Li Y. An SNW/SKI-INTERACTING PROTEIN influences endoreduplication and cell growth in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2217-2228. [PMID: 36063458 PMCID: PMC9706482 DOI: 10.1093/plphys/kiac415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Endoreduplication plays an important role in cell growth and differentiation, but the mechanisms regulating endoreduplication are still elusive. We have previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14) encoded by DA3 interacts with ULTRAVIOLETB INSENSITIVE4 (UVI4) to influence endoreduplication and cell growth in Arabidopsis (Arabidopsis thaliana). The da3-1 mutant possesses larger cotyledons and flowers with higher ploidy levels than the wild-type. Here, we identify the suppressor of da3-1 (SUPPRESSOR OF da3-1 3; SUD3), which encodes SNW/SKI-INTERACTING PROTEIN (SKIP). Biochemical studies demonstrate that SUD3 physically interacts with UBP14/DA3 and UVI4 in vivo and in vitro. Genetic analyses support that SUD3 acts in a common pathway with UBP14/DA3 and UVI4 to control endoreduplication. Our findings reveal an important genetic and molecular mechanism by which SKIP/SUD3 associates with UBP14/DA3 and UVI4 to modulate endoreduplication.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bolun Meng
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Yilan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lixun Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 10039, China
| |
Collapse
|
11
|
de Oliveira PN, da Silva LFC, Eloy NB. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. FRONTIERS IN PLANT SCIENCE 2022; 13:987919. [PMID: 36247602 PMCID: PMC9558237 DOI: 10.3389/fpls.2022.987919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Cereal crops can be considered the basis of human civilization. Thus, it is not surprising that these crops are grown in larger quantities worldwide than any other food supply and provide more energy to humankind than any other provision. Additionally, attempts to harness biomass consumption continue to increase to meet human energy needs. The high pressures for energy will determine the demand for crop plants as resources for biofuel, heat, and electricity. Thus, the search for plant traits associated with genetic increases in yield is mandatory. In multicellular organisms, including plants, growth and development are driven by cell division. These processes require a sequence of intricated events that are carried out by various protein complexes and molecules that act punctually throughout the cycle. Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. Considering the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. Studies on plant APC/C subunits and activators, mainly in the model plant Arabidopsis, revealed that they play a pivotal role in several developmental processes during growth. However, little is known about the role of APC/C in cereal crops. Here, we discuss the current understanding of the APC/C controlling cereal crop development.
Collapse
|
12
|
Zhou X, Li S, Yang X. The DcPS1 cooperates with OSDLa during pollen development and 2n gamete production in carnation meiosis. BMC PLANT BIOLOGY 2022; 22:259. [PMID: 35610560 PMCID: PMC9128087 DOI: 10.1186/s12870-022-03648-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Deciphering the mechanisms of meiosis has important implications for potential applications in plant breeding programmes and species evolution. However, the process of meiosis is poorly understood in carnation, which is famous for its cut flowers. RESULTS We report that Dianthus caryophyllus parallel spindle 1 (DcPS1) regulates omission of second division like a (OSDLa) during pollen development and 2n gamete production in carnation meiosis. In DcPS1 and OSDLa RNAi lines, an absence of the second meiotic division and the abnormal orientation of spindles at meiosis II might be the main reason for dyad/triad formation, resulting in unreduced gametes. We also found that carnation OSDLa interacted with DcPS1 and DcRAD51D. In the DcPS1 RNAi lines, a decrease in OSDLa and DcRAD51D expression was observed. In the OSDLa RNAi lines, a decrease in DcPS1 and DcRAD51D expression was also observed. We propose that DcPS1 regulates OSDLa expression, allowing entry into meiosis II and the proper orientation of the metaphase II spindle in meiosis II. We also propose that OSDLa regulates DcRAD51D expression, allowing for homologous recombination. CONCLUSIONS These results suggest a critical role for DcPS1 and OSDLa in diplogamete production during meiosis and open a new pathway for meiosis-related studies.
Collapse
Affiliation(s)
- Xuhong Zhou
- Office of Science and Technology, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong, Kunming, Yunnan, 650500, PR China.
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, 2238 Beijing Road, Kunming, Yunnan, 650205, PR China.
| | - Shuying Li
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, 2238 Beijing Road, Kunming, Yunnan, 650205, PR China
| | - Xiaomi Yang
- Office of Science and Technology, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Chenggong, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
13
|
De S, Jose J, Pal A, Roy Choudhury S, Roy S. Exposure to Low UV-B Dose Induces DNA Double-Strand Breaks Mediated Onset of Endoreduplication in Vigna radiata (L.) R. Wilczek Seedlings. PLANT & CELL PHYSIOLOGY 2022; 63:463-483. [PMID: 35134223 DOI: 10.1093/pcp/pcac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Multiple lines of evidence indicate that solar UV-B light acts as an important environmental signal in plants, regulating various cellular and metabolic activities, gene expression, growth and development. Here, we show that low levels of UV-B (4.0 kJ m-2) significantly influence plant response during early seedling development in the tropical legume crop Vigna radiata (L.) R. Wilczek. Exposure to low doses of UV-B showed relatively less growth inhibition yet remarkably enhanced lateral root formation in seedlings. Both low and high (8.0 kJ m-2) doses of UV-B treatment induced DNA double-strand breaks and activated the SOG1-related ATM-ATR-mediated DNA damage response pathway. These effects led to G2-M-phase arrest with a compromised expression of the key cell cycle regulators, including CDKB1;1, CDKB2;1 and CYCB1;1, respectively. However, along with these effects, imbibitional exposure of seeds to a low UV-B dose resulted in enhanced accumulation of FZR1/CCS52A, E2Fa and WEE1 kinase and prominent induction of endoreduplication in 7-day-old seedlings. Low dose of UV-B mediated phenotypical responses, while the onset of endoreduplication appeared to be regulated at least in part via UV-B induced reactive oxygen species accumulation. Transcriptome analyses further revealed a network of co-regulated genes associated with DNA repair, cell cycle regulation and oxidative stress response pathways that are activated upon exposure to low doses of UV-B.
Collapse
Affiliation(s)
- Sayanti De
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal 713104, India
| | - Jismon Jose
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal 700054, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal 713104, India
| |
Collapse
|
14
|
Ma X, Yu L, Fatima M, Wadlington WH, Hulse-Kemp AM, Zhang X, Zhang S, Xu X, Wang J, Huang H, Lin J, Deng B, Liao Z, Yang Z, Ma Y, Tang H, Van Deynze A, Ming R. The spinach YY genome reveals sex chromosome evolution, domestication, and introgression history of the species. Genome Biol 2022; 23:75. [PMID: 35255946 PMCID: PMC8902716 DOI: 10.1186/s13059-022-02633-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Spinach (Spinacia oleracea L.) is a dioecious species with an XY sex chromosome system, but its Y chromosome has not been fully characterized. Our knowledge about the history of its domestication and improvement remains limited. Results A high-quality YY genome of spinach is assembled into 952 Mb in six pseudo-chromosomes. By a combination of genetic mapping, Genome-Wide Association Studies, and genomic analysis, we characterize a 17.42-Mb sex determination region (SDR) on chromosome 1. The sex chromosomes of spinach evolved when an insertion containing sex determination genes occurred, followed by a large genomic inversion about 1.98 Mya. A subsequent burst of SDR-specific repeats (0.1–0.15 Mya) explains the large size of this SDR. We identify a Y-specific gene, NRT1/PTR 6.4 which resides in this insertion, as a strong candidate for the sex determination or differentiation factor. Resequencing of 112 spinach genomes reveals a severe domestication bottleneck approximately 10.87 Kya, which dates the domestication of spinach 7000 years earlier than the archeological record. We demonstrate that a strong selection signal associated with internode elongation and leaf area expansion is associated with domestication of edibility traits in spinach. We find that several strong genomic introgressions from the wild species Spinacia turkestanica and Spinacia tetrandra harbor desirable alleles of genes related to downy mildew resistance, frost resistance, leaf morphology, and flowering-time shift, which likely contribute to spinach improvement. Conclusions Analysis of the YY genome uncovers evolutionary forces shaping nascent sex chromosome evolution in spinach. Our findings provide novel insights about the domestication and improvement of spinach. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02633-x.
Collapse
Affiliation(s)
- Xiaokai Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li'ang Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - William H Wadlington
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amanda M Hulse-Kemp
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.,USDA-ARS, Genomics and Bioinformatics Research Unit, North Carolina, 27695, Raleigh, USA
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengcheng Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xindan Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huaxing Huang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ban Deng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenyang Liao
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenhui Yang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhong Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Allen Van Deynze
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Tossi VE, Martínez Tosar LJ, Laino LE, Iannicelli J, Regalado JJ, Escandón AS, Baroli I, Causin HF, Pitta-Álvarez SI. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:869423. [PMID: 36072313 PMCID: PMC9441891 DOI: 10.3389/fpls.2022.869423] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.
Collapse
Affiliation(s)
- Vanesa E. Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Leandro J. Martínez Tosar
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biotecnología, Alimentos, Agro y Ambiental (DEBAL), Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Leandro E. Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - José Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
| | - Irene Baroli
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Irene Baroli,
| | - Humberto Fabio Causin
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Humberto Fabio Causin,
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez, ;
| |
Collapse
|
16
|
Li Y, Xue S, He Q, Wang J, Zhu L, Zou J, Zhang J, Zuo C, Fan Z, Yue J, Zhang C, Yang K, Le J. Arabidopsis F-BOX STRESS INDUCED 4 is required to repress excessive divisions in stomatal development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:56-72. [PMID: 34817930 DOI: 10.1111/jipb.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
During the terminal stage of stomatal development, the R2R3-MYB transcription factors FOUR LIPS (FLP/MYB124) and MYB88 limit guard mother cell division by repressing the transcript levels of multiple cell-cycle genes. In Arabidopsis thaliana possessing the weak allele flp-1, an extra guard mother cell division results in two stomata having direct contact. Here, we identified an ethylmethane sulfonate-mutagenized mutant, flp-1 xs01c, which exhibited more severe defects than flp-1 alone, producing giant tumor-like cell clusters. XS01C, encoding F-BOX STRESS-INDUCED 4 (FBS4), is preferentially expressed in epidermal stomatal precursor cells. Overexpressing FBS4 rescued the defective stomatal phenotypes of flp-1 xs01c and flp-1 mutants. The deletion or substitution of a conserved residue (Proline166) within the F-box domain of FBS4 abolished or reduced, respectively, its interaction with Arabidopsis Skp1-Like1 (ASK1), the core subunit of the Skp1/Cullin/F-box E3 ubiquitin ligase complex. Furthermore, the FBS4 protein physically interacted with CYCA2;3 and induced its degradation through the ubiquitin-26S proteasome pathway. Thus, in addition to the known transcriptional pathway, the terminal symmetric division in stomatal development is ensured at the post-translational level, such as through the ubiquitination of target proteins recognized by the stomatal lineage F-box protein FBS4.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan Xue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- The Institute of Scientific and Technical Information of China, Beijing, 100038, China
| | - Qixiumei He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxue Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Wenbo School, Jinan, 250100, China
| | - Lingling Zhu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoran Zuo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Fan
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junling Yue
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Plant CDKs-Driving the Cell Cycle through Climate Change. PLANTS 2021; 10:plants10091804. [PMID: 34579337 PMCID: PMC8468384 DOI: 10.3390/plants10091804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
In a growing population, producing enough food has become a challenge in the face of the dramatic increase in climate change. Plants, during their evolution as sessile organisms, developed countless mechanisms to better adapt to the environment and its fluctuations. One important way is through the plasticity of their body and their forms, which are modulated during plant growth by accurate control of cell divisions. A family of serine/threonine kinases called cyclin-dependent kinases (CDK) is a key regulator of cell divisions by controlling cell cycle progression. In this review, we compile information on the primary response of plants in the regulation of the cell cycle in response to environmental stresses and show how the cell cycle proteins (mainly the cyclin-dependent kinases) involved in this regulation can act as components of environmental response signaling cascades, triggering adaptive responses to drive the cycle through climate fluctuations. Understanding the roles of CDKs and their regulators in the face of adversity may be crucial to meeting the challenge of increasing agricultural productivity in a new climate.
Collapse
|
18
|
Shimotohno A, Aki SS, Takahashi N, Umeda M. Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:273-296. [PMID: 33689401 DOI: 10.1146/annurev-arplant-080720-103739] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developmental and environmental signals converge on cell cycle machinery to achieve proper and flexible organogenesis under changing environments. Studies on the plant cell cycle began 30 years ago, and accumulated research has revealed many links between internal and external factors and the cell cycle. In this review, we focus on how phytohormones and environmental signals regulate the cell cycle to enable plants to cope with a fluctuating environment. After introducing key cell cycle regulators, we first discuss how phytohormones and their synergy are important for regulating cell cycle progression and how environmental factors positively and negatively affect cell division. We then focus on the well-studied example of stress-induced G2 arrest and view the current model from an evolutionary perspective. Finally, we discuss the mechanisms controlling the transition from the mitotic cycle to the endocycle, which greatly contributes to cell enlargement and resultant organ growth in plants.
Collapse
Affiliation(s)
- Akie Shimotohno
- Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan
- Current affiliation: Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan;
| | - Shiori S Aki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| |
Collapse
|
19
|
Zedek F, Plačková K, Veselý P, Šmerda J, Šmarda P, Horová L, Bureš P. Endopolyploidy is a common response to UV-B stress in natural plant populations, but its magnitude may be affected by chromosome type. ANNALS OF BOTANY 2020; 126:883-889. [PMID: 32582956 PMCID: PMC7750947 DOI: 10.1093/aob/mcaa109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/18/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Ultraviolet-B radiation (UV-B) radiation damages the DNA, cells and photosynthetic apparatus of plants. Plants commonly prevent this damage by synthetizing UV-B-protective compounds. Recent laboratory experiments in Arabidopsis and cucumber have indicated that plants can also respond to UV-B stress with endopolyploidy. Here we test the generality of this response in natural plant populations, considering their monocentric or holocentric chromosomal structure. METHODS We measured the endopolyploidy index (flow cytometry) and the concentration of UV-B-protective compounds in leaves of 12 herbaceous species (1007 individuals) from forest interiors and neighbouring clearings where they were exposed to increased UV-B radiation (103 forest + clearing populations). We then analysed the data using phylogenetic mixed models. KEY RESULTS The concentration of UV-B protectives increased with UV-B doses estimated from hemispheric photographs of the sky above sample collection sites, but the increase was more rapid in species with monocentric chromosomes. Endopolyploidy index increased with UV-B doses and with concentrations of UV-B-absorbing compounds only in species with monocentric chromosomes, while holocentric species responded negligibly. CONCLUSIONS Endopolyploidy seems to be a common response to increased UV-B in monocentric plants. Low sensitivity to UV-B in holocentric species might relate to their success in high-UV-stressed habitats and corroborates the hypothesized role of holocentric chromosomes in plant terrestrialization.
Collapse
Affiliation(s)
- František Zedek
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Klára Plačková
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Pavel Veselý
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Jakub Šmerda
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Martinez-Garcia M, Fernández-Jiménez N, Santos JL, Pradillo M. Duplication and divergence: New insights into AXR1 and AXL functions in DNA repair and meiosis. Sci Rep 2020; 10:8860. [PMID: 32483285 PMCID: PMC7264244 DOI: 10.1038/s41598-020-65734-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/20/2020] [Indexed: 01/08/2023] Open
Abstract
Rubylation is a conserved regulatory pathway similar to ubiquitination and essential in the response to the plant hormone auxin. In Arabidopsis thaliana, AUXIN RESISTANT1 (AXR1) functions as the E1-ligase in the rubylation pathway. The gene AXR1-LIKE (AXL), generated by a relatively recent duplication event, can partially replace AXR1 in this pathway. We have analysed mutants deficient for both proteins and complementation lines (with the AXR1 promoter and either AXR1 or AXL coding sequences) to further study the extent of functional redundancy between both genes regarding two processes: meiosis and DNA repair. Here we report that whereas AXR1 is essential to ensure the obligatory chiasma, AXL seems to be dispensable during meiosis, although its absence slightly alters chiasma distribution. In addition, expression of key DNA repair and meiotic genes is altered when either AXR1 or AXL are absent. Furthermore, our results support a significant role for both genes in DNA repair that was not previously described. These findings highlight that AXR1 and AXL show a functional divergence in relation to their involvement in homologous recombination, exemplifying a duplicate retention model in which one copy tends to have more sub-functions than its paralog.
Collapse
Affiliation(s)
- Marina Martinez-Garcia
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Juan L Santos
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología. Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
21
|
Lang L, Schnittger A. Endoreplication - a means to an end in cell growth and stress response. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:85-92. [PMID: 32217456 DOI: 10.1016/j.pbi.2020.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Endoreplication, also called endoreduplication or endopolyploidization, is a cell cycle variant in which the genome is re-replicated in the absence of mitosis causing cellular polyploidization. Despite the common occurrence of endoreplication in plants and the tremendous extent in specific tissues and cell types such as the endosperm, the underlying molecular regulation and the physiological consequences have only now started to be understood. Endoreplication is often associated with cell differentiation and withdrawal from mitotic cycles. Recent studies have underlined the importance of endoreplication as a stress response and we summarize here this progress with particular focus on future perspectives offered by the recent advances in genomics and biotechnology.
Collapse
Affiliation(s)
- Lucas Lang
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Developmental Biology, Ohnhorststr. 18, D-22609 Hamburg, Germany
| | - Arp Schnittger
- University of Hamburg, Institute of Plant Science and Microbiology, Department of Developmental Biology, Ohnhorststr. 18, D-22609 Hamburg, Germany.
| |
Collapse
|
22
|
Wu R, Zheng W, Tan J, Sammer R, Du L, Lu C. Protein partners of plant ubiquitin-specific proteases (UBPs). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:227-236. [PMID: 31630936 DOI: 10.1016/j.plaphy.2019.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/16/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
As one type of deubiquitinases (DUBs), ubiquitin-specific proteases (UBPs) play an extensive and significant role in plant life involving the regulation of plant development and stress responses. However, comprehensive studies are still needed to determine the functional mechanisms, which are largely unclear. Here, we summarized recent progress of plant UBPs' functional partners, particularly the molecular mechanisms by which UBPs work with their partners. We believe that functional analyses of UBPs and their partners will provide new insights into protein deubiquitination and lead to a better understanding of the physiological roles of UBPs in plants.
Collapse
Affiliation(s)
- Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenqing Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jinyi Tan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Rana Sammer
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Cunfu Lu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
23
|
Maulión E, Gomez MS, Bustamante CA, Casati P. AtCAF-1 mutants show different DNA damage responses after ultraviolet-B than those activated by other genotoxic agents in leaves. PLANT, CELL & ENVIRONMENT 2019; 42:2730-2745. [PMID: 31145828 DOI: 10.1111/pce.13596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 05/27/2023]
Abstract
Chromatin assembly factor-1 (CAF-1) is a histone H3/H4 chaperone that participates in DNA and chromatin interaction processes. In this manuscript, we show that organs from CAF-1 deficient plants respond differently to ultraviolet-B (UV-B) radiation than to other genotoxic stresses. For example, CAF-1 deficient leaves tolerate better UV-B radiation, showing lower cyclobutane pyrimidine dimer (CPD) accumulation, lower inhibition of cell proliferation, increased cell wall thickness, UV-B absorbing compounds, and ploidy levels, whereas previous data from different groups have shown that CAF-1 mutants show shortening of telomeres, loss of 45S rDNA, and increased homologous recombination, phenotypes associated to DNA breaks. Interestingly, CAF-1 deficient roots show increased inhibition of primary root elongation, with decreased meristem size due to a higher inhibition of cell proliferation after UV-B exposure. The decrease in root meristem size in CAF-1 mutants is a consequence of defects in programmed cell death after UV-B exposure. Together, we provide evidence demonstrating that root and shoot meristematic cells may have distinct protection mechanisms against CPD accumulation by UV-B, which may be linked with different functions of the CAF-1 complex in these different organs.
Collapse
Affiliation(s)
- Evangelina Maulión
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - María Sol Gomez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia Anabel Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
24
|
Tian Y, Gu H, Fan Z, Shi G, Yuan J, Wei F, Yang Y, Tian B, Cao G, Huang J. Role of a cotton endoreduplication-related gene, GaTOP6B, in response to drought stress. PLANTA 2019; 249:1119-1132. [PMID: 30552583 DOI: 10.1007/s00425-018-3067-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 05/24/2023]
Abstract
Cotton GaTOP6B is involved in cellular endoreduplication and a positive response to drought stress via promoting plant leaf and root growth. Drought is deemed as one of adverse conditions that could cause substantial reductions in crop yields worldwide. Since cotton exhibits a moderate-tolerant phenotype under water-deficit conditions, the plant could therefore be used to characterize potential new genes regulating drought tolerance in crop plants. In this work, GaTOP6B, encoding DNA topoisomerase VI subunit B, was identified in Asian cotton (Gossypium arboreum). Virus-induced gene silencing (VIGS) and overexpression (OE) were used to investigate the biological function of GaTOP6B in G. arboreum and Arabidopsis thaliana under drought stress. The GaTOP6B-silencing plants showed a reduced ploidy level, and displayed a compromised tolerance phenotype including lowered relative water content (RWC), decreased proline content and antioxidative enzyme activity, and an increased malondialdehyde (MDA) content under drought stress. GaTOP6B-overexpressing Arabidopsis lines, however, had increased ploidy levels, and were more tolerant to drought treatment, associated with improved RWC maintenance, higher proline accumulation, and reduced stomatal aperture under drought stress. Transcriptome analysis showed that genes involved in the processes like cell cycle, transcription and signal transduction, were substantially up-regulated in GaTOP6B-overexpressing Arabidopsis, promoting plant growth and development. More specifically, under drought stress, the genes involved in the biosynthesis of secondary metabolites such as phenylpropanoid, starch and sucrose were selectively enhanced to improve tolerance in plants. Taken together, the results demonstrated that GaTOP6B could coordinately regulate plant leaf and root growth via cellular endoreduplication, and positively respond to drought stress. Thus, GaTOP6B could be a competent candidate gene for improvement of drought tolerance in crop species.
Collapse
Affiliation(s)
- Yanfei Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Huihui Gu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhuxuan Fan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jiachen Yuan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Fang Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Yan Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Baoming Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Gangqiang Cao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jinyong Huang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
25
|
León-Martínez G, Vielle-Calzada JP. Apomixis in flowering plants: Developmental and evolutionary considerations. Curr Top Dev Biol 2019; 131:565-604. [DOI: 10.1016/bs.ctdb.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Fritz MA, Rosa S, Sicard A. Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology. Front Genet 2018; 9:478. [PMID: 30405690 PMCID: PMC6207588 DOI: 10.3389/fgene.2018.00478] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/26/2018] [Indexed: 01/23/2023] Open
Abstract
The primary function of leaves is to provide an interface between plants and their environment for gas exchange, light exposure and thermoregulation. Leaves have, therefore a central contribution to plant fitness by allowing an efficient absorption of sunlight energy through photosynthesis to ensure an optimal growth. Their final geometry will result from a balance between the need to maximize energy uptake while minimizing the damage caused by environmental stresses. This intimate relationship between leaf and its surroundings has led to an enormous diversification in leaf forms. Leaf shape varies between species, populations, individuals or even within identical genotypes when those are subjected to different environmental conditions. For instance, the extent of leaf margin dissection has, for long, been found to inversely correlate with the mean annual temperature, such that Paleobotanists have used models based on leaf shape to predict the paleoclimate from fossil flora. Leaf growth is not only dependent on temperature but is also regulated by many other environmental factors such as light quality and intensity or ambient humidity. This raises the question of how the different signals can be integrated at the molecular level and converted into clear developmental decisions. Several recent studies have started to shed the light on the molecular mechanisms that connect the environmental sensing with organ-growth and patterning. In this review, we discuss the current knowledge on the influence of different environmental signals on leaf size and shape, their integration as well as their importance for plant adaptation.
Collapse
Affiliation(s)
| | - Stefanie Rosa
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Adrien Sicard
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
27
|
Ma L, Kazama Y, Hirano T, Morita R, Tanaka S, Abe T, Hatakeyama S. LET dependence on killing effect and mutagenicity in the model filamentous fungus Neurospora crassa. Int J Radiat Biol 2018; 94:1125-1133. [PMID: 30307372 DOI: 10.1080/09553002.2019.1524940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE To assess the unique biological effects of different forms of ionizing radiation causing DNA double-strand breaks (DSBs), we compared the killing effect, mutagenesis frequency, and mutation type spectrum using the model filamentous fungus Neurospora. MATERIALS AND METHODS Asexual spores of wild-type Neurospora and two DSB repair-deficient strains [one homologous recombination- and the other non-homologous end-joining (NHEJ) pathway-deficient] were irradiated with argon (Ar)-ion beams, ferrous (Fe)-ion beams, or X-rays. Relative biological effectiveness (RBE), forward mutation frequencies at the ad-3 loci, and mutation spectra at the ad-3B gene were determined. RESULTS The canonical NHEJ (cNHEJ)-deficient strain showed resistance to higher X-ray doses, while other strains showed dose-dependent sensitivity. In contrast, the killing effects of Ar-ion and Fe-ion beam irradiation were dose-dependent in all strains tested. The rank order of RBE was Ar-ion > Fe-ion > C-ion. Deletion mutations were the most common, but deletion size incremented with the increasing value of linear energy transfer (LET). CONCLUSIONS We found marked differences in killing effect of a cNHEJ-deficient mutant between X-ray and high-LET ion beam irradiations (Ar and Fe). The mutation spectra also differed between irradiation types. These differences may be due to the physical properties of each radiation and the repair mechanism of induced damage in Neurospora crassa. These results may guide the choice of irradiation beam to kill or mutagenize fungi for agricultural applications or further research.
Collapse
Affiliation(s)
- Liqiu Ma
- a Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science , Saitama University , Saitama , Japan.,b RIKEN Nishina Center , Saitama , Japan.,c Gunma University Heavy Ion Medical Center , Maebashi , Japan
| | | | - Tomonari Hirano
- b RIKEN Nishina Center , Saitama , Japan.,d Faculty of Agriculture , University of Miyazaki , Miyazaki , Japan
| | | | - Shuuitsu Tanaka
- a Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science , Saitama University , Saitama , Japan
| | - Tomoko Abe
- b RIKEN Nishina Center , Saitama , Japan
| | - Shin Hatakeyama
- a Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science , Saitama University , Saitama , Japan
| |
Collapse
|
28
|
The Moss Physcomitrella patens Is Hyperresistant to DNA Double-Strand Breaks Induced by γ-Irradiation. Genes (Basel) 2018; 9:genes9020076. [PMID: 29414843 PMCID: PMC5852572 DOI: 10.3390/genes9020076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate whether the moss Physcomitrella patens cells are more resistant to ionizing radiation than animal cells. Protoplasts derived from P. patens protonemata were irradiated with γ-rays of 50–1000 gray (Gy). Clonogenicity of the protoplasts decreased in a γ-ray dose-dependent manner. The dose that decreased clonogenicity by half (LD50) was 277 Gy, which indicated that the moss protoplasts were 200-times more radioresistant than human cells. To investigate the mechanism of radioresistance in P. patens, we irradiated protoplasts on ice and initial double-strand break (DSB) yields were measured using the pulsed-field gel electrophoresis assay. Induced DSBs linearly increased dependent on the γ-ray dose and the DSB yield per Gb DNA per Gy was 2.2. The DSB yield in P. patens was half to one-third of those reported in mammals and yeasts, indicating that DSBs are difficult to induce in P. patens. The DSB yield per cell per LD50 dose in P. patens was 311, which is three- to six-times higher than those in mammals and yeasts, implying that P. patens is hyperresistant to DSBs. Physcomitrella patens is indicated to possess unique mechanisms to inhibit DSB induction and provide resistance to high numbers of DSBs.
Collapse
|
29
|
Pirrello J, Deluche C, Frangne N, Gévaudant F, Maza E, Djari A, Bourge M, Renaudin JP, Brown S, Bowler C, Zouine M, Chevalier C, Gonzalez N. Transcriptome profiling of sorted endoreduplicated nuclei from tomato fruits: how the global shift in expression ascribed to DNA ploidy influences RNA-Seq data normalization and interpretation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:387-398. [PMID: 29172253 DOI: 10.1111/tpj.13783] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
As part of normal development most eukaryotic organisms, ranging from insects and mammals to plants, display variations in nuclear ploidy levels resulting from somatic endopolyploidy. Endoreduplication is the major source of endopolyploidy in higher plants. Endoreduplication is a remarkable characteristic of the fleshy pericarp tissue of developing tomato fruits, where it establishes a highly integrated cellular system that acts as a morphogenetic factor supporting cell growth. However, the functional significance of endoreduplication is not fully understood. Although endoreduplication is thought to increase metabolic activity due to a global increase in transcription, the issue of gene-specific ploidy-regulated transcription remains open. To investigate the influence of endoreduplication on transcription in tomato fruit, we tested the feasibility of a RNA sequencing (RNA-Seq) approach using total nuclear RNA extracted from purified populations of flow cytometry-sorted nuclei based on their DNA content. Here we show that cell-based approaches to the study of RNA-Seq profiles need to take into account the putative global shift in expression between samples for correct analysis and interpretation of the data. From ploidy-specific expression profiles we found that the activity of cells inside the pericarp is related both to the ploidy level and their tissue location.
Collapse
Affiliation(s)
- Julien Pirrello
- UMR1332 BFP, INRA, Univ. Bordeaux, 33882, Villenave d'Ornon Cedex, France
- GBF, Université de Toulouse, INRA, 31326, Castanet-Tolosan Cedex, France
| | - Cynthia Deluche
- UMR1332 BFP, INRA, Univ. Bordeaux, 33882, Villenave d'Ornon Cedex, France
| | - Nathalie Frangne
- UMR1332 BFP, INRA, Univ. Bordeaux, 33882, Villenave d'Ornon Cedex, France
| | - Frédéric Gévaudant
- UMR1332 BFP, INRA, Univ. Bordeaux, 33882, Villenave d'Ornon Cedex, France
| | - Elie Maza
- GBF, Université de Toulouse, INRA, 31326, Castanet-Tolosan Cedex, France
| | - Anis Djari
- GBF, Université de Toulouse, INRA, 31326, Castanet-Tolosan Cedex, France
| | - Mickaël Bourge
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | | | - Spencer Brown
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Chris Bowler
- Département de Biologie, IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| | - Mohamed Zouine
- GBF, Université de Toulouse, INRA, 31326, Castanet-Tolosan Cedex, France
| | | | - Nathalie Gonzalez
- UMR1332 BFP, INRA, Univ. Bordeaux, 33882, Villenave d'Ornon Cedex, France
| |
Collapse
|
30
|
Dotto M, Casati P. Developmental reprogramming by UV-B radiation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:96-101. [PMID: 28969807 DOI: 10.1016/j.plantsci.2017.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 05/08/2023]
Abstract
Plants are extremely plastic organisms with the ability to adapt and respond to the changing environmental conditions surrounding them. Sunlight is one of the main resources for plants, both as a primary energy source for photosynthesis and as a stimulus that regulates different aspects of their growth and development. UV-B comprises wavelengths that correspond to a high energy region of the solar spectrum capable of reaching the biosphere, influencing plant growth. It is currently believed that plants are able to acclimate when growing under the influence of this radiation and perceive it as a signal, without stress signs. Nonetheless, many UV-B induced changes are elicited after DNA damage occurs as a consequence of exposure. In this review we focus on the influence of UV-B on leaf, flower and root development and emphasize the limited understanding of the molecular mechanisms for most of this developmental processes affected by UV-B documented over the years of research in this area.
Collapse
Affiliation(s)
- Marcela Dotto
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, 3080, Esperanza, Santa Fe, Argentina.
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina.
| |
Collapse
|
31
|
Zhou H, Zhao J, Cai J, Patil SB. UBIQUITIN-SPECIFIC PROTEASES function in plant development and stress responses. PLANT MOLECULAR BIOLOGY 2017; 94:565-576. [PMID: 28695315 DOI: 10.1007/s11103-017-0633-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/05/2017] [Indexed: 05/08/2023]
Abstract
UBIQUITIN-SPECIFIC PROTEASES play important roles in plant development and stress responses. Protein ubiquitination and deubiquitination are reversible processes, which can modulate the stability, activity as well as subcellular localization of the substrate proteins. UBIQUITIN-SPECIFIC PROTEASE (UBP) protein family participates in protein deubiquitination. Members of UBP family are involved in a variety of physiological processes in plants, as evidenced by their functional characterization in model plant Arabidopsis and other plants. UBPs are conserved in plants and distinct UBPs function in different regulatory processes, although functional redundancies exist between some members. Here we briefly reviewed recent advances in understanding the biological functions of UBP protein family in Arabidopsis, particularly the molecular mechanisms by which UBPs regulate plant development and stress responses. We believe that elucidation of UBPs function and regulation in Arabidopsis will provide new insights about protein deubiquitination and might shed light on the understanding of the mechanistic roles of UBPs in general, which will definitely contribute to crop improvement in agriculture.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingqing Cai
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
32
|
Fina JP, Masotti F, Rius SP, Crevacuore F, Casati P. HAC1 and HAF1 Histone Acetyltransferases Have Different Roles in UV-B Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1179. [PMID: 28740501 PMCID: PMC5502275 DOI: 10.3389/fpls.2017.01179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/20/2017] [Indexed: 05/17/2023]
Abstract
Arabidopsis has 12 histone acetyltransferases grouped in four families: the GNAT/HAG, the MYST/HAM, the p300/CBP/HAC and the TAFII250/HAF families. We previously showed that ham1 and ham2 mutants accumulated higher damaged DNA after UV-B exposure than WT plants. In contrast, hag3 RNA interference transgenic plants showed less DNA damage and lower inhibition of plant growth by UV-B, and increased levels of UV-B-absorbing compounds. These results demonstrated that HAM1, HAM2, and HAG3 participate in UV-B-induced DNA damage repair and signaling. In this work, to further explore the role of histone acetylation in UV-B responses, a putative function of other acetyltransferases of the HAC and the HAF families was analyzed. Neither HAC nor HAF acetyltrasferases participate in DNA damage and repair after UV-B radiation in Arabidopsis. Despite this, haf1 mutants presented lower inhibition of leaf and root growth by UV-B, with altered expression of E2F transcription factors. On the other hand, hac1 plants showed a delay in flowering time after UV-B exposure and changes in FLC and SOC1 expression patterns. Our data indicate that HAC1 and HAF1 have crucial roles for in UV-B signaling, confirming that, directly or indirectly, both enzymes also have a role in UV-B responses.
Collapse
|
33
|
Mieulet D, Jolivet S, Rivard M, Cromer L, Vernet A, Mayonove P, Pereira L, Droc G, Courtois B, Guiderdoni E, Mercier R. Turning rice meiosis into mitosis. Cell Res 2016; 26:1242-1254. [PMID: 27767093 DOI: 10.1038/cr.2016.117] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/09/2016] [Accepted: 08/30/2016] [Indexed: 11/09/2022] Open
Abstract
Introduction of clonal reproduction through seeds (apomixis) in crops has the potential to revolutionize agriculture by allowing self-propagation of any elite variety, in particular F1 hybrids. In the sexual model plant Arabidopsis thaliana synthetic clonal reproduction through seeds can be artificially implemented by (i) combining three mutations to turn meiosis into mitosis (MiMe) and (ii) crossing the obtained clonal gametes with a line expressing modified CENH3 and whose genome is eliminated in the zygote. Here we show that additional combinations of mutations can turn Arabidopsis meiosis into mitosis and that a combination of three mutations in rice (Oryza sativa) efficiently turns meiosis into mitosis, leading to the production of male and female clonal diploid gametes in this major crop. Successful implementation of the MiMe technology in the phylogenetically distant eudicot Arabidopsis and monocot rice opens doors for its application to any flowering plant and paves the way for introducing apomixis in crop species.
Collapse
Affiliation(s)
| | - Sylvie Jolivet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| | - Maud Rivard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| | - Laurence Cromer
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| | | | | | - Lucie Pereira
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| | - Gaëtan Droc
- CIRAD, UMR AGAP, 34398 Montpellier Cedex 5, France
| | | | | | - Raphael Mercier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78000 Versailles, France
| |
Collapse
|
34
|
del Pozo JC, Ramirez-Parra E. Whole genome duplications in plants: an overview from Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6991-7003. [PMID: 26417017 DOI: 10.1093/jxb/erv432] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyploidy is a common event in plants that involves the acquisition of more than two complete sets of chromosomes. Allopolyploidy originates from interspecies hybrids while autopolyploidy originates from intraspecies whole genome duplication (WGD) events. In spite of inconveniences derived from chromosomic rearrangement during polyploidization, natural plant polyploids species often exhibit improved growth vigour and adaptation to adverse environments, conferring evolutionary advantages. These advantages have also been incorporated into crop breeding programmes. Many tetraploid crops show increased stress tolerance, although the molecular mechanisms underlying these different adaptation abilities are poorly known. Understanding the physiological, cellular, and molecular mechanisms coupled to WGD, in both allo- and autopolyploidy, is a major challenge. Over the last few years, several studies, many of them in Arabidopsis, are shedding light on the basis of genetic, genomic, and epigenomic changes linked to WGD. In this review we summarize and discuss the latest advances made in Arabidopsis polyploidy, but also in other agronomic plant species.
Collapse
Affiliation(s)
- Juan Carlos del Pozo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Elena Ramirez-Parra
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
35
|
Yant L, Bomblies K. Genome management and mismanagement--cell-level opportunities and challenges of whole-genome duplication. Genes Dev 2015; 29:2405-19. [PMID: 26637526 PMCID: PMC4691946 DOI: 10.1101/gad.271072.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole-genome duplication (WGD) doubles the DNA content in the nucleus and leads to polyploidy. In whole-organism polyploids, WGD has been implicated in adaptability and the evolution of increased genome complexity, but polyploidy can also arise in somatic cells of otherwise diploid plants and animals, where it plays important roles in development and likely environmental responses. As with whole organisms, WGD can also promote adaptability and diversity in proliferating cell lineages, although whether WGD is beneficial is clearly context-dependent. WGD is also sometimes associated with aging and disease and may be a facilitator of dangerous genetic and karyotypic diversity in tumorigenesis. Scaling changes can affect cell physiology, but problems associated with WGD in large part seem to arise from problems with chromosome segregation in polyploid cells. Here we discuss both the adaptive potential and problems associated with WGD, focusing primarily on cellular effects. We see value in recognizing polyploidy as a key player in generating diversity in development and cell lineage evolution, with intriguing parallels across kingdoms.
Collapse
Affiliation(s)
- Levi Yant
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | | |
Collapse
|
36
|
Scholes DR, Paige KN. Plasticity in ploidy: a generalized response to stress. TRENDS IN PLANT SCIENCE 2015; 20:165-175. [PMID: 25534217 DOI: 10.1016/j.tplants.2014.11.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/30/2014] [Accepted: 11/21/2014] [Indexed: 05/29/2023]
Abstract
Endoreduplication, the replication of the genome without mitosis, leads to an increase in the cellular ploidy of an organism over its lifetime, a condition termed 'endopolyploidy'. Endopolyploidy is thought to play significant roles in physiology and development through cellular, metabolic, and genetic effects. While the occurrence of endopolyploidy has been observed widely across taxa, studies have only recently begun to characterize and manipulate endopolyploidy with a focus on its ecological and evolutionary importance. No compilation of these examples implicating endoreduplication as a generalized response to stress has thus far been made, despite the growing evidence supporting this notion. We review here the recent literature of stress-induced endopolyploidy and suggest that plants employ endoreduplication as an adaptive, plastic response to mitigate the effects of stress.
Collapse
Affiliation(s)
- Daniel R Scholes
- School of Integrative Biology, University of Illinois at Urbana-Champaign, 515 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Ken N Paige
- School of Integrative Biology, University of Illinois at Urbana-Champaign, 515 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
37
|
del Pozo JC, Ramirez-Parra E. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. PLANT, CELL & ENVIRONMENT 2014; 37:2722-37. [PMID: 24716850 DOI: 10.1111/pce.12344] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/29/2014] [Indexed: 05/21/2023]
Abstract
Whole genome duplication (autopolyploidy) is common in many plant species and often leads to better adaptation to adverse environmental conditions. However, little is known about the physiological and molecular mechanisms underlying these adaptations. Drought is one of the major environmental conditions limiting plant growth and development. Here, we report that, in Arabidopsis thaliana, tetraploidy promotes alterations in cell proliferation and organ size in a tissue-dependent manner. Furthermore, it potentiates plant tolerance to salt and drought stresses and decreases transpiration rate, likely through controlling stomata density and closure, abscisic acid (ABA) signalling and reactive oxygen species (ROS) homeostasis. Our transcriptomic analyses revealed that tetraploidy mainly regulates the expression of genes involved in redox homeostasis and ABA and stress response. Taken together, our data have shed light on the molecular basis associated with stress tolerance in autopolyploid plants.
Collapse
Affiliation(s)
- Juan C del Pozo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
| | | |
Collapse
|
38
|
Schubert V. RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy. Cytogenet Genome Res 2014; 143:69-77. [PMID: 25060696 DOI: 10.1159/000365233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNA polymerase II (RNAPII) is responsible for the transcription of most eukaryotic genes. In mammalian nuclei, RNAPII is mainly localized in relatively few distinct transcription factories. In this study--applying super-resolution microscopy--it is shown that in plants, inactive (non-phosphorylated) and active (phosphorylated) RNAPII modifications compose distinct 'transcription networks' within the euchromatin. These reticulate structures sometimes attach to each other, but they are absent from heterochromatin and nucleoli. The global RNAPII distribution within nuclei is not influenced by interphase chromatin organization such as Rabl (rye) versus non-Rabl (Arabidopsis thaliana) orientation. Replication of sister chromatids without cell division causes endopolyploidy, a phenomenon widespread in plants and animals. Endopolyploidy raises the number of gene copies per nucleus. Here, it is shown that the amounts of active and inactive RNAPII enzymes in differentiated 2-32C leaf nuclei of A. thaliana proportionally increase with rising endopolyploidy. Thus, increasing the transcriptional activity of cells and tissues seems to be an important function of endopolyploidy.
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
39
|
Bao Z, Hua J. Interaction of CPR5 with cell cycle regulators UVI4 and OSD1 in Arabidopsis. PLoS One 2014; 9:e100347. [PMID: 24945150 PMCID: PMC4063785 DOI: 10.1371/journal.pone.0100347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 05/24/2014] [Indexed: 12/28/2022] Open
Abstract
The impact of cell cycle on plant immunity was indicated by the enhancement of disease resistance with overexpressing OSD1 and UVI4 genes that are negative regulators of cell cycle controller APC (anaphase promoting complex). CPR5 is another gene that is implicated in cell cycle regulation and plant immunity, but its mode of action is not known. Here we report the analysis of genetic requirement for the function of UVI4 and OSD1 in cell cycle progression control and in particular the involvement of CPR5 in this regulation. We show that the APC activator CCS52A1 partially mediates the function of OSD1 and UVI4 in female gametophyte development. We found that the cpr5 mutation suppresses the endoreduplication defect in the uvi4 single mutant and partially rescued the gametophyte development defect in the osd1 uvi4 double mutant while the uvi4 mutation enhances the cpr5 defects in trichome branching and plant disease resistance. In addition, cyclin B1 genes CYCB1;1, CYCB1;2, and CYCB1;4 are upregulated in cpr5. Therefore, CPR5 has a large role in cell cycle regulation and this role has a complex interaction with that of UVI4 and OSD1. This study further indicates an intrinsic link between plant defense responses and cell cycle progression.
Collapse
Affiliation(s)
- Zhilong Bao
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
40
|
Biever JJ, Brinkman D, Gardner G. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2949-61. [PMID: 24591052 PMCID: PMC4056539 DOI: 10.1093/jxb/eru035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280-320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction.
Collapse
Affiliation(s)
- Jessica J Biever
- Department of Horticultural Science, University of Minnesota, St Paul, MN 55108, USA
| | - Doug Brinkman
- Department of Horticultural Science, University of Minnesota, St Paul, MN 55108, USA
| | - Gary Gardner
- Department of Horticultural Science, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
41
|
Blomme J, Inzé D, Gonzalez N. The cell-cycle interactome: a source of growth regulators? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2715-30. [PMID: 24298000 DOI: 10.1093/jxb/ert388] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
42
|
Genschik P, Marrocco K, Bach L, Noir S, Criqui MC. Selective protein degradation: a rheostat to modulate cell-cycle phase transitions. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2603-15. [PMID: 24353246 DOI: 10.1093/jxb/ert426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant growth control has become a major focus due to economic reasons and results from a balance of cell proliferation in meristems and cell elongation that occurs during differentiation. Research on plant cell proliferation over the last two decades has revealed that the basic cell-cycle machinery is conserved between human and plants, although specificities exist. While many regulatory circuits control each step of the cell cycle, the ubiquitin proteasome system (UPS) appears in fungi and metazoans as a major player. In particular, the UPS promotes irreversible proteolysis of a set of regulatory proteins absolutely required for cell-cycle phase transitions. Not unexpectedly, work over the last decade has brought the UPS to the forefront of plant cell-cycle research. In this review, we will summarize our knowledge of the function of the UPS in the mitotic cycle and in endoreduplication, and also in meiosis in higher plants.
Collapse
Affiliation(s)
- Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Katia Marrocco
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Lien Bach
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| | - Marie-Claire Criqui
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Conventionné avec l'Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
43
|
Chevalier C, Bourdon M, Pirrello J, Cheniclet C, Gévaudant F, Frangne N. Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2731-46. [PMID: 24187421 DOI: 10.1093/jxb/ert366] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The growth of a plant organ depends upon the developmental processes of cell division and cell expansion. The activity of cell divisions sets the number of cells that will make up the organ; the cell expansion activity then determines its final size. Among the various mechanisms that may influence the determination of cell size, endopolyploidy by means of endoreduplication appears to be of great importance in plants. Endoreduplication is widespread in plants and supports the process of differentiation of cells and organs. Its functional role in plant cells is not fully understood, although it is commonly associated with ploidy-dependent cell expansion. During the development of tomato fruit, cells from the (fleshy) pericarp tissue become highly polyploid, reaching a DNA content barely encountered in other plant species (between 2C and 512C). Recent investigations using tomato fruit development as a model provided new data in favour of the long-standing karyoplasmic ratio theory, stating that cells tend to adjust their cytoplasmic volume to the nuclear DNA content. By establishing a highly structured cellular system where multiple physiological functions are integrated, endoreduplication does act as a morphogenetic factor supporting cell growth during tomato fruit development.
Collapse
Affiliation(s)
- Christian Chevalier
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Matthieu Bourdon
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Julien Pirrello
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Catherine Cheniclet
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France CNRS, Bordeaux Imaging Center, UMS 3420, F-33000 Bordeaux, France
| | - Frédéric Gévaudant
- University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | - Nathalie Frangne
- University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| |
Collapse
|
44
|
Gegas VC, Wargent JJ, Pesquet E, Granqvist E, Paul ND, Doonan JH. Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2757-66. [PMID: 24470468 PMCID: PMC4047990 DOI: 10.1093/jxb/ert473] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The extent of endoreduplication in leaf growth is group- or even species-specific, and its adaptive role is still unclear. A survey of Arabidopsis accessions for variation at the level of endopolyploidy, cell number, and cell size in leaves revealed extensive genetic variation in endopolyploidy level. High endopolyploidy is associated with increased leaf size, both in natural and in genetically unstructured (mapping) populations. The underlying genes were identified as quantitative trait loci that control endopolyploidy in nature by modulating the progression of successive endocycles during organ development. This complex genetic architecture indicates an adaptive mechanism that allows differential organ growth over a broad geographic range and under stressful environmental conditions. UV-B radiation was identified as a significant positive climatic predictor for high endopolyploidy. Arabidopsis accessions carrying the increasing alleles for endopolyploidy also have enhanced tolerance to UV-B radiation. UV-absorbing secondary metabolites provide an additional protective strategy in accessions that display low endopolyploidy. Taken together, these results demonstrate that high constitutive endopolyploidy is a significant predictor for organ size in natural populations and is likely to contribute to sustaining plant growth under high incident UV radiation. Endopolyploidy may therefore form part of the range of UV-B tolerance mechanisms that exist in natural populations.
Collapse
Affiliation(s)
- Vasilis C Gegas
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jason J Wargent
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Edouard Pesquet
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Emma Granqvist
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nigel D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - John H Doonan
- IBERS, Aberystwyth University, Aberystwyth SY23 2AX, UK
| |
Collapse
|
45
|
Lloyd AH, Ranoux M, Vautrin S, Glover N, Fourment J, Charif D, Choulet F, Lassalle G, Marande W, Tran J, Granier F, Pingault L, Remay A, Marquis C, Belcram H, Chalhoub B, Feuillet C, Bergès H, Sourdille P, Jenczewski E. Meiotic Gene Evolution: Can You Teach a New Dog New Tricks? Mol Biol Evol 2014; 31:1724-7. [DOI: 10.1093/molbev/msu119] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Kazama Y, Hirano T, Nishihara K, Ohbu S, Shirakawa Y, Abe T. Effect of high-LET Fe-ion beam irradiation on mutation induction in Arabidopsis thaliana. Genes Genet Syst 2014; 88:189-97. [PMID: 24025247 DOI: 10.1266/ggs.88.189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Heavy-ion beams are powerful mutagens. They cause a broad spectrum of mutation phenotypes with high efficiency even at low irradiation doses and short irradiation times. These mutagenic effects are due to dense ionisation in a localised region along the ion particle path. Linear energy transfer (LET; keV·μm(-1)), which represents the degree of locally deposited energy, is an important parameter in heavy-ion mutagenesis. For high LET radiation above 290 keV∙μm(-1), however, neither the mutation frequency nor the molecular nature of the mutations has been fully characterised. In this study, we investigated the effect of Fe-ion beams with an LET of 640 keV∙μm(-1) on both the mutation frequency and the molecular nature of the mutations. Screening of well-characterised mutants (hy and gl) revealed that the mutation frequency was lower than any other ion species with low LET. We investigated the resulting mutations in the 4 identified mutants. Three mutants were examined by employing PCR-based methods, one of which had 2-bp deletion, another had 178 bp of tandemly duplication, and other one had complicated chromosomal rearrangements with variable deletions in size at breakpoints. We also detected large deletions in the other mutant by using array comparative genomic hybridisation. From the results of the analysis of the breakpoints and junctions of the detected deletions, it was revealed that the mutants harboured chromosomal rearrangements in their genomes. These results indicate that Fe-ion irradiation tends to cause complex mutations with low efficiency. We conclude that Fe-ion irradiation could be useful for inducing chromosomal rearrangements or large deletions.
Collapse
|
47
|
Yang Y, Li S, Zhang K, Dong Z, Li Y, An X, Chen J, Chen Q, Jiao Z, Liu X, Qin H, Wang D. Efficient isolation of ion beam-induced mutants for homoeologous loci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:359-72. [PMID: 24212587 DOI: 10.1007/s00122-013-2224-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/18/2013] [Indexed: 05/15/2023]
Abstract
Ion beam mutations can be efficiently isolated and deployed for functional comparison of homoeologous loci in polyploid plants, and Glu - 1 loci differ substantially in their contribution to wheat gluten functionality. To efficiently conduct genetic analysis, it is beneficial to have multiple types of mutants for the genes under investigation. Here, we demonstrate that ion beam-induced deletion mutants can be efficiently isolated for comparing the function of homoeologous loci of common wheat (Triticum aestivum). Through fragment analysis of PCR products from M2 plants, ion beam mutants lacking homoeologous Glu-A1, Glu-B1 or Glu-D1 loci, which encode high molecular weight glutenin subunits (HMW-GSs) and affect gluten functionality and end-use quality of common wheat, could be isolated simultaneously. Three deletion lines missing Glu-A1, Glu-B1 or Glu-D1 were developed from the original mutants, with the Glu-1 genomic regions deleted in these lines estimated using newly developed DNA markers. Apart from lacking the target HMW-GSs, the three lines all showed decreased accumulation of low molecular weight glutenin subunits (LMW-GSs) and increased amounts of gliadins. Based on the test data of five gluten and glutenin macropolymer (GMP) parameters obtained with grain samples harvested from two environments, we conclude that the genetic effects of Glu-1 loci on gluten functionality can be ranked as Glu-D1 > Glu-B1 > Glu-A1. Furthermore, it is suggested that Glu-1 loci contribute to gluten functionality both directly (by promoting the formation of GMP) and indirectly (through keeping the balance among HMW-GSs, LMW-GSs and gliadins). Finally, the efficient isolation of ion beam mutations for functional comparison of homoeologous loci in polyploid plants and the usefulness of Glu-1 deletion lines for further studying the contribution of Glu-1 loci to gluten functionality are discussed.
Collapse
Affiliation(s)
- Yushuang Yang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Younis A, Hwang YJ, Lim KB. Exploitation of induced 2n-gametes for plant breeding. PLANT CELL REPORTS 2014; 33:215-23. [PMID: 24311154 DOI: 10.1007/s00299-013-1534-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 05/02/2023]
Abstract
Unreduced gamete formation derived via abnormal meiotic cell division is an important approach to polyploidy breeding. This process is considered the main driving force in spontaneous polyploids formation in nature, but the potential application of these gametes to plant breeding has not been fully exploited. An effective mechanism for their artificial induction is needed to attain greater genetic variation and enable efficient use of unreduced gametes in breeding programs. Different approaches have been employed for 2n-pollen production including interspecific hybridization, manipulation of environmental factors and treatment with nitrous oxide, trifluralin, colchicine, oryzalin and other chemicals. These chemicals can act as a stimulus to produce viable 2n pollen; however, their exact mode of action, optimum concentration and developmental stages are still not known. Identification of efficient methods of inducing 2n-gamete formation will help increase pollen germination of sterile interspecific hybrids for inter-genomic recombination and introgression breeding to develop new polyploid cultivars and increase heterozygosity among plant populations. Additionally, the application of genomic tools and identification and isolation of genes and mechanisms involved in the induction of 2n-gamete will enable increased exploitation in different plant species, which will open new avenues for plant breeding.
Collapse
Affiliation(s)
- Adnan Younis
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, Korea,
| | | | | |
Collapse
|
49
|
YAMASAKI S, MURAKAMI Y. Continuous UV-B Irradiation Induces Endoreduplication and Trichome Formation in Cotyledons, and Reduces Epidermal Cell Division and Expansion in the First Leaves of Pumpkin Seedlings (Cucurbita maxima Duch.^|^times;C. moschata Duch.). ACTA ACUST UNITED AC 2014. [DOI: 10.2525/ecb.52.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Choi CM, Gray WM, Mooney S, Hellmann H. Composition, roles, and regulation of cullin-based ubiquitin e3 ligases. THE ARABIDOPSIS BOOK 2014; 12:e0175. [PMID: 25505853 PMCID: PMC4262284 DOI: 10.1199/tab.0175] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities.
Collapse
Affiliation(s)
| | | | | | - Hanjo Hellmann
- Washington State University, Pullman, Washington
- Address correspondence to
| |
Collapse
|