1
|
Zhou N, Li X, Zheng Z, Liu J, Downie JA, Xie F. RinRK1 enhances NF receptors accumulation in nanodomain-like structures at root-hair tip. Nat Commun 2024; 15:3568. [PMID: 38670968 PMCID: PMC11053012 DOI: 10.1038/s41467-024-47794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Legume-rhizobia root-nodule symbioses involve the recognition of rhizobial Nod factor (NF) signals by NF receptors, triggering both nodule organogenesis and rhizobial infection. RinRK1 is induced by NF signaling and is essential for infection thread (IT) formation in Lotus japonicus. However, the precise mechanism underlying this process remains unknown. Here, we show that RinRK1 interacts with the extracellular domains of NF receptors (NFR1 and NFR5) to promote their accumulation at root hair tips in response to rhizobia or NFs. Furthermore, Flotillin 1 (Flot1), a nanodomain-organizing protein, associates with the kinase domains of NFR1, NFR5 and RinRK1. RinRK1 promotes the interactions between Flot1 and NF receptors and both RinRK1 and Flot1 are necessary for the accumulation of NF receptors at root hair tips upon NF stimulation. Our study shows that RinRK1 and Flot1 play a crucial role in NF receptor complex assembly within localized plasma membrane signaling centers to promote symbiotic infection.
Collapse
Affiliation(s)
- Ning Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiqiong Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - J Allan Downie
- John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Dutta AK, Sultana MM, Tanaka A, Suzuki T, Hachiya T, Nakagawa T. Expression analysis of genes encoding extracellular leucine-rich repeat proteins in Arabidopsis thaliana. Biosci Biotechnol Biochem 2024; 88:154-167. [PMID: 38040489 DOI: 10.1093/bbb/zbad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Leucine-rich repeat (LRR)-containing proteins have been identified in diverse species, including plants. The diverse intracellular and extracellular LRR variants are responsible for numerous biological processes. We analyzed the expression patterns of Arabidopsis thaliana extracellular LRR (AtExLRR) genes, 10 receptor-like proteins, and 4 additional genes expressing the LRR-containing protein by a promoter: β-glucuronidase (GUS) study. According to in silico expression studies, several AtExLRR genes were expressed in a tissue- or stage-specific and abiotic/hormone stress-responsive manner, indicating their potential participation in specific biological processes. Based on the promoter: GUS assay, AtExLRRs were expressed in different cells and organs. A quantitative real-time PCR investigation revealed that the expressions of AtExLRR3 and AtExLRR9 were distinct under various abiotic stress conditions. This study investigated the potential roles of extracellular LRR proteins in plant growth, development, and response to various abiotic stresses.
Collapse
Affiliation(s)
- Amit Kumar Dutta
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Microbiology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mst Momtaz Sultana
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Department of Agricultural Extension (DAE), Ministry of Agriculture, Dhaka, Bangladesh
| | - Ai Tanaka
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Takushi Hachiya
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Tsuyoshi Nakagawa
- Department of Molecular and Functional Genomics, Interdisciplinary Center for Science Research, Shimane University, Matsue, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Science of Natural Environment Systems Course, Graduate School of Natural Science and Technology, Shimane University, Matsue, Japan
| |
Collapse
|
3
|
Ahn E, Botkin J, Ellur V, Lee Y, Poudel K, Prom LK, Magill C. Genome-Wide Association Study of Seed Morphology Traits in Senegalese Sorghum Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2344. [PMID: 37375969 DOI: 10.3390/plants12122344] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Sorghum is considered the fifth most important crop in the world. Despite the potential value of Senegalese germplasm for various traits, such as resistance to fungal diseases, there is limited information on the study of sorghum seed morphology. In this study, 162 Senegalese germplasms were evaluated for seed area size, length, width, length-to-width ratio, perimeter, circularity, the distance between the intersection of length & width (IS) and center of gravity (CG), and seed darkness and brightness by scanning and analyzing morphology-related traits with SmartGrain software at the USDA-ARS Plant Science Research Unit. Correlations between seed morphology-related traits and traits associated with anthracnose and head smut resistance were analyzed. Lastly, genome-wide association studies were performed on phenotypic data collected from over 16,000 seeds and 193,727 publicly available single nucleotide polymorphisms (SNPs). Several significant SNPs were found and mapped to the reference sorghum genome to uncover multiple candidate genes potentially associated with seed morphology. The results indicate clear correlations among seed morphology-related traits and potential associations between seed morphology and the defense response of sorghum. GWAS analysis listed candidate genes associated with seed morphologies that can be used for sorghum breeding in the future.
Collapse
Affiliation(s)
- Ezekiel Ahn
- USDA-ARS Plant Science Research Unit, St. Paul, MN 55108, USA
| | - Jacob Botkin
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Vishnutej Ellur
- Molecular Plant Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yoonjung Lee
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kabita Poudel
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Louis K Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Barrera-Redondo J, Lotharukpong JS, Drost HG, Coelho SM. Uncovering gene-family founder events during major evolutionary transitions in animals, plants and fungi using GenEra. Genome Biol 2023; 24:54. [PMID: 36964572 PMCID: PMC10037820 DOI: 10.1186/s13059-023-02895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
We present GenEra ( https://github.com/josuebarrera/GenEra ), a DIAMOND-fueled gene-family founder inference framework that addresses previously raised limitations and biases in genomic phylostratigraphy, such as homology detection failure. GenEra also reduces computational time from several months to a few days for any genome of interest. We analyze the emergence of taxonomically restricted gene families during major evolutionary transitions in plants, animals, and fungi. Our results indicate that the impact of homology detection failure on inferred patterns of gene emergence is lineage-dependent, suggesting that plants are more prone to evolve novelty through the emergence of new genes compared to animals and fungi.
Collapse
Affiliation(s)
- Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| | - Jaruwatana Sodai Lotharukpong
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Hajk-Georg Drost
- Computational Biology Group, Department of Molecular Biology, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| |
Collapse
|
5
|
Chen XJ, Yin YQ, Zhu XM, Xia X, Han JJ. High Ambient Temperature Regulated the Plant Systemic Response to the Beneficial Endophytic Fungus Serendipita indica. FRONTIERS IN PLANT SCIENCE 2022; 13:844572. [PMID: 35371134 PMCID: PMC8966885 DOI: 10.3389/fpls.2022.844572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Most plants in nature establish symbiotic associations with endophytic fungi in soil. Beneficial endophytic fungi induce a systemic response in the aboveground parts of the host plant, thus promoting the growth and fitness of host plants. Meanwhile, temperature elevation from climate change widely affects global plant biodiversity as well as crop quality and yield. Over the past decades, great progresses have been made in the response of plants to high ambient temperature and to symbiosis with endophytic fungi. However, little is known about their synergistic effect on host plants. The endophytic fungus Serendipita indica colonizes the roots of a wide range of plants, including Arabidopsis. Based on the Arabidopsis-S. indica symbiosis experimental system, we analyzed the synergistic effect of high ambient temperature and endophytic fungal symbiosis on host plants. By transcriptome analysis, we found that DNA replication-related genes were significantly upregulated during the systemic response of Arabidopsis aboveground parts to S. indica colonization. Plant hormones, such as jasmonic acid (JA) and ethylene (ET), play important roles in plant growth and systemic responses. We found that high ambient temperature repressed the JA and ET signaling pathways of Arabidopsis aboveground parts during the systemic response to S. indica colonization in roots. Meanwhile, PIF4 is the central hub transcription factor controlling plant thermosensory growth under high ambient temperature in Arabidopsis. PIF4 is also involving JA and/or ET signaling pathway. We found that PIF4 target genes overlapped with many differentially expressed genes (DEGs) during the systemic response, and further showed that the growth promotion efficiency of S. indica on the pif4 mutant was higher than that on the wild-type plants. In short, our data showed that high ambient temperature strengthened the growth promotion effect of S. indica fungi on the aboveground parts of the host plant Arabidopsis, and the growth promotion effect of the systemic response under high ambient temperature was regulated by PIF4.
Collapse
Affiliation(s)
- Xiao-Jie Chen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Yue-Qing Yin
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xin-Meng Zhu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Xue Xia
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jia-Jia Han
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
6
|
Wang Y, He X, Yu F. Non-host plants: Are they mycorrhizal networks players? PLANT DIVERSITY 2022; 44:127-134. [PMID: 35505991 PMCID: PMC9043302 DOI: 10.1016/j.pld.2021.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 05/04/2023]
Abstract
Common mycorrhizal networks (CMNs) that connect individual plants of the same or different species together play important roles in nutrient and signal transportation, and plant community organization. However, about 10% of land plants are non-mycorrhizal species with roots that do not form any well-recognized types of mycorrhizas; and each mycorrhizal fungus can only colonize a limited number of plant species, resulting in numerous non-host plants that could not establish typical mycorrhizal symbiosis with a specific mycorrhizal fungus. If and how non-mycorrhizal or non-host plants are able to involve in CMNs remains unclear. Here we summarize studies focusing on mycorrhizal-mediated host and non-host plant interaction. Evidence has showed that some host-supported both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) hyphae can access to non-host plant roots without forming typical mycorrhizal structures, while such non-typical mycorrhizal colonization often inhibits the growth but enhances the induced system resistance of non-host plants. Meanwhile, the host growth is also differentially affected, depending on plant and fungi species. Molecular analyses suggested that the AMF colonization to non-hosts is different from pathogenic and endophytic fungi colonization, and the hyphae in non-host roots may be alive and have some unknown functions. Thus we propose that non-host plants are also important CMNs players. Using non-mycorrhizal model species Arabidopsis, tripartite culture system and new technologies such as nanoscale secondary ion mass spectrometry and multi-omics, to study nutrient and signal transportation between host and non-host plants via CMNs may provide new insights into the mechanisms underlying benefits of intercropping and agro-forestry systems, as well as plant community establishment and stability.
Collapse
Affiliation(s)
- Yanliang Wang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Corresponding author.
| |
Collapse
|
7
|
Lu D, Qian T, Le C, Pan C, Cao S, Ng WJ, Zhou Y. Insights into thermal hydrolyzed sludge liquor - Identification of plant-growth-promoting compounds. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123650. [PMID: 32810713 DOI: 10.1016/j.jhazmat.2020.123650] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
This study proposes a new path to utilize thermal hydrolyzed sludge (TH sludge) as fertilizer given high value chemical compounds that can promote plant growth were identified in the liquid fraction of TH sludge (TH liquor). Together with micro- and macro-nutrients released/synthesized during thermal hydrolysis, the feasibility of using TH liquor as organic fertilizer was evaluated. Besides high contents of N, P and K, total free amino acids (FAAs) and plant-growth-promoting FAAs (including glutamic acid, leucine and cystine) also presented in high concentration (4.98-6.48 and 1.12-2.73 g/100 g) in the TH liquor. For the first time, phytohormone compound, indole-3-acetic acid, was observed and the content was the highest in TH liquor with 165 °C treatment (165 °C TH liquor). Meantime, 165 °C TH liquor did not have negative impact on the growth of soil microbes, and this product, instead, demonstrated stimulating effect on the plant growth. These results suggest that 165 °C TH liquor has a great potential to be an organic fertilizer. The remaining solids of TH sludge could be converted to valuable biochar. The holistic approach of using TH liquor as organic fertilizer and producing biochar could realize nearly zero-waste discharge in sludge management.
Collapse
Affiliation(s)
- Dan Lu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Tingting Qian
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Chencheng Le
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Chaozhi Pan
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Environmental Bio-innovations Group, School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Wun Jern Ng
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Environmental Bio-innovations Group, School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| |
Collapse
|
8
|
Jogawat A, Meena MK, Kundu A, Varma M, Vadassery J. Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2752-2768. [PMID: 31957790 PMCID: PMC7210775 DOI: 10.1093/jxb/eraa028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/16/2020] [Indexed: 05/20/2023]
Abstract
The activation of calcium signaling is a crucial event for perceiving environmental stress. Colonization by Piriformospora indica, a growth-promoting root endosymbiont, activates cytosolic Ca2+ in Arabidopsis roots. In this study, we examined the role and functional relevance of calcium channels responsible for Ca2+ fluxes. Expression profiling revealed that CYCLIC NUCLEOTIDE GATED CHANNEL 19 (CNGC19) is an early-activated gene, induced by unidentified components in P. indica cell-wall extract. Functional analysis showed that loss-of-function of CNGC19 resulted in growth inhibition by P.indica, due to increased colonization and loss of controlled fungal growth. The cngc19 mutant showed reduced elevation of cytosolic Ca2+ in response to P. indica cell-wall extract in comparison to the wild-type. Microbe-associated molecular pattern-triggered immunity was compromised in the cngc19 lines, as evidenced by unaltered callose deposition, reduced cis-(+)-12-oxo-phytodienoic acid, jasmonate, and jasmonoyl isoleucine levels, and down-regulation of jasmonate and other defense-related genes, which contributed to a shift towards a pathogenic response. Loss-of-function of CNGC19 resulted in an inability to modulate indole glucosinolate content during P. indica colonization. CNGC19-mediated basal immunity was dependent on the AtPep receptor, PEPR. CNGC19 was also crucial for P. indica-mediated suppression of AtPep-induced immunity. Our results thus demonstrate that Arabidopsis CNGC19 is an important Ca2+ channel that maintains a robust innate immunity and is crucial for growth-promotion signaling upon colonization by P. indica.
Collapse
Affiliation(s)
- Abhimanyu Jogawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Anish Kundu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mahendra Varma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Jyothilakshmi Vadassery
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
9
|
Peng W, Ming QL, Zhai X, Zhang Q, Rahman K, Wu SJ, Qin LP, Han T. Polysaccharide Fraction Extracted from Endophytic Fungus Trichoderma atroviride D16 Has an Influence on the Proteomics Profile of the Salvia miltiorrhiza Hairy Roots. Biomolecules 2019; 9:E415. [PMID: 31455038 PMCID: PMC6769542 DOI: 10.3390/biom9090415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 01/30/2023] Open
Abstract
Trichoderma atroviride develops a symbiont relationship with Salvia miltiorrhiza and this association involves a number of signaling pathways and proteomic responses between both partners. In our previous study, we have reported that polysaccharide fraction (PSF) of T. atroviride could promote tanshinones accumulation in S.miltiorrhiza hairy roots. Consequently, the present data elucidates the broad proteomics changes under treatment of PSF. Furthermore, we reported several previously undescribed and unexpected responses, containing gene expression patterns consistent with biochemical stresses and metabolic patterns inside the host. In summary, the PSF-induced tanshinones accumulation in S.miltiorrhiza hairy roots may be closely related to Ca2+ triggering, peroxide reaction, protein phosphorylation, and jasmonic acid (JA) signal transduction, leading to an increase in leucine-rich repeat (LRR) protein synthesis. This results in the changes in basic metabolic flux of sugars, amino acids, and protein synthesis, along with signal defense reactions. The results reported here increase our understanding of the interaction between T.atroviride and S.miltiorrhiza and specifically confirm the proteomic responses underlying the activities of PSF.
Collapse
Affiliation(s)
- Wei Peng
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu 611137, China
| | - Qian-Liang Ming
- Department of Pharmacognosy, School of Pharmacy, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China
| | - Xin Zhai
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu 611137, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Si-Jia Wu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Lu-Ping Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
10
|
Bertolazi AA, de Souza SB, Ruas KF, Campostrini E, de Rezende CE, Cruz C, Melo J, Colodete CM, Varma A, Ramos AC. Inoculation With Piriformospora indica Is More Efficient in Wild-Type Rice Than in Transgenic Rice Over-Expressing the Vacuolar H +-PPase. Front Microbiol 2019; 10:1087. [PMID: 31156595 PMCID: PMC6530341 DOI: 10.3389/fmicb.2019.01087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
Achieving food security in a context of environmental sustainability is one of the main challenges of the XXI century. Two competing strategies to achieve this goal are the use of genetically modified plants and the use of plant growth promoting microorganisms (PGPMs). However, few studies assess the response of genetically modified plants to PGPMs. The aim of this study was to compare the response of over-expressing the vacuolar H+-PPase (AVP) and wild-type rice types to the endophytic fungus; Piriformospora indica. Oryza sativa plants (WT and AVP) were inoculated with P. indica and 30 days later, morphological, ecophysiological and bioenergetic parameters, and nutrient content were assessed. AVP and WT plant heights were strongly influenced by inoculation with P. indica, which also promoted increases in fresh and dry matter of shoot in both genotypes. This may be related with the stimulatory effect of P. indica on ecophysiological parameters, especially photosynthetic rate, stomatal conductance, intrinsic water use efficiency and carboxylation efficiency. However, there were differences between the genotypes concerning the physiological mechanisms leading to biomass increment. In WT plants, inoculation with P. indica stimulated all H+ pumps. However, in inoculated AVP plants, H+-PPase was stimulated, but P- and V-ATPases were inhibited. Fungal inoculation enhanced nutrient uptake in both shoots and roots of WT and AVP plants, compared to uninoculated plants; but among inoculated genotypes, the nutrient uptake was lower in AVP than in WT plants. These results clearly demonstrate that the symbiosis between P. indica and AVP plants did not benefit those plants, which may be related to the inefficient colonization of this fungus on the transgenic plants, demonstrating an incompatibility of this symbiosis, which needs to be further studied.
Collapse
Affiliation(s)
- Amanda Azevedo Bertolazi
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, Brazil
| | - Sávio Bastos de Souza
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Katherine Fraga Ruas
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Eliemar Campostrini
- Laboratory of Plant Physiology, CCTA, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Carlos Eduardo de Rezende
- Laboratory of Environmental Sciences, CBB, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, Brazil
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes (Ce3C), Faculty of Sciences, Universidade de Lisboa, Campo Grande, Portugal
| | - Juliana Melo
- Centre for Ecology, Evolution and Environmental Changes (Ce3C), Faculty of Sciences, Universidade de Lisboa, Campo Grande, Portugal
| | - Carlos Moacir Colodete
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, Brazil
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Alessandro Coutinho Ramos
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha (UVV), Vila Velha, Brazil
| |
Collapse
|
11
|
Khalid M, Rahman SU, Huang D. Molecular mechanism underlying Piriformospora indica-mediated plant improvement/protection for sustainable agriculture. Acta Biochim Biophys Sin (Shanghai) 2019; 51:229-242. [PMID: 30883651 DOI: 10.1093/abbs/gmz004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
The beneficial endophytic microorganisms have received significant attention in agriculture because of their exceptional capabilities to facilitate functions like nutrient enrichment, water status, and stress tolerance (biotic and abiotic). This review signifies the molecular mechanisms to better understand the Piriformospora indica-mediated plants improvement or protection for sustainable agriculture. P. indica, an endophytic fungus, belonging to the order Sebacinales (Basidiomycota), is versatile in building mutualistic associations with a variety of plants including pteridophytes, bryophytes, gymnosperms, and angiosperms. P. indica has enormous potential to manipulate the hormonal pathway such as the production of indole-3-acetic acid which in turn increases root proliferation and subsequently improves plant nutrient acquisition. P. indica also enhances components of the antioxidant system and expression of stress-related genes which induce plant stress tolerance under adverse environmental conditions. P. indica has tremendous potential for crop improvement because of its multi-dimensional functions such as plant growth promotion, immunomodulatory effect, biofertilizer, obviates biotic (pathogens) and abiotic (metal toxicity, water stress, soil structure, salt, and pH) stresses, phytoremediator, and bio-herbicide. Considering the above points, herein, we reviewed the physiological and molecular mechanisms underlying P. indica-mediated plants improvement or protection under diverse agricultural environment. The first part of the review focuses on the symbiotic association of P. indica with special reference to biotic and abiotic stress tolerance and host plant root colonization mechanisms, respectively. Emphasis is given to the expression level of essential genes involved in the processes that induce changes at the cellular level. The last half emphasizes critical aspects related to the seed germination, plant yield, and nutrients acquisition.
Collapse
Affiliation(s)
- Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-ur- Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Bräuning S, Catanach A, Lord JM, Bicknell R, Macknight RC. Comparative transcriptome analysis of the wild-type model apomict Hieracium praealtum and its loss of parthenogenesis (lop) mutant. BMC PLANT BIOLOGY 2018; 18:206. [PMID: 30249189 PMCID: PMC6154955 DOI: 10.1186/s12870-018-1423-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Asexual seed formation (apomixis) has been observed in diverse plant families but is rare in crop plants. The generation of apomictic crops would revolutionize agriculture, as clonal seed production provides a low cost and efficient way to produce hybrid seed. Hieracium (Asteraceae) is a model system for studying the molecular components of gametophytic apomixis (asexual seed reproduction). RESULTS In this study, a reference transcriptome was produced from apomictic Hieracium undergoing the key apomictic events of apomeiosis, parthenogenesis and autonomous endosperm development. In addition, transcriptome sequences from pre-pollination and post-pollination stages were generated from a loss of parthenogenesis (lop) mutant accession that exhibits loss of parthenogenesis and autonomous endosperm development. The transcriptome is composed of 147,632 contigs, 50% of which were annotated with orthologous genes and their probable function. The transcriptome was used to identify transcripts differentially expressed during apomictic and pollination dependent (lop) seed development. Gene Ontology enrichment analysis of differentially expressed transcripts showed that an important difference between apomictic and pollination dependent seed development was the expression of genes relating to epigenetic gene regulation. Genes that mark key developmental stages, i.e. aposporous embryo sac development and seed development, were also identified through their enhanced expression at those stages. CONCLUSION The production of a comprehensive floral reference transcriptome for Hieracium provides a valuable resource for research into the molecular basis of apomixis and the identification of the genes underlying the LOP locus.
Collapse
Affiliation(s)
- Sophia Bräuning
- Department of Biochemistry, University of Otago, 710 Cumberland St, Dunedin, 9016 New Zealand
- Department of Botany, University of Otago, 464 Great King St, Dunedin, 9016 New Zealand
| | - Andrew Catanach
- New Zealand Institute for Plant and Food Research, Gerald St, Lincoln, 7608 New Zealand
| | - Janice M. Lord
- Department of Botany, University of Otago, 464 Great King St, Dunedin, 9016 New Zealand
| | - Ross Bicknell
- New Zealand Institute for Plant and Food Research, Gerald St, Lincoln, 7608 New Zealand
| | - Richard C. Macknight
- Department of Biochemistry, University of Otago, 710 Cumberland St, Dunedin, 9016 New Zealand
| |
Collapse
|
13
|
Proteomic approach to understand the molecular physiology of symbiotic interaction between Piriformospora indica and Brassica napus. Sci Rep 2018; 8:5773. [PMID: 29636503 PMCID: PMC5893561 DOI: 10.1038/s41598-018-23994-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/15/2018] [Indexed: 01/18/2023] Open
Abstract
Many studies have been now focused on the promising approach of fungal endophytes to protect the plant from nutrient deficiency and environmental stresses along with better development and productivity. Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we used integrated in-depth proteome analyses to characterize the relationship between endophyte Piriformospora indica and Brassica napus plant highlighting its potential involvement in symbiosis and overall growth and development of the plant. An LC-MS/MS based label-free quantitative technique was used to evaluate the differential proteomics under P. indica treatment vs. control plants. In this study, 8,123 proteins were assessed, of which 46 showed significant abundance (34 downregulated and 12 upregulated) under high confidence conditions (p-value ≤ 0.05, fold change ≥2, confidence level 95%). Mapping of identified differentially expressed proteins with bioinformatics tools such as GO and KEGG pathway analysis showed significant enrichment of gene sets involves in metabolic processes, symbiotic signaling, stress/defense responses, energy production, nutrient acquisition, biosynthesis of essential metabolites. These proteins are responsible for root's architectural modification, cell remodeling, and cellular homeostasis during the symbiotic growth phase of plant's life. We tried to enhance our knowledge that how the biological pathways modulate during symbiosis?
Collapse
|
14
|
Daneshkhah R, Grundler FMW, Wieczorek K. The Role of MPK6 as Mediator of Ethylene/Jasmonic Acid Signaling in Serendipita indica-Colonized Arabidopsis Roots. PLANT MOLECULAR BIOLOGY REPORTER 2018; 36:284-294. [PMID: 29875545 PMCID: PMC5966479 DOI: 10.1007/s11105-018-1077-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Serendipita indica is an axenically cultivable fungus, which colonizes a broad range of plant species including the model plant Arabidopsis thaliana. Root colonization by this endophyte leads to enhanced plant fitness and performance and promotes resistance against different biotic and abiotic stresses. The involvement of MPK6 in this mutualistic interaction had been previously shown with an mpk6 A. thaliana mutant, which failed to respond to S. indica colonization. Here, we demonstrate that mpk6 roots are significantly less colonized by S. indica compared to wild-type roots and the foliar application of plant hormones, ethylene, or jasmonic acid, restores the colonization rate at least to the wild-type level. Further, hormone-treated mpk6 plants show typical S. indica-induced growth promotion effects. Moreover, expression levels of several genes related to plant defense and hormone signaling are significantly changed at different colonization phases. Our results demonstrate that the successful root colonization by S. indica depends on efficient suppression of plant immune responses. In A. thaliana, this process relies on intact hormone signaling in which MPK6 seems to play a pivotal role.
Collapse
Affiliation(s)
- R. Daneshkhah
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln on the Danube, Austria
| | - F. M. W. Grundler
- Institute of Crop Science and Resource Conservation, Molecular Phytomedicine, University Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - Krzysztof Wieczorek
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln on the Danube, Austria
| |
Collapse
|
15
|
Hua MDS, Senthil Kumar R, Shyur LF, Cheng YB, Tian Z, Oelmüller R, Yeh KW. Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci Rep 2017; 7:9291. [PMID: 28839213 PMCID: PMC5571224 DOI: 10.1038/s41598-017-08715-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022] Open
Abstract
Root colonization by endophytic fungus Piriformospora indica facilitating growth/development and stress tolerance has been demonstrated in various host plants. However, global metabolomic studies are rare. By using high-throughput gas-chromatography-based mass spectrometry, 549 metabolites of 1,126 total compounds observed were identified in colonized and uncolonized Chinese cabbage roots, and hyphae of P. indica. The analyses demonstrate that the host metabolomic compounds and metabolite pathways are globally reprogrammed after symbiosis with P. indica. Especially, γ-amino butyrate (GABA), oxylipin-family compounds, poly-saturated fatty acids, and auxin and its intermediates were highly induced and de novo synthesized in colonized roots. Conversely, nicotinic acid (niacin) and dimethylallylpyrophosphate were strongly decreased. In vivo assays with exogenously applied compounds confirmed that GABA primes plant immunity toward pathogen attack and enhances high salinity and temperature tolerance. Moreover, generation of reactive oxygen/nitrogen species stimulated by nicotinic acid is repressed by P. indica, and causes the feasibility of symbiotic interaction. This global metabolomic analysis and the identification of symbiosis-specific metabolites may help to understand how P. indica confers benefits to the host plant.
Collapse
Affiliation(s)
- Mo Da-Sang Hua
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan
| | | | - Lie-Fen Shyur
- Agricultural Biotechnology Research Centre, Academia Sinica, 106, Taipei, Taiwan
| | - Yuan-Bin Cheng
- Institute of Natural Products, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
| | - Zhihong Tian
- Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, D-07743, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan. .,Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
16
|
Hua MDS, Senthil Kumar R, Shyur LF, Cheng YB, Tian Z, Oelmüller R, Yeh KW. Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Sci Rep 2017; 7:9291. [PMID: 28839213 DOI: 10.1038/s41598-017-087152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/12/2017] [Indexed: 05/28/2023] Open
Abstract
Root colonization by endophytic fungus Piriformospora indica facilitating growth/development and stress tolerance has been demonstrated in various host plants. However, global metabolomic studies are rare. By using high-throughput gas-chromatography-based mass spectrometry, 549 metabolites of 1,126 total compounds observed were identified in colonized and uncolonized Chinese cabbage roots, and hyphae of P. indica. The analyses demonstrate that the host metabolomic compounds and metabolite pathways are globally reprogrammed after symbiosis with P. indica. Especially, γ-amino butyrate (GABA), oxylipin-family compounds, poly-saturated fatty acids, and auxin and its intermediates were highly induced and de novo synthesized in colonized roots. Conversely, nicotinic acid (niacin) and dimethylallylpyrophosphate were strongly decreased. In vivo assays with exogenously applied compounds confirmed that GABA primes plant immunity toward pathogen attack and enhances high salinity and temperature tolerance. Moreover, generation of reactive oxygen/nitrogen species stimulated by nicotinic acid is repressed by P. indica, and causes the feasibility of symbiotic interaction. This global metabolomic analysis and the identification of symbiosis-specific metabolites may help to understand how P. indica confers benefits to the host plant.
Collapse
Affiliation(s)
- Mo Da-Sang Hua
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan
| | | | - Lie-Fen Shyur
- Agricultural Biotechnology Research Centre, Academia Sinica, 106, Taipei, Taiwan
| | - Yuan-Bin Cheng
- Institute of Natural Products, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
| | - Zhihong Tian
- Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, D-07743, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, 106, Taipei, Taiwan.
- Hubei Collaborative Innovation, College of Life Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
17
|
The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of Asparagus officinalis growth. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Bakshi M, Sherameti I, Meichsner D, Thürich J, Varma A, Johri AK, Yeh KW, Oelmüller R. Piriformospora indica Reprograms Gene Expression in Arabidopsis Phosphate Metabolism Mutants But Does Not Compensate for Phosphate Limitation. Front Microbiol 2017; 8:1262. [PMID: 28747898 PMCID: PMC5506084 DOI: 10.3389/fmicb.2017.01262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/23/2017] [Indexed: 01/12/2023] Open
Abstract
Piriformospora indica is an endophytic fungus of Sebacinaceae which colonizes the roots of many plant species and confers benefits to the hosts. We demonstrate that approximately 75% of the genes, which respond to P. indica in Arabidopsis roots, differ among seedlings grown on normal phosphate (Pi) or Pi limitation conditions, and among wild-type and the wrky6 mutant impaired in the regulation of the Pi metabolism. Mapman analyses suggest that the fungus activates different signaling, transport, metabolic and developmental programs in the roots of wild-type and wrky6 seedlings under normal and low Pi conditions. Under low Pi, P. indica promotes growth and Pi uptake of wild-type seedlings, and the stimulatory effects are identical for mutants impaired in the PHOSPHATE TRANSPORTERS1;1, -1;2 and -1;4. The data suggest that the fungus does not stimulate Pi uptake, but adapts the expression profiles to Pi limitation in Pi metabolism mutants.
Collapse
Affiliation(s)
- Madhunita Bakshi
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Irena Sherameti
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Doreen Meichsner
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Johannes Thürich
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity UniversityNoida, India
| | - Atul K Johri
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Kai-Wun Yeh
- Institute of Plant Biology, Taiwan National UniversityTaipei, Taiwan
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University JenaJena, Germany
| |
Collapse
|
19
|
Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis. Biochem Biophys Res Commun 2017; 490:1162-1167. [PMID: 28668394 DOI: 10.1016/j.bbrc.2017.06.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
Piriformospora indica is an endophytic fungus colonizing roots of a wide variety of plants. Previous studies showed that P. indica promotes early flowering and plant growth in the medicinal plant Coleus forskohlii. To determine the impact of P. indica on flowering time in Arabidopsis, we co-cultivated the plants with P. indica under long day condition. P. indica inoculated Arabidopsis plants displayed significant early flowering phenotype. qRT-PCR analysis of colonized plants revealed an up-regulation of flowering regulatory (FLOWERING LOCUS T, LEAFY, and APETALA1) and gibberellin biosynthetic (Gibberellin 20-Oxidase2, Gibberellin 3-Oxidase1 and Gibberellin requiring1) genes, while the flowering-repressing gene FLOWERING LOCUS C was down regulated. Quantification of gibberellins content showed that the colonization with P. indica caused an increase in GA4 content. Compared to wild-type plants, inoculation of the Arabidopsis ga5 mutant affected in gibberellin biosynthetic gene led to less pronounced changes in the expression of genes regulating flowering and to a lower increase in GA4 content. Taken together, our data indicate that P. indica promotes early flowering in Arabidopsis likely by increasing gibberellin content.
Collapse
|
20
|
Zhou Q, Dong Y, Shi Q, Zhang L, Chen H, Hu C, Li Y. Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.). Mol Genet Genomics 2017; 292:871-881. [PMID: 28405778 DOI: 10.1007/s00438-017-1318-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Grain weight, one of the important factors to determine corn yield, is a typical quantitative inheritance trait. However, the molecular genetic basis of grain weight still remains limited. In our previous researches, a major QTL associated with grain weight, qGW1.05, has been identified between SSR markers umc1601 and umc1754 at bin locus 1.05-1.06 in maize. Here, its genetic and environmental stabiliteis were verified using a BC3F2 population to identify the effect of qGW1.05 on grain weight. Further, qGW1.05-NILs were obtained by MAS successfully. Via a large BC6F2 segregation population, together with polymorphic microsatellite markers developed between the parents to screen the genotype of the recombinant plants, qGW1.05 was positioned to a 1.11 Mb genome interval. Furthermore, the progenies of 15 recombinants were tested to confirm the effect of qGW1.05 on grain weight. Combining collinearity among cereal crops and genome annotation, the several candidate genes taking part in grain development were identified in the qGW1.05 region. In this study, qGW1.05 was limited to a 1.11 Mb region on chromosome 1, which established the foundation for understanding the molecular basis underlying kernel development and improving grain weight through MAS using the tightly flanking molecular markers in maize.
Collapse
Affiliation(s)
- Qiang Zhou
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Yongbin Dong
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Qingling Shi
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Long Zhang
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Huanqing Chen
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Chunhui Hu
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China
| | - Yuling Li
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 95 Wenhua Rd, Zhengzhou, 450002, China.
| |
Collapse
|
21
|
Venneman J, Audenaert K, Verwaeren J, Baert G, Boeckx P, Moango AM, Dhed’a BD, Vereecke D, Haesaert G. Congolese Rhizospheric Soils as a Rich Source of New Plant Growth-Promoting Endophytic Piriformospora Isolates. Front Microbiol 2017; 8:212. [PMID: 28261171 PMCID: PMC5306995 DOI: 10.3389/fmicb.2017.00212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
In the last decade, there has been an increasing focus on the implementation of plant growth-promoting (PGP) organisms as a sustainable option to compensate for poor soil fertility conditions in developing countries. Trap systems were used in an effort to isolate PGP fungi from rhizospheric soil samples collected in the region around Kisangani in the Democratic Republic of Congo. With sudangrass as a host, a highly conducive environment was created for sebacinalean chlamydospore formation inside the plant roots resulting in a collection of 51 axenically cultured isolates of the elusive genus Piriformospora (recently transferred to the genus Serendipita). Based on morphological data, ISSR fingerprinting profiles and marker gene sequences, we propose that these isolates together with Piriformospora williamsii constitute a species complex designated Piriformospora (= Serendipita) 'williamsii.' A selection of isolates strongly promoted plant growth of in vitro inoculated Arabidopsis seedlings, which was evidenced by an increase in shoot fresh weight and a strong stimulation of lateral root formation. This isolate collection provides unprecedented opportunities for fundamental as well as translational research on the Serendipitaceae, a family of fungal endophytes in full expansion.
Collapse
Affiliation(s)
- Jolien Venneman
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| | - Kris Audenaert
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| | - Jan Verwaeren
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| | - Geert Baert
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Ghent UniversityGhent, Belgium
| | - Adrien M. Moango
- Faculty of Science and Agriculture, Kisangani UniversityKisangani, Congo
| | - Benoît D. Dhed’a
- Faculty of Science and Agriculture, Kisangani UniversityKisangani, Congo
| | - Danny Vereecke
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| | - Geert Haesaert
- Department of Applied Biosciences, Ghent UniversityGhent, Belgium
| |
Collapse
|
22
|
Varma A, Uma, Khanuja M. Role of Nanoparticles on Plant Growth with Special Emphasis on Piriformospora indica: A Review. NANOSCIENCE AND PLANT–SOIL SYSTEMS 2017. [DOI: 10.1007/978-3-319-46835-8_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
23
|
Kao CW, Bakshi M, Sherameti I, Dong S, Reichelt M, Oelmüller R, Yeh KW. A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. PLANT MOLECULAR BIOLOGY 2016; 92:643-659. [PMID: 27796720 DOI: 10.1007/s11103-016-0531-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/19/2016] [Indexed: 05/20/2023]
Abstract
The beneficial root-colonizing fungus Piriformospora indica stimulates root development of Chinese cabbage (Brassica campestris subsp. Chinensis) and this is accompanied by the up-regulation of a τ-class glutathione (GSH)-S-transferase gene (BcGSTU) (Lee et al. 2011) in the roots. BcGSTU expression is further promoted by osmotic (salt and PEG) and heat stress. Ectopic expression of BcGSTU in Arabidopsis under the control of the 35S promoter results in the promotion of root and shoot growth as well as better performance of the plants under abiotic (150 mM NaCl, PEG, 42 °C) and biotic (Alternaria brassicae infection) stresses. Higher levels of glutathione, auxin and stress-related (salicylic and jasmonic acid) phytohormones as well as changes in the gene expression profile result in better performance of the BcGSTU expressors upon exposure to stress. Simultaneously the plants are primed against upcoming stresses. We propose that BcGSTU is a target of P. indica in Chinese cabbage roots because the enzyme participates in balancing growth and stress responses, depending on the equilibrium of the symbiotic interaction. A comparable function of BcGST in transgenic Arabidopsis makes the enzyme a valuable tool for agricultural applications.
Collapse
Affiliation(s)
- Chih-Wei Kao
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Madhunita Bakshi
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Michael Reichelt
- Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Fesel PH, Zuccaro A. Dissecting endophytic lifestyle along the parasitism/mutualism continuum in Arabidopsis. Curr Opin Microbiol 2016; 32:103-112. [DOI: 10.1016/j.mib.2016.05.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 11/17/2022]
|
25
|
Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N. Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Front Microbiol 2016; 7:332. [PMID: 27047458 PMCID: PMC4801890 DOI: 10.3389/fmicb.2016.00332] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/03/2016] [Indexed: 11/17/2022] Open
Abstract
Owing to its exceptional ability to efficiently promote plant growth, protection and stress tolerance, a mycorrhiza like endophytic Agaricomycetes fungus Piriformospora indica has received a great attention over the last few decades. P. indica is an axenically cultiviable fungus which exhibits its versatility for colonizing/hosting a broad range of plant species through directly manipulating plant hormone-signaling pathway during the course of mutualism. P. indica-root colonization leads to a better plant performance in all respect, including enhanced root proliferation by indole-3-acetic acid production which in turn results into better nutrient-acquisition and subsequently to improved crop growth and productivity. Additionally, P. indica can induce both local and systemic resistance to fungal and viral plant diseases through signal transduction. P. indica-mediated stimulation in antioxidant defense system components and expressing stress-related genes can confer crop/plant stress tolerance. Therefore, P. indica can biotize micropropagated plantlets and also help these plants to overcome transplantation shock. Nevertheless, it can also be involved in a more complex symbiotic relationship, such as tripartite symbiosis and can enhance population dynamic of plant growth promoting rhizobacteria. In brief, P. indica can be utilized as a plant promoter, bio-fertilizer, bioprotector, bioregulator, and biotization agent. The outcome of the recent literature appraised herein will help us to understand the physiological and molecular bases of mechanisms underlying P. indica-crop plant mutual relationship. Together, the discussion will be functional to comprehend the usefulness of crop plant-P. indica association in both achieving new insights into crop protection/improvement as well as in sustainable agriculture production.
Collapse
Affiliation(s)
- Sarvajeet S Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Laboratory, Centre for Biotechnology, Maharshi Dayanand University Rohtak, India
| | - Dipesh K Trivedi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Naser A Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Krishna K Sharma
- Department of Microbiology, Maharshi Dayanand University Rohtak, India
| | - Mohammed W Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Abid A Ansari
- Department of Biology, University of Tabuk Tabuk, Saudi Arabia
| | - Atul K Johri
- School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Ram Prasad
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Eduarda Pereira
- Centre for Environmental and Marine Studies and Department of Chemistry, University of Aveiro Aveiro, Portugal
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Noida, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University Noida, India
| |
Collapse
|
26
|
Abadi VAJM, Sepehri M. Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.). Symbiosis 2015. [DOI: 10.1007/s13199-015-0361-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
In vitro co-cultivation of Piriformospora indica filtrate for improve biomass productivity in Artemisia annua(L.). Symbiosis 2015. [DOI: 10.1007/s13199-015-0331-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Banhara A, Ding Y, Kühner R, Zuccaro A, Parniske M. Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. FRONTIERS IN PLANT SCIENCE 2015; 6:667. [PMID: 26441999 PMCID: PMC4585188 DOI: 10.3389/fpls.2015.00667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/13/2015] [Indexed: 05/05/2023]
Abstract
Arbuscular mycorrhiza (AM) fungi (Glomeromycota) form symbiosis with and deliver nutrients via the roots of most angiosperms. AM fungal hyphae are taken up by living root epidermal cells, a program which relies on a set of plant common symbiosis genes (CSGs). Plant root epidermal cells are also infected by the plant growth-promoting fungus Piriformospora indica (Basidiomycota), raising the question whether this interaction relies on the AM-related CSGs. Here we show that intracellular colonization of root cells and intracellular sporulation by P. indica occurred in CSG mutants of the legume Lotus japonicus and in Arabidopsis thaliana, which belongs to the Brassicaceae, a family that has lost the ability to form AM as well as a core set of CSGs. A. thaliana mutants of homologs of CSGs (HCSGs) interacted with P. indica similar to the wild-type. Moreover, increased biomass of A. thaliana evoked by P. indica was unaltered in HCSG mutants. We conclude that colonization and growth promotion by P. indica are independent of the CSGs and that AM fungi and P. indica exploit different host pathways for infection.
Collapse
Affiliation(s)
- Aline Banhara
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
| | - Yi Ding
- Department of Organismic Interactions, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Regina Kühner
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- Cluster of Excellence on Plant Sciences, Botanical Institute, University of CologneCologne, Germany
| | - Martin Parniske
- Faculty of Biology, Institute of Genetics, University of MunichMartinsried, Germany
- *Correspondence: Martin Parniske, Genetics, Faculty of Biology, University of Munich (LMU), Großhaderner Strasse 4, 82152 Martinsried, Germany
| |
Collapse
|
29
|
Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, Yeh KW, Sherameti I, Lou B, Baldwin IT, Oelmüller R. The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC PLANT BIOLOGY 2014; 14:268. [PMID: 25297988 PMCID: PMC4198706 DOI: 10.1186/s12870-014-0268-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/29/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Verticillium dahliae (Vd) is a soil-borne vascular pathogen which causes severe wilt symptoms in a wide range of plants. The microsclerotia produced by the pathogen survive in soil for more than 15 years. RESULTS Here we demonstrate that an exudate preparation induces cytoplasmic calcium elevation in Arabidopsis roots, and the disease development requires the ethylene-activated transcription factor EIN3. Furthermore, the beneficial endophytic fungus Piriformospora indica (Pi) significantly reduced Vd-mediated disease development in Arabidopsis. Pi inhibited the growth of Vd in a dual culture on PDA agar plates and pretreatment of Arabidopsis roots with Pi protected plants from Vd infection. The Pi-pretreated plants grew better after Vd infection and the production of Vd microsclerotia was dramatically reduced, all without activating stress hormones and defense genes in the host. CONCLUSIONS We conclude that Pi is an efficient biocontrol agent that protects Arabidopsis from Vd infection. Our data demonstrate that Vd growth is restricted in the presence of Pi and the additional signals from Pi must participate in the regulation of the immune response against Vd.
Collapse
Affiliation(s)
- Chao Sun
- />Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Yongqi Shao
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Khabat Vahabi
- />Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Jing Lu
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
- />Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Samik Bhattacharya
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Sheqin Dong
- />College of Life Sciences, Yangtze University, Jingzhou, China
| | - Kai-Wun Yeh
- />Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Irena Sherameti
- />Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Binggan Lou
- />Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ian T Baldwin
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Ralf Oelmüller
- />Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|
30
|
Dong S, Tian Z, Chen PJ, Senthil Kumar R, Shen CH, Cai D, Oelmüllar R, Yeh KW. The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4529-40. [PMID: 24006423 PMCID: PMC3808330 DOI: 10.1093/jxb/ert265] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The mutualistic symbiont Piriformospora indica exhibits a great potential in agriculture. The interaction between P. indica and Chinese cabbage (Brassica campestris cv. Chinensis) results in growth and biomass promotion of the host plant and in particular in root hair development. The resulting highly bushy root phenotype of colonized Chinese cabbage seedlings differs substantially from reports of other plant species, which prompted the more detailed study of this symbiosis. A large-scale expressed sequence tag (EST) data set was obtained from a double-subtractive EST library, by subtracting the cDNAs of Chinese cabbage root tissue and of P. indica mycelium from those of P. indica-colonized root tissue. The analysis revealed ~700 unique genes rooted in 141 clusters and 559 singles. A total of 66% of the sequences could be annotated in the NCBI GenBank. Genes which are stimulated by P. indica are involved in various types of transport, carbohydrate metabolism, auxin signalling, cell wall metabolism, and root development, including the root hair-forming phosphoinositide phosphatase 4. For 20 key genes, induction by fungal colonization was confirmed kinetically during the interaction by real-time reverse transcription-PCR. Moreover, the auxin concentration increases transiently after exposure of the roots to P. indica. Microscopic analyses demonstrated that the development of the root maturation zone is the major target of P. indica in Chinese cabbage. Taken together, the symbiotic interaction between Chinese cabbage and P. indica is a novel model to study root growth promotion which, in turn, is important for agriculture and plant biotechnology.
Collapse
Affiliation(s)
- Sheqin Dong
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
- * These authors contributed equally to this work
| | - Zhihong Tian
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
- * These authors contributed equally to this work
| | - Peng Jen Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Rajendran Senthil Kumar
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chin Hui Shen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Daguang Cai
- Institute of Molecular Phytopathology, University of Kiel, Germany
| | - Ralf Oelmüllar
- Department of General Botany and Plant Physiology, Friedrich-Schiller University, Jena, Germany
- To whom correspondence should be addressed. E-mail: or
| | - Kai Wun Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
31
|
Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.26891. [PMID: 24494239 PMCID: PMC4091109 DOI: 10.4161/psb.26891] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 05/18/2023]
Abstract
Piriformospora indica association has been reported to increase biotic as well as abiotic stress tolerance of its host plants. We analyzed the beneficial effect of P. indica association on rice seedlings during high salt stress conditions (200 and 300 mM NaCl). The growth parameters of rice seedlings such as root and shoot lengths or fresh and dry weights were found to be enhanced in P. indica-inoculated rice seedlings as compared with non-inoculated control seedlings, irrespective of whether they are exposed to salt stress or not. However, salt-stressed seedlings performed much better in the presence of the fungus compared with non-inoculated control seedlings. The photosynthetic pigment content [chlorophyll (Chl) a, Chl b, and carotenoids] was significantly higher in P. indica-inoculated rice seedlings under high salt stress conditions as compared with salt-treated non-inoculated rice seedlings, in which these pigments were found to be decreased. Proline accumulation was also observed during P. indica colonization, which may help the inoculated plants to become salt tolerant. Taken together, P. indica rescues growth diminution of rice seedlings under salt stress.
Collapse
Affiliation(s)
- Abhimanyu Jogawat
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Shreya Saha
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Madhunita Bakshi
- Amity Institute of Microbial Technology; Amity University; Noida, UP, India
| | - Vikram Dayaman
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Manoj Kumar
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Meenakshi Dua
- School of Environmental Sciences; Jawaharlal Nehru University; New Delhi, India
| | - Ajit Varma
- Amity Institute of Microbial Technology; Amity University; Noida, UP, India
| | - Ralf Oelmüller
- Institute of Plant Physiology; Friedrich-Schiller-University Jena; Jena, Germany
| | - Narendra Tuteja
- Plant Molecular Biology Group; International Center for Biotechnology and Genetic Engineering; Aruna Asaf Ali Marg, New Delhi, India
| | - Atul Kumar Johri
- School of Life Sciences; Jawaharlal Nehru University; New Delhi, India
| |
Collapse
|
32
|
Delaux PM, Séjalon-Delmas N, Bécard G, Ané JM. Evolution of the plant-microbe symbiotic 'toolkit'. TRENDS IN PLANT SCIENCE 2013; 18:298-304. [PMID: 23462549 DOI: 10.1016/j.tplants.2013.01.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/23/2013] [Accepted: 01/29/2013] [Indexed: 05/02/2023]
Abstract
Beneficial associations between plants and arbuscular mycorrhizal fungi play a major role in terrestrial environments and in the sustainability of agroecosystems. Proteins, microRNAs, and small molecules have been identified in model angiosperms as required for the establishment of arbuscular mycorrhizal associations and define a symbiotic 'toolkit' used for other interactions such as the rhizobia-legume symbiosis. Based on recent studies, we propose an evolutionary framework for this toolkit. Some components appeared recently in angiosperms, whereas others are highly conserved even in land plants unable to form arbuscular mycorrhizal associations. The exciting finding that some components pre-date the appearance of arbuscular mycorrhizal fungi suggests the existence of unknown roles for this toolkit and even the possibility of symbiotic associations in charophyte green algae.
Collapse
Affiliation(s)
- Pierre-Marc Delaux
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
33
|
Venus Y, Oelmüller R. Arabidopsis ROP1 and ROP6 influence germination time, root morphology, the formation of F-actin bundles, and symbiotic fungal interactions. MOLECULAR PLANT 2013; 6:872-86. [PMID: 23118477 DOI: 10.1093/mp/sss101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The RHO-related GTPases ROP1 and ROP6 and the ROP1-interacting protein RIC4 in Arabidopsis are involved in various processes of F-actin dynamics, cell growth, and plant/microbe interactions. The knockout rop1 and rop1 rop6 seeds germinate earlier and are impaired in root hair development. Also root hair branching is strongly affected by manipulation of the RHO-related GTPase (ROP) levels. Furthermore, in the double knockout line rop1 rop6, no actin bundle formation can be detected. We demonstrate that these proteins are required for establishing a mutualistic interaction between the root-colonizing endophytic fungus Piriformospora indica and Arabidopsis. The fungus promotes growth of wild-type plants. rop1, rop6, rop1 rop6, ric4, 35S::ROP1, and 35S::ROP6 seedlings are impaired in the response to the fungus. Since the different root architectures have no effect on root colonization, the impaired response to P. indica should be caused by ROP-mediated events in the root cells. In wild-type roots, P. indica stimulates the formation of F-actin bundles and this does not occur in the rop1 rop6 knockout line. Furthermore, the fungus stimulates the expression of the calmodulin-binding protein gene Cbp60g, and this response is severely reduced in the rop mutants. We propose that ROP1 and ROP6 are required for F-actin bundle formation in the roots, which is required for P. indica-mediated growth promotion in Arabidopsis.
Collapse
Affiliation(s)
- Yvonne Venus
- Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Straβe 159, D-07743 Jena, Germany
| | | |
Collapse
|
34
|
Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization. Fungal Biol 2013; 117:250-60. [DOI: 10.1016/j.funbio.2013.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 01/18/2013] [Accepted: 02/01/2013] [Indexed: 11/20/2022]
|
35
|
Venkateshwaran M, Volkening JD, Sussman MR, Ané JM. Symbiosis and the social network of higher plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:118-27. [PMID: 23246268 DOI: 10.1016/j.pbi.2012.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/22/2023]
Abstract
In the Internet era, communicating with friends and colleagues via social networks constitutes a significant proportion of our daily activities. Similarly animals and plants also interact with many organisms, some of which are pathogens and do no good for the plant, while others are beneficial symbionts. Almost all plants indulge in developing social networks with microbes, in particular with arbuscular mycorrhizal fungi, and emerging evidence indicates that most employ an ancient and widespread central 'social media' pathway made of signaling molecules within what is called the SYM pathway. Some plants, like legumes, are particularly active recruiters of friends, as they have established very sophisticated and beneficial interactions with nitrogen-fixing bacteria, also via the SYM pathway. Interestingly, many members of the Brassicaceae, including the model plant Arabidopsis thaliana, seem to have removed themselves from this ancestral social network and lost the ability to engage in mutually favorable interactions with arbuscular mycorrhizal fungi. Despite these generalizations, recent studies exploring the root microbiota of A. thaliana have found that in natural conditions, A. thaliana roots are colonized by many different bacterial species and therefore may be using different and probably more recent 'social media' for these interactions. In general, recent advances in the understanding of such molecular machinery required for plant-symbiont associations are being obtained using high throughput genomic profiling strategies including transcriptomics, proteomics and metabolomics. The crucial mechanistic understanding that such data reveal may provide the infrastructure for future efforts to genetically manipulate crop social networks for our own food and fiber needs.
Collapse
|
36
|
Nongbri PL, Vahabi K, Mrozinska A, Seebald E, Sun C, Sherameti I, Johnson JM, Oelmüller R. Balancing defense and growth—Analyses of the beneficial symbiosis between Piriformospora indica and Arabidopsis thaliana. Symbiosis 2013. [DOI: 10.1007/s13199-012-0209-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
|
38
|
Varma A, Fekete A, Srivastava A, Saxena AK, Frommberger M, Li D, Gschwendter S, Sherameti I, Oelmueller R, Schmitt-Kopplin P, Tripathi S, Hartmann A. Inhibitory Interactions of Rhizobacteria with the Symbiotic Fungus Piriformospora indica. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-33802-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
39
|
|
40
|
Role of Defense Compounds in the Beneficial Interaction Between Arabidopsis thaliana and Piriformospora indica. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-33802-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
|
42
|
Garcia AV, Al-Yousif M, Hirt H. Role of AGC kinases in plant growth and stress responses. Cell Mol Life Sci 2012; 69:3259-67. [PMID: 22847330 PMCID: PMC11114936 DOI: 10.1007/s00018-012-1093-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 12/20/2022]
Abstract
AGC kinases are important regulators of cell growth, metabolism, division, and survival in mammalian systems. Mutation or deregulation of members of this family of protein kinases contribute to the pathogenesis of many human diseases, including cancer and diabetes. Although AGC kinases are conserved in the plant kingdom, little is known about their molecular functions and targets. Some of the best-studied plant AGC kinases mediate auxin signaling and are thereby involved in the regulation of growth and morphogenesis. Furthermore, certain members are regulated by lipid-derived signals via the 3-phosphoinositide-dependent kinase 1 (PDK1) and the kinase target of rapamycin (TOR), similar to its animal counterparts. In this review, we discuss recent findings on plant AGC kinases that unravel important roles in the regulation of plant growth, immunity and cell death, and connections to stress-induced mitogen-activated protein kinase signaling cascades.
Collapse
Affiliation(s)
- Ana Victoria Garcia
- URGV Unité de Recherche en Génomique Végétale, UMR1165, ERL8196, INRA-UEVE-CNRS, 91057 Evry, France
| | | | - Heribert Hirt
- URGV Unité de Recherche en Génomique Végétale, UMR1165, ERL8196, INRA-UEVE-CNRS, 91057 Evry, France
| |
Collapse
|
43
|
Hayward A, Vighnesh G, Delay C, Samian MR, Manoli S, Stiller J, McKenzie M, Edwards D, Batley J. Second-generation sequencing for gene discovery in the Brassicaceae. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:750-759. [PMID: 22765874 DOI: 10.1111/j.1467-7652.2012.00719.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The Brassicaceae contains the most diverse collection of agriculturally important crop species of all plant families. Yet, this is one of the few families that do not form functional symbiotic associations with mycorrhizal fungi in the soil for improved nutrient acquisition. The genes involved in this symbiosis were more recently recruited by legumes for symbiotic association with nitrogen-fixing rhizobia bacteria. This study applied second-generation sequencing (SGS) and analysis tools to discover that two such genes, NSP1 (Nodulation Signalling Pathway 1) and NSP2, remain conserved in diverse members of the Brassicaceae despite the absence of these symbioses. We demonstrate the utility of SGS data for the discovery of putative gene homologs and their analysis in complex polyploid crop genomes with little prior sequence information. Furthermore, we show how this data can be applied to enhance downstream reverse genetics analyses. We hypothesize that Brassica NSP genes may function in the root in other plant-microbe interaction pathways that were recruited for mycorrhizal and rhizobial symbioses during evolution.
Collapse
Affiliation(s)
- Alice Hayward
- ARC Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Qiang X, Weiss M, Kogel KH, Schäfer P. Piriformospora indica-a mutualistic basidiomycete with an exceptionally large plant host range. MOLECULAR PLANT PATHOLOGY 2012; 13:508-18. [PMID: 22111580 PMCID: PMC6638644 DOI: 10.1111/j.1364-3703.2011.00764.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Piriformospora indica is a basidiomycete of the order Sebacinales, representing a model for the study of mutualistic symbiosis and, beyond that, the plant immune system. The fungus colonizes the roots of a wide range of vascular plants, increasing their growth, seed yield and adaptation to abiotic and biotic stresses. The fungal colonization of roots begins with a biotrophic growth phase, in which living cells are colonized, and continues with a cell death-dependent phase, in which root cells are actively killed by the fungus. The complexity of sebacinalean symbiosis is further enhanced by the presence of endocellular bacteria which may represent significant determinants for a successful outcome of the symbioses. Molecular ecological analyses have revealed an exceptional relevance of sebacinoid fungi in natural ecosystems worldwide. This natural competence could be rooted in their phenotypic adaptability, which, for instance, allows P. indica to grow readily on various synthetic media and to colonize distinct hosts. In molecular and genetic studies, P. indica's mutualistic colonization strategy has been partly unravelled, showing that the jasmonate pathway is exploited for immune suppression and successful development in roots. Research on P. indica supports efforts to make the bioprotective potential of the fungus accessible for agricultural plant production. The decoding of P. indica's genome has revealed its potential for application as bioagent and for targeted improvement of crop plants in biotechnology-based approaches.
Collapse
Affiliation(s)
- Xiaoyu Qiang
- Research Centre for Biosystems, Land Use, and Nutrition, Institute of Phytopathology and Applied Zoology, Justus Liebig University, D-35392 Gießen, Germany
| | | | | | | |
Collapse
|
45
|
Qi Y, Katagiri F. Membrane microdomain may be a platform for immune signaling. PLANT SIGNALING & BEHAVIOR 2012; 7:454-6. [PMID: 22499178 PMCID: PMC3419031 DOI: 10.4161/psb.19398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arabidopsis RPS2 is a typical disease resistance (R) protein with nucleotide-binding leucine-rich repeats (NB-LRR). Previously, we reported that RPS2 is physically associated with some Arabidopsis hypersensitive induced reaction (AtHIR) proteins, which are enriched in membrane microdomains. Biochemical and genetic analyses suggested that members of the AtHIR gene family have a function in RPS2-mediated immune signaling. Here, we provide evidence that the pattern recognition receptor (PRR) FLS2 is also physically associated with AtHIR2 in a N. benthamiana transient expression system. We thus speculate that PM microdomains provide a platform for both types of immune receptors, R proteins and PRRs, and that the activation of the receptors is facilitated by AtHIR proteins.
Collapse
Affiliation(s)
- Yiping Qi
- Department of Plant Biology; Microbial and Plant Genomics Institute; University of Minnesota; St. Paul, MN USA
| | - Fumiaki Katagiri
- Department of Plant Biology; Microbial and Plant Genomics Institute; University of Minnesota; St. Paul, MN USA
| |
Collapse
|
46
|
Qi Y, Tsuda K, Nguyen LV, Wang X, Lin J, Murphy AS, Glazebrook J, Thordal-Christensen H, Katagiri F. Physical association of Arabidopsis hypersensitive induced reaction proteins (HIRs) with the immune receptor RPS2. J Biol Chem 2011; 286:31297-307. [PMID: 21757708 PMCID: PMC3173095 DOI: 10.1074/jbc.m110.211615] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 07/07/2011] [Indexed: 12/25/2022] Open
Abstract
Arabidopsis RPS2 is a typical nucleotide-binding leucine-rich repeat resistance protein, which indirectly recognizes the bacterial effector protein AvrRpt2 and thereby activates effector-triggered immunity (ETI). Previously, we identified two hypersensitive induced reaction (AtHIR) proteins, AtHIR1 (At1g09840) and AtHIR2 (At3g01290), as potential RPS2 complex components. AtHIR proteins contain the stomatin/prohibitin/flotillin/HflK/C domain (also known as the prohibitin domain or band 7 domain). In this study, we confirmed that AtHIR1 and AtHIR2 form complexes with RPS2 in Arabidopsis and Nicotiana benthamiana using a pulldown assay and fluorescence resonance energy transfer (FRET) analysis. Arabidopsis has four HIR family genes (AtHIR1-4). All AtHIR proteins could form homo- and hetero-oligomers in vivo and were enriched in membrane microdomains of the plasma membrane. The mRNA levels of all except AtHIR4 were significantly induced by microbe-associated molecular patterns, such as the bacterial flagellin fragment flg22. Athir2-1 and Athir3-1 mutants allowed more growth of Pto DC3000 AvrRpt2, but not Pto DC3000, indicating that these mutations reduce RPS2-mediated ETI but do not affect basal resistance to the virulent strain. Overexpression of AtHIR1 and AtHIR2 reduced growth of Pto DC3000. Taken together, the results show that the AtHIR proteins are physically associated with RPS2, are localized in membrane microdomains, and quantitatively contribute to RPS2-mediated ETI.
Collapse
Affiliation(s)
- Yiping Qi
- From the Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Kenichi Tsuda
- From the Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Le V. Nguyen
- From the Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Xia Wang
- the Department of Horticulture, Purdue University, West Lafayette, Indiana 47907-2010, and
| | - Jinshan Lin
- the Department of Horticulture, Purdue University, West Lafayette, Indiana 47907-2010, and
| | - Angus S. Murphy
- the Department of Horticulture, Purdue University, West Lafayette, Indiana 47907-2010, and
| | - Jane Glazebrook
- From the Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Hans Thordal-Christensen
- Plant and Soil Science, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Fumiaki Katagiri
- From the Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
47
|
Andrade-Linares DR, Grosch R, Restrepo S, Krumbein A, Franken P. Effects of dark septate endophytes on tomato plant performance. MYCORRHIZA 2011; 21:413-422. [PMID: 21184117 DOI: 10.1007/s00572-010-0351-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/07/2010] [Indexed: 05/16/2023]
Abstract
Non-mycorrhizal fungal root endophytes can be found in all natural and cultivated ecosystems, but little is known about their impact on plant performance. The impact of three mitosporic dark septate endophytes (DSE48, DSE49 and Leptodontidium orchidicola) on tomato plant characteristics was studied. Their effects on root and shoot growth, their influence on fruit yield and fruit quality parameters and their ability to diminish the impact of the pathogen Verticillium dahliae were investigated. While shoot biomass of young plants was enhanced between 10% and 20% by the endophytes DSE48 and L. orchidicola in one of two experiments and by DSE49 in both experiments, vegetative growth parameters of 24-week-old plants were not affected except a reproducible increase of root diameter by the isolate DSE49. Concerning fruit yield and quality, L. orchidicola could double the biomass of tomatoes and increased glucose content by 17%, but this was dependent on date of harvest and on root colonisation density. Additionally, the endophytes DSE49 and L. orchidicola decreased the negative effect of V. dahliae on tomato, but only at a low dosage of the pathogen. This indicates that the three dark septate endophytes can have a significant impact on tomato characters, but that the effects are only obvious at early stages of vegetative and generative development and currently too inconsistent to recommend the application of these DSEs in horticultural practice.
Collapse
Affiliation(s)
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Silvia Restrepo
- Department of Biology, Laboratory of Mycology and Plant Pathology, Andes University, Cra. 1E No. 18A-10, J408, Bogotá, Colombia
| | - Angelika Krumbein
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
| |
Collapse
|
48
|
Hirt H, Garcia AV, Oelmüller R. AGC kinases in plant development and defense. PLANT SIGNALING & BEHAVIOR 2011; 6:1030-3. [PMID: 22005000 PMCID: PMC3257787 DOI: 10.4161/psb.6.7.15580] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
More than 100,000 publications demonstrate that AGC kinases are important regulators of growth, metabolism, proliferation, cell divison, survival and apoptosis in mammalian systems. Mutation and/or dysregulation of these kinases contribute to the pathogenesis of many human diseases, including cancer and diabetes. Although AGC kinases are also present in plants, little is known about their functions. We demonstrated that the AGC kinase OXIDATIVE SIGNAL-INDUCIBLE 1 (OXI1/AGC2-1) regulate important developmental processes and defense responses in plants. The summary of recent progress also demonstrates that we are only beginning to understand the role of this kinase pathway in plants.
Collapse
Affiliation(s)
- Heribert Hirt
- URGV Plant Genomics; INRA-CNRS-University of Evry; Evry, France
| | - Ana V Garcia
- URGV Plant Genomics; INRA-CNRS-University of Evry; Evry, France
| | - Ralf Oelmüller
- Friedrich-Schiller-Universität Jena; Institut für Allgemeine Botanik und Pflanzenphysiologie; Jena, Germany
| |
Collapse
|
49
|
The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog 2011; 7:e1002051. [PMID: 21625539 PMCID: PMC3098243 DOI: 10.1371/journal.ppat.1002051] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/20/2011] [Indexed: 11/28/2022] Open
Abstract
Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1) gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H2O2 and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1). A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA) and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H2O2 formation is even reduced by the fungus. Importantly, phospholipase D (PLD)α1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade. Like many root-colonizing microbes, the primitive Basidiomycete fungus Piriformospora indica colonizes the roots of many plant species and promotes their growth. The lack of host specificity suggests that the plant response to this endopyhte is based on general signalling processes. In a genetic screen for Arabidopsis plants, which do not show a P. indica-induced growth response, we isolated a mutant in the OXI1 (Oxidative Signal Inducible1) gene. Previously, this protein kinase has been shown to play a role in pathogen response and is regulated by H2O2 and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1). A genetic analysis showed that deletion of PDK1 also abolishes the growth response to P. indica. PDK1 is activated by phosphatidic acid (PA). P. indica triggers PA synthesis and mutants impaired in PA synthesis do not show growth promotion in response to fungal infection. Since defense processes are repressed by P. indica, we propose that a pathway consisting of the PLD-PDK1-OXI1 cascade mediates the P. indica-induced growth response.
Collapse
|
50
|
Andrade-Linares DR, Grosch R, Franken P, Rexer KH, Kost G, Restrepo S, de Garcia MCC, Maximova E. Colonization of roots of cultivated Solanum lycopersicum by dark septate and other ascomycetous endophytes. Mycologia 2011; 103:710-21. [PMID: 21307164 DOI: 10.3852/10-329] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tomato (Solanum lycopersicum L.) roots from four different crop sites in Colombia were surface sterilized and 51 fungal isolates were obtained and conserved for further analysis. Based on microscopical observations and growth characteristics, 20 fungal isolates corresponded to genus Fusarium, six presented asexual conidia different from Fusarium, eight were sterile mycelia, seven of which had dark septate hyphae and 17 did not continue to grow on plates after being recovered from conservation. Growth on different media, detailed morphological characterization and ITS region sequencing of the six sporulating and eight sterile isolates revealed that they belonged to different orders of Ascomycota and that the sterile dark septate endophytes did not correspond to the well known Phialocephala group. Interactions of nine isolates with tomato plantlets were assessed in vitro. No effect on shoot development was revealed, but three isolates caused brown spots in roots. Colonization patterns as analyzed by confocal microscopy differed among the isolates and ranged from epidermal to cortical penetration. Altogether 11 new isolates from root endophytic fungi were obtained, seven of which showed features of dark septate endophytes. Four known morphotypes were represented by five isolates, while six isolates belonged to five morphotypes of putative new unknown species.
Collapse
|