1
|
Ma J, Ren W, Jiang S, Kong L, Ma L, He J, Wang D, Liu W, Ma W, Liu X. Identification and expression analysis of the RBOH gene family of Isatis indigotica Fort. and the potential regulation mechanism of RBOH gene on H 2O 2 under salt stress. PLANT CELL REPORTS 2025; 44:52. [PMID: 39934507 DOI: 10.1007/s00299-025-03442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
KEY MESSAGE RBOH gene may regulate the resistance of Isatis indigotica Fort. to salt stress by mediating the production of H2O2. RBOH gene plays an important role in plant growth and development, abiotic and biotic stress response, and hormone signalling. However, studies on RBOH gene expression and molecular mechanism of Isatis indigotica Fort. under salt stress have not been reported. This study identified 10 genes of the I. indigotica RBOH gene family (IiRBOH) and divided them into five subfamilies (I-V). Genes within the same class show conserved structural features and similar amino acid sequences. Analysis of CRE suggested that IiRBOH genes might play roles in growth and development, metabolism, hormone regulation, and stress response. Two physiological indicators of I. indigotica treated with salt for different days were detected. It was found that the content of H2O2 in the I. indigotica tissue first increased, then decreased and increased again. The catalase activity also showed a trend of first increasing and then decreasing. The qRT-PCR results showed that these IiRBOH genes showed different expression patterns in response to salt stress, and some of these genes may be involved in the resistance of I. indigotica to salt stress. Through RT-PCR analysis and screening on the PlantCARE website, it was found that IiRBOHA and IiRBOHC not only possess W-box CRE but also exhibit high expression under salt stress. Y1H experiments were conducted with the WRKY genes predicted by phylogenetic analysis to regulate salt stress potentially, and it was discovered that IiWRKY6 and IiWRKY54 can directly activate the transcription of the IiRBOHA gene promoter. This study preliminarily explored the mechanism by which the RBOH gene in I. indigotica mediates H2O2 to resist salt stress, thus laying a foundation for further research on the biological functions of the RBOH gene in I. indigotica.
Collapse
Affiliation(s)
- Junbai Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Weichao Ren
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Shan Jiang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Lingyang Kong
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Lengleng Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Jiajun He
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China
| | - Danli Wang
- Yichun Branch of Heilongjiang Academy of Forestry, Xinxing West Road, YiChun, 153000, China
| | - Weili Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China.
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heping Road, Harbin, 150040, China.
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Guanghua Street, Jiamusi, 154007, China.
| |
Collapse
|
2
|
Ma H, Liu X, Zhang R, Li M, Li Q, Ding X, Xiao J. Function of Nodulation-Associated GmNARK Kinase in Soybean Alkali Tolerance. Int J Mol Sci 2025; 26:325. [PMID: 39796181 PMCID: PMC11719578 DOI: 10.3390/ijms26010325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025] Open
Abstract
Soybean (Glycine max) is a vital crop that is rich in high-quality protein and edible oil for human nutrition and agriculture. Saline-alkali stress, a severe environmental challenge, significantly limits soybean productivity. In this study, we found that the nodule receptor kinase GmNARK enhances soybean tolerance to alkali stress besides nodulation. GmNARK could be induced by alkali stress in soybean roots. Ectopic overexpression of the GmNARK gene in Arabidopsis could significantly improve plant tolerance to alkaline stress. Moreover, overexpression or silencing of the GmNARK gene in soybean hairy roots also enhanced composite soybean plant tolerance to alkaline stress on plates and in soils. Additionally, overexpression of the GmNARK gene upregulated expression levels of the genes that are involved in the reactive oxygen species (ROS) signaling pathways. These findings provide a critical theoretical basis for further elucidating the role of GmNARK kinase in salt-alkali resistance and lay a foundation for improving soybean productivity under salt-alkali stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Wang Z, Yang Q, Zhang D, Lu Y, Wang Y, Pan Y, Qiu Y, Men Y, Yan W, Xiao Z, Sun R, Li W, Huang H, Guo H. A cytoplasmic osmosensing mechanism mediated by molecular crowding-sensitive DCP5. Science 2024; 386:eadk9067. [PMID: 39480925 DOI: 10.1126/science.adk9067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024]
Abstract
Plants are frequently challenged by osmotic stresses. How plant cells sense environmental osmolarity changes is not fully understood. We report that Arabidopsis Decapping 5 (DCP5) functions as a multifunctional cytoplasmic osmosensor that senses and responds to extracellular hyperosmolarity. DCP5 harbors a plant-specific intramolecular crowding sensor (ICS) that undergoes conformational change and drives phase separation in response to osmotically intensified molecular crowding. Upon hyperosmolarity exposure, DCP5 rapidly and reversibly assembles to DCP5-enriched osmotic stress granules (DOSGs), which sequestrate plenty of mRNA and regulatory proteins, and thus adaptively reprograms both the translatome and transcriptome to facilitate plant osmotic stress adaptation. Our findings uncover a cytoplasmic osmosensing mechanism mediated by DCP5 with plant-specific molecular crowding sensitivity and suggest a stress sensory function for hyperosmotically induced stress granules.
Collapse
Affiliation(s)
- Zhenyu Wang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiuhua Yang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dan Zhang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuanyi Lu
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yichuan Wang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yajie Pan
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuping Qiu
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wei Yan
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhina Xiao
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruixue Sun
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenyang Li
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongda Huang
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
4
|
Wang L, Liu Y, Song X, Wang S, Zhang M, Lu J, Xu S, Wang H. Ozone stress-induced DNA methylation variations and their transgenerational inheritance in foxtail millet. FRONTIERS IN PLANT SCIENCE 2024; 15:1463584. [PMID: 39385991 PMCID: PMC11461238 DOI: 10.3389/fpls.2024.1463584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Elevated near-surface ozone (O3) concentrations have surpassed the tolerance limits of plants, significantly impacting crop growth and yield. To mitigate ozone pollution, plants must evolve a rapid and effective defense mechanism to alleviate ozone-induced damage. DNA methylation, as one of the most crucial epigenetic modifications, plays a pivotal role in maintaining gene stability, regulating gene expression, and enhancing plant resilience to environmental stressors. However, the epigenetic response of plants to O3 stress, particularly DNA methylation variations and their intergenerational transmission, remains poorly understood. This study aims to explore the epigenetic mechanisms underlying plant responses to ozone stress across generations and to identify potential epigenetic modification sites or genes crucial in response to ozone stress. Using Open Top Chambers (OTCs), we simulated ozone conditions and subjected foxtail millet to continuous ozone stress at 200 nmol mol-1 for two consecutive generations (S0 and S1). Results revealed that under high-concentration ozone stress, foxtail millet leaves exhibited symptoms ranging from yellowing and curling to desiccation, but the damage in the S1 generation was not more severe than that in the S0 generation. Methylation Sensitive Amplified Polymorphism (MSAP) analysis of the two generations indicated that ozone stress-induced methylation variations ranging from 10.82% to 13.59%, with demethylation events ranged from 0.52% to 5.58%, while hypermethylation occurred between 0.35% and 2.76%. Reproductive growth stages were more sensitive to ozone than vegetative stages. Notably, the S1 generation exhibited widespread demethylation variations, primarily at CNG sites, compared to S0 under similar stress conditions. The inheritance pattern between S0 and S1 generations was mainly of the A-A-B-A type. By recovering and sequencing methylation variant bands, we identified six stress-related differential amplification sequences, implicating these variants in various biological processes. These findings underscore the potential significance of DNA methylation variations as a critical mechanism in plants' response to ozone stress, providing theoretical insights and references for a comprehensive understanding of plant adaptation mechanisms to ozone stress and the epigenetic role of DNA methylation in abiotic stress regulation.
Collapse
Affiliation(s)
- Long Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, China
| | - Yang Liu
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
- Institute of Broomcorn Millet, Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, China
| | - Xiaohan Song
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Shiji Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Meichun Zhang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Jiayi Lu
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| | - Sheng Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Sciences, Liaoning University, Shenyang, China
| |
Collapse
|
5
|
Liu Q, Wang T, Ke M, Qian C, Li J, Huang X, Gao Z, Chen X, Tu T. UV-B Radiation Disrupts Membrane Lipid Organization and Suppresses Protein Mobility of GmNARK in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1536. [PMID: 38891343 PMCID: PMC11174901 DOI: 10.3390/plants13111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While it is well known that plants interpret UV-B as an environmental cue and a potential stressor influencing their growth and development, the specific effects of UV-B-induced oxidative stress on the dynamics of membrane lipids and proteins remain underexplored. Here, we demonstrate that UV-B exposure notably increases the formation of ordered lipid domains on the plasma membrane (PM) and significantly alters the behavior of the Glycine max nodule autoregulation receptor kinase (GmNARK) protein in Arabidopsis leaves. The GmNARK protein was located on the PM and accumulated as small particles in the cytoplasm. We found that UV-B irradiation interrupted the lateral diffusion of GmNARK proteins on the PM. Furthermore, UV-B light decreases the efficiency of surface molecule internalization by clathrin-mediated endocytosis (CME). In brief, UV-B irradiation increased the proportion of the ordered lipid phase and disrupted clathrin-dependent endocytosis; thus, the endocytic trafficking and lateral mobility of GmNARK protein on the plasma membrane are crucial for nodule formation tuning. Our results revealed a novel role of low-intensity UV-B stress in altering the organization of the plasma membrane and the dynamics of membrane-associated proteins.
Collapse
Affiliation(s)
- Qiulin Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianyu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiyu Ke
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chongzhen Qian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.H.)
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China;
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.H.)
| | - Zhen Gao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Chen
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianli Tu
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Zhang B, Deng C, Wang S, Deng Q, Chu Y, Bai Z, Huang A, Zhang Q, He Q. The RNA landscape of Dunaliella salina in response to short-term salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1278954. [PMID: 38111875 PMCID: PMC10726701 DOI: 10.3389/fpls.2023.1278954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Using the halotolerant green microalgae Dunaliella salina as a model organism has special merits, such as a wide range of salt tolerance, unicellular organism, and simple life cycle and growth conditions. These unique characteristics make it suitable for salt stress study. In order to provide an overview of the response of Dunaliella salina to salt stress and hopefully to reveal evolutionarily conserved mechanisms of photosynthetic organisms in response to salt stress, the transcriptomes and the genome of the algae were sequenced by the second and the third-generation sequencing technologies, then the transcriptomes under salt stress were compared to the transcriptomes under non-salt stress with the newly sequenced genome as the reference genome. The major cellular biological processes that being regulated in response to salt stress, include transcription, protein synthesis, protein degradation, protein folding, protein modification, protein transport, cellular component organization, cell redox homeostasis, DNA repair, glycerol synthesis, energy metabolism, lipid metabolism, and ion homeostasis. This study gives a comprehensive overview of how Dunaliella salina responses to salt stress at transcriptomic level, especially characterized by the nearly ubiquitous up-regulation of the genes involving in protein folding, DNA repair, and cell redox homeostasis, which may confer the algae important mechanisms to survive under salt stress. The three fundamental biological processes, which face huge challenges under salt stress, are ignored by most scientists and are worth further deep study to provide useful information for breeding economic important plants competent in tolerating salt stress, other than only depending on the commonly acknowledged osmotic balance and ion homeostasis.
Collapse
Affiliation(s)
- Bingbing Zhang
- The Research Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, China
| | - Caiyun Deng
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Shuo Wang
- The Research Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, China
| | - Qianyi Deng
- The Research Institute of Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, China
| | - Yongfan Chu
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| | - Ziwei Bai
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| | - Axiu Huang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Qinglian Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Qinghua He
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, China
| |
Collapse
|
7
|
Kuběnová L, Haberland J, Dvořák P, Šamaj J, Ovečka M. Spatiotemporal distribution of reactive oxygen species production, delivery, and use in Arabidopsis root hairs. PLANT PHYSIOLOGY 2023; 193:2337-2360. [PMID: 37666000 PMCID: PMC10663114 DOI: 10.1093/plphys/kiad484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Fluorescent selective probes for reactive oxygen species (ROS) detection in living cells are versatile tools for the documentation of ROS production in plant developmental or stress reactions. We employed high-resolution live-cell imaging and semiquantitative analysis of Arabidopsis (Arabidopsis thaliana) stained with CM-H2DCFDA, CellROX Deep Red, and Amplex Red for functional characterization of the spatiotemporal mode of ROS production, delivery, and utilization during root hair formation. Cell viability marker fluorescein diacetate served as a positive control for dye loading and undisturbed root hair tip growth after staining. Using a colocalization analysis with subcellular molecular markers and two root hair mutants with similar phenotypes of nonelongating root hairs, but with contrasting reasons for this impairment, we found that: (i) CM-H2DCFDA is a sensitive probe for ROS generation in the cytoplasm, (ii) CellROX Deep Red labels ROS in mitochondria, (iii) Amplex Red labels apoplastic ROS and mitochondria and shows high selectivity to root hairs, (iv) the root hair defective 2-1 (rhd2-1) mutant with nonfunctional NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN C/ROOT HAIR-DEFECTIVE 2 (AtRBOHC/RHD2) has a low level of CM-H2DCFDA-reactive ROS in cytoplasm and lacks Amplex Red-reactive ROS in apoplast, and (v) the ACTIN2-deficient deformed root hairs1-3 (der1-3) mutant is not altered in these aspects. The sensitivity of CellROX Deep Red was documented by discrimination between larger ROS-containing mitochondria and small, yet ROS-free premature mitochondria in the growing tip of root hairs. We characterized spatial changes in ROS production and compartmentalization induced by external ROS modulators, ethylene precursor 1-aminocyclopropane-1-carboxylic acid, and ionophore valinomycin. This dynamic and high-resolution study of ROS production and utilization opens opportunities for precise speciation of particular ROS involved in root hair formation.
Collapse
Affiliation(s)
- Lenka Kuběnová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Haberland
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
8
|
Nikalje GC, Srivastava AK, Shelake RM, Kadam US, Hong JC, Kim JY, Nikam TD, Suprasanna P. Profiling of conserved orthologs and miRNAs for understanding their role in salt tolerance mechanism of Sesuvium portulacastrum L. Mol Biol Rep 2023; 50:9731-9738. [PMID: 37819497 DOI: 10.1007/s11033-023-08892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Sesuvium portulacastrum is a facultative halophyte capable of thriving in a saline environment. Despite molecular studies conducted to unravel its salt adaptation mechanism, there is a paucity of information on the role of salt-responsive orthologs and microRNAs (miRNAs) in this halophyte. Here, we searched the orthology to identify salt-responsive orthologs and miRNA targets of Sesuvium using the Arabidopsis genome. METHODS The relative fold change of orthologs, conserved miRNAs, and miRNA targets of Sesuvium was analyzed under 100 mM (LS) and 250 mM NaCl (HS) treatment at 24 h using qRT-PCR. The comparison between the expression of Sesuvium orthologs and Arabidopsis orthologs (Arabidopsis eFP browser database) was used to identify differentially expressed genes. RESULTS Upon salt treatment, we found that SpCIPK3 (1.95-fold in LS and 2.90-fold in HS) in Sesuvium roots, and SpNHX7 (1.61-fold in LS and 6.39-fold in HS) and, SpSTPK2 (2.54-fold in LS and 7.65-fold in HS) in Sesuvium leaves were upregulated in a salt concentration-specific manner. In Arabidopsis, these genes were either downregulated or did not show significant variation, implicating its significance in the halophytic nature of Sesuvium. Furthermore, miRNAs like miR394a, miR396a, and miR397a exhibited a negative correlation with their targets-Frigida interacting protein 1, Cysteine proteinases superfamily protein, and Putative laccase, respectively under different salt treatments. CONCLUSION The study revealed that the high salt tolerance in Sesuvium is associated with distinct transcriptional reprogramming, hence, to gain holistic mechanistic insights, global-scale profiling is required.
Collapse
Affiliation(s)
- Ganesh Chandrakant Nikalje
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India.
- Department of Botany, Savitribai Phule Pune University, Pune, 411 007, India.
- Department of Botany, R. K. Talreja College of Arts, Science and Commerce, Ulhasnagar, Thane, 421 003, India.
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do, 52828, Republic of Korea
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do, 52828, Republic of Korea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam-do, 52828, Republic of Korea
| | - T D Nikam
- Department of Botany, Savitribai Phule Pune University, Pune, 411 007, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India.
- Amity Institute of Biotechnology, Amity University of Maharashtra, Mumbai, India.
| |
Collapse
|
9
|
Sandalio LM, Espinosa J, Shabala S, León J, Romero-Puertas MC. Reactive oxygen species- and nitric oxide-dependent regulation of ion and metal homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5970-5988. [PMID: 37668424 PMCID: PMC10575707 DOI: 10.1093/jxb/erad349] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Deterioration and impoverishment of soil, caused by environmental pollution and climate change, result in reduced crop productivity. To adapt to hostile soils, plants have developed a complex network of factors involved in stress sensing, signal transduction, and adaptive responses. The chemical properties of reactive oxygen species (ROS) and reactive nitrogen species (RNS) allow them to participate in integrating the perception of external signals by fine-tuning protein redox regulation and signal transduction, triggering specific gene expression. Here, we update and summarize progress in understanding the mechanistic basis of ROS and RNS production at the subcellular level in plants and their role in the regulation of ion channels/transporters at both transcriptional and post-translational levels. We have also carried out an in silico analysis of different redox-dependent modifications of ion channels/transporters and identified cysteine and tyrosine targets of nitric oxide in metal transporters. Further, we summarize possible ROS- and RNS-dependent sensors involved in metal stress sensing, such as kinases and phosphatases, as well as some ROS/RNS-regulated transcription factors that could be involved in metal homeostasis. Understanding ROS- and RNS-dependent signaling events is crucial to designing new strategies to fortify crops and improve plant tolerance of nutritional imbalance and metal toxicity.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Jesús Espinosa
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - José León
- Institute of Plant Molecular and Cellular Biology (CSIC-UPV), Valencia, Spain
| | - María C Romero-Puertas
- Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
10
|
Wang T, Li X, Liu N, Yang Y, Gong Q. TurboID-based proximity labelling reveals a connection between VPS34 and cellular homeostasis. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154100. [PMID: 37748420 DOI: 10.1016/j.jplph.2023.154100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Unlike animals, plants and yeasts only have a class III phosphatidylinositol 3-kinase (PI3KC3). Its lipid product, phosphatidylinositol 3-phosphate (PtdIns-3-P, PI3P), organizes intracellular trafficking routes such as autophagosome formation, multivesicular body (MVB) formation, retro-transport from trans-Golgi network (TGN) to late Golgi, and the fusion events between autophagosomes and MVBs and the vacuole. The catalytic subunit of plant PI3KC3 is encoded by the essential gene Vacuolar Protein Sorting 34 (VPS34). Despite the importance of VPS34 in cellular homeostasis and plant development, a VPS34 interactome is lacking. Here we employed TurboID, an enzyme-catalyzed proximity labelling (PL) method, to describe a proximal interactome of Arabidopsis VPS34. TurboID catalyzed spatially restricted biotinylation and enabled VPS34-specific enrichment of 273 proteins from affinity purification coupled with mass spectrometry. The interactome confirmed known functions of VPS34 in endo-lysosomal trafficking. Intriguingly, carbohydrate metabolism was the most enriched Gene Ontology (GO) term, including glycolytic enzymes in the triose portion and enzymes functioning in chloroplast triose export and sucrose biosynthesis. The interaction between VPS34 and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPC1/2) was validated in planta. Also verified was the interaction between VPS34 and the plasma membrane H+-ATPase AHA2, a primary determinant of membrane potential. Our study links PI3KC3 to carbohydrate metabolism and membrane potential, two key processes that maintain cellular homeostasis.
Collapse
Affiliation(s)
- Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ningjing Liu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yi Yang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
11
|
Cui C, Feng L, Zhou C, Wan H, Zhou B. Transcriptome Revealed GhPP2C43-A Negatively Regulates Salinity Tolerance in an Introgression Line from a Semi-wild Upland Cotton. PLANT & CELL PHYSIOLOGY 2023:pcad036. [PMID: 37115634 DOI: 10.1093/pcp/pcad036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
Salt damage is one of the major threats to sustainable cotton production owing to the limited arable land in China mainly occupied by the production of staple food crops. Salt-stress tolerant cotton varieties are lacking in production and, the mechanisms underpinning salt-stress tolerance in cotton remain enigmatic. Here, DM37, an intraspecific introgression line from G. hirsutum race yucatanense acc TX-1046 into the G. hirsutum acc TM-1 background, was found to be highly tolerant to salt stress. Its seed germination rate and germination potential were significantly higher than the recipient TM-1 under salt stress. Physiological analysis showed DM37 had higher proline content and Peroxidase activity, as well as lower Na+/K+ ratios at the seedling stage, consistent with higher seedling survival rate after durable salt stress. Furthermore, comparative transcriptome analysis revealed that responsive patterns to salt stress in DM37 were different from TM-1. Weighted Correlation Network Analysis (WGCNA) demonstrated that co-expression modules associated with salt stress in DM37 also differed from TM-1. Out of them, GhPP2C43-A, a phosphatase gene, exhibited negative regulation of salt-stress tolerance verified by VIGS and transgenic Arabidopsis. Gene expression showed GhPP2C43-A in TM-1 was induced by durable salt stress but not in DM37 probably attributing to the variation of cis-element in its promoter, thereby being conferred different salt-stress tolerance. Our result would provide new genes/germplasms from semi-wild cotton in salt-stress tolerant cotton breeding. This study would give us new insights into the mechanisms underpinning the salt-stress tolerance in cotton.
Collapse
Affiliation(s)
- Changjiang Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Liuchun Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Chenhui Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Smokvarska M, Bayle V, Maneta-Peyret L, Fouillen L, Poitout A, Dongois A, Fiche JB, Gronnier J, Garcia J, Höfte H, Nolmann M, Zipfel C, Maurel C, Moreau P, Jaillais Y, Martiniere A. The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. SCIENCE ADVANCES 2023; 9:eadd4791. [PMID: 37027473 PMCID: PMC10081841 DOI: 10.1126/sciadv.add4791] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Cells maintain a constant dialog between the extracellular matrix and their plasma membrane to fine tune signal transduction processes. We found that the receptor kinase FERONIA (FER), which is a proposed cell wall sensor, modulates phosphatidylserine plasma membrane accumulation and nano-organization, a key regulator of Rho GTPase signaling in Arabidopsis. We demonstrate that FER is required for both Rho-of-Plant 6 (ROP6) nano-partitioning at the membrane and downstream production of reactive oxygen species upon hyperosmotic stimulus. Genetic and pharmacological rescue experiments indicate that phosphatidylserine is required for a subset of, but not all, FER functions. Furthermore, application of FER ligand shows that its signaling controls both phosphatidylserine membrane localization and nanodomains formation, which, in turn, tunes ROP6 signaling. Together, we propose that a cell wall-sensing pathway controls via the regulation of membrane phospholipid content, the nano-organization of the plasma membrane, which is an essential cell acclimation to environmental perturbations.
Collapse
Affiliation(s)
- Marija Smokvarska
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Lilly Maneta-Peyret
- UMR 5200 Membrane Biogenesis Laboratory, CNRS and University of Bordeaux, INRAE Bordeaux, Villenave d'Ornon, France
| | - Laetitia Fouillen
- UMR 5200 Membrane Biogenesis Laboratory, CNRS and University of Bordeaux, INRAE Bordeaux, Villenave d'Ornon, France
- MetaboHub-Bordeaux, Metabolome platform, INRAE, Villenave d’Ornon, France
| | - Arthur Poitout
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Armelle Dongois
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, 34090 Montpellier, France
| | - Julien Gronnier
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), 72076 Tübingen, Germany
| | - José Garcia
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Herman Höfte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Marcelo Nolmann
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, 34090 Montpellier, France
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Christophe Maurel
- IPSiM Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Patrick Moreau
- UMR 5200 Membrane Biogenesis Laboratory, CNRS and University of Bordeaux, INRAE Bordeaux, Villenave d'Ornon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | | |
Collapse
|
13
|
Sinha MK, Aski MS, Mishra GP, Kumar MBA, Yadav PS, Tokas JP, Gupta S, Pratap A, Kumar S, Nair RM, Schafleitner R, Dikshit HK. Genome wide association analysis for grain micronutrients and anti-nutritional traits in mungbean [ Vigna radiata (L.) R. Wilczek] using SNP markers. Front Nutr 2023; 10:1099004. [PMID: 36824166 PMCID: PMC9941709 DOI: 10.3389/fnut.2023.1099004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Mungbean is an important food grain legume for human nutrition and nutritional food due to its nutrient-dense seed, liked palatability, and high digestibility. However, anti-nutritional factors pose a significant risk to improving nutritional quality for bio-fortification. In the present study, genetic architecture of grain micronutrients (grain iron and zinc concentration) and anti-nutritional factors (grain phytic acid and tannin content) in association mapping panel of 145 diverse mungbean were evaluated. Based on all four parameters genotypes PUSA 1333 and IPM 02-19 were observed as desired genotypes as they had high grain iron and zinc concentration but low grain phytic acid and tannin content. The next generation sequencing (NGS)-based genotyping by sequencing (GBS) identified 14,447 genome-wide SNPs in a diverse selected panel of 127 mungbean genotypes. Population admixture analysis revealed the presence of four different ancestries among the genotypes and LD decay of ∼57.6 kb kb physical distance was noted in mungbean chromosomes. Association mapping analysis revealed that a total of 20 significant SNPs were shared by both GLM and Blink models associated with grain micronutrient and anti-nutritional factor traits, with Blink model identifying 35 putative SNPs. Further, this study identified the 185 putative candidate genes. Including potential candidate genes Vradi07g30190, Vradi01g09630, and Vradi09g05450 were found to be associated with grain iron concentration, Vradi10g04830 with grain zinc concentration, Vradi08g09870 and Vradi01g11110 with grain phytic acid content and Vradi04g11580 and Vradi06g15090 with grain tannin content. Moreover, two genes Vradi07g15310 and Vradi09g05480 showed significant variation in protein structure between native and mutated versions. The identified SNPs and candidate genes are potential powerful tools to provide the essential information for genetic studies and marker-assisted breeding program for nutritional improvement in mungbean.
Collapse
Affiliation(s)
- Mayank Kumar Sinha
- Division of Genetics, ICAR - Indian Council of Agricultural Research– Indian Agricultural Research Institute, New Delhi, India
| | - Muraleedhar S. Aski
- Division of Genetics, ICAR - Indian Council of Agricultural Research– Indian Agricultural Research Institute, New Delhi, India,*Correspondence: Muraleedhar S. Aski,
| | - Gyan Prakash Mishra
- Division of Genetics, ICAR - Indian Council of Agricultural Research– Indian Agricultural Research Institute, New Delhi, India,Gyan Prakash Mishra,
| | - M. B. Arun Kumar
- Division of Seed Science and Technology, ICAR – Indian Agricultural Research Institute, New Delhi, India
| | - Prachi S. Yadav
- Division of Genetics, ICAR - Indian Council of Agricultural Research– Indian Agricultural Research Institute, New Delhi, India
| | - Jayanti P. Tokas
- Division of Biochemistry, Chaudhary Charan Singh Haryana Agricultural University, Hissar, India
| | - Sanjeev Gupta
- Krishi Bhavan, Indian Council of Agricultural Research, New Delhi, India
| | - Aditya Pratap
- Division of Crop Improvement, ICAR – Indian Institute of Pulses Research, Kanpur, India
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), New Delhi, India
| | | | | | - Harsh Kumar Dikshit
- Division of Genetics, ICAR - Indian Council of Agricultural Research– Indian Agricultural Research Institute, New Delhi, India,Harsh Kumar Dikshit,
| |
Collapse
|
14
|
Ku YS, Cheng SS, Cheung MY, Law CH, Lam HM. The Re-Localization of Proteins to or Away from Membranes as an Effective Strategy for Regulating Stress Tolerance in Plants. MEMBRANES 2022; 12:membranes12121261. [PMID: 36557168 PMCID: PMC9788111 DOI: 10.3390/membranes12121261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/12/2023]
Abstract
The membranes of plant cells are dynamic structures composed of phospholipids and proteins. Proteins harboring phospholipid-binding domains or lipid ligands can localize to membranes. Stress perception can alter the subcellular localization of these proteins dynamically, causing them to either associate with or detach from membranes. The mechanisms behind the re-localization involve changes in the lipidation state of the proteins and interactions with membrane-associated biomolecules. The functional significance of such re-localization includes the regulation of molecular transport, cell integrity, protein folding, signaling, and gene expression. In this review, proteins that re-localize to or away from membranes upon abiotic and biotic stresses will be discussed in terms of the mechanisms involved and the functional significance of their re-localization. Knowledge of the re-localization mechanisms will facilitate research on increasing plant stress adaptability, while the study on re-localization of proteins upon stresses will further our understanding of stress adaptation strategies in plants.
Collapse
|
15
|
Early signaling events in the heat stress response of Pyropia haitanensis revealed by phosphoproteomic and lipidomic analyses. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Chakraborty S, Harris JM. At the Crossroads of Salinity and Rhizobium-Legume Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:540-553. [PMID: 35297650 DOI: 10.1094/mpmi-09-21-0231-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legume roots interact with soil bacteria rhizobia to develop nodules, de novo symbiotic root organs that host these rhizobia and are mini factories of atmospheric nitrogen fixation. Nodulation is a sophisticated developmental process and is sensitive to several abiotic factors, salinity being one of them. While salinity influences both the free-living partners, symbiosis is more vulnerable than other aspects of plant and microbe physiology, and the symbiotic interaction is strongly impaired even under moderate salinity. In this review, we tease apart the various known components of rhizobium-legume symbiosis and how they interact with salt stress. We focus primarily on the initial stages of symbiosis since we have a greater mechanistic understanding of the interaction at these stages.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
| |
Collapse
|
17
|
Lin F, Zheng J, Xie Y, Jing W, Zhang Q, Zhang W. Emerging roles of phosphoinositide-associated membrane trafficking in plant stress responses. J Genet Genomics 2022; 49:726-734. [DOI: 10.1016/j.jgg.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
18
|
Arbuscular Mycorrhizal Fungi Promote Gleditsia sinensis Root Growth under Salt Stress by Regulating Nutrient Uptake and Physiology. FORESTS 2022. [DOI: 10.3390/f13050688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Towards the improvement of plant productivity in saline–alkali soils, the application of arbuscular mycorrhizal fungi (AMF) is an intensive topic of research. For this study, three inoculation treatments, namely, autoclaved AMF inocula (CK), Funneliformis mosseae (FM), and Corymbiglomus tortuosum (CT), and four NaCl levels, namely, 0, 50, 100, and 150 mM were established to investigate the growth and physiological responses of mycorrhizal Gleditsia sinensis Lam. root systems to increase salinity through root dry weight, morphology, nutrient content, and physiology, and soil nutrient content. As NaCl levels increased, root dry weight, morphology, and nutrient content under the CK treatment exhibited a downward trend, while FM and CT treatments weakened this trend and significantly improved root dry weight and morphology, which increased by more than 200%. Under high NaCl levels, root activity under the FM treatment was significantly higher than that under the CK, with an average increase of 120.86%. In contrast to the activity of nitrate reductase, niacinamide adenine dinucleotide oxidase activity under CK was significantly less than that in FM and CT treatments. Moreover, inoculation with AMF significantly affected soil alkali-hydrolyzable nitrogen (AN), total nitrogen (TN), and phosphorus (TP), while NaCl had no significant impact on soil nutrients. Further, both soil salinity and mycorrhizal colonization rate had significant direct effects on root growth. However, soil salinity primarily influenced root growth through indirect effects on root nitrogen content, while mycorrhizal colonization rate indirectly impacted root nitrate reductase activity, and root nitrogen and phosphorus content. Our results suggested that the use of suitable AMF (e.g., Funneliformis mosseae) might effectively improve the currently unfavorable situation of economic tree species production on land with saline soils, which may greatly optimize the utility of these areas.
Collapse
|
19
|
Zhang XH, Ma C, Zhang L, Su M, Wang J, Zheng S, Zhang TG. GR24-mediated enhancement of salt tolerance and roles of H 2O 2 and Ca 2+ in regulating this enhancement in cucumber. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153640. [PMID: 35168135 DOI: 10.1016/j.jplph.2022.153640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 05/04/2023]
Abstract
This study investigated the regulation of the exogenous strigolactone (SL) analog GR24 in enhancing the salt tolerance and the effects of calcium ion (Ca2+) and hydrogen peroxide (H2O2) on GR24's regulation effects in cucumber. The seedlings were sprayed with (1) distilled water (CK), (2) NaCl, (3) GR24, then NaCl, (4) GR24, then H2O2 scavenger, then NaCl, and (5) GR24, then Ca2+ blocker, then NaCl. The second true leaf was selected for biochemical assays. Under the salt stress, the exogenous GR24 maintained the ion balance, increased the activity of antioxidant enzymes, reduced the membrane lipid peroxidation, and increased the activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), accompanied by a decrease in relative conductivity, an increase in the proline content, and elevated gene expression levels of antioxidant enzymes, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, calcium-dependent protein kinases (CDPKs), salt overly sensitive SOS1, CBL-interacting protein kinase 2 (CIPK2), and calcineurin B-like protein 3 (CBL3). Such protective effects triggered by GR24 were attenuated or almost abolished by ethylene glycol tetraacetic acid (EGTA), lanthanum chloride (LaCl3, Ca2+ channel blocker), diphenyleneiodonium (DPI, NADPH oxidase inhibitor), and dimethylthiourea (DMTU, hydroxyl radical scavenger). Our data suggest that exogenous GR24 is highly effective in alleviating salt-induced damages via modulating antioxidant capabilities and improving ionic homeostasis and osmotic balance and that H2O2 and Ca2+ are required for GR24-mediated enhancement of salt tolerance.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Cheng Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Lu Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Min Su
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Teng-Guo Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
20
|
Lee J, Hanh Nguyen H, Park Y, Lin J, Hwang I. Spatial regulation of RBOHD via AtECA4-mediated recycling and clathrin-mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22-induced immune response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:816-830. [PMID: 34797009 DOI: 10.1111/tpj.15593] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Various environmental stresses can induce production of reactive oxygen species (ROS) to turn on signaling for proper responses to those stresses. Plasma membrane (PM)-localized respiratory burst oxidase homologs (RBOHs), in particular RBOHD, produce ROS via the post-translational activation upon abiotic and biotic stresses. Although the mechanisms of RBOHD activation upon biotic stress have been elucidated in detail, it remains elusive how salinity stress activates RBOHD. Here, we present evidence that trafficking of PM-localized RBOHD to endosomes and then its recycling back to the PM is critical for ROS accumulation upon salinity stress. ateca4 plants that were defective in recycling of proteins from endosomes to the PM and clc2-1 and chc2-1 plants that were defective in endocytosis showed a defect in salinity stress-induced ROS production. In addition, ateca4 plants showed a defect in transient accumulation of GFP:RBOHD to the PM at the early stage of salinity stress. By contrast, ateca4 plants showed no defect in the increase in the ROS level and accumulation of RBOHD to the PM upon flg22 treatment as wild-type plants. Based on these observations, we propose that factors involved in the trafficking machinery such as AtECA4 and clathrin are important players in salt stress-induced, but not flg22-induced, ROS accumulation.
Collapse
Affiliation(s)
- Jihyeong Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Hong Hanh Nguyen
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Youngmin Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Bioapplications, Pohang, Korea
| | - Jinxing Lin
- Key Lab of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 10083, China
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| |
Collapse
|
21
|
Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, Yuan W, Xu W, Zhang Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int J Mol Sci 2022; 23:ijms23031084. [PMID: 35163008 PMCID: PMC8835272 DOI: 10.3390/ijms23031084] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Drought is one of the major constraints to rain-fed agricultural production, especially under climate change conditions. Plants evolved an array of adaptive strategies that perceive stress stimuli and respond to these stress signals through specific mechanisms. Abscisic acid (ABA) is a premier signal for plants to respond to drought and plays a critical role in plant growth and development. ABA triggers a variety of physiological processes such as stomatal closure, root system modulation, organizing soil microbial communities, activation of transcriptional and post-transcriptional gene expression, and metabolic alterations. Thus, understanding the mechanisms of ABA-mediated drought responses in plants is critical for ensuring crop yield and global food security. In this review, we highlighted how plants adjust ABA perception, transcriptional levels of ABA- and drought-related genes, and regulation of metabolic pathways to alter drought stress responses at both cellular and the whole plant level. Understanding the synergetic role of drought and ABA will strengthen our knowledge to develop stress-resilient crops through integrated advanced biotechnology approaches. This review will elaborate on ABA-mediated drought responses at genetic, biochemical, and molecular levels in plants, which is critical for advancement in stress biology research.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Waseem
- Department of Botany, University of Narowal, Narowal 51600, Pakistan;
- College of Horticulture, Hainan University, Haikou 570100, China
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, College of Life Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China;
| | - Eyalira Jacob Okal
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Zuliang Lei
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
| | - Hafiz Sohaib Ahmad Saqib
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou 515063, China;
| | - Wei Yuan
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.Y.); (Q.Z.)
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- Correspondence: (W.Y.); (Q.Z.)
| |
Collapse
|
22
|
Ma TL, Li WJ, Hong YS, Zhou YM, Tian L, Zhang XG, Liu FL, Liu P. TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress. J Proteomics 2021; 253:104457. [PMID: 34933133 DOI: 10.1016/j.jprot.2021.104457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Salt stress is the major abiotic stress worldwide, adversely affecting crop yield and quality. Utilizing salt tolerance genes for the genetic breeding of crops is one of the most effective measures to withstand salinization. Sophora alopecuroides is a well-known saline-alkaline and drought-tolerant medicinal plant. Understanding the underlying molecular mechanism for Sophora alopecuroides salt tolerance is crucial to identifying the salt-tolerant genes. In this study, we performed tandem mass tag (TMT) based proteomic profiling of S. alopecuroides leaves under 150 mM NaCl induced salt stress condition for 3 d and 7 d. Data are available on ProteomeXchange (PXD027627). Furthermore, the proteomic findings were validated through parallel reaction monitoring (PRM). We observed that the expression levels of several transporter proteins related to the secondary messenger signaling pathway were altered under salt stress conditions induced for 3 d. However, the expression of the certain transferase, oxidoreductase, dehydrogenase, which are involved in the biosynthesis of flavonoids, alkaloids, phenylpropanoids, and amino acid metabolism, were mainly alerted after 7 d post-salt-stress induction. Several potential genes that might be involved in salt stress conditions were identified; however, it demands further investigation. Although salt stress affects the level of secondary metabolites, their correlation needs to be investigated further. SIGNIFICANCE: Salinization is the most severe abiotic adversity, which has had a significant negative effect on world food security over the time. Excavating salt-tolerant genes from halophytes or medicinal plants is one of the important measures to cope with salt stress. S. alopecuroides is a well-known medicinal plant with anti-tumor, anti-inflammatory, and antibacterial effects, anti-saline properties, and resistance to drought stress. Currently, only a few studies have explored the S. alopecuroides' gene function, and regulation and these studies are mostly related to the unpublished genome sequence information of S. alopecuroides. Recently, transcriptomics and metabolomics studies have been carried on the abiotic stress in S. alopecuroides roots. Multiple studies have shown that altered gene expression at the transcript level and altered metabolite levels do not correspond to the altered protein levels. In this study, TMT and PRM based proteomic analyses of S. alopecuroides leaves under salt stress condition induced using 150 mM NaCl for 3 d and 7 d was performed. These analyses elucidated the activation of different mechanisms in response to salt stress. A total of 434 differentially abundant proteins (DAPs) in salt stress conditions were identified and analyzed. For the first time, this study utilized proteomics technology to dig out plentiful underlying salt-tolerant genes from the medicinal plant, S. alopecuroides. We believe that this study will be of great significance to crop genetics and breeding.
Collapse
Affiliation(s)
- Tian-Li Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China.
| | - Wen-Juan Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Yuan-Shu Hong
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Yu-Mei Zhou
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Lei Tian
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Xiao-Gang Zhang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Feng-Lou Liu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China
| | - Ping Liu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
23
|
Yang Y, Xiang Y, Niu Y. An Overview of the Molecular Mechanisms and Functions of Autophagic Pathways in Plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1977527. [PMID: 34617497 PMCID: PMC9208794 DOI: 10.1080/15592324.2021.1977527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for the degradation of damaged or toxic components. Under normal conditions, autophagy maintains cellular homeostasis. It can be triggered by senescence and various stresses. In the process of autophagy, autophagy-related (ATG) proteins not only function as central signal regulators but also participate in the development of complex survival mechanisms when plants suffer from adverse environments. Therefore, ATGs play significant roles in metabolism, development and stress tolerance. In the past decade, both the molecular mechanisms of autophagy and a large number of components involved in the assembly of autophagic vesicles have been identified. In recent studies, an increasing number of components, mechanisms, and receptors have appeared in the autophagy pathway. In this paper, we mainly review the recent progress of research on the molecular mechanisms of plant autophagy, as well as its function under biotic stress and abiotic stress.
Collapse
Affiliation(s)
- Yang Yang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yun Xiang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yue Niu
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Han X, Yang Y. Phospholipids in Salt Stress Response. PLANTS 2021; 10:plants10102204. [PMID: 34686013 PMCID: PMC8540237 DOI: 10.3390/plants10102204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
High salinity threatens crop production by harming plants and interfering with their development. Plant cells respond to salt stress in various ways, all of which involve multiple components such as proteins, peptides, lipids, sugars, and phytohormones. Phospholipids, important components of bio-membranes, are small amphoteric molecular compounds. These have attracted significant attention in recent years due to the regulatory effect they have on cellular activity. Over the past few decades, genetic and biochemical analyses have partly revealed that phospholipids regulate salt stress response by participating in salt stress signal transduction. In this review, we summarize the generation and metabolism of phospholipid phosphatidic acid (PA), phosphoinositides (PIs), phosphatidylserine (PS), phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), as well as the regulatory role each phospholipid plays in the salt stress response. We also discuss the possible regulatory role based on how they act during other cellular activities.
Collapse
Affiliation(s)
- Xiuli Han
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China;
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel./Fax: +86-10-62732030
| |
Collapse
|
25
|
Ambastha V, Matityahu I, Tidhar D, Leshem Y. RabA2b Overexpression Alters the Plasma-Membrane Proteome and Improves Drought Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:738694. [PMID: 34691115 PMCID: PMC8526897 DOI: 10.3389/fpls.2021.738694] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/13/2021] [Indexed: 06/07/2023]
Abstract
Rab proteins are small GTPases that are important in the regulation of vesicle trafficking. Through data mining, we identified RabA2b to be stress responsive, though little is known about the involvement of RabA in plant responses to abiotic stresses. Analysis of the RabA2b native promoter showed strong activity during osmotic stress, which required the stress hormone Abscisic acid (ABA) and was restricted to the vasculature. Sequence analysis of the promoter region identified predicted binding motifs for several ABA-responsive transcription factors. We cloned RabA2b and overexpressed it in Arabidopsis. The resulting transgenic plants were strikingly drought resistant. The reduced water loss observed in detached leaves of the transgenic plants could not be explained by stomatal aperture or density, which was similar in all the genotypes. Subcellular localization studies detected strong colocalization between RabA2b and the plasma membrane (PM) marker PIP2. Further studies of the PM showed, for the first time, a distinguished alteration in the PM proteome as a result of RabA2b overexpression. Proteomic analysis of isolated PM fractions showed enrichment of stress-coping proteins as well as cell wall/cuticle modifiers in the transgenic lines. Finally, the cuticle permeability of transgenic leaves was significantly reduced compared to the wild type, suggesting that it plays a role in its drought resistant properties. Overall, these data provide new insights into the roles and modes of action of RabA2b during water stresses, and indicate that increased RabA2b mediated PM trafficking can affect the PM proteome and increase drought tolerance.
Collapse
Affiliation(s)
- Vivek Ambastha
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Ifat Matityahu
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
| | - Dafna Tidhar
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Yehoram Leshem
- Department of Plant Sciences, MIGAL – Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
26
|
Qin L, Liu L, Tu J, Yang G, Wang S, Quilichini TD, Gao P, Wang H, Peng G, Blancaflor EB, Datla R, Xiang D, Wilson KE, Wei Y. The ARP2/3 complex, acting cooperatively with Class I formins, modulates penetration resistance in Arabidopsis against powdery mildew invasion. THE PLANT CELL 2021; 33:3151-3175. [PMID: 34181022 PMCID: PMC8462814 DOI: 10.1093/plcell/koab170] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/20/2021] [Indexed: 05/19/2023]
Abstract
The actin cytoskeleton regulates an array of diverse cellular activities that support the establishment of plant-microbe interactions and plays a critical role in the execution of plant immunity. However, molecular and cellular mechanisms regulating the assembly and rearrangement of actin filaments (AFs) at plant-pathogen interaction sites remain largely elusive. Here, using live-cell imaging, we show that one of the earliest cellular responses in Arabidopsis thaliana upon powdery mildew attack is the formation of patch-like AF structures beneath fungal invasion sites. The AFs constituting actin patches undergo rapid turnover, which is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR regulatory complex (W/SRC). The focal accumulation of phosphatidylinositol-4,5-bisphosphate at fungal penetration sites appears to be a crucial upstream modulator of the W/SRC-ARP2/3 pathway-mediated actin patch formation. Knockout of W/SRC-ARP2/3 pathway subunits partially compromised penetration resistance with impaired endocytic recycling of the defense-associated t-SNARE protein PEN1 and its deposition into apoplastic papillae. Simultaneously knocking out ARP3 and knocking down the Class I formin (AtFH1) abolished actin patch formation, severely impaired the deposition of cell wall appositions, and promoted powdery mildew entry into host cells. Our results demonstrate that the ARP2/3 complex and formins, two actin-nucleating systems, act cooperatively and contribute to Arabidopsis penetration resistance to fungal invasion.
Collapse
Affiliation(s)
- Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Lijiang Liu
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China
| | - Jiangying Tu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | | | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, SK, S7N 0W9, Canada
| | - Kenneth E. Wilson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Author for correspondence:
| |
Collapse
|
27
|
Salinas-Cornejo J, Madrid-Espinoza J, Verdugo I, Pérez-Díaz J, Martín-Davison AS, Norambuena L, Ruiz-Lara S. The Exocytosis Associated SNAP25-Type Protein, SlSNAP33, Increases Salt Stress Tolerance by Modulating Endocytosis in Tomato. PLANTS 2021; 10:plants10071322. [PMID: 34209492 PMCID: PMC8309203 DOI: 10.3390/plants10071322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022]
Abstract
In plants, vesicular trafficking is crucial for the response and survival to environmental challenges. The active trafficking of vesicles is essential to maintain cell homeostasis during salt stress. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are regulatory proteins of vesicular trafficking. They mediate membrane fusion and guarantee cargo delivery to the correct cellular compartments. SNAREs from the Qbc subfamily are the best-characterized plasma membrane SNAREs, where they control exocytosis during cell division and defense response. The Solanum lycopersicum gene SlSNAP33.2 encodes a Qbc-SNARE protein and is induced under salt stress conditions. SlSNAP33.2 localizes on the plasma membrane of root cells of Arabidopsis thaliana. In order to study its role in endocytosis and salt stress response, we overexpressed the SlSNAP33.2 cDNA in a tomato cultivar. Constitutive overexpression promoted endocytosis along with the accumulation of sodium (Na+) in the vacuoles. It also protected the plant from cell damage by decreasing the accumulation of hydrogen peroxide (H2O2) in the cytoplasm of stressed root cells. Subsequently, the higher level of SlSNAP33.2 conferred tolerance to salt stress in tomato plants. The analysis of physiological and biochemical parameters such as relative water content, the efficiency of the photosystem II, performance index, chlorophyll, and MDA contents showed that tomato plants overexpressing SlSNAP33.2 displayed a better performance under salt stress than wild type plants. These results reveal a role for SlSNAP33.2 in the endocytosis pathway involved in plant response to salt stress. This research shows that SlSNAP33.2 can be an effective tool for the genetic improvement of crop plants.
Collapse
Affiliation(s)
- Josselyn Salinas-Cornejo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Isabel Verdugo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Jorge Pérez-Díaz
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Alex San Martín-Davison
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
| | - Lorena Norambuena
- Facultad de Ciencias, Universidad de Chile, Santiago, Ñuñoa 7750000, Chile;
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile; (J.S.-C.); (J.M.-E.); (I.V.); (J.P.-D.); (A.S.M.-D.)
- Correspondence:
| |
Collapse
|
28
|
Almutairi AW, El-Sayed AEKB, Reda MM. Evaluation of high salinity adaptation for lipid bio-accumulation in the green microalga Chlorella vulgaris. Saudi J Biol Sci 2021; 28:3981-3988. [PMID: 34220255 PMCID: PMC8241604 DOI: 10.1016/j.sjbs.2021.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 11/30/2022] Open
Abstract
Aiming at the reutilizing wastewater for algal growth and biomass production, a saline water rejected from reverse osmosis (RO) facility (salinity 67.59 g L−1) was used to cultivate the pre-adapted green microalga Chlorella vulgaris. The inoculum was prepared by growing cells in modified BG-11 medium, and adaptation was performed by applying a gradual increase in salinity (56.0 g L−1 NaCl and 125 ppm FeSO4·7H2O) to the culture in 200 L photobioreactor. Experiments using the adapted alga were performed using original-rejected water (ORW) and treated rejected water (TRW) comparing with the recommended growth medium (BG-11). The initial salinity of ORW was chemically reduced to 39.1 g L−1 to obtain TRW. Vertical photobioreactors (15 L) was used for indoor growth experiments. Growth in BG-11 resulted in 1.23 g L−1, while the next adaptation growth reached 2.14 g L−1 of dry biomass. The dry weights of re-cultivated Chlorella after adaptation were 1.49 and 2.19 g L−1 from ORW and TRW; respectively. The cellular oil content was only 12% when cells grown under control conditions verses to 14.3 and 15.42% with original and treated water, respectively. Induction of stress affected the fatty acid methyl esters (FAMEs) profile and the properties of the resulting biodiesel. The present results indicated that induction of stress by high salinity improves the quality of FAMEs that can be used as a promising biodiesel fuel.
Collapse
Affiliation(s)
- Adel W. Almutairi
- Biological Sciences Department, Rabigh-Faculty of Science & Arts, King Abdulaziz University, Saudi Arabia
- Corresponding author.
| | | | - Marwa M. Reda
- Central Lab for Environmental Quality Monitoring, National Water Research Center, Egypt
| |
Collapse
|
29
|
Autophagy in Plant Abiotic Stress Management. Int J Mol Sci 2021; 22:ijms22084075. [PMID: 33920817 PMCID: PMC8071135 DOI: 10.3390/ijms22084075] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Plants can be considered an open system. Throughout their life cycle, plants need to exchange material, energy and information with the outside world. To improve their survival and complete their life cycle, plants have developed sophisticated mechanisms to maintain cellular homeostasis during development and in response to environmental changes. Autophagy is an evolutionarily conserved self-degradative process that occurs ubiquitously in all eukaryotic cells and plays many physiological roles in maintaining cellular homeostasis. In recent years, an increasing number of studies have shown that autophagy can be induced not only by starvation but also as a cellular response to various abiotic stresses, including oxidative, salt, drought, cold and heat stresses. This review focuses mainly on the role of autophagy in plant abiotic stress management.
Collapse
|
30
|
Zhao T, Arbelet-Bonnin D, Tran D, Monetti E, Lehner A, Meimoun P, Kadono T, Dauphin A, Errakhi R, Reboutier D, Cangémi S, Kawano T, Mancuso S, El-Maarouf-Bouteau H, Laurenti P, Bouteau F. Biphasic activation of survival and death pathways in Arabidopsis thaliana cultured cells by sorbitol-induced hyperosmotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110844. [PMID: 33691971 DOI: 10.1016/j.plantsci.2021.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Hyperosmotic stresses represent some of the most serious abiotic factors that adversely affect plants growth, development and fitness. Despite their central role, the early cellular events that lead to plant adaptive responses remain largely unknown. In this study, using Arabidopsis thaliana cultured cells we analyzed early cellular responses to sorbitol-induced hyperosmotic stress. We observed biphasic and dual responses of A. thaliana cultured cells to sorbitol-induced hyperosmotic stress. A first set of events, namely singlet oxygen (1O2) production and cell hyperpolarization due to a decrease in anion channel activity could participate to signaling and osmotic adjustment allowing cell adaptation and survival. A second set of events, namely superoxide anion (O2-) production by RBOHD-NADPH-oxidases and SLAC1 anion channel activation could participate in programmed cell death (PCD) of a part of the cell population. This set of events raises the question of how a survival pathway and a death pathway could be induced by the same hyperosmotic condition and what could be the meaning of the induction of two different behaviors in response to hyperosmotic stress.
Collapse
Affiliation(s)
- Tingting Zhao
- Université de Paris, Laboratoire des Energies de Demain, Paris, France
| | | | - Daniel Tran
- former EA3514, Université Paris Diderot, Paris, France
| | - Emanuela Monetti
- former EA3514, Université Paris Diderot, Paris, France; LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy
| | - Arnaud Lehner
- former EA3514, Université Paris Diderot, Paris, France
| | - Patrice Meimoun
- Université de Paris, Laboratoire des Energies de Demain, Paris, France; former EA3514, Université Paris Diderot, Paris, France; Université de Paris, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - Takashi Kadono
- former EA3514, Université Paris Diderot, Paris, France; Graduate School of Environmental Engineering, University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
| | | | - Rafik Errakhi
- former EA3514, Université Paris Diderot, Paris, France
| | | | - Sylvie Cangémi
- Université de Paris, Laboratoire des Energies de Demain, Paris, France
| | - Tomonori Kawano
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy; Graduate School of Environmental Engineering, University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan; Université de Paris, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - Stefano Mancuso
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan; Université de Paris, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | | | - Patrick Laurenti
- Université de Paris, Laboratoire des Energies de Demain, Paris, France
| | - François Bouteau
- Université de Paris, Laboratoire des Energies de Demain, Paris, France; former EA3514, Université Paris Diderot, Paris, France; LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan.
| |
Collapse
|
31
|
Sun Y, Liang W, Cheng H, Wang H, Lv D, Wang W, Liang M, Miao C. NADPH Oxidase-derived ROS promote mitochondrial alkalization under salt stress in Arabidopsis root cells. PLANT SIGNALING & BEHAVIOR 2021; 16:1856546. [PMID: 33315520 PMCID: PMC7889232 DOI: 10.1080/15592324.2020.1856546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The plasma membrane NADPH Oxidase-derived ROS as signaling molecules play crucial roles in salt stress response. As the motor organelle of cells, mitochondria are also important for salt tolerance. However, the possible interaction between NADPH Oxidase-derived ROS and mitochondria is not well studied. Here, a transgenic Arabidopsis expressing mitochondrial matrix-targeted pH-sensitive indicator cpYFP was used to monitor the pH dynamics in root cells under salt stress. A significant alkalization in mitochondria was observed when the root was exposed to NaCl or KCl, but not osmotic stress such as isotonic mannitol. Interestingly, when pretreated with the NADPH Oxidase inhibitor DPI, the mitochondrial alkalization in root cells was largely abolished. Genetic evidence further showed that salt-induced mitochondrial alkalization was significantly reduced in the loss of function mutant atrbohF . Pretreatment with endocytosis-related inhibitor PAO or TyrA23, which inhibited the ROS accumulation under salt treatment, almost abolished this effect. Furthermore, [Ca2+]cyt increase might also play important roles by affecting ROS generation to mediate salt-induced mitochondrial alkalization as indicated by treatment with plasma membrane Ca2+ channel inhibitor LaCl3 and mitochondrial Ca2+ uniporter inhibitor Ruthenium Red. Together, these results suggest that the plasma membrane NADPH Oxidase-derived ROS promote the mitochondrial alkalization under salt treatment, providing a possible link between different cellular compartments under salt stress.
Collapse
Affiliation(s)
- Yanfeng Sun
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Weihong Liang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Cheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Huan Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong Lv
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei Wang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Modan Liang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Chen Miao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
32
|
Liu H, Liu S, Wang H, Chen K, Zhang P. The flavonoid 3'-hydroxylase gene from the Antarctic moss Pohlia nutans is involved in regulating oxidative and salt stress tolerance. Biotechnol Appl Biochem 2021; 69:676-686. [PMID: 33660298 DOI: 10.1002/bab.2143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/22/2021] [Indexed: 11/08/2022]
Abstract
Flavonoids are the important secondary metabolites. They are thought to play an important role in plant adaptation to terrestrial environment. However, the downstream branching pathway of flavonoids in bryophytes, which are the most ancient of terrestrial plants, remains unclear. Here, we cloned a flavonoid 3'-hydroxylase gene (PnF3'H) from the Antarctic moss Pohlia nutans and studied its function in plant stress tolerance. The Arabidopsis with overexpressing PnF3'H (AtOE) were constructed. The AtOE plants had more lateral roots and higher activities of antioxidant enzymes than the wild-type plants under oxidative stress. Meanwhile, the gene expression levels of reactive oxygen species (ROS) scavengers (i.e., AtCAT3, AtFeSOD1, and AtCu-ZnSOD3) were upregulated in the AtOE plants, and the transcription levels of ROS producing enzyme genes were significantly downregulated. The AtOE plans showed increased sensitivity to NaCl stress or abscisic acid (ABA) treatment during seed germination and early root development. Furthermore, several stress-resistant genes in the ABA signaling pathway were also downregulated in the AtOE plants when compared with the wild-type plants. These results suggested that PnF3'H participates in regulating the oxidative tolerance and ABA sensitivity to enable P. nutans to adapt to polar environments.
Collapse
Affiliation(s)
- Hongwei Liu
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, China.,Medical Administration Department, Shinan District Health Bureau, Qingdao, China
| | - Shenghao Liu
- Marine Ecology Research Center, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
| | - Huijuan Wang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, China
| | - Kaoshan Chen
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
33
|
Du B, Nie N, Sun S, Hu Y, Bai Y, He S, Zhao N, Liu Q, Zhai H. A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110802. [PMID: 33568301 DOI: 10.1016/j.plantsci.2020.110802] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 05/16/2023]
Abstract
Arabidopsis Toxicos en Levadura (ATL) proteins compose a subfamily of E3 ubiquitin ligases and play major roles in regulating plant growth, cold, drought, oxidative stresses response and pathogen defense in plants. However, the role in enhancing salt tolerance has not been reported to date. Here, we cloned a novel RING-H2 type E3 ubiquitin ligase gene, named IbATL38, from sweetpotato cultivar Lushu 3. This gene was highly expressed in the leaves of sweetpotato and strongly induced by NaCl and abscisic acid (ABA). This IbATL38 was localized to nucleus and plasm membrane and possessed E3 ubiquitin ligase activity. Overexpression of IbATL38 in Arabidopsis significantly enhanced salt tolerance, along with inducible expression of a series of stress-responsive genes and prominently decrease of H2O2 content. These results suggest that IbATL38 as a novel E3 ubiquitin ligase may play an important role in salt stress response.
Collapse
Affiliation(s)
- Bing Du
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Nan Nie
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sifan Sun
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuanfeng Hu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yidong Bai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Dvořák P, Krasylenko Y, Ovečka M, Basheer J, Zapletalová V, Šamaj J, Takáč T. In vivo light-sheet microscopy resolves localisation patterns of FSD1, a superoxide dismutase with function in root development and osmoprotection. PLANT, CELL & ENVIRONMENT 2021; 44:68-87. [PMID: 32974958 DOI: 10.1111/pce.13894] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Superoxide dismutases (SODs) are enzymes detoxifying superoxide to hydrogen peroxide while temporal developmental expression and subcellular localisation are linked to their functions. Therefore, we aimed here to reveal in vivo developmental expression, subcellular, tissue- and organ-specific localisation of iron superoxide dismutase 1 (FSD1) in Arabidopsis using light-sheet and Airyscan confocal microscopy. FSD1-GFP temporarily accumulated at the site of endosperm rupture during seed germination. In emerged roots, it showed the highest abundance in cells of the lateral root cap, columella, and endodermis/cortex initials. The largest subcellular pool of FSD1-GFP was localised in the plastid stroma, while it was also located in the nuclei and cytosol. The majority of the nuclear FSD1-GFP is immobile as revealed by fluorescence recovery after photobleaching. We found that fsd1 knockout mutants exhibit reduced lateral root number and this phenotype was reverted by genetic complementation. Mutant analysis also revealed a requirement for FSD1 in seed germination during salt stress. Salt stress tolerance was coupled with the accumulation of FSD1-GFP in Hechtian strands and superoxide removal. It is likely that the plastidic pool is required for acquiring oxidative stress tolerance in Arabidopsis. This study suggests new developmental and osmoprotective functions of SODs in plants.
Collapse
Affiliation(s)
- Petr Dvořák
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Yuliya Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jasim Basheer
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Veronika Zapletalová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tomáš Takáč
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
35
|
Dong H, Wu C, Luo C, Wei M, Qu S, Wang S. Overexpression of MdCPK1a gene, a calcium dependent protein kinase in apple, increase tobacco cold tolerance via scavenging ROS accumulation. PLoS One 2020; 15:e0242139. [PMID: 33211731 PMCID: PMC7676694 DOI: 10.1371/journal.pone.0242139] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are important calcium receptors, which play a crucial part in the process of sensing and decoding intracellular calcium signals during plant development and adaptation to various environmental stresses. In this study, a CDPK gene MdCPK1a, was isolated from apple (Malus×domestica) which contains 1701bp nucleotide and encodes a protein of 566 amino acid residues, and contains the conserved domain of CDPKs. The transient expression and western blot experiment showed that MdCPK1a protein was localized in the nucleus and cell plasma membrane. Ectopic expression of MdCPK1a in Nicotiana benthamiana increased the resistance of the tobacco plants to salt and cold stresses. The mechanism of MdCPK1a regulating cold resistance was further investigated. The overexpressed MdCPK1a tobacco plants had higher survival rates and longer root length than wild type (WT) plants under cold stress, and the electrolyte leakages (EL), the content of malondialdehyde (MDA) and reactive oxygen species (ROS) were lower, and accordingly, antioxidant enzyme activities, such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were higher, suggesting the transgenic plants suffered less chilling injury than WT plants. Moreover, the transcript levels of ROS-scavenging and stress-related genes were higher in the transgenic plants than those in WT plants whether under normal conditions or cold stress. The above results suggest that the improvement of cold tolerance in MdCPK1a-overexpressed plants was due to scavenging ROS accumulation and modulating the expression of stress-related genes.
Collapse
Affiliation(s)
- Hui Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Chao Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Changguo Luo
- Guizhou Fruit Institute, Guizhou Academy of Agricultural Science, Guiyang, China
| | - Menghan Wei
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Elloumi W, Jebali A, Maalej A, Chamkha M, Sayadi S. Effect of Mild Salinity Stress on the Growth, Fatty Acid and Carotenoid Compositions, and Biological Activities of the Thermal Freshwater Microalgae Scenedesmus sp. Biomolecules 2020; 10:E1515. [PMID: 33171918 PMCID: PMC7694606 DOI: 10.3390/biom10111515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Carotenoids have strong antioxidant activity as well as therapeutic value. Their production has been induced in algae under stressful culture conditions. However, the extreme culture conditions lead to the Programmed Cell Death (PCD) of algae, which affects their growth and productivity. This study was performed to evaluate the effect of salinity on the physiological and biochemical traits of Scenedesmus sp., thermal freshwater microalgae from Northern Tunisia. It was cultured under different NaCl concentrations ranging from 0 to 60 g/L. Results showed a good growth and high contents of total chlorophyll and carotenoids in Scenedesmus sp. cultured at 10 g/L of NaCl (salt-stressed 10 (Ss10)). The pigment composition of the Ss10 extract was acquired using HPLC-MS, and showed that the carotenoid fraction is particularly rich in xanthophylls. Moreover, the antioxidant (DPPH and FRAP) and enzymatic inhibition (tyrosinase and elastase) activities of the Ss10 extract were higher compared to those of the control culture. In addition, the cytotoxicity test on B16 cells showed that the Ss10 extract was non-toxic for all tested concentrations below 100 µg/mL. It also showed a rich unsaturated fatty acid (FA) composition. Therefore, these findings suggest that Scenedesmus sp. strain cultivated under mild stress salinity could be a source of biomolecules that have potential applications in the nutraceutical and cosmeceutical industries.
Collapse
Affiliation(s)
- Wiem Elloumi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia; (W.E.); (A.J.); (A.M.); (M.C.)
| | - Ahlem Jebali
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia; (W.E.); (A.J.); (A.M.); (M.C.)
| | - Amina Maalej
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia; (W.E.); (A.J.); (A.M.); (M.C.)
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia; (W.E.); (A.J.); (A.M.); (M.C.)
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
37
|
Huang HE, Ho MH, Chang H, Chao HY, Ger MJ. Overexpression of plant ferredoxin-like protein promotes salinity tolerance in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:136-146. [PMID: 32750653 DOI: 10.1016/j.plaphy.2020.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 05/02/2023]
Abstract
High-salinity stress is one of the major limiting factors on crop productivity. Physiological strategies against high-salinity stress include generation of reactive oxygen species (ROS), induction of stress-related genes expression, accumulation of abscisic acid (ABA) and up-regulation of antiporters. ROS are metabolism by-products and involved in signal transduction pathway. Constitutive expression of plant ferrodoxin-like protein (PFLP) gene enhances pathogen-resistance activities and root-hair growth through promoting ROS generation. However, the function of PFLP in abiotic stress responses is unclear. In this study, PFLP-1 and PFLP-2-transgenic rice plants were generated to elucidate the role of PFLP under salinity stress. PFLP overexpression significantly increased salt tolerance in PFLP-transgenic rice plants compared with non-transgenic plants (Oryza sativa japonica cv. Tainung 67, designated as TNG67). In high-salinity conditions, PFLP-transgenic plants exhibited earlier ROS production, higher antioxidant enzyme activities, higher ABA accumulation, up-regulated expression of stress-related genes (OsRBOHa, Cu/Zn SOD, OsAPX, OsNCED2, OsSOS1, OsCIPK24, OsCBL4, and OsNHX2), and leaf sodium ion content was lower compared with TNG67 plant. In addition, transgenic lines maintained electron transport rates and contained lower malondialdhyde (MDA) content than TNG67 plant did under salt-stress conditions. Overall results indicated salinity tolerance was improved by PFLP overexpression in transgenic rice plant. The PFLP gene is a potential candidate for improving salinity tolerance for valuable agricultural crops.
Collapse
Affiliation(s)
- Hsiang-En Huang
- Department of Life Sciences, National Taitung University, Taitung, 95002, Taiwan.
| | - Mei-Hsuan Ho
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, 30015, Taiwan.
| | - Hsien-Yu Chao
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| | - Mang-Jye Ger
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
38
|
Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings. Int J Mol Sci 2020; 21:ijms21176036. [PMID: 32839408 PMCID: PMC7504276 DOI: 10.3390/ijms21176036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Watermelon (Citrullus lanatus L.) is a widely popular vegetable fruit crop for human consumption. Soil salinity is among the most critical problems for agricultural production, food security, and sustainability. The transcriptomic and the primary molecular mechanisms that underlie the salt-induced responses in watermelon plants remain uncertain. In this study, the photosynthetic efficiency of photosystem II, free amino acids, and transcriptome profiles of watermelon seedlings exposed to short-term salt stress (300 mM NaCl) were analyzed to identify the genes and pathways associated with response to salt stress. We observed that the maximal photochemical efficiency of photosystem II decreased in salt-stressed plants. Most free amino acids in the leaves of salt-stressed plants increased many folds, while the percent distribution of glutamate and glutamine relative to the amino acid pool decreased. Transcriptome analysis revealed 7622 differentially expressed genes (DEGs) under salt stress, of which 4055 were up-regulated. The GO analysis showed that the molecular function term “transcription factor (TF) activity” was enriched. The assembled transcriptome demonstrated up-regulation of 240 and down-regulation of 194 differentially expressed TFs, of which the members of ERF, WRKY, NAC bHLH, and MYB-related families were over-represented. The functional significance of DEGs associated with endocytosis, amino acid metabolism, nitrogen metabolism, photosynthesis, and hormonal pathways in response to salt stress are discussed. The findings from this study provide novel insights into the salt tolerance mechanism in watermelon.
Collapse
|
39
|
Plant Cells under Attack: Unconventional Endomembrane Trafficking during Plant Defense. PLANTS 2020; 9:plants9030389. [PMID: 32245198 PMCID: PMC7154882 DOI: 10.3390/plants9030389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
Since plants lack specialized immune cells, each cell has to defend itself independently against a plethora of different pathogens. Therefore, successful plant defense strongly relies on precise and efficient regulation of intracellular processes in every single cell. Smooth trafficking within the plant endomembrane is a prerequisite for a diverse set of immune responses. Pathogen recognition, signaling into the nucleus, cell wall enforcement, secretion of antimicrobial proteins and compounds, as well as generation of reactive oxygen species, all heavily depend on vesicle transport. In contrast, pathogens have developed a variety of different means to manipulate vesicle trafficking to prevent detection or to inhibit specific plant responses. Intriguingly, the plant endomembrane system exhibits remarkable plasticity upon pathogen attack. Unconventional trafficking pathways such as the formation of endoplasmic reticulum (ER) bodies or fusion of the vacuole with the plasma membrane are initiated and enforced as the counteraction. Here, we review the recent findings on unconventional and defense-induced trafficking pathways as the plant´s measures in response to pathogen attack. In addition, we describe the endomembrane system manipulations by different pathogens, with a focus on tethering and fusion events during vesicle trafficking.
Collapse
|
40
|
Dubois M, Inzé D. Plant growth under suboptimal water conditions: early responses and methods to study them. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1706-1722. [PMID: 31967643 DOI: 10.1093/jxb/eraa037] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. Addition of compounds such as polyethylene glycol, mannitol, sorbitol, or NaCl to controlled growth media has become increasingly popular since it offers the advantage of accurate control of stress level and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, we compare short-term plant responses under osmotic stress versus in-soil drought and discuss the advantages, disadvantages, and future of these plate-based proxies for drought.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
41
|
Pak Dek MS, Padmanabhan P, Tiwari K, Todd JF, Paliyath G. Structural and functional characterization of Solanum lycopersicum phosphatidylinositol 3-kinase C2 domain. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:180-192. [PMID: 31972387 DOI: 10.1016/j.plaphy.2020.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are characterized by the presence of a C2 domain at the N-terminal end (class I, III); or at both the N-terminal and C-terminal ends (class II), sometimes including a Plextrin homology domain and/or a Ras domain. Plant PI3Ks are analogous to the class III mammalian PI3K. An N-terminal fragment (~170 aa) of the tomato PI3K regulatory domain including the C2 domain, was cloned and expressed in a bacterial system. This protein was purified to homogeneity and its physicochemical properties analyzed. The purified protein showed strong binding with monophosphorylated phosphatidylinositols, and the binding was dependent on calcium ion concentration and pH. In the overall tertiary structure of PI3K, C2 domain showed unique characteristics, having three antiparallel beta-sheets, hydrophobic regions, acidic as well as alkaline motifs, that can enable its membrane binding upon activation. To elucidate the functional significance of C2 domain, transgenic tobacco plants expressing the C2 domain of PI3K were generated. Transgenic plants showed defective pollen development and disrupted seed set. Flowers from the PI3K-C2 transgenic plants showed delayed wilting, and a decrease in ethylene production. It is likely that introduction of the PI3K-C2 segment may have interfered with the normal binding of PI3K to the membrane, delaying the onset of membrane lipid catabolism that lead to senescence.
Collapse
Affiliation(s)
- Mohd Sabri Pak Dek
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Priya Padmanabhan
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Krishnaraj Tiwari
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - James F Todd
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, Ontario, Canada
| | - Gopinadhan Paliyath
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
42
|
Laterals take it better - Emerging and young lateral roots survive lethal salinity longer than the primary root in Arabidopsis. Sci Rep 2020; 10:3291. [PMID: 32094490 PMCID: PMC7040039 DOI: 10.1038/s41598-020-60163-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/06/2020] [Indexed: 11/16/2022] Open
Abstract
Plant responses to salinity have been extensively studied over the last decades. Despite the vast accumulated knowledge, the ways Arabidopsis lateral roots (LR) cope with lethal salinity has not been fully resolved. Here we compared the primary root (PR) and the LR responses during events leading to lethal salinity (NaCl 200 mM) in Arabidopsis. We found that the PR and young LR responded differently to lethal salinity: While the PR died, emerging and young LR’s remained strikingly viable. Moreover, “age acquired salt tolerance” (AAST) was observed in the PR. During the 2 days after germination (DAG) the PR was highly sensitive, but at 8 DAG there was a significant increase in the PR cell survival. Nevertheless, the young LR exhibited an opposite pattern and completely lost its salinity tolerance, as it elongated beyond 400 µm. Examination of several cell death signatures investigated in the young LR showed no signs of an active programmed cell death (PCD) during lethal salinity. However, Autophagic PCD (A-PCD) but not apoptosis-like PCD (AL-PCD) was found to be activated in the PR during the high salinity conditions. We further found that salinity induced NADPH oxidase activated ROS, which were more highly distributed in the young LR compared to the PR, is required for the improved viability of the LR during lethal salinity conditions. Our data demonstrated a position-dependent resistance of Arabidopsis young LR to high salinity. This response can lead to identification of novel salt stress coping mechanisms needed by agriculture during the soil salinization challenge.
Collapse
|
43
|
Agudelo-Romero P, Fortes AM, Suárez T, Lascano HR, Saavedra L. Evolutionary insights into FYVE and PHOX effector proteins from the moss Physcomitrella patens. PLANTA 2020; 251:62. [PMID: 32040768 DOI: 10.1007/s00425-020-03354-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Genome-wide identification, together with gene expression patterns and promoter region analysis of FYVE and PHOX proteins in Physcomitrella patens, emphasized their importance in regulating mainly developmental processes in P. patens. Phosphatidylinositol 3-phosphate (PtdIns3P) is a signaling phospholipid, which regulates several aspects of plant growth and development, as well as responses to biotic and abiotic stresses. The mechanistic insights underlying PtdIns3P mode of action, specifically through effector proteins have been partially explored in plants, with main focus on Arabidopsis thaliana. In this study, we searched for genes coding for PtdIns3P-binding proteins such as FYVE and PHOX domain-containing sequences from different photosynthetic organisms to gather evolutionary insights on these phosphoinositide binding domains, followed by an in silico characterization of the FYVE and PHOX gene families in the moss Physcomitrella patens. Phylogenetic analysis showed that PpFYVE proteins can be grouped in 7 subclasses, with an additional subclass whose FYVE domain was lost during evolution to higher plants. On the other hand, PpPHOX proteins are classified into 5 subclasses. Expression analyses based on RNAseq data together with the analysis of cis-acting regulatory elements and transcription factor (TF) binding sites in promoter regions suggest the importance of these proteins in regulating stress responses but mainly developmental processes in P. patens. The results provide valuable information and robust candidate genes for future functional analysis aiming to further explore the role of this signaling pathway mainly during growth and development of tip growing cells and during the transition from 2 to 3D growth. These studies would identify ancestral regulatory players undertaken during plant evolution.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- The UWA Institute of Agriculture, The University of Western Australia, M082, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, M316 Perth, Perth, 6009, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Ana Margarida Fortes
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Trinidad Suárez
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Hernán Ramiro Lascano
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- CONICET-Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Laura Saavedra
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
44
|
Qin Q, Wang Y, Huang L, Du F, Zhao X, Li Z, Wang W, Fu B. A U-box E3 ubiquitin ligase OsPUB67 is positively involved in drought tolerance in rice. PLANT MOLECULAR BIOLOGY 2020; 102:89-107. [PMID: 31768809 DOI: 10.1007/s11103-019-00933-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/19/2019] [Indexed: 05/29/2023]
Abstract
OsPUB67, a U-box E3 ubiquitin ligase, may interact with two drought tolerance negative regulators (OsRZFP34 and OsDIS1) and improve drought tolerance by enhancing the reactive oxygen scavenging ability and stomatal closure. E3 ubiquitin ligases are major components of the ubiquitination cascade and contribute to the biotic and abiotic stress response in plants. In the present study, we show that a rice drought responsive gene, OsPUB67, encoding the U-box E3 ubiquitin ligase was significantly induced by drought, salt, cold, JA, and ABA, and was expressed in nuclei, cytoplasm, and membrane systems. This distribution of expression suggests a significant role for OsPUB67 in a wide range of biological processes and abiotic stress response. Over-expression of OsPUB67 improved drought stress tolerance by enhancing the reactive oxygen scavenging ability and stomatal closure. Bimolecular fluorescence complementation assays revealed that a few E2s interacted with OsPUB67 with unique functional implications in different cell components. Further evidence showed that several E3 ubiquitin ligases interacted with OsPUB67, especially OsRZFP34 and OsDIS1, which are negative regulators of drought tolerance. This interaction on the stomata implied OsPUB67 might function as a heterodimeric ubiquitination complex in response to drought stress. Comprehensive transcriptome analysis revealed OsPUB67 participated in regulating genes involved in the abiotic stress response and transcriptional regulation in an ABA-dependent manner. Our findings revealed OsPUB67 mediated a multilayered complex drought stress tolerance mechanism.
Collapse
Affiliation(s)
- Qiao Qin
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinxiao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agriculture, Yunnan University, Yunnan, China
| | - Fengping Du
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
- College of Agronomy, Anhui Agricultural University, Hefei, China.
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
45
|
Postiglione AE, Muday GK. The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:968. [PMID: 32695131 PMCID: PMC7338657 DOI: 10.3389/fpls.2020.00968] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/12/2020] [Indexed: 05/19/2023]
Abstract
The hormonal and environmental regulation of stomatal aperture is mediated by a complex signaling pathway found within the guard cells that surround stomata. Abscisic acid (ABA) induces stomatal closure in response to drought stress by binding to its guard cell localized receptor, initiating a signaling cascade that includes synthesis of reactive oxygen species (ROS). Genetic evidence in Arabidopsis indicates that ROS produced by plasma membrane respiratory burst oxidase homolog (RBOH) enzymes RBOHD and RBOHF modulate guard cell signaling and stomatal closure. However, ABA-induced ROS accumulates in many locations such as the cytoplasm, chloroplasts, nucleus, and endomembranes, some of which do not coincide with plasma membrane localized RBOHs. ABA-induced guard cell ROS accumulation has distinct spatial and temporal patterns that drive stomatal closure. Productive ROS signaling requires both rapid increases in ROS, as well as the ability of cells to prevent ROS from reaching damaging levels through synthesis of antioxidants, including flavonols. The relationship between locations of ROS accumulation and ABA signaling and the role of enzymatic and small molecule ROS scavengers in maintaining ROS homeostasis in guard cells are summarized in this review. Understanding the mechanisms of ROS production and homeostasis and the role of ROS in guard cell signaling can provide a better understanding of plant response to stress and could provide an avenue for the development of crop plants with increased stress tolerance.
Collapse
|
46
|
Jing Y, Shi L, Li X, Zheng H, Gao J, Wang M, He L, Zhang W. OXS2 is Required for Salt Tolerance Mainly through Associating with Salt Inducible Genes, CA1 and Araport11, in Arabidopsis. Sci Rep 2019; 9:20341. [PMID: 31889067 PMCID: PMC6937310 DOI: 10.1038/s41598-019-56456-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/06/2019] [Indexed: 11/09/2022] Open
Abstract
Salt stress is one of the abiotic stresses affecting crop growth and yield. The functional screening and mechanism investigation of the genes in response to salt stress are essential for the development of salt-tolerant crops. Here, we found that OXIDATIVE STRESS 2 (OXS2) was a salinity-induced gene, and the mutant oxs2-1 was hypersensitive to salt stress during seed germination and root elongation processes. In the absence of stress, OXS2 was predominantly localized in the cytoplasm; when the plants were treated with salt, OXS2 entered the nuclear. Further RNA-seq analysis and qPCR identification showed that, in the presence of salt stress, a large number of differentially expressed genes (DEGs) were activated, which contain BOXS2 motifs previously identified as the binding element for AtOXS2. Further ChIP analysis revealed that, under salt stress, OXS2 associated with CA1 and Araport11 directly through binding the BOXS2 containing fragments in the promoter regions. In conclusion, our results indicate that OXS2 is required for salt tolerance in Arabidopsis mainly through associating with the downstream CA1 and Araport11 directly.
Collapse
Affiliation(s)
- Ying Jing
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lin Shi
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xin Li
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Han Zheng
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jianwei Gao
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mei Wang
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lilong He
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Wei Zhang
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
47
|
Ibl V. ESCRTing in cereals: still a long way to go. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1144-1152. [PMID: 31327097 DOI: 10.1007/s11427-019-9572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2019] [Indexed: 01/28/2023]
Abstract
The multivesicular body (MVB) sorting pathway provides a mechanism for the delivery of cargo destined for degradation to the vacuole or lysosome. The endosomal sorting complex required for transport (ESCRT) is essential for the MVB sorting pathway by driving the cargo sorting to its destination. Many efforts in plant research have identified the ESCRT machinery and functionally characterised the first plant ESCRT proteins. However, most studies have been performed in the model plant Arabidopsis thaliana that is genetically and physiologically different to crops. Cereal crops are important for animal feed and human nutrition and have further been utilized as promising candidates for recombinant protein production. In this review, I summarize the role of plant ESCRT components in cereals that are involved in efficient adaptation to environmental stress and grain development. A special focus is on barley (Hordeum vulgare L.) ESCRT proteins, where recent studies show their quantitative mapping during grain development, e.g. associating HvSNF7.1 with protein trafficking to protein bodies (PBs) in starchy endosperm. Thus, it is indispensable to identify the molecular key-players within the endomembrane system including ESCRT proteins to optimize and possibly enhance tolerance to environmental stress, grain yield and recombinant protein production in cereal grains.
Collapse
Affiliation(s)
- Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
48
|
Duan C, Mao T, Sun S, Guo X, Guo L, Huang L, Wang Z, Zhang Y, Li M, Sheng Y, Yi Y, Liu J, Zhang H, Zhang J. Constitutive expression of GmF6'H1 from soybean improves salt tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:446-455. [PMID: 31247427 DOI: 10.1016/j.plaphy.2019.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Coumarin plays a pivotal role in plant response to biotic stress, as well as in the mediation of nutrient acquisition. However, its functions in response to abiotic stresses are largely unknown. In this work, a homologous gene, GmF6'H1, of AtF6'H1, which encodes the enzyme catalyzing the final rate-limiting step in the biosynthesis pathway of coumarin, was isolated from soybean. GmF6'H1 protein shares very high amino acid identity with AtF6'H1, and expression of GmF6'H1 in atf6'h1 can successfully restore the decreased coumarin production in the T-DNA insertion mutant. Further study revealed that the expression of GmF6'H1 in soybean was remarkably induced by salt stress. Constitutive expression of GmF6'H1 in Arabidopsis, driven by 35S promoter, significantly enhanced the resistance to salt of transgenic Arabidopsis. All these results suggest that GmF6'H1 can be used as a potential candidate gene for the engineering of plants with improved resistance to both biotic and abiotic stresses.
Collapse
Affiliation(s)
- Chunli Duan
- College of Agriculture, Ludong University, Yantai, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Tingting Mao
- College of Agriculture, Ludong University, Yantai, China
| | - Shenqing Sun
- College of Agriculture, Ludong University, Yantai, China
| | - Xianjun Guo
- College of Environment and Materials Engineering, Yantai University, Yantai, China
| | - Laixian Guo
- College of Agriculture, Ludong University, Yantai, China
| | - Lilong Huang
- College of Agriculture, Ludong University, Yantai, China
| | - Zixuan Wang
- College of Agriculture, Ludong University, Yantai, China
| | - Yan Zhang
- College of Agriculture, Ludong University, Yantai, China
| | - Miao Li
- College of Agriculture, Ludong University, Yantai, China
| | - Yuting Sheng
- College of Agriculture, Ludong University, Yantai, China
| | - Yanjun Yi
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jiayao Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hongxia Zhang
- College of Agriculture, Ludong University, Yantai, China
| | - Juan Zhang
- College of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
49
|
Kang Y, Torres‐Jerez I, An Z, Greve V, Huhman D, Krom N, Cui Y, Udvardi M. Genome-wide association analysis of salinity responsive traits in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2019; 42:1513-1531. [PMID: 30593671 PMCID: PMC6850670 DOI: 10.1111/pce.13508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/16/2018] [Indexed: 05/19/2023]
Abstract
Salinity stress is an important cause of crop yield loss in many parts of the world. Here, we performed genome-wide association studies of salinity-stress responsive traits in 132 HapMap genotypes of the model legume Medicago truncatula. Plants grown in soil were subjected to a step-wise increase in NaCl concentration, from 0 through 0.5% and 1.0% to 1.5%, and the following traits were measured: vigor, shoot biomass, shoot water content, leaf chlorophyll content, leaf size, and leaf and root concentrations of proline and major ions (Na+ , Cl- , K+ , Ca2+ , etc.). Genome-wide association studies were carried out using 2.5 million single nucleotide polymorphisms, and 12 genomic regions associated with at least four traits each were identified. Transcript-level analysis of the top eight candidate genes in five extreme genotypes revealed association between salinity tolerance and transcript-level changes for seven of the genes, encoding a vacuolar H+ -ATPase, two transcription factors, two proteins involved in vesicle trafficking, one peroxidase, and a protein of unknown function. Earlier functional studies on putative orthologues of two of the top eight genes (a vacuolar H+ -ATPase and a peroxidase) demonstrated their involvement in plant salinity tolerance.
Collapse
Affiliation(s)
- Yun Kang
- Noble Research InstituteArdmoreOklahoma73401
| | | | - Zewei An
- State Center for Rubber Breeding and Rubber Research InstituteDanzhouHainan571700China
| | - Veronica Greve
- College of Biological SciencesUniversity of MinnesotaHuntsvilleAlabama35806
| | | | | | - Yuehua Cui
- Department of Statistics and ProbabilityMichigan State UniversityEast LansingMichigan48824
| | | |
Collapse
|
50
|
Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:1420-1429. [PMID: 30610176 DOI: 10.1073/pnas.1818099116] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The interorganelle communication mediated by membrane contact sites (MCSs) is an evolutionary hallmark of eukaryotic cells. MCS connections enable the nonvesicular exchange of information between organelles and allow them to coordinate responses to changing cellular environments. In plants, the importance of MCS components in the responses to environmental stress has been widely established, but the molecular mechanisms regulating interorganelle connectivity during stress still remain opaque. In this report, we use the model plant Arabidopsis thaliana to show that ionic stress increases endoplasmic reticulum (ER)-plasma membrane (PM) connectivity by promoting the cortical expansion of synaptotagmin 1 (SYT1)-enriched ER-PM contact sites (S-EPCSs). We define differential roles for the cortical cytoskeleton in the regulation of S-EPCS dynamics and ER-PM connectivity, and we identify the accumulation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the PM as a molecular signal associated with the ER-PM connectivity changes. Our study highlights the functional conservation of EPCS components and PM phosphoinositides as modulators of ER-PM connectivity in eukaryotes, and uncovers unique aspects of the spatiotemporal regulation of ER-PM connectivity in plants.
Collapse
|