1
|
Cropano C, Manzanares C, Yates S, Copetti D, Do Canto J, Lübberstedt T, Koch M, Studer B. Identification of Candidate Genes for Self-Compatibility in Perennial Ryegrass ( Lolium perenne L.). FRONTIERS IN PLANT SCIENCE 2021; 12:707901. [PMID: 34721449 PMCID: PMC8554087 DOI: 10.3389/fpls.2021.707901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/30/2021] [Indexed: 05/10/2023]
Abstract
Self-incompatibility (SI) is a genetic mechanism preventing self-pollination in ~40% of plant species. Two multiallelic loci, called S and Z, control the gametophytic SI system of the grass family (Poaceae), which contains all major forage grasses. Loci independent from S and Z have been reported to disrupt SI and lead to self-compatibility (SC). A locus causing SC in perennial ryegrass (Lolium perenne L.) was previously mapped on linkage group (LG) 5 in an F2 population segregating for SC. Using a subset of the same population (n = 68), we first performed low-resolution quantitative trait locus (QTL) mapping to exclude the presence of additional, previously undetected contributors to SC. The previously reported QTL on LG 5 explained 38.4% of the phenotypic variation, and no significant contribution from other genomic regions was found. This was verified by the presence of significantly distorted markers in the region overlapping with the QTL. Second, we fine mapped the QTL to 0.26 centimorgan (cM) using additional 2,056 plants and 23 novel sequence-based markers. Using Italian ryegrass (Lolium multiflorum Lam.) genome assembly as a reference, the markers flanking SC were estimated to span a ~3 Mb region encoding for 57 predicted genes. Among these, seven genes were proposed as relevant candidate genes based on their annotation and function described in previous studies. Our study is a step forward to identify SC genes in forage grasses and provides diagnostic markers for marker-assisted introgression of SC into elite germplasm.
Collapse
Affiliation(s)
- Claudio Cropano
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Deutsche Saatveredelung AG, Lippstadt, Germany
| | - Chloé Manzanares
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Steven Yates
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Dario Copetti
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Javier Do Canto
- Instituto Nacional de Investigación Agropecuaria, Tacuarembó, Uruguay
| | | | | | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Zhao H, Song Y, Li J, Zhang Y, Huang H, Li Q, Zhang Y, Xue Y. Primary restriction of S-RNase cytotoxicity by a stepwise ubiquitination and degradation pathway in Petunia hybrida. THE NEW PHYTOLOGIST 2021; 231:1249-1264. [PMID: 33932295 PMCID: PMC8361771 DOI: 10.1111/nph.17438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/20/2021] [Indexed: 05/15/2023]
Abstract
In self-incompatible Petunia species, the pistil S-RNase acts as cytotoxin to inhibit self-pollination but is polyubiquitinated by the pollen-specific nonself S-locus F-box (SLF) proteins and subsequently degraded by the ubiquitin-proteasome system (UPS), allowing cross-pollination. However, it remains unclear how S-RNase is restricted by the UPS. Using biochemical analyses, we first show that Petunia hybrida S3 -RNase is largely ubiquitinated by K48-linked polyubiquitin chains at three regions, R I, R II and R III. R I is ubiquitinated in unpollinated, self-pollinated and cross-pollinated pistils, indicating its occurrence before PhS3 -RNase uptake into pollen tubes, whereas R II and R III are exclusively ubiquitinated in cross-pollinated pistils. Transgenic analyses showed that removal of R II ubiquitination resulted in significantly reduced seed sets from cross-pollination and that of R I and R III to a lesser extent, indicating their increased cytotoxicity. Consistent with this, the mutated R II of PhS3 -RNase resulted in a marked reduction of its degradation, whereas that of R I and R III resulted in less reduction. Taken together, we demonstrate that PhS3 -RNase R II functions as a major ubiquitination region for its destruction and R I and R III as minor ones, revealing that its cytotoxicity is primarily restricted by a stepwise UPS mechanism for cross-pollination in P. hybrida.
Collapse
Affiliation(s)
- Hong Zhao
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yanzhai Song
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junhui Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yue Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huaqiu Huang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qun Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Yu’e Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental Biology, and The Innovation Academy of Seed DesignChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Beijing Institute of GenomicsChinese Academy of Sciences and National Centre for BioinformationBeijing100101China
- Jiangsu Co‐Innovation Centre for Modern Production Technology of Grain CropsYangzhou UniversityYangzhou225009China
| |
Collapse
|
3
|
Zakharova EV, Timofeeva GV, Fateev AD, Kovaleva LV. Caspase-like proteases and the phytohormone cytokinin as determinants of S-RNAse-based self-incompatibility-induced PCD in Petunia hybrida L. PROTOPLASMA 2021; 258:573-586. [PMID: 33230626 DOI: 10.1007/s00709-020-01587-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
S-RNAse-based self-incompatibility (SI) in petunia (Petunia hybrida L.) is a self-/non-self-recognition system underlying the pistil rejection of self-pollen. Using different methods, including a TUNEL assay, we have recently shown that programmed cell death (PCD) is a factor of the SI in petunia. Here, we show that the growth of self-incompatible pollen tubes in the style tissues during 4 h after pollination is accompanied by five-sixfold increase in a caspase-like protease (CLP) activity. Exogenous cytokinin (CK) inhibits the pollen tube growth and stimulates the CLP activity in compatible pollen tubes. The actin depolymerization with latrunculin B induces a sharp drop in the CLP activity in self-incompatible pollen tubes and its increase in compatible pollen tubes. Altogether, our results suggest that a CLP is involved in the SI-induced PCD and that CK is a putative activator of the CLP. We assume that CK provokes acidification of the cytosol and thus promotes the activation of a CLP. Thus, our results suggest that CK and CLP are involved in the S-RNAse-based SI-induced PCD in petunia. Potential relations between these components in PCD signaling are discussed.
Collapse
Affiliation(s)
| | - Galina V Timofeeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Arseny D Fateev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Kovaleva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021; 59:341-359. [PMID: 33779951 DOI: 10.1007/s12275-021-0650-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
5
|
Wu C, Gu Z, Li T, Yu J, Liu C, Fan W, Wang B, Jiang F, Zhang Q, Li W. The apple MdPTI1L kinase is phosphorylated by MdOXI1 during S-RNase-induced reactive oxygen species signaling in pollen tubes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110824. [PMID: 33691959 DOI: 10.1016/j.plantsci.2021.110824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Apple (Malus domestica) exhibits classic S-RNase-mediated gametophytic self-incompatibility. Previous studies have shown that the S-RNase secreted from style cells could trigger signal transduction and defense responses mediated by Ca2+ and reactive oxygen species (ROS) after entering into the pollen tube. In this study, we investigated the downstream genes activated by ROS during S-RNase-mediated gametophytic self-incompatibility in pollen tubes. A substantial increase in ROS, as well as up-regulated expression of a serine-threonine protein kinase gene, OXIDATIVE SIGNAL-INDUCIBLE1 (MdOXI1), was detected in apple pollen tubes treated with self-S-RNase. A kinase assay-linked phosphoproteomics (KALIP) analysis suggested that MdOXI1 could bind and phosphorylate the downstream protein kinase Pto-interacting protein 1-like (MdPTI1L). The phosphorylation level of MdPTI1L was significantly reduced after silencing MdOXI1 with antisense oligonucleotides in the pollen tube. Silencing of either MdOXI1 or MdPTI1L alleviated the inhibitory effect of self-S-RNase on pollen tube growth. Our results thus indicate that MdPTI1L is phosphorylated by MdOXI1 in the pollen tube and participates in the ROS signaling pathway triggered by S-RNase.
Collapse
Affiliation(s)
- Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenqi Fan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Baoan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021:10.1007/s12275-021-0650-3. [PMID: 33565052 DOI: 10.1007/s12275-021-0650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Kovaleva LV, Zakharova EV, Timofeeva GV, Andreev IM, Golivanov YY, Bogoutdinova LR, Baranova EN, Khaliluev MR. Aminooxyacetic acid (АОА), inhibitor of 1-aminocyclopropane-1-carboxilic acid (AСС) synthesis, suppresses self-incompatibility-induced programmed cell death in self-incompatible Petunia hybrida L. pollen tubes. PROTOPLASMA 2020; 257:213-227. [PMID: 31410589 DOI: 10.1007/s00709-019-01430-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Self-incompatibility (SI) is genetically determined reproductive barrier preventing inbreeding and thereby providing the maintenance of plant species diversity. At present, active studies of molecular bases of SI mechanisms are underway. S-RNAse-based SI in Petunia hybrida L. is a self-/non-self recognition system that allows the pistil to reject self pollen and to accept non-self pollen for outcrossing. In the present work, using fluorescent methods including the TUNEL method allowed us to reveal the presence of markers of programmed cell death (PCD), such as DNA fragmentation, in growing in vivo petunia pollen tubes during the passage of the SI reaction. The results of statistical analysis reliably proved that PCD is the factor of S-RNAse-based SI. It was found that preliminary treatment before self-pollination of stigmas of petunia self-incompatible line with aminooxyacetic acid (AOA), inhibitor of ACC synthesis, led to stimulation of pollen tubes growth when the latter did not exhibit any hallmarks of PCD. These data argue in favor of assumption that ethylene controls the passage of PCD in incompatible pollen tubes in the course of S-RNAse-based SI functioning. The involvement of the hormonal regulation in SI mechanism in P. hybrida L. is the finding observed by us for the first time.
Collapse
Affiliation(s)
- L V Kovaleva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia.
| | - E V Zakharova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya st. 42, Moscow, 127550, Russia
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya st. 49, Moscow, 127550, Russia
| | - G V Timofeeva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia
| | - I M Andreev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya st. 35, Moscow, 127276, Russia
| | - Ya Yu Golivanov
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya st. 49, Moscow, 127550, Russia
| | - L R Bogoutdinova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya st. 42, Moscow, 127550, Russia
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya st. 49, Moscow, 127550, Russia
| | - E N Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya st. 42, Moscow, 127550, Russia
| | - M R Khaliluev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya st. 42, Moscow, 127550, Russia
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya st. 49, Moscow, 127550, Russia
| |
Collapse
|
8
|
Zeng B, Wang J, Hao Q, Yu Z, Abudukayoumu A, Tang Y, Zhang X, Ma X. Identification of a Novel SBP1-Containing SCF SFB Complex in Wild Dwarf Almond ( Prunus tenella). Front Genet 2019; 10:1019. [PMID: 31708966 PMCID: PMC6823244 DOI: 10.3389/fgene.2019.01019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
S-RNase-based gametophytic self-incompatibility (SI), in which specificities of pistil and pollen are determined by S-RNase and the S locus F-box protein, respectively, has been discovered in the Solanaceae, Plantaginaceae, and Rosaceae families, but some underlying molecular mechanisms remain elusive and controversial. Previous studies discovered SI in wild dwarf almond (Prunus tenella), and pistil S (S-RNase) and pollen S (SFB) determinant genes have been investigated. However, the SCF (SKP1–Cullin1–F-box-Rbx1) complex, which serves as an E3 ubiquitin ligase on non-self S-RNase, has not been investigated. In the current study, PetSSK1 (SLF-interacting-SKP1-like1), SBP1 (S-RNase binding protein 1), CUL1, and SFB genes (S-haplotype-specific F-box) were identified in an accession (ZB1) of P. tenella. Yeast two-hybrid assays revealed interactions between PetSBP1 and PetCUL1 and between PetSBP1 and PetSFBs (SFB16 and SFB17), and subsequent pull-down assays confirmed these interactions, suggesting a novel SBP1-containing SCFSFB complex in wild dwarf almond. Moreover, despite a putative interaction between PetSSK1 and PetCUL1, we revealed that PetSSK1 does not interact with PetSFB16 or PetSFB17, and thus the canonical SSK1-containing SCFSFB complex could not be identified. This suggests a novel molecular mechanism of gametophytic SI in Prunus species.
Collapse
Affiliation(s)
- Bin Zeng
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| | - Jianyou Wang
- Department of Horticultural Crops, Xinjiang Branch of China Academy of Forestry Sciences, Urumqi, China
| | - Qing Hao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhenfan Yu
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| | - Ayimaiti Abudukayoumu
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| | - Yilian Tang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| | - Xiangfei Zhang
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| | - Xinxin Ma
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Department of Crop Genetics and Breeding, Sub-branch of National Melon and Fruit Improvement Centre, Urumqi, China
| |
Collapse
|
9
|
Claessen H, Keulemans W, Van de Poel B, De Storme N. Finding a Compatible Partner: Self-Incompatibility in European Pear ( Pyrus communis); Molecular Control, Genetic Determination, and Impact on Fertilization and Fruit Set. FRONTIERS IN PLANT SCIENCE 2019; 10:407. [PMID: 31057563 PMCID: PMC6477101 DOI: 10.3389/fpls.2019.00407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/18/2019] [Indexed: 05/25/2023]
Abstract
Pyrus species display a gametophytic self-incompatibility (GSI) system that actively prevents fertilization by self-pollen. The GSI mechanism in Pyrus is genetically controlled by a single locus, i.e., the S-locus, which includes at least two polymorphic and strongly linked S-determinant genes: a pistil-expressed S-RNase gene and a number of pollen-expressed SFBB genes (S-locus F-Box Brothers). Both the molecular basis of the SI mechanism and its functional expression have been widely studied in many Rosaceae fruit tree species with a particular focus on the characterization of the elusive SFBB genes and S-RNase alleles of economically important cultivars. Here, we discuss recent advances in the understanding of GSI in Pyrus and provide new insights into the mechanisms of GSI breakdown leading to self-fertilization and fruit set. Molecular analysis of S-genes in several self-compatible Pyrus cultivars has revealed mutations in both pistil- or pollen-specific parts that cause breakdown of self-incompatibility. This has significantly contributed to our understanding of the molecular and genetic mechanisms that underpin self-incompatibility. Moreover, the existence and development of self-compatible mutants open new perspectives for pear production and breeding. In this framework, possible consequences of self-fertilization on fruit set, development, and quality in pear are also reviewed.
Collapse
Affiliation(s)
- Hanne Claessen
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Wannes Keulemans
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Bram Van de Poel
- Laboratory for Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Li W, Meng D, Gu Z, Yang Q, Yuan H, Li Y, Chen Q, Yu J, Liu C, Li T. Apple S-RNase triggers inhibition of tRNA aminoacylation by interacting with a soluble inorganic pyrophosphatase in growing self-pollen tubes in vitro. THE NEW PHYTOLOGIST 2018; 218:579-593. [PMID: 29424440 DOI: 10.1111/nph.15028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 01/04/2018] [Indexed: 05/21/2023]
Abstract
Apple exhibits S-RNase-based self-incompatibility (SI), in which S-RNase plays a central role in rejecting self-pollen. It has been proposed that the arrest of pollen growth in SI of Solanaceae plants is a consequence of the degradation of pollen rRNA by S-RNase; however, the underlying mechanism in Rosaceae is still unclear. Here, we used S2 -RNase as a bait to screen an apple pollen cDNA library and characterized an apple soluble inorganic pyrophosphatase (MdPPa) that physically interacted with S-RNases. When treated with self S-RNases, apple pollen tubes showed a marked growth inhibition, as well as a decrease in endogenous soluble pyrophosphatase activity and elevated levels of inorganic pyrophosphate (PPi). In addition, S-RNase was found to bind to two variable regions of MdPPa, resulting in a noncompetitive inhibition of its activity. Silencing of MdPPa expression led to a reduction in pollen tube growth. Interestingly, tRNA aminoacylation was inhibited in self S-RNase-treated or MdPPa-silenced pollen tubes, resulting in the accumulation of uncharged tRNA. Furthermore, we provide evidence showing that this disturbance of tRNA aminoacylation is independent of RNase activity. We propose an alternative mechanism differing from RNA degradation to explain the cytotoxicity of the S-RNase apple SI process.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hui Yuan
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Chen Q, Meng D, Gu Z, Li W, Yuan H, Duan X, Yang Q, Li Y, Li T. SLFL Genes Participate in the Ubiquitination and Degradation Reaction of S-RNase in Self-compatible Peach. FRONTIERS IN PLANT SCIENCE 2018; 9:227. [PMID: 29520292 PMCID: PMC5826962 DOI: 10.3389/fpls.2018.00227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/07/2018] [Indexed: 05/23/2023]
Abstract
It has been proved that the gametophytic self-incompatibility (GSI), mainly exists in Rosaceae and Solanaceae, is controlled by S genes, which are two tightly linked genes located at highly polymorphic S-locus: the S-RNase for pistil specificity and the F-box gene (SFB/SLF) for pollen specificity, respectively. However, the roles of those genes in SI of peach are still a subject of extensive debate. In our study, we selected 37 representative varieties according to the evolution route of peach and identified their S genotypes. We cloned pollen determinant genes mutated PperSFB1m, PperSFB2m, PperSFB4m, and normal PperSFB2, and style determinant genes PperS1-RNase, PperS2-RNase, PperS2m-RNase, and PperS4-RNase. The mutated PperSFBs encode truncated SFB proteins due to a fragment insertion. The truncated PperSFBs and normal PperSFB2 interacted with PperS-RNases demonstrated by Y2H. Normal PperSFB2 was divided into four parts: box, box-V1, V1-V2, and HVa-HVb. The box domain of PperSFB2 did not interact with PperS-RNases, both of the box-V1 and V1-V2 had interactions with PperS-RNases, while the hypervariable region of PperSFB2 HVa-HVb only interacted with PperS2-RNase showed by Y2H and BiFC assay. Bioinformatics analysis of peach genome revealed that there were other F-box genes located at S-locus, and of which three F-box genes were specifically expressed in pollen, named as PperSLFL1, PperSLFL2, and PperSLFL3, respectively. In phylogenetic analysis PperSLFLs clustered with Maloideae SFBB genes, and PperSFB genes were clustered into the other group with other SFB genes of Prunus. Protein interaction analysis revealed that the three PperSLFLs interacted with PperSSK1 and PperS-RNases with no allelic specificity. In vitro ubiquitination assay showed that PperSLFLs could tag ubiquitin molecules onto PperS-RNases. The above results suggest that three PperSLFLs are the appropriate candidates for the "general inhibitor," which would inactivate the S-RNases in pollen tubes, involved in the self-incompatibility of peach.
Collapse
|
12
|
Matsumoto D, Tao R. Recognition of a wide-range of S-RNases by S locus F-box like 2, a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system. PLANT MOLECULAR BIOLOGY 2016; 91:459-69. [PMID: 27071402 DOI: 10.1007/s11103-016-0479-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/04/2016] [Indexed: 05/27/2023]
Abstract
Many species in the Rosaceae, the Solanaceae, and the Plantaginaceae exhibit S-RNase-based gametophytic self-incompatibility (GSI). This system comprises S-ribonucleases (S-RNases) as the pistil S determinant and a single or multiple F-box proteins as the pollen S determinants. In Prunus, pollen specificity is determined by a single S haplotype-specific F-box protein (SFB). The results of several studies suggested that SFB exerts cognate S-RNase cytotoxicity, and a hypothetical general inhibitor (GI) is assumed to detoxify S-RNases in non-specific manner unless it is affected by SFB. Although the identity of the GI is unknown, phylogenetic and evolutionary analyses have indicated that S locus F-box like 1-3 (or S locus F-box with low allelic sequence polymorphism 1-3; SLFL1-3), which are encoded by a region of the Prunus genome linked to the S locus, are good GI candidates. Here, we examined the biochemical characteristics of SLFL1-3 to determine whether they have appropriate GI characteristics. Pull-down assays and quantitative expression analyses indicated that Prunus avium SLFL1-3 mainly formed a canonical SCF complex with PavSSK1 and PavCul1A. Binding assays with PavS(1,3,4,6)-RNases showed that PavSLFL1, PavSLFL2, and PavSLFL3 bound to PavS(3)-RNase, all PavS-RNases tested, and none of the PavS-RNases tested, respectively. Together, these results suggested that SLFL2 has the appropriate characteristics to be the GI in sweet cherry pollen, while SLFL1 may redundantly work with SLFL2 to detoxify all S-RNases. We discuss the possible roles of SLFL1-3 as the GI in the Prunus-specific S-RNase-based GSI mechanism.
Collapse
Affiliation(s)
- Daiki Matsumoto
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
13
|
Zhang CC, Wang LY, Wei K, Wu LY, Li HL, Zhang F, Cheng H, Ni DJ. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genomics 2016; 17:359. [PMID: 27183979 PMCID: PMC4869358 DOI: 10.1186/s12864-016-2703-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Self-incompatibility (SI) is under genetic control and prevents inbreeding depression in angiosperms. SI mechanisms are quite complicated and still poorly understood in many plants. Tea (Camellia sinensis L.) belonging to the family of Theaceae, exhibits high levels of SI and high heterozygosity. Uncovering the molecular basis of SI of the tea plant may enhance breeding and simplify genomics research for the whole family. RESULTS The growth of pollen tubes following selfing and crossing was observed using fluorescence microscopy. Self-pollen tubes grew slower than cross treatments from 24 h to 72 h after pollination. RNA-seq was employed to explore the molecular mechanisms of SI and to identify SI-related genes in C. sinensis. Self and cross-pollinated styles were collected at 24 h, 48 h and 72 h after pollination. Six RNA-seq libraries (SP24, SP48, SP72, CP24 CP48 and CP72; SP = self-pollinated, CP = cross-pollinated) were constructed and separately sequenced. In total, 299.327 million raw reads were generated. Following assembly, 63,762 unigenes were identified, and 27,264 (42.76 %) unigenes were annotated in five public databases: NR, KOG, KEGG, Swiss-Port and GO. To identify SI-related genes, the fragments per kb per million mapped reads (FPKM) values of each unigene were evaluated. Comparisons of CP24 vs. SP24, CP48 vs. SP48 and CP72 vs. SP72 revealed differential expression of 3,182, 3,575 and 3,709 genes, respectively. Consequently, several ubiquitin-mediated proteolysis, Ca(2+) signaling, apoptosis and defense-associated genes were obtained. The temporal expression pattern of genes following CP and SP was analyzed; 6 peroxidase, 1 polyphenol oxidase and 7 salicylic acid biosynthetic process-related genes were identified. The RNA-seq data were validated by qRT-PCR of 15 unigenes. Finally, a unigene (CL25983Contig1) with strong homology to the S-RNase was analyzed. It was mainly expressed in styles, with dramatically higher expression in self-pollinated versus cross-pollinated tissues at 24 h post-pollination. CONCLUSIONS The present study reports the transcriptome of styles after cross- and self-pollination in tea and offers novel insights into the molecular mechanism behind SI in C. sinensis. We believe that this RNA-seq dataset will be useful for improvement in C. sinensis as well as other plants in the Theaceae family.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Li-Yuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Li-Yun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Hai-Lin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Fen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, 310008, China.
| | - De-Jiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
14
|
Rattanapisit K, Cho MH, Bhoo SH. Lysine 206 in Arabidopsis phytochrome A is the major site for ubiquitin-dependent protein degradation. J Biochem 2015; 159:161-9. [PMID: 26314334 DOI: 10.1093/jb/mvv085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/22/2015] [Indexed: 11/14/2022] Open
Abstract
Phytochrome A (phyA) is a light labile phytochrome that mediates plant development under red/far-red light condition. Degradation of phyA is initiated by red light-induced phyA-ubiquitin conjugation through the 26S proteasome pathway. The N-terminal of phyA is known to be important in phyA degradation. To determine the specific lysine residues in the N-terminal domain of phyA involved in light-induced ubiquitination and protein degradation, we aligned the amino acid sequence of the N-terminal domain of Arabidopsis phyA with those of phyA from other plant species. Based on the alignment results, phytochrome over-expressing Arabidopsis plants were generated. In particular, wild-type and mutant (substitutions of conserved lysines by arginines) phytochromes fused with GFP were expressed in phyA(-)211 Arabidopsis plants. Degradation kinetics of over-expressed phyA proteins revealed that degradation of the K206R phyA mutant protein was delayed. Delayed phyA degradation of the K206R phyA mutant protein resulted in reduction of red-light-induced phyA-ubiquitin conjugation. Furthermore, seedlings expressing the K206R phyA mutant protein showed an enhanced phyA response under far-red light, resulting in inhibition of hypocotyl elongation as well as cotyledon opening. Together, these results suggest that lysine 206 is the main lysine for rapid ubiquitination and protein degradation of Arabidopsis phytochrome A.
Collapse
Affiliation(s)
- Kaewta Rattanapisit
- Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 17104, Korea
| | - Man-Ho Cho
- Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 17104, Korea
| | - Seong Hee Bhoo
- Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
15
|
Williams JS, Wu L, Li S, Sun P, Kao TH. Insight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions. FRONTIERS IN PLANT SCIENCE 2015; 6:41. [PMID: 25699069 PMCID: PMC4318427 DOI: 10.3389/fpls.2015.00041] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/15/2015] [Indexed: 05/29/2023]
Abstract
S-RNase-based self-incompatibility in Petunia is a self/non-self recognition system that allows the pistil to reject self-pollen to prevent inbreeding and to accept non-self pollen for outcrossing. Cloning of S-RNase in 1986 marked the beginning of nearly three decades of intensive research into the mechanism of this complex system. S-RNase was shown to be the sole female determinant in 1994, and the first male determinant, S-locus F-box protein1 (SLF1), was identified in 2004. It was discovered in 2010 that additional SLF proteins are involved in pollen specificity, and recently two S-haplotypes of Petunia inflata were found to possess 17 SLF genes based on pollen transcriptome analysis, further increasing the complexity of the system. Here, we first summarize the current understanding of how the interplay between SLF proteins and S-RNase in the pollen tube allows cross-compatible pollination, but results in self-incompatible pollination. We then discuss some of the aspects that are not yet elucidated, including uptake of S-RNase into the pollen tube, nature, and assembly of SLF-containing complexes, the biochemical basis for differential interactions between SLF proteins and S-RNase, and fate of non-self S-RNases in the pollen tube.
Collapse
Affiliation(s)
- Justin S. Williams
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Lihua Wu
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Shu Li
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Penglin Sun
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Teh-Hui Kao
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
16
|
Yuan H, Meng D, Gu Z, Li W, Wang A, Yang Q, Zhu Y, Li T. A novel gene, MdSSK1, as a component of the SCF complex rather than MdSBP1 can mediate the ubiquitination of S-RNase in apple. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3121-31. [PMID: 24759884 PMCID: PMC4071834 DOI: 10.1093/jxb/eru164] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As a core factor in S-RNase-based gametophytic self-incompatibility (GSI), the SCF (SKP1-Cullin1-F-box-Rbx1) complex (including pollen determinant SLF, S-locus-F-box) functions as an E3 ubiquitin ligase on non-self S-RNase. The SCF complex is formed by SKP1 bridging between SLF, CUL1, and Rbx1; however, it is not known whether an SCF complex lacking SKP1 can mediate the ubiquitination of S-RNase. Three SKP1-like genes from pollen were cloned based on the structural features of the SLF-interacting-SKP1-like (SSK) gene and the 'Golden Delicious' apple genome. These genes have a motif of five amino acids following the standard 'WAFE' at the C terminal and, in addition, contain eight sheets and two helices. All three genes were expressed exclusively in pollen. In the yeast two-hybrid and pull-down assays only one was found to interact with MdSFBB and MdCUL1, suggesting it is the SLF-interacting SKP1-like gene in apple which was named MdSSK1. In vitro experiments using MdSSK1, S2-MdSFBB1 (S2-Malus domestica S-locus-F-box brother) and MdCUL1 proteins incubated with S 2-RNase and ubiquitin revealed that the SCF complex ubiquitinylates S-RNase in vitro, while MdSBP1 (Malus domestica S-RNase binding protein 1) could not functionally replace MdSSK1 in the SCF complex in ubiquitinylating S-RNase. According to the above experiments, MdSBP1 is probably the only factor responsible for recognition with S-RNase, while not a component of the SCF complex, and an SCF complex containing MdSSK1 is required for mediating the ubiquitination of S-RNase.
Collapse
Affiliation(s)
- Hui Yuan
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Aide Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Yuandi Zhu
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Entani T, Kubo KI, Isogai S, Fukao Y, Shirakawa M, Isogai A, Takayama S. Ubiquitin-proteasome-mediated degradation of S-RNase in a solanaceous cross-compatibility reaction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:1014-21. [PMID: 24689760 DOI: 10.1111/tpj.12528] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 05/10/2023]
Abstract
Many plants have a self-incompatibility (SI) system in which the rejection of self-pollen is determined by multiple haplotypes at a single locus, termed S. In the Solanaceae, each haplotype encodes a single ribonuclease (S-RNase) and multiple S-locus F-box proteins (SLFs), which function as the pistil and pollen SI determinants, respectively. S-RNase is cytotoxic to self-pollen, whereas SLFs are thought to collaboratively recognize non-self S-RNases in cross-pollen and detoxify them via the ubiquitination pathway. However, the actual mechanism of detoxification remains unknown. Here we isolate the components of a SCF(SLF) (SCF = SKP1-CUL1-F-box-RBX1) from Petunia pollen. The SCF(SLF) polyubiquitinates a subset of non-self S-RNases in vitro. The polyubiquitinated S-RNases are degraded in the pollen extract, which is attenuated by a proteasome inhibitor. Our findings suggest that multiple SCF(SLF) complexes in cross-pollen polyubiquitinate non-self S-RNases, resulting in their degradation by the proteasome.
Collapse
Affiliation(s)
- Tetsuyuki Entani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Li S, Sun P, Williams JS, Kao TH. Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata. PLANT REPRODUCTION 2014; 27:31-45. [PMID: 24381071 DOI: 10.1007/s00497-013-0238-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/17/2013] [Indexed: 05/10/2023]
Abstract
The polymorphic S-locus regulating self-incompatibility (SI) in Petunia contains the S-RNase gene and a number of S-locus F-box (SLF) genes. While penetrating the style through the stigma, a pollen tube takes up all S-RNases, but only self S-RNase inhibits pollen tube growth. Recent evidence suggests that SLFs produced by pollen collectively interact with and detoxify non-self S-RNases, but none can interact with self S-RNase. An SLF may be the F-box protein component of an SCF complex (containing Cullin1, Skp1 and Rbx1), which mediates ubiquitination of protein substrates for degradation by the 26S proteasome. However, the precise nature of the complex is unknown. We used pollen extracts of a transgenic plant over-expressing GFP-fused S2-SLF1 (SLF1 of S 2-haplotype) for co-immunoprecipitation (Co-IP) followed by mass spectrometry (MS). We identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (an Rbx1). To validate the results, we raised transgenic plants over-expressing PiSSK1:FLAG:GFP and used pollen extracts for Co-IP-MS. The results confirmed the presence of PiCUL1-P and PiRBX1 in the complex and identified two different SLFs as the F-box protein component. Thus, all but Rbx1 of the complex may have evolved in SI, and all SLFs may be the F-box component of similar complexes.
Collapse
Affiliation(s)
- Shu Li
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | | |
Collapse
|
19
|
Soulard J, Qin X, Boivin N, Morse D, Cappadocia M. A new dual-specific incompatibility allele revealed by absence of glycosylation in the conserved C2 site of a Solanum chacoense S-RNase. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1995-2003. [PMID: 23530129 PMCID: PMC3638826 DOI: 10.1093/jxb/ert059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The stylar determinant of gametophytic self-incompatibility (GSI) in Solanaceae, Rosaceae, and Plantaginaceae is an S-RNase encoded by a multiallelic S-locus. The primary structure of S-RNases shows five conserved (C) and two hypervariable (HV) regions, the latter forming a domain implicated in S-haplotype-specific recognition of the pollen determinant to SI. All S-RNases are glycosylated at a conserved site in the C2 region, although previous studies have shown that N-linked glycans at this position are not required for S-haplotype-specific recognition and pollen rejection. Here the incompatibility phenotype of three constructs derived from an originally monoglycosylated S11-RNase of Solanum chacoense, that were designed to explore the role of the HV domain in determining pollen recognition and the role of the N-linked glycan in the C2 region, is reported. In one series of experiments, a second glycosylation site was introduced in the HVa region to test for inhibition of pollen-specific recognition. This modification does not impede pollen rejection, although analysis shows incomplete glycosylation at the new site in the HVa region. A second construct, designed to permit complete glycosylation at the HVa site by suppression of the conserved site in the C2 region, did increase the degree of site occupancy, but, again, glycosylation was incomplete. Plants expressing this construct rejected S 11 pollen and, surprisingly, also rejected S 13 pollen, thus displaying an unusual dual specificity phenotype. This construct differs from the first by the absence of the conserved C2 glycosylation site, and thus the dual specificity is observed only in the absence of the C2 glycan. A third construct, completely lacking glycosylation sites, conferred an ability to reject only S 11 pollen, disproving the hypothesis that lack of a conserved glycan would confer a universal pollen rejection phenotype to the plant.
Collapse
|
20
|
Xu C, Li M, Wu J, Guo H, Li Q, Zhang Y, Chai J, Li T, Xue Y. Identification of a canonical SCF(SLF) complex involved in S-RNase-based self-incompatibility of Pyrus (Rosaceae). PLANT MOLECULAR BIOLOGY 2013; 81:245-57. [PMID: 23263858 DOI: 10.1007/s11103-012-9995-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/05/2012] [Indexed: 05/10/2023]
Abstract
S-RNase-based self-incompatibility (SI) is an intraspecific reproductive barrier to prevent self-fertilization found in many species of the Solanaceae, Plantaginaceae and Rosaceae. In this system, S-RNase and SLF/SFB (S-locus F-box) genes have been shown to control the pistil and pollen SI specificity, respectively. Recent studies have shown that the SLF functions as a substrate receptor of a SCF (Skp1/Cullin1/F-box)-type E3 ubiquitin ligase complex to target S-RNases in Solanaceae and Plantaginaceae, but its role in Rosaceae remains largely undefined. Here we report the identification of two pollen-specific SLF-interacting Skp1-like (SSK) proteins, PbSSK1 and PbSSK2, in Pyrus bretschneideri from the tribe Pyreae of Rosaceae. Both yeast two-hybrid and pull-down assays demonstrated that they could connect PbSLFs to PbCUL1 to form a putative canonical SCF(SLF) (SSK/CUL1/SLF) complex in Pyrus. Furthermore, pull-down assays showed that the SSK proteins could bind SLF and CUL1 in a cross-species manner between Pyrus and Petunia. Additionally, phylogenetic analysis revealed that the SSK-like proteins from Solanaceae, Plantaginaceae and Rosaceae form a monoclade group, hinting their shared evolutionary origin. Taken together, with the recent identification of a canonical SCF(SFB) complex in Prunus of the tribe Amygdaleae of Rosaceae, our results show that a conserved canonical SCF(SLF/SFB) complex is present in Solanaceae, Plantaginaceae and Rosaceae, implying that S-RNase-based self-incompatibility shares a similar molecular and biochemical mechanism.
Collapse
Affiliation(s)
- Chi Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Matsumoto D, Yamane H, Abe K, Tao R. Identification of a Skp1-like protein interacting with SFB, the pollen S determinant of the gametophytic self-incompatibility in Prunus. PLANT PHYSIOLOGY 2012; 159:1252-62. [PMID: 22548785 PMCID: PMC3387707 DOI: 10.1104/pp.112.197343] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/26/2012] [Indexed: 05/23/2023]
Abstract
Many species in Rosaceae, Solanaceae, and Plantaginaceae exhibit S-RNase-based self-incompatibility (SI). In this system, the pistil and pollen specificities are determined by S-RNase and the S locus F-box protein, respectively. The pollen S determinant F-box protein in Prunus (Rosaceae) is referred to by two different terms, SFB (for S-haplotype-specific F-box protein) and SLF (for S locus F box), whereas it is called SLF in Solanaceae and Plantaginaceae. Prunus SFB is thought to be a molecule indispensable for its cognate S-RNase to exert cytotoxicity and to arrest pollen tube growth in incompatible reactions. Although recent studies have demonstrated the molecular function of SCF(SLF) in the SI reaction of Solanaceae and Plantaginaceae, how SFB participates in the Prunus SI mechanism remains to be elucidated. Here we report the identification of sweet cherry (Prunus avium) SFB (PavSFB)-interacting Skp1-like1 (PavSSK1) using a yeast (Saccharomyces cerevisiae) two-hybrid screening against the pollen cDNA library. Phylogenetic analysis showed that PavSSK1 belongs to the same clade as Antirrhinum hispanicum SLF-interacting Skp1-like1 and Petunia hybrida SLF-interacting Skp1-like1 (PhSSK1). In yeast, PavSSK1 interacted not only with PavSFBs from different S haplotypes and Cullin1-likes (PavCul1s), but also with S-locus F-box-likes. A pull-down assay confirmed the interactions between PavSSK1 and PavSFB and between PavSSK1 and PavCul1s. These results collectively indicate that PavSSK1 could be a functional component of the SCF complex and that PavSFB may function as a component of the SCF complex. We discuss the molecular function of PavSFB in self-/nonself-recognition in the gametophytic SI of Prunus.
Collapse
|
22
|
A time course of GFP expression and mRNA stability in pollen tubes following compatible and incompatible pollinations in Solanum chacoense. SEXUAL PLANT REPRODUCTION 2012; 25:205-13. [PMID: 22729827 DOI: 10.1007/s00497-012-0192-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
The self-incompatibility (SI) reaction in the Solanaceae involves molecular recognition of stylar haplotypes by pollen and is mediated by the S-locus from which a stylar-localized S-RNase and several pollen-localized F-box proteins are expressed. S-RNase activity has been previously shown to be essential for the SI reaction, leading to the hypothesis that pollen rejection in incompatible crosses is due to degradation of pollen RNA. We used pollen expressing the fluorescent marker GFP, driven by the LAT52 promoter, to monitor the accumulation of mRNA and protein in pollen after compatible and incompatible pollinations. We find that GFP mRNA and protein gradually accumulate in pollen tubes until at least 18-h post-pollination and, up to this time, are only slightly more abundant in compatible compared with incompatible crosses. However, between 18- and 24-h post-pollination, pollen tube GFP mRNA and protein levels show a dramatic increase in compatible crosses and either remain constant or decrease in incompatible crosses. In contrast to these molecular correlates, the growth rates of compatible and incompatible pollen tubes begin to differ after 6-h post-pollination. We interpret the changes in growth rate at 6-h post-pollination as the previously described transition from autotrophic to heterotrophic growth. Thus, while pollen rejection is generally considered to result from the cytotoxic effects of S-RNase activity, this time course reveals that a difference in the growth rate of compatible and incompatible pollen appears prior to any marked effects on at least some types of pollen RNA.
Collapse
|
23
|
McClure B, Cruz-García F, Romero C. Compatibility and incompatibility in S-RNase-based systems. ANNALS OF BOTANY 2011; 108:647-58. [PMID: 21803740 PMCID: PMC3170157 DOI: 10.1093/aob/mcr179] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 06/02/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND S-RNase-based self-incompatibility (SI) occurs in the Solanaceae, Rosaceae and Plantaginaceae. In all three families, compatibility is controlled by a polymorphic S-locus encoding at least two genes. S-RNases determine the specificity of pollen rejection in the pistil, and S-locus F-box proteins fulfill this function in pollen. S-RNases are thought to function as S-specific cytotoxins as well as recognition proteins. Thus, incompatibility results from the cytotoxic activity of S-RNase, while compatible pollen tubes evade S-RNase cytotoxicity. SCOPE The S-specificity determinants are known, but many questions remain. In this review, the genetics of SI are introduced and the characteristics of S-RNases and pollen F-box proteins are briefly described. A variety of modifier genes also required for SI are also reviewed. Mutations affecting compatibility in pollen are especially important for defining models of compatibility and incompatibility. In Solanaceae, pollen-side mutations causing breakdown in SI have been attributed to the heteroallelic pollen effect, but a mutation in Solanum chacoense may be an exception. This has been interpreted to mean that pollen incompatibility is the default condition unless the S-locus F-box protein confers resistance to S-RNase. In Prunus, however, S-locus F-box protein gene mutations clearly cause compatibility. CONCLUSIONS Two alternative mechanisms have been proposed to explain compatibility and incompatibility: compatibility is explained either as a result of either degradation of non-self S-RNase or by its compartmentalization so that it does not have access to the pollen tube cytoplasm. These models are not necessarily mutually exclusive, but each makes different predictions about whether pollen compatibility or incompatibility is the default. As more factors required for SI are identified and characterized, it will be possible to determine the role each process plays in S-RNase-based SI.
Collapse
Affiliation(s)
- Bruce McClure
- Department of Biochemistry, Interdisciplinary Plant Group, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
24
|
Abstract
BACKGROUND For the Solanaceae-type self-incompatibility, also possessed by Rosaceae and Plantaginaceae, the specificity of self/non-self interactions between pollen and pistil is controlled by two polymorphic genes at the S-locus: the S-locus F-box gene (SLF or SFB) controls pollen specificity and the S-RNase gene controls pistil specificity. SCOPE This review focuses on the work from the authors' laboratory using Petunia inflata (Solanaceae) as a model. Here, recent results on the identification and functional studies of S-RNase and SLF are summarized and a protein-degradation model is proposed to explain the biochemical mechanism for specific rejection of self-pollen tubes by the pistil. CONCLUSIONS The protein-degradation model invokes specific degradation of non-self S-RNases in the pollen tube mediated by an SLF, and can explain compatible versus incompatible pollination and the phenomenon of competitive interaction, where SI breaks down in pollen carrying two different S-alleles. In Solanaceae, Plantaginaceae and subfamily Maloideae of Rosaceae, there also exist multiple S-locus-linked SLF/SFB-like genes that potentially function as the pollen S-gene. To date, only three such genes, all in P. inflata, have been examined, and they do not function as the pollen S-gene in the S-genotype backgrounds tested. Interestingly, subfamily Prunoideae of Rosaceae appears to possess only a single SLF/SFB gene, and competitive interaction, observed in Solanaceae, Plantaginaceae and subfamily Maloideae, has not been observed. Thus, although the cytotoxic function of S-RNase is an integral part of SI in Solanaceae, Plantaginaceae and Rosaceae, the function of SLF/SFB may have diverged. This highlights the complexity of the S-RNase-based SI mechanism. The review concludes by discussing some key experiments that will further advance our understanding of this self/non-self discrimination mechanism.
Collapse
Affiliation(s)
- Xiaoying Meng
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Penglin Sun
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Teh-hui Kao
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- For correspondence. E-mail
| |
Collapse
|
25
|
Abstract
The posttranslational addition of ubiquitin (Ub) helps control the half-life, localization, and action of many intracellular plant proteins. A primary function is the degradation of ubiquitylated proteins by the 26S proteasome, which in turn plays important housekeeping and regulatory roles by removing aberrant polypeptides and various normal short-lived regulators. Strikingly, both genetic and genomic studies reveal that Ub conjugation is extraordinarily complex in plants, with more than 1500 Ub-protein ligases (or E3s) possible that could direct the final transfer of the Ub moiety to an equally large number of targets. The cullin-RING ligases (CRLs) are a highly polymorphic E3 collection composed of a cullin backbone onto which binds carriers of activated Ub and a diverse assortment of adaptors that recruit appropriate substrates for ubiquitylation. Here, we review our current understanding of the organization and structure of CRLs in plants and their dynamics, substrates, potential functions, and evolution. The importance of CRLs is exemplified by their ability to serve as sensors of hormones and light; their essential participation in various signaling pathways; their control of the cell cycle, transcription, the stress response, self-incompatibility, and pathogen defense; and their dramatically divergent evolutionary histories in many plant lineages. Given both their organizational complexities and their critical influences, CRLs likely impact most, if not all, aspects of plant biology.
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706-1574, USA.
| | | |
Collapse
|
26
|
Fields AM, Wang N, Hua Z, Meng X, Kao TH. Functional characterization of two chimeric proteins between a Petunia inflata S-locus F-box protein, PiSLF2, and a PiSLF-like protein, PiSLFLb-S2. PLANT MOLECULAR BIOLOGY 2010; 74:279-92. [PMID: 20700627 DOI: 10.1007/s11103-010-9672-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/26/2010] [Indexed: 05/10/2023]
Abstract
Self-incompatible solanaceous species possess the S-RNase and SLF (S-locus F-box) genes at the highly polymorphic S-locus, and their products mediate S-haplotype-specific rejection of pollen tubes in the style. After a pollen tube grows into the style, the S-RNases produced in the style are taken up; however, only self S-RNase (product of the matching S-haplotype) can inhibit the subsequent growth of the pollen tube. Based on the finding that non-self interactions between PiSLF (Petunia inflata SLF) and S-RNase are stronger than self-interactions, and based on the biochemical properties of PiSLF, we previously proposed that a PiSLF preferentially interacts with its non-self S-RNases to mediate their ubiquitination and degradation, thereby only allowing self S-RNase to exert its cytotoxic function. We further divided PiSLF into three potential Functional Domains (FDs), FD1-FD3, based on sequence comparison of PiSLF and PiSLF-like proteins, and based on S-RNase-binding properties of these proteins and various truncated forms of PiSLF(2) (S(2) allelic variant of PiSLF). In this work, we examined the in vivo function of FD2, which we proposed to be responsible for strong, general interactions between PiSLF and S-RNase. We swapped FD2 of PiSLF(2) with the corresponding region of PiSLFLb-S(2) (S(2) allelic variant of a PiSLF-like protein), and expressed GFP-fused chimeric proteins, named b-2-b and 2-b-2, in S(2) S(3) transgenic plants. We showed that neither chimeric protein retained the SI function of PiSLF(2), suggesting that FD2 is necessary, but not sufficient, for the function of PiSLF. Moreover, since we previously found that b-2-b and 2-b-2 only interacted with S(3)-RNase ~50 and ~30%, respectively, as strongly as did PiSLF(2) in vitro, their inability to function as PiSLF(2) is also consistent with our model predicating on strong interaction between a PiSLF and its non-self S-RNases as part of the biochemical basis for S-haplotype-specific rejection of pollen tubes.
Collapse
Affiliation(s)
- Allison M Fields
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 403 Althouse Lab, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
27
|
Evolutionary patterns at the RNase based gametophytic self - incompatibility system in two divergent Rosaceae groups (Maloideae and Prunus). BMC Evol Biol 2010; 10:200. [PMID: 20584298 PMCID: PMC2909234 DOI: 10.1186/1471-2148-10-200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 06/28/2010] [Indexed: 11/10/2022] Open
Abstract
Background Within Rosaceae, the RNase based gametophytic self-incompatibility (GSI) system has been studied at the molecular level in Maloideae and Prunus species that have been diverging for, at least, 32 million years. In order to understand RNase based GSI evolution within this family, comparative studies must be performed, using similar methodologies. Result It is here shown that many features are shared between the two species groups such as levels of recombination at the S-RNase (the S-pistil component) gene, and the rate at which new specificities arise. Nevertheless, important differences are found regarding the number of ancestral lineages and the degree of specificity sharing between closely related species. In Maloideae, about 17% of the amino acid positions at the S-RNase protein are found to be positively selected, and they occupy about 30% of the exposed protein surface. Positively selected amino acid sites are shown to be located on either side of the active site cleft, an observation that is compatible with current models of specificity determination. At positively selected amino acid sites, non-conservative changes are almost as frequent as conservative changes. There is no evidence that at these sites the most drastic amino acid changes may be more strongly selected. Conclusions Many similarities are found between the GSI system of Prunus and Maloideae that are compatible with the single origin hypothesis for RNase based GSI. The presence of common features such as the location of positively selected amino acid sites and lysine residues that may be important for ubiquitylation, raise a number of issues that, in principle, can be experimentally addressed in Maloideae. Nevertheless, there are also many important differences between the two Rosaceae GSI systems. How such features changed during evolution remains a puzzling issue.
Collapse
|
28
|
Chen G, Zhang B, Zhao Z, Sui Z, Zhang H, Xue Y. 'A life or death decision' for pollen tubes in S-RNase-based self-incompatibility. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2027-2037. [PMID: 20042540 DOI: 10.1093/jxb/erp381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mate choice is an essential process during sexual plant reproduction, in which self-incompatibility (SI) is widely adopted as an intraspecific reproductive barrier to inhibit self-fertilization by many flowering plants. Genetic studies show that a single polymorphic S-locus, encoding at least two components from both the pollen and pistil sides, controls the discrimination of self and non-self pollen. In the Solanaceae, Plantaginaceae, and Rosaceae, an S-RNase-based SI mechanism is involved in such a discrimination process. Recent studies have provided some important clues to how a decision is made to accept cross pollen or specifically to reject self pollen. In this review, the molecular features of the pistil and pollen S-specificity factors are briefly summarized and then our current knowledge of the molecular control of cross-pollen compatibility (CPC) and self-pollen incompatibility (SPI) responses, respectively, is presented. The possible biochemical mechanisms of the specificity determinant between the pistil and pollen S factors are discussed and a hypothetical S-RNase endosome sorting model is proposed to illustrate the distinct destinies of pollen tubes following compatible and incompatible pollination.
Collapse
Affiliation(s)
- Guang Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
29
|
Zhao L, Huang J, Zhao Z, Li Q, Sims TL, Xue Y. The Skp1-like protein SSK1 is required for cross-pollen compatibility in S-RNase-based self-incompatibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:52-63. [PMID: 20070569 DOI: 10.1111/j.1365-313x.2010.04123.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The self-incompatibility (SI) response occurs widely in flowering plants as a means of preventing self-fertilization. In these self/non-self discrimination systems, plant pistils reject self or genetically related pollen. In the Solanaceae, Plantaginaceae and Rosaceae, pistil-secreted S-RNases enter the pollen tube and function as cytotoxins to specifically arrest self-pollen tube growth. Recent studies have revealed that the S-locus F-box (SLF) protein controls the pollen expression of SI in these families. However, the precise role of SLF remains largely unknown. Here we report that PhSSK1 (Petunia hybrida SLF-interacting Skp1-like1), an equivalent of AhSSK1 of Antirrhinum hispanicum, is expressed specifically in pollen and acts as an adaptor in an SCF(Skp1-Cullin1-F-box)(SLF) complex, indicating that this pollen-specific SSK1-SLF interaction occurs in both Petunia and Antirrhinum, two species from the Solanaceae and Plantaginaceae, respectively. Substantial reduction of PhSSK1 in pollen reduced cross-pollen compatibility (CPC) in the S-RNase-based SI response, suggesting that the pollen S determinant contributes to inhibiting rather than protecting the S-RNase activity, at least in solanaceous plants. Furthermore, our results provide an example that a specific Skp1-like protein other than the known conserved ones can be recruited into a canonical SCF complex as an adaptor.
Collapse
Affiliation(s)
- Lan Zhao
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
30
|
Dielen AS, Badaoui S, Candresse T, German-Retana S. The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game. MOLECULAR PLANT PATHOLOGY 2010; 11:293-308. [PMID: 20447278 PMCID: PMC6640532 DOI: 10.1111/j.1364-3703.2009.00596.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ubiquitin/26S proteasome system (UPS) plays a central role in plant protein degradation. Over the past few years, the importance of this pathway in plant-pathogen interactions has been increasingly highlighted. UPS is involved in almost every step of the defence mechanisms in plants, regardless of the type of pathogen. In addition to its proteolytic activities, UPS, through its 20S RNase activity, may be part of a still unknown antiviral defence pathway. Strikingly, UPS is not only a weapon used by plants to defend themselves, but also a target for some pathogens that have evolved mechanisms to inhibit and/or use this system for their own purposes. This article attempts to summarize the current knowledge on UPS involvement in plant-microbe interactions, a complex scheme that illustrates the never-ending arms race between hosts and microbes.
Collapse
Affiliation(s)
- Anne-Sophie Dielen
- Interactions Plante-Virus, UMR GDPP 1090, INRA Université de Bordeaux 2, BP 81, F-33883 Villenave d'Ornon Cedex, France
| | | | | | | |
Collapse
|
31
|
Meng X, Hua Z, Wang N, Fields AM, Dowd PE, Kao TH. Ectopic expression of S-RNase of Petunia inflata in pollen results in its sequestration and non-cytotoxic function. ACTA ACUST UNITED AC 2009; 22:263-75. [PMID: 20033448 DOI: 10.1007/s00497-009-0114-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/21/2009] [Indexed: 11/28/2022]
Abstract
The specificity of S-RNase-based self-incompatibility (SI) is controlled by two S-locus genes, the pistil S-RNase gene and the pollen S-locus-F-box gene. S-RNase is synthesized in the transmitting cell; its signal peptide is cleaved off during secretion into the transmitting tract; and the mature "S-RNase", the subject of this study, is taken up by growing pollen tubes via an as-yet unknown mechanism. Upon uptake, S-RNase is sequestered in a vacuolar compartment in both non-self (compatible) and self (incompatible) pollen tubes, and the subsequent disruption of this compartment in incompatible pollen tubes correlates with the onset of the SI response. How the S-RNase-containing compartment is specifically disrupted in incompatible pollen tubes, however, is unknown. Here, we circumvented the uptake step of S-RNase by directly expressing S(2)-RNase, S(3)-RNase and non-glycosylated S(3)-RNase of Petunia inflata, with green fluorescent protein (GFP) fused at the C-terminus of each protein, in self (incompatible) and non-self (compatible) pollen of transgenic plants. We found that none of these ectopically expressed S-RNases affected the viability or the SI behavior of their self or non-self-pollen/pollen tubes. Based on GFP fluorescence of in vitro-germinated pollen tubes, all were sequestered in both self and non-self-pollen tubes. Moreover, the S-RNase-containing compartment was dynamic in living pollen tubes, with movement dependent on the actin-myosin-based molecular motor system. All these results suggest that glycosylation is not required for sequestration of S-RNase expressed in pollen tubes, and that the cytosol of pollen is the site of the cytotoxic action of S-RNase in SI.
Collapse
Affiliation(s)
- Xiaoying Meng
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
32
|
Xue Y, Zhang Y, Yang Q, Li Q, Cheng Z, Dickinson HG. Genetic features of a pollen-part mutation suggest an inhibitory role for the Antirrhinum pollen self-incompatibility determinant. PLANT MOLECULAR BIOLOGY 2009; 70:499-509. [PMID: 19360476 DOI: 10.1007/s11103-009-9487-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 03/29/2009] [Indexed: 05/27/2023]
Abstract
Self-incompatibility (SI), an important barrier to inbreeding in flowering plants, is controlled in many species by a single polymorphic S-locus. In the Solanaceae, two tightly linked S-locus genes, S-RNase and SLF (S-locus F-box)/SFB (S-haplotype-specific F-box), control SI expression in pistil and pollen, respectively. The pollen S-determinant appears to function to inhibit all but self S-RNase in the Solanaceae, but its genetic function in the closely-related Plantaginaceae remains equivocal. We have employed transposon mutagenesis in a member of the Plantaginaceae (Antirrhinum) to generate a pollen-part SI-breakdown mutant Pma1 (Pollen-part mutation in Antirrhinum1). Molecular genetic analyses showed that an extra telocentric chromosome containing AhSLF-S ( 1 ) is present in its self-compatible but not in its SI progeny. Furthermore, analysis of the effects of selection revealed positive selection acting on both SLFs and SFBs, but with a stronger purifying selection on SLFs. Taken together, our results suggest an inhibitor role of the pollen S in the Plantaginaceae (as represented by Antirrhinum), similar to that found in the Solanaceae. The implication of these findings is discussed in the context of S-locus evolution in flowering plants.
Collapse
Affiliation(s)
- Yongbiao Xue
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, West Lincui Road, Chaoyang District, Beijing, China.
| | | | | | | | | | | |
Collapse
|
33
|
Liu B, Morse D, Cappadocia M. Compatible pollinations in Solanum chacoense decrease both S-RNase and S-RNase mRNA. PLoS One 2009; 4:e5774. [PMID: 19492064 PMCID: PMC2686617 DOI: 10.1371/journal.pone.0005774] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 05/05/2009] [Indexed: 11/22/2022] Open
Abstract
Gametophytic self-incompatibility (GSI) allows plants to block fertilization by haploid pollen whose S-allele constitution matches one of the two S-alleles in the diploid styles. GSI in Solanum chacoense requires a stylar S-RNase, first secreted from cells of the transmitting tract then imported into incompatible (self) pollen tubes. However, the molecular mechanisms allowing compatible pollen to evade S-RNase attack are less clear, as compatible pollen tubes also import S-RNase. Using styles of the same age and size in order to lower the degree of inter-style variability in S-RNase levels, we observe reduction of up to 30% of the total non-self stylar S-RNase in vivo during compatible crosses, whereas no degradation of self S-RNases is detected. This marked difference in stylar S-RNase levels dovetails with measurements of pollen-specific Lat52 mRNA, which decreases four-fold in incompatible compared to compatible crosses. Unexpectedly, we also find evidence for a reciprocal signaling mechanism from compatible pollen to the cells of the transmitting tract that results in a roughly three-fold decrease in S-RNase transcript levels. These findings reveal a previously unsuspected feedback loop that may help reinforce the compatible reaction.
Collapse
Affiliation(s)
- Bolin Liu
- Institut de Recherche en Biologie Végétale (IRBV), Biology Department, University of Montreal, Montreal, Québec, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale (IRBV), Biology Department, University of Montreal, Montreal, Québec, Canada
| | - Mario Cappadocia
- Institut de Recherche en Biologie Végétale (IRBV), Biology Department, University of Montreal, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
34
|
Lee CB, Kim S, McClure B. A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane system. PLANT PHYSIOLOGY 2009; 149:791-802. [PMID: 19098095 PMCID: PMC2633847 DOI: 10.1104/pp.108.127936] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 12/18/2008] [Indexed: 05/21/2023]
Abstract
As pollen tubes grow toward the ovary, they are in constant contact with the pistil extracellular matrix (ECM). ECM components are taken up during growth, and some pistil molecules exert their effect inside the pollen tube. For instance, the Nicotiana alata 120-kD glycoprotein (120K) is an abundant arabinogalactan protein that is taken up from the ECM; it has been detected in association with pollen tube vacuoles, but the transport pathway between these compartments is unknown. We recently identified a pollen C2 domain-containing protein (NaPCCP) that binds to the carboxyl-terminal domain of 120K. As C2 domain proteins mediate protein-lipid interactions, NaPCCP could function in intracellular transport of 120K in pollen tubes. Here, we describe binding studies showing that the NaPCCP C2 domain is functional and that binding is specific for phosphatidylinositol 3-phosphate. Subcellular fractionation, immunolocalization, and live imaging results show that NaPCCP is associated with the plasma membrane and internal pollen tube vesicles. Colocalization between an NaPCCPgreen fluorescent protein fusion and internalized FM4-64 suggest an association with the endosomal system. NaPCCP localization is altered in pollen tubes rejected by the self-incompatibility mechanism, but our hypothesis is that it has a general function in the transport of endocytic cargo rather than a specific function in self-incompatibility. NaPCCP represents a bifunctional protein with both phosphatidylinositol 3-phosphate- and arabinogalactan protein-binding domains. Therefore, it could function in the transport of pistil ECM proteins in the pollen tube endomembrane system.
Collapse
Affiliation(s)
- Christopher B Lee
- Division of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
35
|
McClure B. Darwin's foundation for investigating self-incompatibility and the progress toward a physiological model for S-RNase-based SI. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1069-1081. [PMID: 19297550 DOI: 10.1093/jxb/erp024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Charles Darwin made extensive observations of the pollination biology of a wide variety of plants. He carefully documented the consequences of self-pollination and described species that were self-sterile but that could easily be crossed with other plants of the same species. He believed that compatibility was controlled by the 'mutual action' of pollen and pistil contents. A genetic model for self-sterility was developed in the early 1900 s based on studies of the compatibility relationships among, what are now referred to as, self-incompatible (SI) Nicotiana species. Today, it is believed that SI in these species is controlled by an interaction between S-RNases produced in the pistil and F-box proteins expressed in pollen and, moreover, that this S-RNase-based SI system is shared by a great diversity of other plant species. Current research is aimed at understanding how the mutual actions of these S-gene products function in the physiological context of pollen tube growth.
Collapse
Affiliation(s)
- Bruce McClure
- Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA.
| |
Collapse
|
36
|
Adachi Y, Komori S, Hoshikawa Y, Tanaka N, Abe K, Bessho H, Watanabe M, Suzuki A. Characteristics of Fruiting and Pollen Tube Growth of Apple Autotetraploid Cultivars Showing Self-compatibility. ACTA ACUST UNITED AC 2009. [DOI: 10.2503/jjshs1.78.402] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Abstract
Self-incompatibility (SI) is a genetically controlled system adopted by many flowering plants to avoid inbreeding and thus to maintain species diversity. Generally, self-pollen rejection occurs through active pollen and pistil recognition and subsequent signaling responses. So far, three different molecular controls of pollen and pistil recognition have been characterized and are exemplified by three families: the Solanaceae, the Papaveraceae, and the Brassicaceae. With more components involved in these SI systems coming to light, recent studies have provided intriguing insights into the downstream reactions that follow the initial SI signal perception. The process of pollen rejection is closely associated with rapid and effective proteolytic events, including the ubiquitin-proteasome pathway and the vacuolar sorting pathway. Here, we review our current understanding of the roles of proteolysis in SI responses of flowering plants.
Collapse
Affiliation(s)
- Yijing Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100101, China
| | | | | |
Collapse
|
38
|
Hua ZH, Fields A, Kao TH. Biochemical models for S-RNase-based self-incompatibility. MOLECULAR PLANT 2008; 1:575-85. [PMID: 19825563 DOI: 10.1093/mp/ssn032] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
S-RNase-based self-incompatibility (SI) is a genetically determined self/non-self-recognition process employed by many flowering plant species to prevent inbreeding and promote outcrosses. For the Plantaginaceae, Rosaceae and Solanaceae, it is now known that S-RNase and S-locus F-box (two multiple allelic genes at the S-locus) determine the female and male specificity, respectively, during SI interactions. However, how allelic products of these two genes interact inside pollen tubes to result in specific growth inhibition of self-pollen tubes remains to be investigated. Here, we review all the previously proposed biochemical models and discuss whether their predictions are consistent with all SI phenomena, including competitive interaction where SI breaks down in pollen that carries two different pollen S-alleles. We also discuss these models in light of the recent findings of compartmentalization of S-RNases in both incompatible and compatible pollen tubes. Lastly, we summarize the results from our recent biochemical studies of PiSLF (Petunia inflata SLF) and S-RNase, and present a new model for the biochemical mechanism of SI in the Solanaceae. The tenet of this model is that a PiSLF preferentially interacts with its non-self S-RNases in the cytoplasm of a pollen tube to result in the assembly of an E3-like complex, which then mediates ubiquitination and degradation of non-self S-RNases through the ubiquitin-26S proteasome pathway. This model can explain all SI phenomena and, at the same time, has raised new questions for further study.
Collapse
Affiliation(s)
- Zhi-Hua Hua
- The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|