1
|
Wu H, He Q, Wang Q. Advances in Rice Seed Shattering. Int J Mol Sci 2023; 24:ijms24108889. [PMID: 37240235 DOI: 10.3390/ijms24108889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Seed shattering is an important trait that wild rice uses to adapt to the natural environment and maintain population reproduction, and weedy rice also uses it to compete with the rice crop. The loss of shattering is a key event in rice domestication. The degree of shattering is not only one of the main reasons for rice yield reduction but also affects its adaptability to modern mechanical harvesting methods. Therefore, it is important to cultivate rice varieties with a moderate shattering degree. In this paper, the research progress on rice seed shattering in recent years is reviewed, including the physiological basis, morphological and anatomical characteristics of rice seed shattering, inheritance and QTL/gene mapping of rice seed shattering, the molecular mechanism regulating rice seed shattering, the application of seed-shattering genes, and the relationship between seed-shattering genes and domestication.
Collapse
Affiliation(s)
- Hao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qi He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Quan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Agricultural Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Hill T, Cassibba V, Joukhadar I, Tonnessen B, Havlik C, Ortega F, Sripolcharoen S, Visser BJ, Stoffel K, Thammapichai P, Garcia-Llanos A, Chen S, Hulse-Kemp A, Walker S, Van Deynze A. Genetics of destemming in pepper: A step towards mechanical harvesting. Front Genet 2023; 14:1114832. [PMID: 37007971 PMCID: PMC10064014 DOI: 10.3389/fgene.2023.1114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: The majority of peppers in the US for fresh market and processing are handpicked, and harvesting can account for 20-50% of production costs. Innovation in mechanical harvesting would increase availability; lower the costs of local, healthy vegetable products; and perhaps improve food safety and expand markets. Most processed peppers require removal of pedicels (stem and calyx) from the fruit, but lack of an efficient mechanical process for this operation has hindered adoption of mechanical harvest. In this paper, we present characterization and advancements in breeding green chile peppers for mechanical harvesting. Specifically, we describe inheritance and expression of an easy-destemming trait derived from the landrace UCD-14 that facilitates machine harvest of green chiles. Methods: A torque gauge was used for measuring bending forces similar to those of a harvester and applied to two biparental populations segregating for destemming force and rate. Genotyping by sequencing was used to generate genetic maps for quantitative trait locus (QTL) analyses. Results: A major destemming QTL was found on chromosome 10 across populations and environments. Eight additional population and/or environment-specific QTL were also identified. Chromosome 10 QTL markers were used to help introgress the destemming trait into jalapeño-type peppers. Low destemming force lines combined with improvements in transplant production enabled mechanical harvest of destemmed fruit at a rate of 41% versus 2% with a commercial jalapeńo hybrid. Staining for the presence of lignin at the pedicel/fruit boundary indicated the presence of an abscission zone and homologs of genes known to affect organ abscission were found under several QTL, suggesting that the easy-destemming trait may be due to the presence and activation of a pedicel/fruit abscission zone. Conclusion: Presented here are tools to measure the easy-destemming trait, its physiological basis, possible molecular pathways, and expression of the trait in various genetic backgrounds. Mechanical harvest of destemmed mature green chile fruits was achieved by combining easy-destemming with transplant management.
Collapse
Affiliation(s)
- Theresa Hill
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Vincenzo Cassibba
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Israel Joukhadar
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Bradley Tonnessen
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Charles Havlik
- Los Lunas Agricultural Science Center, Los Lunas, NM, United States
| | - Franchesca Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | | | | | - Kevin Stoffel
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Paradee Thammapichai
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Armando Garcia-Llanos
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Shiyu Chen
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Amanda Hulse-Kemp
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Stephanie Walker
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Cui Y, Lu X, Gou X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. PLANT COMMUNICATIONS 2022; 3:100273. [PMID: 35059634 PMCID: PMC8760141 DOI: 10.1016/j.xplc.2021.100273] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/28/2021] [Indexed: 05/30/2023]
Abstract
Reproduction is a crucial process in the life span of flowering plants, and directly affects human basic requirements in agriculture, such as grain yield and quality. Typical receptor-like protein kinases (RLKs) are a large family of membrane proteins sensing extracellular signals to regulate plant growth, development, and stress responses. In Arabidopsis thaliana and other plant species, RLK-mediated signaling pathways play essential roles in regulating the reproductive process by sensing different ligand signals. Molecular understanding of the reproductive process is vital from the perspective of controlling male and female fertility. Here, we summarize the roles of RLKs during plant reproduction at the genetic and molecular levels, including RLK-mediated floral organ development, ovule and anther development, and embryogenesis. In addition, the possible molecular regulatory patterns of those RLKs with unrevealed mechanisms during reproductive development are discussed. We also point out the thought-provoking questions raised by the research on these plant RLKs during reproduction for future investigation.
Collapse
|
4
|
Kim J, Chun JP, Tucker ML. Transcriptional Regulation of Abscission Zones. PLANTS 2019; 8:plants8060154. [PMID: 31174352 PMCID: PMC6631628 DOI: 10.3390/plants8060154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Precise and timely regulation of organ separation from the parent plant (abscission) is consequential to improvement of crop productivity as it influences both the timing of harvest and fruit quality. Abscission is tightly associated with plant fitness as unwanted organs (petals, sepals, filaments) are shed after fertilization while seeds, fruits, and leaves are cast off as means of reproductive success or in response to abiotic/biotic stresses. Floral organ abscission in Arabidopsis has been a useful model to elucidate the molecular mechanisms that underlie the separation processes, and multiple abscission signals associated with the activation and downstream pathways have been uncovered. Concomitantly, large-scale analyses of omics studies in diverse abscission systems of various plants have added valuable insights into the abscission process. The results suggest that there are common molecular events linked to the biosynthesis of a new extracellular matrix as well as cell wall disassembly. Comparative analysis between Arabidopsis and soybean abscission systems has revealed shared and yet disparate regulatory modules that affect the separation processes. In this review, we discuss our current understanding of the transcriptional regulation of abscission in several different plants that has improved on the previously proposed four-phased model of organ separation.
Collapse
Affiliation(s)
- Joonyup Kim
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jong-Pil Chun
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA Bldg. 006, 10300 Baltimore Ave., Beltsville, MD 20705, USA.
| |
Collapse
|
5
|
Taylor I, Baer J, Calcutt R, Walker JC. Hypermorphic SERK1 Mutations Function via a SOBIR1 Pathway to Activate Floral Abscission Signaling. PLANT PHYSIOLOGY 2019; 180:1219-1229. [PMID: 30975695 PMCID: PMC6548279 DOI: 10.1104/pp.18.01328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), the abscission of floral organs is regulated by two related receptor-like protein kinases, HAESA (HAE) and HAESA-LIKE2 (HSL2). In complex with members of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family of coreceptor protein kinases, HAE and HSL2 are activated when bound by INFLORESCENCE DEFICIENT IN ABSICSSION, a proteolytically processed peptide ligand, activating the expression of genes encoding secreted cell wall remodeling and hydrolase enzymes. hae hsl2 mutants fail to induce expression of these genes and retain floral organs indefinitely. Here, we report identification of an allelic series of hae hsl2 suppressor mutations in the SERK1 coreceptor protein kinase gene. Genetic and transcriptomic evidence indicates that these alleles represent a novel class of gain-of-function mutations that activate signaling independently of HAE/HSL2. We show that, surprisingly, the suppression effect does not rely on the protein kinase activity of SERK1 and that activation of signaling relies on the receptor-like kinase gene SUPPRESSOR OF BIR1 (SOBIR1). The effect of these mutations can be mimicked by loss of function of BAK1-INTERACTING RECEPTOR-LIKE KINASE1 (BIR1), a known negative regulator of SERK-SOBIR1 signaling. These results suggest that BIR1 negatively regulates SERK-SOBIR1 signaling during abscission and that the identified SERK1 mutations likely interfere with this negative regulation.
Collapse
Affiliation(s)
- Isaiah Taylor
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
- Department of Statistics, University of Missouri, Columbia, Missouri 65211
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708
| | - John Baer
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
- Department of Medicine, Washington University, St. Louis, Missouri 63130
| | - Ryan Calcutt
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
- Biology Department, Washington University, St. Louis, Missouri 63130
| | - John C Walker
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
6
|
Ma L, Zhou L, Quan S, Xu H, Yang J, Niu J. Integrated analysis of mRNA-seq and miRNA-seq in calyx abscission zone of Korla fragrant pear involved in calyx persistence. BMC PLANT BIOLOGY 2019; 19:192. [PMID: 31072362 PMCID: PMC6507046 DOI: 10.1186/s12870-019-1792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/22/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND The objective of this study was to characterize molecular mechanism of calyx persistence in Korla fragrant pear by transcriptome and small RNA sequencing. Abscission zone tissues of flowers at three stages (the first, fifth and ninth days of the late bloom stage), with 50 mg/L GA3 (calyx persistence treatment, C_1, C_5, C_9) or 500 mg/L PP333 (calyx abscission treatment, T_1, T_5, T_9), were collected and simultaneously conducted transcriptome and small RNA sequencing. RESULTS Through association analysis of transcriptome and small RNA sequencing, mRNA-miRNA network was conducted. Compared calyx persistence groups with calyx abscission groups during the same stage, 145, 56 and 150 mRNA-miRNA pairs were obtained in C_1 vs T_1, C_5 vs T_5 and C_9 vs T_9, respectively; When C_1 compared with C_5 and C_9, 90 and 506 mRNA-miRNA pairs were screened respectively, and 255 mRNA-miRNA pairs were obtained from the comparison between C_5 and C_9; When T_1 compared with the T_5 and T_9, respectively, 206 and 796 mRNA-miRNA pairs were obtained, and 383 mRNA-miRNA pairs were obtained from the comparison between T_5 and T_9. These mRNAs in miRNA-mRNA pairs were significantly enriched into the terpenoid backbone biosynthesis, photosynthesis - antenna proteins, porphyrin and chlorophyll metabolism, carotenoid biosynthesis, zeatin biosynthesis and plant hormone signal transduction. In addition, we obtained some key genes from miRNA-mRNA pairs that may be associated with calyx abscission, including protein phosphatase 2C (psi-miR394a-HAB1), receptor-like protein kinase (psi-miR396a-5p-HERK1), cellulose synthase-like protein D3 (psi-miR827-CSLD3), beta-galactosidase (psi-miR858b-β-galactosidase), SPL-psi-miR156j/157d, abscisic acid 8'-hydroxylase 1 (psi-miR396a-5p-CYP707A1) and auxin response factor (psi-miR160a-3p-ARF6, psi-miR167d-ARF18, psi-miR167a-5p-ARF25), etc. CONCLUSION: By integrated analysis mRNA and miRNA, our study gives a better understanding of the important genes and regulation pathway related to calyx abscission in Korla fragrant pear. We have also established the network of miRNA-mRNA pairs to learn about precise regulation of miRNA on calyx abscission.
Collapse
Affiliation(s)
- Li Ma
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003 Xinjiang China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003 Xinjiang China
| | - Li Zhou
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003 Xinjiang China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003 Xinjiang China
| | - Shaowen Quan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003 Xinjiang China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003 Xinjiang China
| | - Hang Xu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003 Xinjiang China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003 Xinjiang China
| | - Jieping Yang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003 Xinjiang China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003 Xinjiang China
| | - Jianxin Niu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003 Xinjiang China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi, 832003 Xinjiang China
| |
Collapse
|
7
|
Xu J, Chen L, Sun H, Wusiman N, Sun W, Li B, Gao Y, Kong J, Zhang D, Zhang X, Xu H, Yang X. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1525-1538. [PMID: 30715415 PMCID: PMC6411381 DOI: 10.1093/jxb/erz036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/16/2019] [Indexed: 05/12/2023]
Abstract
Abscission is a process that allows plants to shed tissues or organs via cell separation, and occurs throughout the life cycle. Removal of leaves through the use of chemical defoliants is very important for mechanical harvesting of cotton (Gossypium hirsutum). However, our knowledge of the molecular mechanisms of the defoliation response involved is limited. In this study, RNA-seq was conducted in order to profile the differentially expressed genes (DEGs) between cultivars X50 (sensitive to chemical defoliants) and X33 (relatively insensitive) at different time points after treatment with thidiazuron and ethephon (TE). A total of 2434 DEGs were identified between the two cultivars across the different time-points. Functional categories according to GO and KEGG analyses revealed that plant hormone signal transduction and zeatin biosynthesis were involved in the response to TE. Cytokinin oxidase/dehydrogenase (CKX) genes and ethylene-related genes were up-regulated following TE treatment, and were associated with increased level of ethylene, especially in cultivar X50. Down-regulation of GhCKX3 resulted in delayed defoliation and a reduced ethylene response. The results show that crosstalk between cytokinin and ethylene regulates cotton defoliation, and provide new insights into the molecular mechanisms underlying the mode of action of defoliants in cotton.
Collapse
Affiliation(s)
- Jiao Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Heng Sun
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Nusireti Wusiman
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Baoqi Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yu Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Dawei Zhang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Haijiang Xu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
- Correspondence: or
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- Correspondence: or
| |
Collapse
|
8
|
Jiménez-Guillen D, Pérez-Pascual D, Souza-Perera R, Godoy-Hernández G, Zúñiga-Aguilar JJ. Cloning of the Coffea canephora SERK1 promoter and its molecular analysis during the cell-to-embryo transition. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
9
|
Taylor I, Walker JC. Transcriptomic evidence for distinct mechanisms underlying abscission deficiency in the Arabidopsis mutants haesa/haesa-like 2 and nevershed. BMC Res Notes 2018; 11:754. [PMID: 30352616 PMCID: PMC6199728 DOI: 10.1186/s13104-018-3864-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Objective In Arabidopsis, the abscission of floral organs is regulated by two related receptor-like protein kinases, HAESA and HAESA–like 2 (HAE/HSL2). Signaling by HAE/HSL2 leads to expression of genes encoding secreted cell wall remodeling and hydrolase enzymes. hae hsl2 mutants fail to induce expression of these genes and retain floral organs indefinitely. Mutants in the gene NEVERSHED (NEV) also fail to abscise floral organs and phenotypically resemble hae hsl2. NEV encodes an ADP-ribosylation factor GTPase-activating protein that localizes to the trans-Golgi network and early endosome. nev displays altered Golgi morphology and aberrations in vesicular trafficking. The mechanism by which nev fails to abscise is presently unknown. It has been hypothesized that nev fails to activate HAE/HSL2 signaling. In this study we use RNA-Sequencing to test this hypothesis. Results We show that the transcriptional alterations in hae hsl2 and nev are highly divergent. hae hsl2 displays a clear reduction in expression of genes associated with cell wall remodeling and pectin degradation, while nev displays vast transcriptional changes associated with response to pathogens. These results suggest that the mechanism of the defect between hae hsl2 and nev are distinct. Electronic supplementary material The online version of this article (10.1186/s13104-018-3864-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isaiah Taylor
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.,Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.,Department of Statistics, University of Missouri, Columbia, MO, 65211, USA.,Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - John C Walker
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA. .,Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
10
|
Lee Y, Yoon TH, Lee J, Jeon SY, Lee JH, Lee MK, Chen H, Yun J, Oh SY, Wen X, Cho HK, Mang H, Kwak JM. A Lignin Molecular Brace Controls Precision Processing of Cell Walls Critical for Surface Integrity in Arabidopsis. Cell 2018; 173:1468-1480.e9. [PMID: 29731167 DOI: 10.1016/j.cell.2018.03.060] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/08/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
The cell wall, a defining feature of plants, provides a rigid structure critical for bonding cells together. To overcome this physical constraint, plants must process cell wall linkages during growth and development. However, little is known about the mechanism guiding cell-cell detachment and cell wall remodeling. Here, we identify two neighboring cell types in Arabidopsis that coordinate their activities to control cell wall processing, thereby ensuring precise abscission to discard organs. One cell type produces a honeycomb structure of lignin, which acts as a mechanical "brace" to localize cell wall breakdown and spatially limit abscising cells. The second cell type undergoes transdifferentiation into epidermal cells, forming protective cuticle, demonstrating de novo specification of epidermal cells, previously thought to be restricted to embryogenesis. Loss of the lignin brace leads to inadequate cuticle formation, resulting in surface barrier defects and susceptible to infection. Together, we show how plants precisely accomplish abscission.
Collapse
Affiliation(s)
- Yuree Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea.
| | - Taek Han Yoon
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Jiyoun Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - So Yeon Jeon
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Jae Ho Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Mi Kyoung Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Huize Chen
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Ju Yun
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Se Yun Oh
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Xiaohong Wen
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Hui Kyung Cho
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Hyunggon Mang
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - June M Kwak
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea; Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
11
|
Verma G, Sharma M, Mondal KK. XopR TTSS-effector regulates in planta growth, virulence of Indian strain of Xanthomonas oryzae pv. oryzae via suppressing reactive oxygen species production and cell wall-associated rice immune responses during blight induction. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:561-574. [PMID: 32290995 DOI: 10.1071/fp17147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/28/2017] [Indexed: 06/11/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causing bacterial blight of rice is a global problem in rice production. Phytopathogenic Xanthomonads overpower PAMP-triggered immunity (PTI) through secreting effectors via type III secretion system (TTSS). We previously screened the TTSS effector repository of an Indian strain of Xoo (race 4), a predominant strain from north-west India that contains 21 Xop and 18 TALE effectors. Here, we demonstrate that Xoo race 4 employs XopR for in planta colonisation, virulence and for the suppression of cell wall-associated immune responses in its natural host. XopR null mutant (Xoo ΔxopR) produced 2.6-fold less-severe lesion as compared with Xoo wild type. Xoo ΔxopR showed 1.58-fold reduced colonisation compared with wild indicating that XopR is required for maximum colonisation in rice. Xoo ΔxopR produced 3.8-fold more callose deposits compared with wild. Xoo ΔxopR caused significantly higher production of ROS in rice. RT-qPCR expression analysis of immune responsive genes of rice indicated 10- to 43-fold upregulation upon challenged inoculation with Xoo ΔxopR over wild. Altogether, our study revealed that XopR of Indian Xoo strain supports its in planta growth and contributes immensely for successful blight development through suppressing defence related events like reactive oxygen species production, callose deposition and transcript abundance of immune responsive genes during rice::Xoo interaction.
Collapse
Affiliation(s)
- Geeta Verma
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - Manju Sharma
- Amity institute of Biotechnology, Amity University, Gurgaon (Manesar), Haryana 122 413, India
| | - Kalyan K Mondal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| |
Collapse
|
12
|
Abstract
Abscission is a process in plants for shedding unwanted organs such as leaves, flowers, fruits, or floral organs. Shedding of leaves in the fall is the most visually obvious display of abscission in nature. The very shape plants take is forged by the processes of growth and abscission. Mankind manipulates abscission in modern agriculture to do things such as prevent pre-harvest fruit drop prior to mechanical harvesting in orchards. Abscission occurs specifically at abscission zones that are laid down as the organ that will one day abscise is developed. A sophisticated signaling network initiates abscission when it is time to shed the unwanted organ. In this article, we review recent advances in understanding the signaling mechanisms that activate abscission. Physiological advances and roles for hormones in abscission are also addressed. Finally, we discuss current avenues for basic abscission research and potentially lucrative future directions for its application to modern agriculture.
Collapse
Affiliation(s)
- O Rahul Patharkar
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - John C Walker
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Santa Brigida AB, Rojas CA, Grativol C, de Armas EM, Entenza JOP, Thiebaut F, Lima MDF, Farrinelli L, Hemerly AS, Lifschitz S, Ferreira PCG. Sugarcane transcriptome analysis in response to infection caused by Acidovorax avenae subsp. avenae. PLoS One 2016; 11:e0166473. [PMID: 27936012 PMCID: PMC5147822 DOI: 10.1371/journal.pone.0166473] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Sugarcane is an important tropical crop mainly cultivated to produce ethanol and sugar. Crop productivity is negatively affected by Acidovorax avenae subsp avenae (Aaa), which causes the red stripe disease. Little is known about the molecular mechanisms triggered in response to the infection. We have investigated the molecular mechanism activated in sugarcane using a RNA-seq approach. We have produced a de novo transcriptome assembly (TR7) from sugarcane RNA-seq libraries submitted to drought and infection with Aaa. Together, these libraries present 247 million of raw reads and resulted in 168,767 reference transcripts. Mapping in TR7 of reads obtained from infected libraries, revealed 798 differentially expressed transcripts, of which 723 were annotated, corresponding to 467 genes. GO and KEGG enrichment analysis showed that several metabolic pathways, such as code for proteins response to stress, metabolism of carbohydrates, processes of transcription and translation of proteins, amino acid metabolism and biosynthesis of secondary metabolites were significantly regulated in sugarcane. Differential analysis revealed that genes in the biosynthetic pathways of ET and JA PRRs, oxidative burst genes, NBS-LRR genes, cell wall fortification genes, SAR induced genes and pathogenesis-related genes (PR) were upregulated. In addition, 20 genes were validated by RT-qPCR. Together, these data contribute to a better understanding of the molecular mechanisms triggered by the Aaa in sugarcane and opens the opportunity for the development of molecular markers associated with disease tolerance in breeding programs.
Collapse
Affiliation(s)
- Ailton B. Santa Brigida
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Cristian A. Rojas
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, Brasil
| | - Clícia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | - Elvismary M. de Armas
- Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Júlio O. P. Entenza
- Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Flávia Thiebaut
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo de F. Lima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | | | - Adriana S. Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sérgio Lifschitz
- Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Paulo C. G. Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
14
|
Ma X, Xu G, He P, Shan L. SERKing Coreceptors for Receptors. TRENDS IN PLANT SCIENCE 2016; 21:1017-1033. [PMID: 27660030 DOI: 10.1016/j.tplants.2016.08.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 05/23/2023]
Abstract
Plants have evolved a large number of cell surface-resident receptor-like kinases (RLKs) and receptor-like proteins (RLPs), many of which are implicated in sensing extrinsic and intrinsic signals, and govern diverse cellular responses. The signaling pathways mediated by RLKs and RLPs converge at a small group of RLKs, somatic embryogenesis receptor kinases (SERKs), via ligand-induced heterodimerization and transphosphorylation. As shared coreceptors in diverse signaling receptorsomes, SERKs exhibit functional plasticity yet maintain a high degree of signaling specificity. Here, we review recent advances in newly identified SERK functions in plant cell differentiation, growth, and immunity; discuss the regulation and activation mechanisms of SERK-associated receptorsomes; and provide insights into how SERKs maintain signaling specificity as convergent hubs in various signaling pathways.
Collapse
Affiliation(s)
- Xiyu Ma
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Guangyuan Xu
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Molecular & Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA; Molecular & Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843, USA; Molecular & Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
15
|
van Esse GW, Ten Hove CA, Guzzonato F, van Esse HP, Boekschoten M, Ridder L, Vervoort J, de Vries SC. Transcriptional Analysis of serk1 and serk3 Coreceptor Mutants. PLANT PHYSIOLOGY 2016; 172:2516-2529. [PMID: 27803191 PMCID: PMC5129729 DOI: 10.1104/pp.16.01478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/28/2016] [Indexed: 05/15/2023]
Abstract
Somatic embryogenesis receptor kinases (SERKs) are ligand-binding coreceptors that are able to combine with different ligand-perceiving receptors such as BRASSINOSTEROID INSENSITIVE1 (BRI1) and FLAGELLIN-SENSITIVE2. Phenotypical analysis of serk single mutants is not straightforward because multiple pathways can be affected, while redundancy is observed for a single phenotype. For example, serk1serk3 double mutant roots are insensitive toward brassinosteroids but have a phenotype different from bri1 mutant roots. To decipher these effects, 4-d-old Arabidopsis (Arabidopsis thaliana) roots were studied using microarray analysis. A total of 698 genes, involved in multiple biological processes, were found to be differentially regulated in serk1-3serk3-2 double mutants. About half of these are related to brassinosteroid signaling. The remainder appear to be unlinked to brassinosteroids and related to primary and secondary metabolism. In addition, methionine-derived glucosinolate biosynthesis genes are up-regulated, which was verified by metabolite profiling. The results also show that the gene expression pattern in serk3-2 mutant roots is similar to that of the serk1-3serk3-2 double mutant roots. This confirms the existence of partial redundancy between SERK3 and SERK1 as well as the promoting or repressive activity of a single coreceptor in multiple simultaneously active pathways.
Collapse
Affiliation(s)
- G Wilma van Esse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Colette A Ten Hove
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Francesco Guzzonato
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - H Peter van Esse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Mark Boekschoten
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Lars Ridder
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Sacco C de Vries
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
16
|
Patharkar OR, Walker JC. Core Mechanisms Regulating Developmentally Timed and Environmentally Triggered Abscission. PLANT PHYSIOLOGY 2016; 172:510-20. [PMID: 27468996 PMCID: PMC5074626 DOI: 10.1104/pp.16.01004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/27/2016] [Indexed: 05/21/2023]
Abstract
Drought-triggered abscission is a strategy used by plants to avoid the full consequences of drought; however, it is poorly understood at the molecular genetic level. Here, we show that Arabidopsis (Arabidopsis thaliana) can be used to elucidate the pathway controlling drought-triggered leaf shedding. We further show that much of the pathway regulating developmentally timed floral organ abscission is conserved in regulating drought-triggered leaf abscission. Gene expression of HAESA (HAE) and INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) is induced in cauline leaf abscission zones when the leaves become wilted in response to limited water and HAE continues to accumulate in the leaf abscission zones through the abscission process. The genes that encode HAE/HAESA-LIKE2, IDA, NEVERSHED, and MAPK KINASE4 and 5 are all necessary for drought-induced leaf abscission. Our findings offer a molecular mechanism explaining drought-triggered leaf abscission. Furthermore, the ability to study leaf abscission in Arabidopsis opens up a new avenue to tease apart mechanisms involved in abscission that have been difficult to separate from flower development as well as for understanding the mechanistic role of water and turgor pressure in abscission.
Collapse
Affiliation(s)
- O Rahul Patharkar
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - John C Walker
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
17
|
Niehl A, Wyrsch I, Boller T, Heinlein M. Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. THE NEW PHYTOLOGIST 2016; 211:1008-19. [PMID: 27030513 DOI: 10.1111/nph.13944] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/24/2016] [Indexed: 05/20/2023]
Abstract
Pattern-triggered immunity (PTI) is a plant defense response that relies on the perception of conserved microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs, respectively). Recently, it has been recognized that PTI restricts virus infection in plants; however, the nature of the viral or infection-induced PTI elicitors and the underlying signaling pathways are still unknown. As double-stranded RNAs (dsRNAs) are conserved molecular patterns associated with virus replication, we applied dsRNAs or synthetic dsRNA analogs to Arabidopsis thaliana and investigated PTI responses. We show that in vitro-generated dsRNAs, dsRNAs purified from virus-infected plants and the dsRNA analog polyinosinic-polycytidylic acid (poly(I:C)) induce typical PTI responses dependent on the co-receptor SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (SERK1), but independent of dicer-like (DCL) proteins in Arabidopsis. Moreover, dsRNA treatment of Arabidopsis induces SERK1-dependent antiviral resistance. Screening of Arabidopsis wild accessions demonstrates natural variability in dsRNA sensitivity. Our findings suggest that dsRNAs represent genuine PAMPs in plants, which induce a signaling cascade involving SERK1 and a specific dsRNA receptor. The dependence of dsRNA-mediated PTI on SERK1, but not on DCLs, implies that dsRNA-mediated PTI involves membrane-associated processes and operates independently of RNA silencing. dsRNA sensitivity may represent a useful trait to increase antiviral resistance in cultivated plants.
Collapse
Affiliation(s)
- Annette Niehl
- Botany, Department of Environmental Sciences, University of Basel, Basel, CH-4056, Switzerland
| | - Ines Wyrsch
- Botany, Department of Environmental Sciences, University of Basel, Basel, CH-4056, Switzerland
| | - Thomas Boller
- Botany, Department of Environmental Sciences, University of Basel, Basel, CH-4056, Switzerland
| | - Manfred Heinlein
- Botany, Department of Environmental Sciences, University of Basel, Basel, CH-4056, Switzerland
- Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Strasbourg, 67000, France
| |
Collapse
|
18
|
Patharkar OR, Macken TA, Walker JC. Serine 231 and 257 of Agamous-like 15 are phosphorylated in floral receptacles. PLANT SIGNALING & BEHAVIOR 2016; 11:e1199314. [PMID: 27322882 PMCID: PMC4991328 DOI: 10.1080/15592324.2016.1199314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 05/23/2023]
Abstract
The large dynamic range of gene expression changes accompanying floral organ abscission can be explained by a molecular positive feedback loop that regulates the process. In short, a mitogen-activated protein kinase (MAPK) cascade, positioned genetically downstream from the abscission receptor HAESA (HAE), phosphorylates the transcription factor, AGAMOUS-like 15 (AGL15), allowing HAE to be expressed. However, it is unknown which residues of AGL15 are phosphorylated and precisely how phosphorylation alters AGL15 function. Here we report that serine 231 and 257 of AGL15 are phosphorylated in floral receptacles. Effects of phosphorylation on AGL15 are discussed.
Collapse
Affiliation(s)
- Osric Rahul Patharkar
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Terra A. Macken
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - John C. Walker
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| |
Collapse
|
19
|
Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA, Hothorn M. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife 2016; 5:e15075. [PMID: 27058169 DOI: 10.7554/elife.15075.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/07/2016] [Indexed: 05/28/2023] Open
Abstract
Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism.
Collapse
Affiliation(s)
- Julia Santiago
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Mari Wildhagen
- Department of Biosciences, Section for Genetic and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Ulrich Hohmann
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, Hannover, Germany
| | - Melinka A Butenko
- Department of Biosciences, Section for Genetic and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA, Hothorn M. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife 2016; 5. [PMID: 27058169 PMCID: PMC4848090 DOI: 10.7554/elife.15075] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/07/2016] [Indexed: 01/26/2023] Open
Abstract
Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism. DOI:http://dx.doi.org/10.7554/eLife.15075.001 Plants can shed their leaves, flowers or other organs when they no longer need them. But how does a leaf or a flower know when to let go? A receptor protein called HAESA is found on the surface of the cells that surround a future break point on the plant. When its time to shed an organ, a hormone called IDA instructs HAESA to trigger the shedding process. However, the molecular details of how IDA triggers organ shedding are not clear. The shedding of floral organs (or leaves) can be easily studied in a model plant called Arabidopsis. Santiago et al. used protein biochemistry, structural biology and genetics to uncover how the IDA hormone activates HAESA. The experiments show that IDA binds directly to a canyon shaped pocket in HAESA that extends out from the surface of the cell. IDA binding to HAESA allows another receptor protein called SERK1 to bind to HAESA, which results in the release of signals inside the cell that trigger the shedding of organs. The next step following on from this work is to understand what signals are produced when IDA activates HAESA. Another challenge will be to find out where IDA is produced in the plant and what causes it to accumulate in specific places in preparation for organ shedding. DOI:http://dx.doi.org/10.7554/eLife.15075.002
Collapse
Affiliation(s)
- Julia Santiago
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Mari Wildhagen
- Department of Biosciences, Section for Genetic and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Ulrich Hohmann
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, Hannover, Germany
| | - Melinka A Butenko
- Department of Biosciences, Section for Genetic and Evolutionary Biology, University of Oslo, Oslo, Norway
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Meng X, Zhou J, Tang J, Li B, de Oliveira MVV, Chai J, He P, Shan L. Ligand-Induced Receptor-like Kinase Complex Regulates Floral Organ Abscission in Arabidopsis. Cell Rep 2016; 14:1330-1338. [PMID: 26854226 DOI: 10.1016/j.celrep.2016.01.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/30/2015] [Accepted: 01/04/2016] [Indexed: 01/09/2023] Open
Abstract
Abscission is a developmental process that enables plants to shed unwanted organs. In Arabidopsis, the floral organ abscission is regulated by a signaling pathway consisting of the peptide ligand IDA, the receptor-like kinases (RLKs) HAE and HSL2, and a downstream MAP kinase (MAPK) cascade. However, little is known about the molecular link between ligand-receptor pairs and intracellular signaling. Here, we report that the SERK family RLKs function redundantly in regulating floral organ abscission downstream of IDA and upstream of the MAPK cascade. IDA induces heterodimerization of HAE/HSL2 and SERKs, which transphosphorylate each other. The SERK3 residues mediating its interaction with the immune receptor FLS2 and the brassinosteroid receptor BRI1 are also required for IDA-induced HAE/HSL2-SERK3 interaction, suggesting SERKs serve as co-receptors of HAE/HSL2 in perceiving IDA. Thus, our study reveals the signaling activation mechanism in floral organ abscission by IDA-induced HAE/HSL2-SERK complex formation accompanied by transphosphorylation.
Collapse
Affiliation(s)
- Xiangzong Meng
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Jinggeng Zhou
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Jiao Tang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Marcos V V de Oliveira
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
22
|
Taylor I, Wang Y, Seitz K, Baer J, Bennewitz S, Mooney BP, Walker JC. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission. PLoS One 2016; 11:e0147203. [PMID: 26784444 PMCID: PMC4718614 DOI: 10.1371/journal.pone.0147203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022] Open
Abstract
Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity.
Collapse
Affiliation(s)
- Isaiah Taylor
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Ying Wang
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Kati Seitz
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - John Baer
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Stefan Bennewitz
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Brian P. Mooney
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- Charles W. Gehrke Proteomics Center and Division of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - John C. Walker
- Division of Biological Science, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
23
|
Groner WD, Christy ME, Kreiner CM, Liljegren SJ. Allele-Specific Interactions between CAST AWAY and NEVERSHED Control Abscission in Arabidopsis Flowers. FRONTIERS IN PLANT SCIENCE 2016; 7:1588. [PMID: 27818674 PMCID: PMC5073242 DOI: 10.3389/fpls.2016.01588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV) gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST), which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.
Collapse
|
24
|
Kim J, Yang J, Yang R, Sicher RC, Chang C, Tucker ML. Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate. FRONTIERS IN PLANT SCIENCE 2016; 7:125. [PMID: 26925069 PMCID: PMC4756167 DOI: 10.3389/fpls.2016.00125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/22/2016] [Indexed: 05/19/2023]
Abstract
Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq) of RNA isolated from the leaf abscission zones (LAZ) and petioles (Non-AZ, NAZ) after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR) genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs). Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than eight-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than eight-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >four-fold up- or down-regulation in two consecutive time points (i.e., 0 and 12 h, 12 and 24 h, 24 and 48 h, or 48 and 72 h). By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth, and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their functional properties as defined by studies in Arabidopsis indicate that these TFs are involved in defining the separation cells and initiation of separation within the AZ by balancing organ polarity, roles of plant hormones, and cell differentiation.
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MD, USA
- *Correspondence: Joonyup Kim
| | - Jinyoung Yang
- Crop Systems and Global Change Laboratory, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Ronghui Yang
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Richard C. Sicher
- Crop Systems and Global Change Laboratory, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MD, USA
| | - Mark L. Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
- Mark L. Tucker
| |
Collapse
|
25
|
Aan den Toorn M, Albrecht C, de Vries S. On the Origin of SERKs: Bioinformatics Analysis of the Somatic Embryogenesis Receptor Kinases. MOLECULAR PLANT 2015; 8:762-82. [PMID: 25864910 DOI: 10.1016/j.molp.2015.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 05/26/2023]
Abstract
Somatic embryogenesis receptor-like kinases (SERKs) are leucine-rich repeat receptor-like kinases involved in several, seemingly unrelated, plant-signaling pathways. In Arabidopsis thaliana, functional and genetic analysis of four SERK proteins has indicated that they are only partly redundant; their functions overlap but each performs a specific subset of signaling roles. The molecular basis for the functional specificity within this highly homologous protein family is currently not known. Sequence analysis of SERK proteins from different plant species indicates that the SERKs are a highly conserved protein family present in monocots, dicots, and non-vascular plants. Residues in the extracellular domain that are important for interaction with other receptor kinases are highly conserved, even among SERK members without a function in the corresponding pathways. SERK2, for instance, does not function in the brassinosteroid pathway, does not interact with BRI1, but is conserved in its BRI1-interacting domain. Further sequence analysis indicates that SERK3/BAK1 and SERK4/BKK1 have diverged from the original SERK protein in both their extracellular and cytoplasmic domains. Functional analysis of chimeric SERK proteins shows that different domains provide the SERK proteins with different functional specificity. For instance, the SERK1 or SERK2 extracellular domains are essential for SERK function in male sporogenesis, while the SERK3 extracellular and cytoplasmic domains are essential for SERK3 activity in brassinosteroid and flagellin signaling. The emerging picture is that SERKs are ancient genes, whose products have been recruited as co-receptors in the newly evolved signaling pathways. The SERK ligand-binding and protein-protein interaction domains are highly conserved, allowing all SERKs to form complexes, albeit with different affinity. However, specific functional residues must have been altered, in both the extracellular and intracellular domains, to allow for the observed differences in functionality.
Collapse
Affiliation(s)
- Marije Aan den Toorn
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Catherine Albrecht
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands
| | - Sacco de Vries
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, the Netherlands.
| |
Collapse
|
26
|
Proteomics profiling of ethylene-induced tomato flower pedicel abscission. J Proteomics 2015; 121:67-87. [DOI: 10.1016/j.jprot.2015.03.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 11/18/2022]
|
27
|
Ma C, Meir S, Xiao L, Tong J, Liu Q, Reid MS, Jiang CZ. A KNOTTED1-LIKE HOMEOBOX protein regulates abscission in tomato by modulating the auxin pathway. PLANT PHYSIOLOGY 2015; 167:844-53. [PMID: 25560879 PMCID: PMC4348773 DOI: 10.1104/pp.114.253815] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/30/2014] [Indexed: 05/20/2023]
Abstract
A gene encoding a KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) is highly expressed in both leaf and flower abscission zones. Reducing the abundance of transcripts of this gene in tomato (Solanum lycopersicum) by both virus-induced gene silencing and stable transformation with a silencing construct driven by an abscission-specific promoter resulted in a striking retardation of pedicel and petiole abscission. In contrast, Petroselinum, a semidominant KD1 mutant, showed accelerated pedicel and petiole abscission. Complementary DNA microarray and quantitative reverse transcription-polymerase chain reaction analysis indicated that regulation of abscission by KD1 was associated with changed abundance of genes related to auxin transporters and signaling components. Measurement of auxin content and activity of a DR5::β-glucuronidase auxin reporter assay showed that changes in KD1 expression modulated the auxin concentration and response gradient in the abscission zone.
Collapse
Affiliation(s)
- Chao Ma
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Shimon Meir
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Langtao Xiao
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Jianhua Tong
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Qing Liu
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Michael S Reid
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, California 95616 (C.M., M.S.R.);Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250, Israel (S.M.);Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha 410128, China (L.X., J.T., Q.L.); andCrops Pathology and Genetic Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California 95616 (C.-Z.J.)
| |
Collapse
|
28
|
Abstract
Abscission is the process by which plants shed unwanted organs, either as part of a natural developmental program or in response to environmental stimuli. Studies in Arabidopsis thaliana have elucidated a number of the genetic components that regulate abscission of floral organs, including a pair of related receptor-like protein kinases, HAESA and HAESA-like 2 (HAE/HSL2) that regulate a MAP kinase cascade that is required for abscission. HAE is transcriptionally up-regulated in the floral abscission zone just before cell separation. Here, we identify AGAMOUS-like 15 (AGL15; a MADS-domain transcription factor) as a putative regulator of HAE expression. Overexpression of AGL15 results in decreased expression of HAE as well as a delayed abscission phenotype. Chromatin immunoprecipitation experiments indicate that AGL15 binds the HAE promoter in floral receptacles. AGL15 is then differentially phosphorylated through development in floral receptacles in a MITOGEN-ACTIVATED PROTEIN KINASE KINASE 4/5-dependent manner. MAP kinase phosphorylation of AGL15 is necessary for full HAE expression, thus completing a positive feedback loop controlling HAE expression. Together, the network components in this positive feedback loop constitute an emergent property that regulates the large dynamic range of gene expression (27-fold increase in HAE) observed in flowers when the abscission program is initiated. This study helps define the mechanisms and regulatory networks involved in a receptor-mediated signaling pathway that controls floral organ abscission.
Collapse
|
29
|
Wu W, Wu Y, Gao Y, Li M, Yin H, Lv M, Zhao J, Li J, He K. Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control. FRONTIERS IN PLANT SCIENCE 2015; 6:852. [PMID: 26528315 PMCID: PMC4606071 DOI: 10.3389/fpls.2015.00852] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/28/2015] [Indexed: 05/20/2023]
Abstract
In plants, LRR-RLKs play central roles in regulating perception of extracellular signals and initiation of cellular responses under various environmental challenges. Arabidopsis SERK genes, including SERK1 to SERK5, constitute a LRR-RLK sub-family. SERK1, SERK2, SERK3/BAK1, and SERK4/BKK1 have been well characterized to function as crucial regulators in multiple physiological processes such as brassinosteroid signaling, cell death control, pathogenesis, and pollen development. Despite extremely high sequence identity with BKK1, SERK5 is reported to have no functional overlapping with BKK1, which is previously identified to regulate BR and cell death control pathways, probably due to a natural mutation in a highly conserved RD motif in the kinase domain of SERK5 in Col-0 ecotype. Through a gene sequencing analysis in several Arabidopsis accessions, we are able to identify SERK5 in Landsberg erecta (Ler) genome encoding a LRR-RLK with an intact RD motif. Overexpression of SERK5-Ler partially suppresses the BR defective phenotypes of bri1-5 and bak1-3 bkk1-1, indicating SERK5-Ler functions as a positive regulator in BR signaling. Furthermore, the interaction between SERK5-Ler and BRI1 is confirmed by yeast two-hybrid and BiFC assays, and the genetic result showing that elevated expression of a kinase-dead form of SERK5-Ler causes a dominant-negative phenotype in bri1-5. In addition, overexpression of SERK5-Ler is capable of delaying, not completely suppressing, the cell death phenotype of bak1-3 bkk1-1. In this study, we first reveal that SERK5-Ler is a biologically functional component in mediating multiple signaling pathways.
Collapse
Affiliation(s)
- Wangze Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
- Crop Research Institute, Anhui Academy of Agricultural SciencesHefei, China
| | - Yujun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Yang Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Hongju Yin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Minghui Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Jianxin Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou UniversityLanzhou, China
- *Correspondence: Kai He
| |
Collapse
|
30
|
Chen X, Zuo S, Schwessinger B, Chern M, Canlas PE, Ruan D, Zhou X, Wang J, Daudi A, Petzold CJ, Heazlewood JL, Ronald PC. An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. MOLECULAR PLANT 2014; 7:874-92. [PMID: 24482436 PMCID: PMC4064043 DOI: 10.1093/mp/ssu003] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/29/2013] [Indexed: 05/20/2023]
Abstract
The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast two-hybrid system in a kinase activity-dependent manner. OsSERK2 undergoes bidirectional transphosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. These results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function. Taken together, our findings suggest that the mechanism of OsSERK2-meditated regulation of rice XA21, XA3, and FLS2 differs from that of AtSERK3/BAK1-mediated regulation of Arabidopsis FLS2 and EFR.
Collapse
Affiliation(s)
- Xuewei Chen
- To whom correspondence should be addressed. X.C. E-mail , fax (86)-28-86290948, tel. (86)-28-86290950. P.C.R. E-mail , fax (1)-530-752-6088, tel. (1)-530-752-1654
| | - Shimin Zuo
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Joint Bioenergy Institute, Emeryville, CA 94710, USA
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- These authors contributed equally to this work
| | - Benjamin Schwessinger
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- These authors contributed equally to this work
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Joint Bioenergy Institute, Emeryville, CA 94710, USA
| | - Patrick E. Canlas
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Joint Bioenergy Institute, Emeryville, CA 94710, USA
| | - Deling Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Joint Bioenergy Institute, Emeryville, CA 94710, USA
| | - Xiaogang Zhou
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jing Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Arsalan Daudi
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | | | | | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Joint Bioenergy Institute, Emeryville, CA 94710, USA
- To whom correspondence should be addressed. X.C. E-mail , fax (86)-28-86290948, tel. (86)-28-86290950. P.C.R. E-mail , fax (1)-530-752-6088, tel. (1)-530-752-1654
| |
Collapse
|
31
|
Liebrand TWH, van den Burg HA, Joosten MHAJ. Two for all: receptor-associated kinases SOBIR1 and BAK1. TRENDS IN PLANT SCIENCE 2014; 19:123-32. [PMID: 24238702 DOI: 10.1016/j.tplants.2013.10.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat-receptor-like proteins (LRR-RLPs) are ubiquitous cell surface receptors lacking a cytoplasmic signalling domain. For most of these LRR-RLPs, it remained enigmatic how they activate cellular responses upon ligand perception. Recently, the LRR-receptor-like kinase (LRR-RLK) SUPPRESSOR OF BIR1-1 (SOBIR1) was shown to be essential for triggering defence responses by certain LRR-RLPs that act as immune receptors. In addition to SOBIR1, the regulatory LRR-RLK BRI1-ASSOCIATED KINASE-1 (BAK1) is also required for LRR-RLP function. Here, we compare the roles of SOBIR1 and BAK1 as regulatory LRR-RLKs in immunity and development. BAK1 has a general regulatory role in plasma membrane-associated receptor complexes comprising LRR-RLPs and/or LRR-RLKs. By contrast, SOBIR1 appears to be specifically required for the function of receptor complexes containing LRR-RLPs.
Collapse
Affiliation(s)
- Thomas W H Liebrand
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Centre for BioSystems Genomics, Droevendaalsesteeg 1, 6700 AB Wageningen, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Centre for BioSystems Genomics, Droevendaalsesteeg 1, 6700 AB Wageningen, The Netherlands.
| |
Collapse
|
32
|
Kim J. Four shades of detachment: regulation of floral organ abscission. PLANT SIGNALING & BEHAVIOR 2014; 9:e976154. [PMID: 25482787 PMCID: PMC4623469 DOI: 10.4161/15592324.2014.976154] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 05/19/2023]
Abstract
Abscission of floral organs from the main body of a plant is a dynamic process that is developmentally and environmentally regulated. In the past decade, genetic studies in Arabidopsis have identified key signaling components and revealed their interactions in the regulation of floral organ abscission. The phytohormones jasmonic acid (JA) and ethylene play critical roles in flower development and floral organ abscission. These hormones regulate the timing of floral organ abscission both independently and inter-dependently. Although significant progress has been made in understanding abscission signaling, there are still many unanswered questions. These include considering abscission in the context of reproductive development and interplay between hormones embedded in the developmental processes. This review summarizes recent advances in the identification of molecular components in Arabidopsis and discusses their relationship with reproductive development. The emerging roles of hormones in the regulation of floral organ abscission, particularly by JA and ethylene, are examined.
Collapse
Key Words
- AGL15, AGAMOUS-LIKE 15
- AOS/DDE2, ALLENE OXIDE SYNTHASE/DELAYED DEHISCENCE 2
- ARF-GAP, ADP-ribosylation factor-GTPase activating protein
- AZ, abscission zone
- BOP1/2, BLADE ON PETIOLE 1/2
- BTP/POZ, Broad-Complex, Tramtrack, and Bric-a-brac/Pox virus and Zinc finger
- CST, CAST AWAY RECEPTOR-LIKE KINASE
- CTR1, CONSTITUTIVE TRIPLE RESPONSE 1
- DAB4/ COI1, DELAYED ABSCISSION 4/CORONATINE INSENSITIVE 1
- DAD1, DEFECTIVE ANTHER DEHISCENCE 1
- DDE1/OPR3, DELAYED DEHISCENCE 1/OXOPHYTODIENOATE-REDUCTASE 3
- EVR, EVERSHED RECEPTOR-LIKE KINASE
- EXP, EXPANSIN
- FAD7/8/3, FATTY ACID DESATURASE 7/8/3
- FYF, FOREVER YOUNG FLOWER
- HAE/HSL2, HAESA/HAESA-LIKE 2
- IM, inflorescence meristem
- JA, jasmonic acid
- JAZ, JASMONATE-ZIM DOMAIN
- KNAT1, KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 1
- LOX3/4, LIPOXYGENASE 3/4
- LRR, leucine-rich repeat
- MAPK3/6, MAP Kinase 3/6
- MKK4/5, MAP Kinase Kinase 4/5
- NEV, NEVERSHED
- NPR1, NONEXPRESSOR OF PR GENES 1
- PG , POLYGALATURONASE
- PR1, Pathogenesis-related Protein 1
- SERK1, SOMATIC EMBRYO RECEPTOR-LIKE KIASE 1
- TCP4, TEOSINTE BRANCHED/CYCLOIDEA/PCF4
- XTH , XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE
- ein2-1, ethylene insensitive 2-1
- ethylene
- etr1-1, ethylene response1-1
- floral organ abscission
- flower senescence
- ida, inflorescence deficient in abscission
- inflorescence meristem
- jasmonic acid
- reproductive development
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Laboratory; Agricultural Research Service; USDA; Beltsville, MD USA
- Correspondence to: Joonyup Kim;
| |
Collapse
|
33
|
Gubert CM, Liljegren SJ. HAESA and HAESA-LIKE2 activate organ abscission downstream of NEVERSHED and EVERSHED in Arabidopsis flowers. PLANT SIGNALING & BEHAVIOR 2014; 9:e29115. [PMID: 25763490 PMCID: PMC4203531 DOI: 10.4161/psb.29115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A ligand-receptor module comprised of the peptide inflorescence deficient in abscission (IDA) and the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2) activates organ abscission in Arabidopsis flowers. Another set of receptor-like kinases, including EVERSHED (EVR), restricts the extent of cell separation in abscission zones by potentially altering HAE/HSL2 localization or activity. The NEVERSHED (NEV) ADP-ribosylation factor GTPase-activating protein facilitates the intracellular movement of molecules required for organ abscission and fruit growth. Here we report further analysis of the relationship between NEV-mediated intracellular traffic, EVR activity and IDA-HAE/HSL2 signaling during flower development. Our results support a model in which cell separation is mediated by HAE/HSL2 signaling downstream of NEV and EVR. We discuss the possibility that conserved circuits control organ abscission and modulate fruit growth.
Collapse
|
34
|
Lin W, Ma X, Shan L, He P. Big roles of small kinases: the complex functions of receptor-like cytoplasmic kinases in plant immunity and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1188-97. [PMID: 23710768 PMCID: PMC4391744 DOI: 10.1111/jipb.12071] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/21/2013] [Indexed: 05/19/2023]
Abstract
Plants have evolved a large number of receptor-like cytoplasmic kinases (RLCKs) that often functionally and physically associate with receptor-like kinases (RLKs) to modulate plant growth, development and immune responses. Without any apparent extracellular domain, RLCKs relay intracellular signaling often via RLK complex-mediated transphosphorylation events. Recent advances have suggested essential roles of diverse RLCKs in concert with RLKs in regulating various cellular and physiological responses. We summarize here the complex roles of RLCKs in mediating plant immune responses and growth regulation, and discuss specific and overlapping functions of RLCKs in transducing diverse signaling pathways. [Figure: see text] Ping He (Corresponding author).
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA
| | - Xiyu Ma
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
35
|
Liu B, Butenko MA, Shi CL, Bolivar JL, Winge P, Stenvik GE, Vie AK, Leslie ME, Brembu T, Kristiansen W, Bones AM, Patterson SE, Liljegren SJ, Aalen RB. NEVERSHED and INFLORESCENCE DEFICIENT IN ABSCISSION are differentially required for cell expansion and cell separation during floral organ abscission in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5345-5357. [PMID: 23963677 DOI: 10.1093/jxb/ert232] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Floral organ shedding is a cell separation event preceded by cell-wall loosening and generally accompanied by cell expansion. Mutations in NEVERSHED (NEV) or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) block floral organ abscission in Arabidopsis thaliana. NEV encodes an ADP-ribosylation factor GTPase-activating protein, and cells of nev mutant flowers display membrane-trafficking defects. IDA encodes a secreted peptide that signals through the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Analyses of single and double mutants revealed unique features of the nev and ida phenotypes. Cell-wall loosening was delayed in ida flowers. In contrast, nev and nev ida mutants displayed ectopic enlargement of abscission zone (AZ) cells, indicating that cell expansion alone is not sufficient to trigger organ loss. These results suggest that NEV initially prevents precocious cell expansion but is later integral for cell separation. IDA is involved primarily in the final cell separation step. A mutation in KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1), a suppressor of the ida mutant, could not rescue the abscission defects of nev mutant flowers, indicating that NEV-dependent activity downstream of KNAT1 is required. Transcriptional profiling of mutant AZs identified gene clusters regulated by IDA-HAE/HSL2. Several genes were more strongly downregulated in nev-7 compared with ida and hae hsl2 mutants, consistent with the rapid inhibition of organ loosening in nev mutants, and the overlapping roles of NEV and IDA in cell separation. A model of the crosstalk between the IDA signalling pathway and NEV-mediated membrane traffic during floral organ abscission is presented.
Collapse
Affiliation(s)
- Bin Liu
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Niederhuth CE, Cho SK, Seitz K, Walker JC. Letting go is never easy: abscission and receptor-like protein kinases. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1251-63. [PMID: 24138310 DOI: 10.1111/jipb.12116] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/07/2013] [Indexed: 05/21/2023]
Abstract
Abscission is the process by which plants discard organs in response to environmental cues/stressors, or as part of their normal development. Abscission has been studied throughout the history of the plant sciences and in numerous species. Although long studied at the anatomical and physiological levels, abscission has only been elucidated at the molecular and genetic levels within the last two decades, primarily with the use of the model plant Arabidopsis thaliana. This has led to the discovery of numerous genes involved at all steps of abscission, including key pathways involving receptor-like protein kinases (RLKs). This review covers the current knowledge of abscission research, highlighting the role of RLKs. [Figure: see text] John C. Walker (Corresponding author).
Collapse
Affiliation(s)
- Chad E Niederhuth
- Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA; Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, 65211, USA
| | | | | | | |
Collapse
|
37
|
van Esse W, van Mourik S, Albrecht C, van Leeuwen J, de Vries S. A mathematical model for the coreceptors SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE3 in BRASSINOSTEROID INSENSITIVE1-mediated signaling. PLANT PHYSIOLOGY 2013; 163:1472-1481. [PMID: 24072582 PMCID: PMC3813665 DOI: 10.1104/pp.113.222034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/24/2013] [Indexed: 05/28/2023]
Abstract
Brassinosteroids (BRs) are key regulators in plant growth and development. The main BR-perceiving receptor in Arabidopsis (Arabidopsis thaliana) is BRASSINOSTEROID INSENSITIVE1 (BRI1). Seedling root growth and hypocotyl elongation can be accurately predicted using a model for BRI1 receptor activity. Genetic evidence shows that non-ligand-binding coreceptors of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family are essential for BRI1 signal transduction. A relatively simple biochemical model based on the properties of SERK loss-of-function alleles explains complex physiological responses of the BRI1-mediated BR pathway. The model uses BRI1-BR occupancy as the central estimated parameter and includes BRI1-SERK interaction based on mass action kinetics and accurately describes wild-type root growth and hypocotyl elongation. Simulation studies suggest that the SERK coreceptors primarily act to increase the magnitude of the BRI1 signal. The model predicts that only a small number of active BRI1-SERK complexes are required to carry out BR signaling at physiological ligand concentration. Finally, when calibrated with single mutants, the model predicts that roots of the serk1serk3 double mutant are almost completely brassinolide (BL) insensitive, while the double mutant hypocotyls remain sensitive. This points to residual BRI1 signaling or to a different coreceptor requirement in shoots.
Collapse
|
38
|
Kim MH, Kim Y, Kim JW, Lee HS, Lee WS, Kim SK, Wang ZY, Kim SH. Identification of Arabidopsis BAK1-associating receptor-like kinase 1 (BARK1) and characterization of its gene expression and brassinosteroid-regulated root phenotypes. PLANT & CELL PHYSIOLOGY 2013; 54:1620-34. [PMID: 23921992 DOI: 10.1093/pcp/pct106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Brassinosteroids (BRs) activate the BRI1 and BAK1/SERK3 membrane receptor complex, which leads to a wide range of changes in gene expression, plant growth and development. As an initial step to elucidate additional roles of BAK1, we cloned a BAK1-binding protein, BAK1-Associating Receptor-Like Kinase 1 (BARK1), and characterized its gene expression and root phenotypes. BARK1 is a putative membrane LRR-RLK (leucine-rich repeat receptor-like kinase) protein that specifically binds to BAK1 and its homologs. Careful examination of BARK1 expression using transgenic plants expressing a green fluorescent protein (GFP) reporter under the control of the native BARK1 promoter (BARK1p::GFP) revealed that this gene is ubiquitously expressed in most plant tissues, and shows especially strong expression in the xylem vasculature of primary and lateral roots as well as in mature pollen. Interestingly, the expression of the BARK1 gene was increased in the BR biosynthetic loss-of-function mutant, det2, and a loss-of-function mutant of BR signaling, bak1-3. In contrast, this gene was down-regulated in the bzr1-1D plant, which is a BR signal gain-of-function mutant. BARK1-overexpressing transgenic plants clearly enhanced primary root growth in a dose-dependent manner, and their roots were hypersensitive to BR-induced root growth inhibition. In addition, both the number and density of lateral roots were dramatically increased in the BARK1 transgenic plants in a dose-dependent manner. Together with observations that ARF (AUXIN RESPONSE FACTOR) genes are up-regulated in the BARK1 overexpressor, we suggest that the BARK1 overexpressor phenotype with more lateral roots is partly due to the increased expression of ARF genes in this genetic background. In conclusion, BAK1-interacting BARK1 protein may be involved in BR-mediated plant growth and development such as in lateral roots via auxin regulation.
Collapse
Affiliation(s)
- Min Hee Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 220-710, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim J, Dotson B, Rey C, Lindsey J, Bleecker AB, Binder BM, Patterson SE. New clothes for the jasmonic acid receptor COI1: delayed abscission, meristem arrest and apical dominance. PLoS One 2013; 8:e60505. [PMID: 23573263 PMCID: PMC3613422 DOI: 10.1371/journal.pone.0060505] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
In a screen for delayed floral organ abscission in Arabidopsis, we have identified a novel mutant of CORONATINE INSENSITIVE 1 (COI1), the F-box protein that has been shown to be the jasmonic acid (JA) co-receptor. While JA has been shown to have an important role in senescence, root development, pollen dehiscence and defense responses, there has been little focus on its critical role in floral organ abscission. Abscission, or the detachment of organs from the main body of a plant, is an essential process during plant development and a unique type of cell separation regulated by endogenous and exogenous signals. Previous studies have indicated that auxin and ethylene are major plant hormones regulating abscission; and here we show that regulation of floral organ abscission is also controlled by jasmonic acid in Arabidopsis thaliana. Our characterization of coi1-1 and a novel allele (coi1-37) has also revealed an essential role in apical dominance and floral meristem arrest. In this study we provide genetic evidence indicating that delayed abscission 4 (dab4-1) is allelic to coi1-1 and that meristem arrest and apical dominance appear to be evolutionarily divergent functions for COI1 that are governed in an ecotype-dependent manner. Further characterizations of ethylene and JA responses of dab4-1/coi1-37 also provide new information suggesting separate pathways for ethylene and JA that control both floral organ abscission and hypocotyl growth in young seedlings. Our study opens the door revealing new roles for JA and its interaction with other hormones during plant development.
Collapse
Affiliation(s)
- Joonyup Kim
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Bradley Dotson
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, United States of America
| | - Camila Rey
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joshua Lindsey
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
- Orthopedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Anthony B. Bleecker
- Department of Botany, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brad M. Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sara E. Patterson
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
40
|
Corbacho J, Romojaro F, Pech JC, Latché A, Gomez-Jimenez MC. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis. PLoS One 2013; 8:e58363. [PMID: 23484021 PMCID: PMC3590154 DOI: 10.1371/journal.pone.0058363] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/03/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mature-fruit abscission (MFA) in fleshy-fruit is a genetically controlled process with mechanisms that, contrary to immature-fruit abscission, has not been fully characterized. Here, we use pyrosequencing to characterize the transcriptomes of melon abscission zone (AZ) at three stages during AZ-cell separation in order to understand MFA control at an early stage of AZ-activation. PRINCIPAL FINDINGS The results show that by early induction of MFA, the melon AZ exhibits major gene induction, while by late induction of MFA, melon AZ shows major gene repression. Although some genes displayed similar regulation in both early and late induction of abscission, such as EXT1-EXT4, EGase1, IAA2, ERF1, AP2D15, FLC, MADS2, ERAF17, SAP5 and SCL13 genes, the majority had different expression patterns. This implies that time-specific events occur during MFA, and emphasizes the value of characterizing multiple time-specific abscission transcriptomes. Analysis of gene-expression from these AZs reveal that a sequential induction of cell-wall-degrading genes is associated with the upregulation of genes involved in endo and exocytosis, and a shift in plant-hormone metabolism and signaling genes during MFA. This is accompanied by transcriptional activity of small-GTPases and synthaxins together with tubulins, dynamins, V-type ATPases and kinesin-like proteins potentially involved in MFA signaling. Early events are potentially controlled by down-regulation of MADS-box, AP2/ERF and Aux/IAA transcription-factors, and up-regulation of homeobox, zinc finger, bZIP, and WRKY transcription-factors, while late events may be controlled by up-regulation of MYB transcription-factors. SIGNIFICANCE Overall, the data provide a comprehensive view on MFA in fleshy-fruit, identifying candidate genes and pathways associated with early induction of MFA. Our comprehensive gene-expression profile will be very useful for elucidating gene regulatory networks of the MFA in fleshy-fruit.
Collapse
Affiliation(s)
- Jorge Corbacho
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, Badajoz, Spain
| | | | - Jean-Claude Pech
- UMR990 INRA/INP-ENSA Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, France
| | - Alain Latché
- UMR990 INRA/INP-ENSA Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, France
| | - Maria C. Gomez-Jimenez
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, Badajoz, Spain
- * E-mail:
| |
Collapse
|
41
|
Estornell LH, Agustí J, Merelo P, Talón M, Tadeo FR. Elucidating mechanisms underlying organ abscission. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:48-60. [PMID: 23265318 DOI: 10.1016/j.plantsci.2012.10.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/03/2012] [Accepted: 10/31/2012] [Indexed: 05/19/2023]
Abstract
Abscission consists in the detachment of entire vegetative and reproductive organs due to cell separation processes occurring at the abscission zones (AZs) at specific positions of the plant body. From an evolutionary point of view, abscission is a highly advantageous process resulting into fruit and seed dispersal as well as the shedding of no longer useful organs. In an agricultural context, however, abscission may become a major limiting factor for crop productivity. Domestication of major crops included the selection of plants that did not naturally shed ripe fruits or seeds. The understanding of abscission is of great importance to control seed and fruit production and to improve breeding and harvesting practices. Thus, advances made on model plants and crops are of major importance since they may provide potential candidate genes for further biotechnological applications. Here, we review the current knowledge of the physiological, genetic and genomic aspects related to abscission including the most recently disclosed putative regulators that appear to be implicated in the development and/or activation of the AZs.
Collapse
Affiliation(s)
- Leandro H Estornell
- Institut Valencià d'Investigacions Agràries (IVIA), Centre de Genómica, Apartat Oficial, Montcada (València), Spain
| | | | | | | | | |
Collapse
|
42
|
Liljegren SJ. Organ abscission: exit strategies require signals and moving traffic. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:670-6. [PMID: 23047135 DOI: 10.1016/j.pbi.2012.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 05/18/2023]
Abstract
Flowers are frequently programmed to release their outer organs after pollination. Managing the timing and extent of cell separation during abscission is crucial, as premature shedding could interfere with reproduction and the structural integrity of neighboring tissues would be affected by uninhibited loss of cellular adhesion. In Arabidopsis flowers, the framework of the cell signaling, membrane traffic and transcriptional networks responsible for organ abscission is now emerging. A proposed ligand-receptor system consisting of a secreted peptide and a pair of redundant receptor-like kinases switches on a mitogen-activated protein kinase cascade that leads to cell separation. A homeodomain transcription factor acting downstream of the ligand-receptor module may inhibit cell expansion and separation by restricting the expression of other closely related transcription factors. Three additional receptor-like kinases may inhibit abscission by reducing the pool of receptors at the cell surface available to be ligand-activated. A G-protein regulator is required to direct the movement of key molecules required for abscission. Expression of a polygalaturonase active during organ abscission is modulated by a zinc finger transcription factor.
Collapse
Affiliation(s)
- Sarah J Liljegren
- Department of Biology, University of Mississippi, Oxford, MS 38677-1848, USA.
| |
Collapse
|
43
|
Wu XM, Yu Y, Han LB, Li CL, Wang HY, Zhong NQ, Yao Y, Xia GX. The tobacco BLADE-ON-PETIOLE2 gene mediates differentiation of the corolla abscission zone by controlling longitudinal cell expansion. PLANT PHYSIOLOGY 2012; 159:835-50. [PMID: 22492844 PMCID: PMC3375945 DOI: 10.1104/pp.112.193482] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/03/2012] [Indexed: 05/19/2023]
Abstract
The BLADE-ON-PETIOLE (BOP) genes of Arabidopsis (Arabidopsis thaliana) have been shown to play an essential role in floral abscission by specializing the abscission zone (AZ) anatomy. However, the molecular and cellular mechanisms that underlie differentiation of the AZ are largely unknown. In this study, we identified a tobacco (Nicotiana tabacum) homolog of BOP (designated NtBOP2) and characterized its cellular function. In tobacco plants, the NtBOP2 gene is predominantly expressed at the base of the corolla in an ethylene-independent manner. Both antisense suppression of NtBOP genes and overexpression of NtBOP2 in tobacco plants caused a failure in corolla shedding. Histological analysis revealed that the differentiation of the corolla AZ was blocked in the transgenic flowers. This blockage was due to uncontrolled cell elongation at the region corresponding to wild-type AZ. The role of NtBOP2 in regulating cell elongation was further demonstrated in Bright Yellow 2 single cells: perturbation of NtBOP2 function by a dominant negative strategy led to the formation of abnormally elongated cells. Subcellular localization analysis showed that NtBOP2-green fluorescent protein fusion proteins were targeted to both the nucleus and cytoplasm. Yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays demonstrated that NtBOP2 proteins interacted with TGA transcription factors. Taken together, these results indicated that NtBOP2 mediated the differentiation of AZ architecture by controlling longitudinal cell growth. Furthermore, NtBOP2 may achieve this outcome through interaction with the TGA transcription factors and via an ethylene-independent signaling pathway.
Collapse
MESH Headings
- Amino Acid Sequence
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Cell Differentiation
- Cell Enlargement
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cytoplasm/genetics
- Cytoplasm/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Flowers/genetics
- Flowers/physiology
- Flowers/ultrastructure
- Gene Expression Regulation, Plant
- Genes, Plant
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Microscopy, Electron
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/cytology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Nicotiana/cytology
- Nicotiana/genetics
- Nicotiana/physiology
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Xiao-Min Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Yi Yu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Li-Bo Han
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Chun-Li Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Nai-Qin Zhong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | - Yuan Yao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China (X.-M.W., Y.Y., L.-B.H., C.-L.L., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Beijing 100101, People’s Republic of China (X.-M.W., L.-B.H., H.-Y.W., N.-Q.Z., Y.Y., G.-X.X.)
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, College of Pharmacy, Wuhan University, Wuhan 430072, People’s Republic of China (Y.Y.)
| | | |
Collapse
|
44
|
Gao J, Ma Y, Sun Y, Zhao H, Hong D, Yan L, Lou Z. Crystallization and preliminary crystallographic analysis of Arabidopsis thaliana BRI1-associated kinase 1 (BAK1) cytoplasmic domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:340-2. [PMID: 22442239 PMCID: PMC3310547 DOI: 10.1107/s1744309112004605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/03/2012] [Indexed: 11/11/2022]
Abstract
BRI1-associated kinase 1 (BAK1) is a member of the plant receptor-like kinase (RLK) superfamily. BAK1 has been shown to initiate brassinosteroid (BR) signalling and innate immune responses in plants by forming receptor complexes with both brassinosteroid-insensitive 1 (BRI1) and flagellin-sensing 2 (FLS2). To gain a better understanding of the structural details and the mechanism of action of the BAK1 kinase domain, recombinant BAK1 cytoplasmic domain has been expressed, purified and crystallized at 291 K using PEG 3350 as a precipitant. A 2.6 Å resolution data set was collected from a single flash-cooled crystal at 100 K. This crystal belonged to space group C2, with unit-cell parameters a = 70.3, b = 75.6, c = 71.9 Å, β = 93.1°. Assuming the presence of one molecule in the asymmetric unit, the Matthews coefficient was 2.6 Å(3) Da(-1).
Collapse
Affiliation(s)
- Jian Gao
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yuanyuan Ma
- College of Life Science, Nankai University, Tianjin 300074, People’s Republic of China
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, People’s Republic of China
| | - Huadong Zhao
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300071, People’s Republic of China
| | - Dapeng Hong
- High School Attached to Capital Normal University, Beijing, People’s Republic of China
| | - Liming Yan
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Zhiyong Lou
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
45
|
|
46
|
Bryan A, Racolta A, Tax F, Liljegren S. The Social Network: Receptor Kinases and Cell Fate Determination in Plants. SIGNALING AND COMMUNICATION IN PLANTS 2012. [DOI: 10.1007/978-3-642-23044-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Ntoukakis V, Schwessinger B, Segonzac C, Zipfel C. Cautionary notes on the use of C-terminal BAK1 fusion proteins for functional studies. THE PLANT CELL 2011; 23:3871-8. [PMID: 22129600 PMCID: PMC3246322 DOI: 10.1105/tpc.111.090779] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/11/2011] [Accepted: 11/16/2011] [Indexed: 05/20/2023]
Abstract
Detailed phenotypic characterization reveals that several BAK1 fusion proteins with C-terminal tags strongly impair complementation of bak1 null mutants with respect to responsiveness to the bacterial pathogen-associated molecular patterns flagellin and EF-Tu. This raises concerns about the widespread use of such protein variants of this important regulatory Leu-rich repeat receptor-like kinase (RLK) for functional analyses of RLK-based signaling.
Collapse
|
48
|
Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH. The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:168-85. [PMID: 21689171 DOI: 10.1111/j.1365-313x.2011.04677.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The ectopic expression of a MADS box gene FOREVER YOUNG FLOWER (FYF) caused a significant delay of senescence and a deficiency of abscission in flowers of transgenic Arabidopsis. The defect in floral abscission was found to be due to a deficiency in the timing of cell separation of the abscission zone cells. Down-regulation of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) may contribute to the delay of the floral abscission in 35S:FYF flowers. FYF was found to be highly expressed in young flowers prior to pollination and was significantly decreased after pollination, a pattern that correlated with its function. Ethylene insensitivity in senescence/abscission and the down-regulation of ETHYLENE RESPONSE DNA-BINDING FACTOR 1 (EDF1) and EDF2, downstream genes in the ethylene response, in 35S:FYF Arabidopsis suggested a role for FYF in regulating senescence/abscission by suppressing the ethylene response. This role was further supported by the fact that 35S:FYF enhanced the delay of flower senescence/abscission in ethylene response 1 (etr1), ethylene-insensitive 2 (ein2) and constitutive triple response 1 (ctr1) mutants, which have defects in upstream genes of the ethylene signaling pathway. The presence of a repressor domain in the C-terminus of FYF and the enhancement of the delay of senescence/abscission in FYF+SRDX (containing a suppression motif) transgenic plants suggested that FYF acts as a repressor. Indeed, in FYF-DR+VP16 transgenic dominant-negative mutant plants, in which FYF was converted to a potent activator by fusion to a VP16-AD motif, the senescence/abscission of the flower organs was significantly promoted, and the expression of BOP2, IDA and EDF1/2 was up-regulated. Our data suggest a role for FYF in controlling floral senescence/abscission by repressing ethylene responses and regulating the expression of BOP2 and IDA in Arabidopsis.
Collapse
Affiliation(s)
- Ming-Kun Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 40227, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Burr CA, Leslie ME, Orlowski SK, Chen I, Wright CE, Daniels MJ, Liljegren SJ. CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1837-50. [PMID: 21628627 PMCID: PMC3149937 DOI: 10.1104/pp.111.175224] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Receptor-like kinase-mediated cell signaling pathways play fundamental roles in many aspects of plant growth and development. A pair of Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA (HAE) and HAESA-LIKE2 (HSL2), have been shown to activate the cell separation process that leads to organ abscission. Another pair of LRR-RLKs, EVERSHED (EVR) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1, act as inhibitors of abscission, potentially by modulating HAE/HSL2 activity. Cycling of these RLKs to and from the cell surface may be regulated by NEVERSHED (NEV), a membrane trafficking regulator that is essential for organ abscission. We report here the characterization of CAST AWAY (CST), a receptor-like cytoplasmic kinase that acts as a spatial inhibitor of cell separation. Disruption of CST suppresses the abscission defects of nev mutant flowers and restores the discrete identity of the trans-Golgi network in nev abscission zones. After organ shedding, enlarged abscission zones with obscured boundaries are found in nev cst flowers. We show that CST is a dual-specificity kinase in vitro and that myristoylation at its amino terminus promotes association with the plasma membrane. Using the bimolecular fluorescence complementation assay, we have detected interactions of CST with HAE and EVR at the plasma membrane of Arabidopsis protoplasts and hypothesize that CST negatively regulates cell separation signaling directly and indirectly. A model integrating the potential roles of receptor-like kinase signaling and membrane trafficking during organ separation is presented.
Collapse
|
50
|
Mantelin S, Peng HC, Li B, Atamian HS, Takken FLW, Kaloshian I. The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:459-71. [PMID: 21481032 DOI: 10.1111/j.1365-313x.2011.04609.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plant receptor-like kinase somatic embryogenesis receptor kinase 3 (SERK3)/brassinosteroid insensitive 1-associated kinase 1 (BAK1) is required for pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Here we show that a distinct member of the SERK family, SERK1, is required for the full functioning of Mi-1, a nucleotide binding leucine-rich repeat (NB-LRR) resistance protein. Mi-1 confers resistance to Meloidogyne spp. (root-knot nematodes, RKNs) and three phloem-feeding insects, including Macrosiphum euphorbiae (potato aphid). SERK1 was identified in a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) screen in Nicotiana benthamiana. The screen was based on the suppression of a pest-independent hypersensitive response triggered by a constitutively active form of Mi-1, Mi-DS4. To assess the role of SERK1 in Mi-1-mediated resistance, Solanum lycopersicum (tomato) SlSERK genes were cloned. Three SlSERK members were identified with homologies to Arabidopsis AtSERK1 or AtSERK3/BAK1, and were named SlSERK1, SlSERK3A and SlSERK3B. SlSERK1 is ubiquitously expressed in tomato. Reducing SlSERK1 transcript levels in resistant plants, using gene-specific TRV-SERK1 VIGS, revealed a role for SlSERK1 in Mi-1-mediated resistance to potato aphids, but not to RKNs. In addition, Mi-1-dependent SlWRKY72 gene regulation was compromised in SlSERK1-silenced plants, placing SlSERK1 in the Mi-1 signaling pathway. Silencing SlSERK1 in a susceptible tomato background did not reduce the susceptibility to aphids, indicating that SlSERK1 is unlikely to be an essential virulence target. SlSERK1 is an active kinase, mainly localized at the plasma membrane. This work identifies a critical early component of Mi-1 signaling, and demonstrates a role for SlSERK1 in NB-LRR-mediated immunity.
Collapse
Affiliation(s)
- Sophie Mantelin
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|