1
|
Nguyen XP, Vilkaite A, Bender U, Dietrich JE, Hinderhofer K, Strowitzki T, Rehnitz J. Regulation of Bone Morphogenetic Protein Receptor Type II Expression by FMR1/Fragile X Mental Retardation Protein in Human Granulosa Cells in the Context of Poor Ovarian Response. Int J Mol Sci 2024; 25:10643. [PMID: 39408972 PMCID: PMC11477111 DOI: 10.3390/ijms251910643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Fragile X mental retardation protein (FMRP) is a translational repressor encoded by FMR1. It targets bone morphogenetic protein receptor type II (BMPR2), which regulates granulosa cell (GC) function and follicle development. However, whether this interaction affects folliculogenesis remains unclear. Therefore, this study investigated the potential effect of FMRP-BMPR2 dysregulation in ovarian reserves and infertility. COV434 cells and patient-derived GCs were used to evaluate FMRP and BMPR2 expression. Similarly, FMR1, BMPR2, LIMK1, and SMAD expression were evaluated in GCs with normal (NOR) and poor (POR) ovarian responses. FMRP and BMPR2 were expressed in both cell types. They were co-localized to the nuclear membrane of COV434 cells and cytoplasm of primary GCs. FMR1 silencing increased the mRNA and protein levels of BMPR2. However, the mRNA levels of FMR1 and BMPR2 were significantly lower in the POR group. FMR1 and BMPR2 levels were strongly positively correlated in the NOR group but weakly correlated in the POR group. Additionally, SMAD9 expression was significantly reduced in the POR group. This study highlights the crucial role of FMR1/FMRP in the regulation of BMPR2 expression and its impact on ovarian function. These findings indicate that the disruption of FMRP-BMPR2 interactions may cause poor ovarian responses and infertility.
Collapse
Affiliation(s)
- Xuan Phuoc Nguyen
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (X.P.N.); (A.V.); (U.B.); (J.E.D.); (T.S.)
| | - Adriana Vilkaite
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (X.P.N.); (A.V.); (U.B.); (J.E.D.); (T.S.)
| | - Ulrike Bender
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (X.P.N.); (A.V.); (U.B.); (J.E.D.); (T.S.)
| | - Jens E. Dietrich
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (X.P.N.); (A.V.); (U.B.); (J.E.D.); (T.S.)
| | - Katrin Hinderhofer
- Institute of Human Genetics, University Heidelberg, 69120 Heidelberg, Germany;
| | - Thomas Strowitzki
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (X.P.N.); (A.V.); (U.B.); (J.E.D.); (T.S.)
| | - Julia Rehnitz
- Department of Gynecological Endocrinology and Fertility Disorders, University Women’s Hospital, 69120 Heidelberg, Germany; (X.P.N.); (A.V.); (U.B.); (J.E.D.); (T.S.)
| |
Collapse
|
2
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
3
|
Poteet B, Ali N, Bellcross C, Sherman SL, Espinel W, Hipp H, Allen EG. The diagnostic experience of women with fragile X-associated primary ovarian insufficiency (FXPOI). J Assist Reprod Genet 2023; 40:179-190. [PMID: 36447079 PMCID: PMC9840735 DOI: 10.1007/s10815-022-02671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
PURPOSE The fragile X premutation occurs when there are 55-200 CGG repeats in the 5' UTR of the FMR1 gene. An estimated 1 in 148 women carry a premutation, with 20-30% of these individuals at risk for fragile X-associated primary ovarian insufficiency (FXPOI). Diagnostic experiences of FXPOI have not previously been included in the literature, limiting insight on experiences surrounding the diagnosis. This study identifies barriers and facilitators to receiving a FXPOI diagnosis and follow-up care, which can inform care and possibly improve quality of life. METHODS We conducted qualitative interviews with 24 women with FXPOI exploring how FMR1 screening, physician education, and supportive care impacted their experience. Three subgroups were compared: women diagnosed through family history who have biological children, women diagnosed through family history who do not have biological children, and women diagnosed through symptoms of POI. RESULTS Themes from interviews included hopes for broader clinician awareness of FXPOI, clear guidelines for clinical treatment, and proper fertility workups to expand reproductive options prior to POI onset. Participants also spoke of difficulty finding centralized sources of care. CONCLUSIONS Our results indicate a lack of optimal care of women with a premutation particularly with respect to FMR1 screening for molecular diagnosis, short- and long-term centralized treatment, and clinical and emotional support. The creation of a "FXPOI health navigator" could serve as a centralized resource for the premutation patient population, assisting in connection to optimal treatment and appropriate referrals, including genetic counseling, mental health resources, advocacy organizations, and better-informed physicians.
Collapse
Affiliation(s)
- Bonnie Poteet
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Northside Hospital Cancer Institute, Atlanta, GA, USA
| | - Nadia Ali
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cecelia Bellcross
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Whitney Espinel
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Heather Hipp
- Division of Reproductive Endocrinology and Infertility, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Flavell J, Franklin C, Nestor PJ. A Systematic Review of Fragile X-Associated Neuropsychiatric Disorders. J Neuropsychiatry Clin Neurosci 2022; 35:110-120. [PMID: 36172690 DOI: 10.1176/appi.neuropsych.21110282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Fragile X premutation carriers are reported to have increased neuropsychiatric problems, and thus the term fragile X-associated neuropsychiatric disorders (FXAND) has been proposed. Unfortunately, published prevalence estimates of these phenomena are inconsistent. This systematic review clarified this issue by reviewing both fragile X premutation prevalence in patients with neurodevelopmental disorders and psychiatric disorder prevalence in premutation carriers without fragile X-associated tremor/ataxia syndrome (FXTAS). Average prevalence was derived from studies that used semistructured clinical interviews, diagnostic criteria, and validated rating scales. METHODS Forty-six studies were reviewed. The rate of fragile X premutation in neurodevelopmental disorders was assessed from five studies. Probands with neurodevelopmental disorders were more likely than those in the general population to be premutation carriers. The rate of psychiatric disorders in premutation carriers was assessed from five studies for neurodevelopmental, 13 studies for mood, 12 studies for anxiety, and two studies for psychotic disorders. The phenotype and sex distribution among premutation carriers were similar to those with fragile X syndrome. RESULTS Compared to control group and general population estimates, the most prevalent psychiatric disorders were neurodevelopmental disorders, anxiety disorders, and bipolar II disorder. Psychiatric disorders were also more common in males. Most studies relied only on past medical history to define the prevalence of psychiatric disorders, yielding variability in results. CONCLUSIONS Future studies are needed to avoid bias by identifying cohorts from population-based sampling, to describe cohort demographic characteristics to elucidate differences in age and sex, and to prioritize the use of validated psychiatric assessment methods.
Collapse
Affiliation(s)
- Joshua Flavell
- Mater Intellectual Disability and Autism Service (Flavell, Franklin) and Mater Centre for Neurosciences (Flavell, Nestor), Mater Hospital, Brisbane, Australia; Metro North Hospital and Health Service, Brisbane (Flavell); Queensland Brain Institute (Flavell, Nestor) and Mater Research Institute (Franklin), University of Queensland, Brisbane
| | - Catherine Franklin
- Mater Intellectual Disability and Autism Service (Flavell, Franklin) and Mater Centre for Neurosciences (Flavell, Nestor), Mater Hospital, Brisbane, Australia; Metro North Hospital and Health Service, Brisbane (Flavell); Queensland Brain Institute (Flavell, Nestor) and Mater Research Institute (Franklin), University of Queensland, Brisbane
| | - Peter J Nestor
- Mater Intellectual Disability and Autism Service (Flavell, Franklin) and Mater Centre for Neurosciences (Flavell, Nestor), Mater Hospital, Brisbane, Australia; Metro North Hospital and Health Service, Brisbane (Flavell); Queensland Brain Institute (Flavell, Nestor) and Mater Research Institute (Franklin), University of Queensland, Brisbane
| |
Collapse
|
5
|
Gruber N, Haham LM, Raanani H, Cohen Y, Gabis L, Berkenstadt M, Ries-Levavi L, Elizur S, Pinhas-Hamiel O. Female fragile X premutation carriers are at increased risk for metabolic syndrome from early adulthood. Nutr Metab Cardiovasc Dis 2022; 32:1010-1018. [PMID: 35086765 DOI: 10.1016/j.numecd.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Women with primary ovarian insufficiency exhibit an unfavorable cardiovascular risk profile. A common cause for primary ovarian insufficiency is fragile X premutation (FXPC), and data on the cardiovascular risk factors in women with FXPC are scarce. We aimed to assess the prevalences of abnormal metabolic components among FXPC. METHODS AND RESULTS Clinical, anthropometric and laboratory data were collected from 71 women with FXPC and compared to 78 women referred for counseling in an in-vitro fertilization clinic (control group). The mean ± SD ages of the FXPC and control groups were 33.5 ± 5.6 and 36.2 ± 5.3 years, respectively (p = 0.003). In a logistic regression analysis, the FXPC group had increased risks for hyperglycemia, hypertriglyceridemia, central obesity and low high-density lipoprotein cholesterol, of 21.8-fold (95% CI 2.7-175, p = 0.004), 6.9-fold (95% CI 2.5-18.7, p < 0.0001), 3.1-fold (95% CI 1.4-6.9, p = 0.005) and 2.4-fold (95% CI 1.1-5.2, p = 0.03), compared to the control group. The FXPC group had 2.7-fold higher prevalence of two abnormal metabolic components; 19% met the full criteria of MetS, compared to 3% of the control group. Neither CGG repeats nor ovarian reserve markers were associated with metabolic risk. CONCLUSIONS Carriers of fragile X premutation are at increased metabolic risk from early adulthood; waist circumference, glucose and lipid levels are particularly elevated. We recommend metabolic screening for all women with FMR1 premutation, to enable early interventions for prevention of long-term cardiovascular comorbidities.
Collapse
Affiliation(s)
- Noah Gruber
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | | | - Hila Raanani
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; IVF Unit, Sheba Medical Center, Ramat Gan, Israel
| | - Yoram Cohen
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; IVF Unit, Sheba Medical Center, Ramat Gan, Israel
| | - LidiaV Gabis
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; Child Development Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Michal Berkenstadt
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
| | - Liat Ries-Levavi
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel
| | - Shai Elizur
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel; IVF Unit, Sheba Medical Center, Ramat Gan, Israel
| | - Orit Pinhas-Hamiel
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Meraj N, Yasin M, Rehman ZU, Tahir H, Jadoon H, Khan N, Shahid R, Zubair M, Zulfiqar I, Jabeen M, Neelam S, Hameed A, Saleha S. Fragile X premutation carrier screening in Pakistani preconception women in primary care consultation. BMC Womens Health 2022; 22:57. [PMID: 35246105 PMCID: PMC8895653 DOI: 10.1186/s12905-022-01632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Women of reproductive age who carry fragile X premutation (PM) alleles have 56 to 200 CGG repeats in the 5'-untranslated region of FMR1 gene are at increased risk for producing children with intellectual disabilities (ID) or autism spectrum disorders (ASD) due to expansion of PM alleles to full mutation alleles (> 200 repeats) during maternal transmission. METHODS In present study fragile X PM carrier screening was performed in total 808 women who were consulting primary health care centers for preconception care in Khyber Pakhtunkhwa region of Pakistan between April, 2018 and December, 2020. Polymerase chain reaction (PCR) was performed for detection of PM carrier women and the CGG repeats number was confirmed by Southern blotting and capillary electrophoresis. RESULTS The prevalence rate for PM carriers among preconception women was found to be 0.7% that was contributed by 0.5% women in risk group (RG1) with family history of ID and 0.2% in risk group 2 (RG2) with family history of ASD. PM carrier women had at least one affected child or sibling. In addition, the preconception women with FMR1 PM alleles were found to be at increased risk for primary ovary insufficiency (RG1: P = 0.0265, RG2: P = 0.0389), postpartum depression (RG1: P = 0.0240, RG2: P = 0.0501) and neuropsychiatric disorders (RG1: P = 0.0389, RG2: P = 0.0432). CONCLUSIONS Current study provides first evidence of fragile X PM carrier screening in Pakistani preconception women in primary care consultation. Findings of current study may help to improve preconception care and to reduce burden of fragile X associated disorders in our population.
Collapse
Affiliation(s)
- Neelam Meraj
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Haleema Tahir
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Humaira Jadoon
- Department of Obstetrics and Gynecology, Ayub Medical Institute, Abbottabad, 22010, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Rabia Shahid
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Maria Zubair
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Irba Zulfiqar
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Musarrat Jabeen
- Department of Obstetrics and Gynecology, Liaqat Memorial Hospital, KIMS, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahzadi Neelam
- Department of Obstetrics and Gynecology, Qazi Ahmed Medical Complex, Nowshera, 24100, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Hameed
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 44000, Pakistan
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
7
|
Expression of FMRpolyG in Peripheral Blood Mononuclear Cells of Women with Fragile X Mental Retardation 1 Gene Premutation. Genes (Basel) 2022; 13:genes13030451. [PMID: 35328005 PMCID: PMC8951797 DOI: 10.3390/genes13030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Fragile X-associated primary ovarian insufficiency (FXPOI) is characterized by oligo/amenorrhea and hypergonadotropic hypogonadism and is caused by the expansion of the CGG repeat in the 5′UTR of Fragile X Mental Retardation 1 (FMR1). Approximately 20% of women carrying an FMR1 premutation (PM) allele (55–200 CGG repeat) develop FXPOI. Repeat Associated Non-AUG (RAN)-translation dependent on the variable CGG-repeat length is thought to cause FXPOI, due to the production of a polyglycine-containing FMR1 protein, FMRpolyG. Peripheral blood monocyte cells (PBMCs) and granulosa cells (GCs) were collected to detect FMRpolyG and its cell type-specific expression in FMR1 PM carriers by immunofluorescence staining (IF), Western blotting (WB), and flow cytometric analysis (FACS). For the first time, FMRpolyG aggregates were detected as ubiquitin-positive inclusions in PBMCs from PM carriers, whereas only a weak signal without inclusions was detected in the controls. The expression pattern of FMRpolyG in GCs was comparable to that in the lymphocytes. We detected FMRpolyG as a 15- to 25-kDa protein in the PBMCs from two FMR1 PM carriers, with 124 and 81 CGG repeats. Flow cytometric analysis revealed that FMRpolyG was significantly higher in the T cells from PM carriers than in those from non-PM carriers. The detection of FMRpolyG aggregates in the peripheral blood and granulosa cells of PM carriers suggests that it may have a toxic potential and an immunological role in ovarian damage in the development of FXPOI.
Collapse
|
8
|
Schmitt LM, Dominick KC, Liu R, Pedapati EV, Ethridge LE, Smith E, Sweeney JA, Erickson CA. Evidence for Three Subgroups of Female FMR1 Premutation Carriers Defined by Distinct Neuropsychiatric Features: A Pilot Study. Front Integr Neurosci 2022; 15:797546. [PMID: 35046780 PMCID: PMC8763356 DOI: 10.3389/fnint.2021.797546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
Over 200 Cytosine-guanine-guanine (CGG) trinucleotide repeats in the 5' untranslated region of the Fragile X mental retardation 1 (FMR1) gene results in a "full mutation," clinically Fragile X Syndrome (FXS), whereas 55 - 200 repeats result in a "premutation." FMR1 premutation carriers (PMC) are at an increased risk for a range of psychiatric, neurocognitive, and physical conditions. Few studies have examined the variable expression of neuropsychiatric features in female PMCs, and whether heterogeneous presentation among female PMCs may reflect differential presentation of features in unique subgroups. In the current pilot study, we examined 41 female PMCs (ages 17-78 years) and 15 age-, sex-, and IQ-matched typically developing controls (TDC) across a battery of self-report, eye tracking, expressive language, neurocognitive, and resting state EEG measures to determine the feasibility of identifying discrete clusters. Secondly, we sought to identify the key features that distinguished these clusters of female PMCs. We found a three cluster solution using k-means clustering. Cluster 1 represented a psychiatric feature group (27% of our sample); cluster 2 represented a group with executive dysfunction and elevated high frequency neural oscillatory activity (32%); and cluster 3 represented a relatively unaffected group (41%). Our findings indicate the feasibility of using a data-driven approach to identify naturally occurring clusters in female PMCs using a multi-method assessment battery. CGG repeat count and its association with neuropsychiatric features differ across clusters. Together, our findings provide important insight into potential diverging pathophysiological mechanisms and risk factors for each female PMC cluster, which may ultimately help provide novel and individualized targets for treatment options.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Kelli C. Dominick
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Rui Liu
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ernest V. Pedapati
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Lauren E. Ethridge
- Department of Psychology, University of Oklahoma, Norman, OK, United States
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth Smith
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - John A. Sweeney
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Craig A. Erickson
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
9
|
Fielding-Gebhardt H, Swinburne Romine R, Bredin-Oja S, Brady N, Warren SF. Maternal well-being and family adaptation during COVID-19 in fragile X syndrome. Front Psychiatry 2022; 13:952118. [PMID: 36081464 PMCID: PMC9445157 DOI: 10.3389/fpsyt.2022.952118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mothers of children with fragile X syndrome are at increased risk of experiencing anxiety and depression due to potential genetic risk and to stress associated with parenting a child with significant behavioral, emotional, and educational support needs. During the initial shutdown and subsequent restrictions of the COVID-19 pandemic, mothers of children with fragile X reported experiencing elevated levels of anxiety and depression relative to their usual levels of well-being. Many indicated that the negative consequences of exposure to COVID-19 and related stressors, as well as the impacts of the pandemic on their family, directly affected their anxiety and depression. Mothers reported on specific sources of distress as well as potential sources of resilience and positive adaptation that occurred during the first year of the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Rebecca Swinburne Romine
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, United States
| | - Shelley Bredin-Oja
- Department of Communication Sciences and Disorders, Minot State University, Minot, ND, United States
| | - Nancy Brady
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, United States.,Department of Speech-Language-Hearing: Sciences and Disorders, University of Kansas, Lawrence, KS, United States
| | - Steven F Warren
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS, United States.,Department of Speech-Language-Hearing: Sciences and Disorders, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
10
|
Allen EG, Charen K, Hipp HS, Shubeck L, Amin A, He W, Hunter JE, Shelly KE, Sherman SL. Predictors of Comorbid Conditions in Women Who Carry an FMR1 Premutation. Front Psychiatry 2021; 12:715922. [PMID: 34658954 PMCID: PMC8517131 DOI: 10.3389/fpsyt.2021.715922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose: Women who carry an FMR1 premutation (PM) can experience two well-established PM-associated disorders: fragile X-associated primary ovarian insufficiency (FXPOI, affects ~20-30% carriers) and fragile X-associated tremor-ataxia syndrome (FXTAS, affects ~6-15% carriers); however, emerging evidence indicates that some of these women experience complex health profiles beyond FXPOI and FXTAS. Methods: In an effort to better understand predictors for these comorbid conditions, we collected self-reported medical histories on 413 women who carry an FMR1 PM. Results: There were 22 health conditions reported by at least 9% of women. In an exploratory analysis, 12 variables were tested in logistic regression models for each comorbid condition, including demographic variables, environmental variables, PM-associated factors, and endorsement of depression and/or anxiety. More than half of the comorbid conditions studied were associated with women who self-reported having anxiety. Age, smoking, body mass index (BMI), and depression were also significant predictor variables for specific comorbid conditions. Conclusions: Age, smoking, and BMI were significantly associated with a subset of the comorbid conditions analyzed. Importantly, depression or anxiety were also significantly associated with many of the comorbid health conditions. This work highlights some of the modifiable factors associated with complex health profiles among women with an FMR1 PM.
Collapse
Affiliation(s)
- Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Krista Charen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Heather S. Hipp
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Lisa Shubeck
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Ashima Amin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Weiya He
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jessica Ezzell Hunter
- Genomics, Ethics, and Translational Research Program, RTI International, Triangle Park, NC, United States
| | - Katharine E. Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Stephanie L. Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Rosario R, Anderson R. The molecular mechanisms that underlie fragile X-associated premature ovarian insufficiency: is it RNA or protein based? Mol Hum Reprod 2021; 26:727-737. [PMID: 32777047 PMCID: PMC7566375 DOI: 10.1093/molehr/gaaa057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/03/2020] [Indexed: 01/30/2023] Open
Abstract
The FMR1 gene contains a polymorphic CGG trinucleotide sequence within its 5′ untranslated region. More than 200 CGG repeats (termed a full mutation) underlie the severe neurodevelopmental condition fragile X syndrome, while repeat lengths that range between 55 and 200 (termed a premutation) result in the conditions fragile X-associated tremor/ataxia syndrome and fragile X-associated premature ovarian insufficiency (FXPOI). Premutations in FMR1 are the most common monogenic cause of premature ovarian insufficiency and are routinely tested for clinically; however, the mechanisms that contribute to the pathology are still largely unclear. As studies in this field move towards unravelling the molecular mechanisms involved in FXPOI aetiology, we review the evidence surrounding the two main theories which describe an RNA toxic gain-of-function mechanism, resulting in the loss of function of RNA-binding proteins, or a protein-based mechanism, where repeat-associated non-AUG translation leads to the formation of an abnormal polyglycine containing protein, called FMRpolyG.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Richard Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Molecular Pathogenesis and Peripheral Monitoring of Adult Fragile X-Associated Syndromes. Int J Mol Sci 2021; 22:ijms22168368. [PMID: 34445074 PMCID: PMC8395059 DOI: 10.3390/ijms22168368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
Abnormal trinucleotide expansions cause rare disorders that compromise quality of life and, in some cases, lifespan. In particular, the expansions of the CGG-repeats stretch at the 5’-UTR of the Fragile X Mental Retardation 1 (FMR1) gene have pleiotropic effects that lead to a variety of Fragile X-associated syndromes: the neurodevelopmental Fragile X syndrome (FXS) in children, the late-onset neurodegenerative disorder Fragile X-associated tremor-ataxia syndrome (FXTAS) that mainly affects adult men, the Fragile X-associated primary ovarian insufficiency (FXPOI) in adult women, and a variety of psychiatric and affective disorders that are under the term of Fragile X-associated neuropsychiatric disorders (FXAND). In this review, we will describe the pathological mechanisms of the adult “gain-of-function” syndromes that are mainly caused by the toxic actions of CGG RNA and FMRpolyG peptide. There have been intensive attempts to identify reliable peripheral biomarkers to assess disease progression and onset of specific pathological traits. Mitochondrial dysfunction, altered miRNA expression, endocrine system failure, and impairment of the GABAergic transmission are some of the affectations that are susceptible to be tracked using peripheral blood for monitoring of the motor, cognitive, psychiatric and reproductive impairment of the CGG-expansion carriers. We provided some illustrative examples from our own cohort. Understanding the association between molecular pathogenesis and biomarkers dynamics will improve effective prognosis and clinical management of CGG-expansion carriers.
Collapse
|
13
|
Walsh MB, Charen K, Shubeck L, McConkie-Rosell A, Ali N, Bellcross C, Sherman SL. Men with an FMR1 premutation and their health education needs. J Genet Couns 2021; 30:1156-1167. [PMID: 33788978 PMCID: PMC8363520 DOI: 10.1002/jgc4.1399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
Men who carry an FMR1 premutation are at-risk to develop a late-onset neurodegenerative disorder called fragile X-Associated Ataxia/Tremor syndrome (FXTAS). However, little is known about their health informational needs. This qualitative study is the first to describe diagnostic experiences and identify specific health information needs of male premutation carriers. In-depth qualitative interviews were conducted by phone with ten men who carry an FMR1 premutation. Interviews were analyzed using direct content analysis. Saturation was assessed through use of the Comparative Method for Themes Saturation in qualitative interviews (CoMeTS). Five themes were identified: diagnosis experience, sources of health information, desired health information, barriers to obtaining health information, and facilitators to desired health information. Participants desired information about inheritance, symptoms, expectations for disease, and actions available to slow progression. Facilitators to obtaining health information included healthcare provider knowledge, positive experiences with providers, beneficial family dynamics, participating in research, and access to experts. Barriers to obtaining health information included lack of personal knowledge, lack of healthcare provider knowledge, negative experiences with providers, and uncertainty. Addressing the educational needs of men with/at-risk for FXTAS could improve the quality of life of men who carry a fragile X premutation.
Collapse
Affiliation(s)
- Matthew B Walsh
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Krista Charen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lisa Shubeck
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Nadia Ali
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cecelia Bellcross
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Annear DJ, Vandeweyer G, Elinck E, Sanchis-Juan A, French CE, Raymond L, Kooy RF. Abundancy of polymorphic CGG repeats in the human genome suggest a broad involvement in neurological disease. Sci Rep 2021; 11:2515. [PMID: 33510257 PMCID: PMC7844047 DOI: 10.1038/s41598-021-82050-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/29/2020] [Indexed: 11/09/2022] Open
Abstract
Expanded CGG-repeats have been linked to neurodevelopmental and neurodegenerative disorders, including the fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). We hypothesized that as of yet uncharacterised CGG-repeat expansions within the genome contribute to human disease. To catalogue the CGG-repeats, 544 human whole genomes were analyzed. In total, 6101 unique CGG-repeats were detected of which more than 93% were highly variable in repeat length. Repeats with a median size of 12 repeat units or more were always polymorphic but shorter repeats were often polymorphic, suggesting a potential intergenerational instability of the CGG region even for repeats units with a median length of four or less. 410 of the CGG repeats were associated with known neurodevelopmental disease genes or with strong candidate genes. Based on their frequency and genomic location, CGG repeats may thus be a currently overlooked cause of human disease.
Collapse
Affiliation(s)
- Dale J Annear
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Ellen Elinck
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Alba Sanchis-Juan
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.,Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, CB2 0PT, UK
| | - Courtney E French
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
15
|
Napoli E, McLennan YA, Schneider A, Tassone F, Hagerman RJ, Giulivi C. Characterization of the Metabolic, Clinical and Neuropsychological Phenotype of Female Carriers of the Premutation in the X-Linked FMR1 Gene. Front Mol Biosci 2020; 7:578640. [PMID: 33195422 PMCID: PMC7642626 DOI: 10.3389/fmolb.2020.578640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
The X-linked FMR1 premutation (PM) is characterized by a 55-200 CGG triplet expansion in the 5'-untranslated region (UTR). Carriers of the PM were originally thought to be asymptomatic; however, they may present general neuropsychiatric manifestations including learning disabilities, depression and anxiety, among others. With age, both sexes may also develop the neurodegenerative disease fragile X-associated tremor/ataxia syndrome (FXTAS). Among carriers, females are at higher risk for developing immune disorders, hypertension, seizures, endocrine disorders and chronic pain, among others. Some female carriers younger than 40 years old may develop fragile X-associated primary ovarian insufficiency (FXPOI). To date, no studies have addressed the metabolic footprint - that includes mitochondrial metabolism - of female carriers and its link to clinical/cognitive manifestations. To this end, we performed a comprehensive biochemical assessment of 42 female carriers (24-70 years old) compared to sex-matched non-carriers. By applying a multivariable correlation matrix, a generalized bioenergetics impairment was correlated with diagnoses of the PM, FXTAS and its severity, FXPOI and anxiety. Intellectual deficits were strongly correlated with both mitochondrial dysfunction and with CGG repeat length. A combined multi-omics approach identified a down-regulation of RNA and mRNA metabolism, translation, carbon and protein metabolism, unfolded protein response, and up-regulation of glycolysis and antioxidant response. The suboptimal activation of the unfolded protein response (UPR) and endoplasmic-reticulum-associated protein degradation (ERAD) response challenges and further compromises the PM genetic background to withstand other, more severe forms of stress. Mechanistically, some of the deficits were linked to an altered protein expression due to decreased protein translation, but others seemed secondary to oxidative stress originated from the accumulation of either toxic mRNA or RAN-derived protein products or as a result of a direct toxicity of accumulated metabolites from deficiencies in critical enzymes.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | | | - Andrea Schneider
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States
| | - Flora Tassone
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Randi J Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States.,Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
16
|
Fielding-Gebhardt H, Warren SF, Brady NC. Child Challenging Behavior Influences Maternal Mental Health and Relationship Quality Over Time in Fragile X Syndrome. J Autism Dev Disord 2020; 50:779-797. [PMID: 31754947 PMCID: PMC7053402 DOI: 10.1007/s10803-019-04308-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Parenting children with neurodevelopmental disabilities is often challenging. Biological mothers of children with Fragile X Syndrome (FXS) may be susceptible to increased risk of mental health problems. This study examined the longitudinal relationships between maternal mental health, child challenging behaviors, and mother-child relationship quality in children and adolescents with FXS. Fifty-five mother-child dyads were followed from childhood into adolescence. The findings suggest that child challenging behaviors, maternal mental health, and mother-child relationship quality were stable during that period. Additionally, elevated levels of child challenging behaviors negatively impacted maternal mental health. Finally, child challenging behaviors, in combination with maternal mental health, influenced mother-child relationship quality. Clinical implications are discussed.
Collapse
Affiliation(s)
- Heather Fielding-Gebhardt
- Child Language Doctoral Program, University of Kansas, 1000 Sunnyside Avenue, Lawrence, KS, 66045, USA.
| | - Steven F Warren
- Department of Speech-Language-Hearing: Sciences and Disorders, University of Kansas, Lawrence, USA
| | - Nancy C Brady
- Department of Speech-Language-Hearing: Sciences and Disorders, University of Kansas, Lawrence, USA
| |
Collapse
|
17
|
Clustering of comorbid conditions among women who carry an FMR1 premutation. Genet Med 2020; 22:758-766. [PMID: 31896764 PMCID: PMC7118023 DOI: 10.1038/s41436-019-0733-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose Emerging evidence indicates that women who carry an FMR1 premutation can experience complex health profiles beyond the two well-established premutation-associated disorders: fragile X–associated primary ovarian insufficiency (FXPOI, affects ~20–30% carriers) and fragile X–associated tremor–ataxia syndrome (FXTAS, affects ~6–15% carriers). Methods To better understand premutation-associated health profiles, we collected self-reported medical histories on 355 carrier women. Results Twenty-two health conditions were reported by at least 10% of women. Anxiety, depression, and headaches were reported by more than 30%. The number of comorbid conditions was significantly associated with body mass index (BMI) and history of smoking, but not age. Survival analysis indicated that women with FXPOI had an earlier age at onset for anxiety and osteoporosis than women without FXPOI. Cluster analysis identified eight clusters of women who reported similar patterns of comorbid conditions. The majority of carriers (63%) fell into three categories primarily defined by the presence of only a few conditions. Interestingly, a single cluster defined women with symptoms of FXTAS, and none of these women had FXPOI. Conclusion Although some women with a premutation experience complex health outcomes, most carriers report only minimal comorbid conditions. Further, women with symptoms of FXTAS appear to be distinct from women with symptoms of FXPOI.
Collapse
|
18
|
Hunter JE, Jenkins CL, Grim V, Leung S, Charen KH, Hamilton DR, Allen EG, Sherman SL. Feasibility of an app-based mindfulness intervention among women with an FMR1 premutation experiencing maternal stress. RESEARCH IN DEVELOPMENTAL DISABILITIES 2019; 89:76-82. [PMID: 30959430 DOI: 10.1016/j.ridd.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/23/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Women who carry an FMR1 premutation (PM) allele and are mothers of children with fragile X syndrome (FXS) experience elevated maternal stress. In-person mindfulness sessions have been shown to be effective in alleviating maternal stress-related outcomes among mothers of children with intellectual and developmental disabilities. Our prior studies indicate women with a PM are at risk of social anxiety, a potential barrier to in-person mindfulness sessions. AIM The main goals of this pilot study were to assess feasibility and adherence of an app-based mindfulness training program among mothers of children with FXS and to explore stress, social outcomes, and potential barriers to social support. METHODS Participants (n = 18) completed questionnaires to assess stress and social anxiety, an app-based mindfulness program, and a semi-structured follow-up interview. RESULTS Thirteen out of 18 (72%) participants completed the mindfulness program; of those, 10 (77%) found it helpful. Eight out of 18 (44%) participants met criteria for social anxiety and 11 (61%) reported having difficulties reaching out for help when needed. Women with social anxiety and those experiencing barriers to social support were more likely to find the program helpful. CONCLUSIONS This study provides guidance for future mindfulness-based interventions to alleviate maternal stress in mothers of children with FXS.
Collapse
Affiliation(s)
- Jessica Ezzell Hunter
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, 97227, United States.
| | - Charisma L Jenkins
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, 97227, United States
| | - Valerie Grim
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, 97227, United States
| | - Sue Leung
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, 97227, United States
| | - Krista H Charen
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, United States
| | - Debra R Hamilton
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, United States
| | - Emily G Allen
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, United States
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, United States
| |
Collapse
|
19
|
Wheeler AC, Miller S, Wylie A, Edwards A. Mindfulness and Acceptance as Potential Protective Factors for Mothers of Children With Fragile X Syndrome. Front Public Health 2018; 6:316. [PMID: 30460222 PMCID: PMC6232517 DOI: 10.3389/fpubh.2018.00316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Abstract
Women with an FMR1 premutation may be at increased genetic risk for stress vulnerability. This increased vulnerability, when combined with stressful parenting that can result from raising children with fragile X syndrome (FXS), may result in negative physical and emotional outcomes. Mindfulness and acceptance have been found to be protective factors for parents of children with similar behavioral challenges, but these traits have not previously been explored among mothers with a child with FXS. This study explored the associations of child disability severity with maternal stress, anxiety, depression, and physical health symptoms in 155 biological mothers of children with FXS. Women completed an online survey using standardized measures of stress, mindfulness, and acceptance. General mindfulness, mindfulness in the parenting role, and general acceptance were explored as potential protective factors between the child disability severity and maternal outcomes. Trait mindfulness and acceptance were significant predictors of lower stress, anxiety, depression, and daily health symptoms, while mindful parenting was associated with lower stress, anxiety, and depression. Acceptance was found to attenuate the effects of child severity on maternal stress and depression. These findings suggest that interventions focused on improving mindfulness and acceptance may promote health and well-being for mothers of children with FXS and have important health implications for all individuals with an FMR1 premutation.
Collapse
|
20
|
Fragile X syndrome and fragile X-associated tremor ataxia syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:377-391. [PMID: 29325626 DOI: 10.1016/b978-0-444-63233-3.00025-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fragile X-associated disorders encompass several conditions, which are caused by expansion mutations in the fragile X mental retardation 1 (FMR1) gene. Fragile X syndrome is the most common inherited etiology of intellectual disability and results from a full mutation or >200 CGG repeats in FMR1. It is associated with developmental delay, autism spectrum disorder, and seizures. Fragile X-associated tremor/ataxia syndrome is a progressive neurodegenerative disease that occurs in premutation carriers of 55-200 CGG repeats in FMR1 and is characterized by kinetic tremor, gait ataxia, parkinsonism, executive dysfunction, and neuropathy. Fragile X-associated primary ovarian insufficiency also occurs in premutation carrier women and manifests with infertility and early menopause. The diseases constituting fragile X-associated disorders differ mechanistically, due to the distinct molecular properties of premutation versus full mutations. Fragile X syndrome occurs when there is a lack of fragile X mental retardation protein (FMRP) due to FMR1 methylation and silencing. In fragile X-associated tremor ataxia syndrome, a toxic gain of function is postulated with the production of excess CGG repeat-containing FMR1 mRNA, abnormal translation of the repeat sequence leading to production of polyglycine, polyalanine, and other polypeptides and to outright deficits in translation leading to reduced FMRP at larger premutation sizes. The changes in underlying brain chemistry due to FMR1 mutations have led to therapeutic studies in these disorders, with some progress being made in fragile X syndrome. This paper also summarizes indications for testing, genetic counseling issues, and what the future holds for these disorders.
Collapse
|
21
|
Reproductive and gynecologic care of women with fragile X primary ovarian insufficiency (FXPOI). Menopause 2018; 23:993-9. [PMID: 27552334 DOI: 10.1097/gme.0000000000000658] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Approximately 20% of women with a premutation in the FMR1 gene experience primary ovarian insufficiency (POI). We explored diagnostic patterns, frequency of appropriate hormone replacement, obstetric outcomes, fertility treatment, reproductive decisions, and counseling of women with fragile X-associated POI (FXPOI). METHODS Semistructured interviews with 79 women with FXPOI were conducted by a single interviewer. FMR1 cytosine-guanine-guanine repeat size was determined from a blood, saliva, or buccal sample. RESULTS The median age of POI onset for women in our study was 33 years. Seventy-two percent of the women had an FMR1 cytosine-guanine-guanine repeat length of 80 to 100. Mean length of time from symptom onset to POI diagnosis was 1.12 years, longer in women with a younger age of POI onset and shorter in women who knew they were carriers. After diagnosis, 52% of women never took hormone therapy, started it years after POI diagnosis, or stopped it before 45 years of age. Forty-nine percent of the women had infertility, but 75% had had at least one genetically related child. Obstetric outcomes were similar to the general population. Forty-six percent of women had a diagnosis of low bone mineral density or osteoporosis, and an additional 19% had never had a bone density assessment. CONCLUSIONS Women with FXPOI are at significant risk for delayed POI diagnosis and undertreatment with hormone therapy. Although approximately 50% of women had infertility, most were able to conceive at least one child and had no elevated risk of adverse obstetric outcomes.
Collapse
|
22
|
Klusek J, LaFauci G, Adayev T, Brown WT, Tassone F, Roberts JE. Reduced vagal tone in women with the FMR1 premutation is associated with FMR1 mRNA but not depression or anxiety. J Neurodev Disord 2017; 9:16. [PMID: 28469730 PMCID: PMC5414146 DOI: 10.1186/s11689-017-9197-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Background Autonomic dysfunction is implicated in a range of psychological conditions, including depression and anxiety. The fragile X mental retardation-1 (FMR1) premutation is a common genetic mutation that affects ~1:150 women and is associated with psychological vulnerability. This study examined cardiac indicators of autonomic function among women with the FMR1 premutation and control women as potential biomarkers for psychological risk that may be linked to FMR1. Methods Baseline inter-beat interval and respiratory sinus arrhythmia (a measure of parasympathetic vagal tone) were measured in 35 women with the FMR1 premutation and 28 controls. The women completed anxiety and depression questionnaires. FMR1 genetic indices (i.e., CGG repeat, quantitative FMRP, FMR1 mRNA, activation ratio) were obtained for the premutation group. Results Respiratory sinus arrhythmia was reduced in the FMR1 premutation group relative to controls. While depression symptoms were associated with reduced respiratory sinus arrhythmia among control women, these variables were unrelated in the FMR1 premutation. Elevated FMR1 mRNA was associated with higher respiratory sinus arrhythmia. Conclusions Women with the FMR1 premutation demonstrated autonomic dysregulation characterized by reduced vagal tone. Unlike patterns observed in the general population and in study controls, vagal activity and depression symptoms were decoupled in women with the FMR1 premutation, suggesting independence between autonomic regulation and psychopathological symptoms that is atypical and potentially specific to the FMR1 premutation. The association between vagal tone and mRNA suggests that molecular variation associated with FMR1 plays a role in autonomic regulation.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Keenan Building, Suite 300, Columbia, SC 29208 USA
| | - Giuseppe LaFauci
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Tatyana Adayev
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - W Ted Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Flora Tassone
- UC Davis MIND Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817 USA
| | - Jane E Roberts
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC 29208 USA
| |
Collapse
|
23
|
Fragile X premutation in women: recognizing the health challenges beyond primary ovarian insufficiency. J Assist Reprod Genet 2016; 34:315-323. [PMID: 27995424 DOI: 10.1007/s10815-016-0854-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/25/2016] [Indexed: 12/17/2022] Open
Abstract
Fragile X premutation carriers have 55-200 CGG repeats in the 5' untranslated region of the FMR1 gene. Women with this premutation face many physical and emotional challenges in their life. Approximately 20% of these women will develop fragile X-associated primary ovarian insufficiency (FXPOI). In addition, they suffer from increased rates of menstrual dysfunction, diminished ovarian reserve, reduction in age of menopause, infertility, dizygotic twinning, and risk of having an offspring with a premutation or full mutation. Consequent chronic hypoestrogenism may result in impaired bone health and increased cardiovascular risk. Neuropsychiatric issues include risk of developing fragile X-associated tremor/ataxia syndrome, neuropathy, musculoskeletal problems, increased prevalence of anxiety, depression, and sleep disturbances independent of the stress of raising an offspring with fragile X syndrome and higher risk of postpartum depression. Some studies have reported a higher prevalence of thyroid abnormalities and hypertension in these women. Reproductive health providers play an important role in the health supervision of women with fragile X premutation. Awareness of these risks and correlation of the various manifestations could help in early diagnosis and coordination of care and services for these women and their families. This paper reviews current evidence regarding the possible conditions that may present in women with premutation-sized repeats beyond FXPOI.
Collapse
|
24
|
Davenport MH, Schaefer TL, Friedmann KJ, Fitzpatrick SE, Erickson CA. Pharmacotherapy for Fragile X Syndrome: Progress to Date. Drugs 2016; 76:431-45. [PMID: 26858239 DOI: 10.1007/s40265-016-0542-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To date, no drug is approved for the treatment of Fragile X Syndrome (FXS) although many drugs are used to manage challenging behaviors from a symptomatic perspective in this population. While our understanding of FXS pathophysiology is expanding, efforts to devise targeted FXS-specific treatments have had limited success in placebo-controlled trials. Compounds aimed at rectifying excessive glutamate and deficient gamma-aminobutyric acid (GABA) neurotransmission, as well as other signaling pathways known to be affected by Fragile X Mental Retardation Protein (FMRP) are under various phases of development in FXS. With the failure of several metabotropic glutamate receptor subtype 5 (mGlur5) selective antagonists under clinical investigation, no clear single treatment appears to be greatly effective. These recent challenges call into question various aspects of clinical study design in FXS. More objective outcome measures are under development and validation. Future trials will likely be aimed at correcting multiple pathways known to be disrupted by the loss of FMRP. This review offers a brief summary of the prevalence, phenotypic characteristics, genetic causes and molecular functions of FMRP in the brain (as these have been extensively reviewed elsewhere), discusses the most recent finding in FXS drug development, and summarizes FXS trials utilizing symptomatic treatment.
Collapse
Affiliation(s)
- Matthew H Davenport
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Tori L Schaefer
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
| | - Katherine J Friedmann
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA
| | | | - Craig A Erickson
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3039, USA.
| |
Collapse
|
25
|
Campbell S, Eley SEA, McKechanie AG, Stanfield AC. Endocrine Dysfunction in Female FMR1 Premutation Carriers: Characteristics and Association with Ill Health. Genes (Basel) 2016; 7:genes7110101. [PMID: 27869718 PMCID: PMC5126787 DOI: 10.3390/genes7110101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Female FMR1 premutation carriers (PMC) have been suggested to be at greater risk of ill health, in particular endocrine dysfunction, compared to the general population. We set out to review the literature relating to endocrine dysfunction, including premature ovarian insufficiency (POI), in female PMCs, and then to consider whether endocrine dysfunction in itself may be predictive of other illnesses in female PMCs. A systematic review and pilot data from a semi-structured health questionnaire were used. Medline, Embase, and PsycInfo were searched for papers concerning PMCs and endocrine dysfunction. For the pilot study, self-reported diagnoses in females were compared between PMCs with endocrine dysfunction (n = 18), PMCs without endocrine dysfunction (n = 14), and individuals without the premutation (n = 15). Twenty-nine papers were identified in the review; the majority concerned POI and reduced fertility, which are consistently found to be more common in PMCs than controls. There was some evidence that thyroid dysfunction may occur more frequently in subgroups of PMCs and that those with endocrine difficulties have poorer health than those without. In the pilot study, PMCs with endocrine problems reported higher levels of fibromyalgia (p = 0.03), tremor (p = 0.03), headache (p = 0.01) and obsessive-compulsive disorder (p = 0.009) than either comparison group. Further larger scale research is warranted to determine whether female PMCs are at risk of endocrine disorders other than those associated with reproduction and whether endocrine dysfunction identifies a high-risk group for the presence of other health conditions.
Collapse
Affiliation(s)
- Sonya Campbell
- The Patrick Wild Centre, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| | - Sarah E A Eley
- The Patrick Wild Centre, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| | - Andrew G McKechanie
- The Patrick Wild Centre, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| | - Andrew C Stanfield
- The Patrick Wild Centre, The University of Edinburgh, Royal Edinburgh Hospital, Edinburgh EH10 5HF, UK.
| |
Collapse
|
26
|
Grigsby J. The fragile X mental retardation 1 gene (FMR1): historical perspective, phenotypes, mechanism, pathology, and epidemiology. Clin Neuropsychol 2016; 30:815-33. [PMID: 27356167 DOI: 10.1080/13854046.2016.1184652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To provide an historical perspective and overview of the phenotypes, mechanism, pathology, and epidemiology of the fragile X-associated tremor/ataxia syndrome (FXTAS) for neuropsychologists. METHODS Selective review of the literature on FXTAS. RESULTS FXTAS is an X-linked neurodegenerative disorder of late onset. One of several phenotypes associated with different mutations of the fragile X mental retardation 1 gene (FMR1), FXTAS involves progressive action tremor, gait ataxia, and impaired executive functioning, among other features. It affects carriers of the FMR1 premutation, which may expand when passed from a mother to her children, in which case it is likely to cause fragile X syndrome (FXS), the most common inherited developmental disability. CONCLUSION This review briefly summarizes current knowledge of the mechanisms, epidemiology, and mode of transmission of FXTAS and FXS, as well as the neuropsychological, neurologic, neuropsychiatric, neuropathologic, and neuroradiologic phenotypes of FXTAS. Because it was only recently identified, FXTAS is not well known to most practitioners, and it remains largely misdiagnosed, despite the fact that its prevalence may be relatively high.
Collapse
Affiliation(s)
- Jim Grigsby
- a Departments of Psychology and Medicine , University of Colorado Denver , Denver , CO , USA
| |
Collapse
|
27
|
Abstract
Many physicians are unaware of the many phenotypes associated with the fragile X premutation, an expansion in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene that consists of 55-200 CGG repeats. The most severe of these phenotypes is fragile X-associated tremor/ataxia syndrome (FXTAS), which occurs in the majority of ageing male premutation carriers but in fewer than 20% of ageing women with the premutation. The prevalence of the premutation is 1 in 150-300 females, and 1 in 400-850 males, so physicians are likely to see people affected by FXTAS. Fragile X DNA testing is broadly available in the Western world. The clinical phenotype of FXTAS at presentation can vary and includes intention tremor, cerebellar ataxia, neuropathic pain, memory and/or executive function deficits, parkinsonian features, and psychological disorders, such as depression, anxiety and/or apathy. FXTAS causes brain atrophy and white matter disease, usually in the middle cerebellar peduncles, the periventricular area, and the splenium and/or genu of the corpus callosum. Here, we review the complexities involved in the clinical management of FXTAS and consider how targeted treatment for these clinical features of FXTAS will result from advances in our understanding of the molecular mechanisms that underlie this neurodegenerative disorder. Such targeted approaches should also be more broadly applicable to earlier forms of clinical involvement among premutation carriers.
Collapse
|
28
|
Gabis LV, Gruber N, Berkenstadt M, Shefer S, Attia OL, Mula D, Cohen Y, Elizur SE. Fragile X Premutation Carrier Epidemiology and Symptomatology in Israel-Results from a Tertiary Child Developmental Center. THE CEREBELLUM 2016; 15:595-8. [PMID: 27312842 DOI: 10.1007/s12311-016-0804-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fragile X syndrome (FXS) is the most prevalent known genetically inherited cause for autism and intellectual disability. Premutation state can cause several clinical disorders as well. We aimed to perform a nesting approach to acquire data with regard to first degree relatives of index fragile X cases at the largest child development center in Israel in order to map characteristics of Israeli FXS permutation women carriers. Seventy-nine women were referred due to a related fragile X syndrome patient, mainly an offspring or sibling. General information regarding demographics, ethnicity, and associated medical conditions were collected using interviews and structured questionnaires. Thirteen (17 %) of the women who were referred as "carrier" were proven to be actually full mutation. The mean years of education were 14 (±1.51, range 12-17). Twenty-one women (27 %) originated from Tunisia (mainly from the island of Djerba). Ten women (13 %) reported delivery of their affected offspring beyond 41 gestational weeks. Twenty-two percent of women with premutation reported symptoms consistent with learning difficulties, mainly dyscalculia, and 14 % reported ADHD symptoms. Awareness about clinical disorders of the carriers was existent only in 25 % of the patients. Increased awareness and knowledge dissemination concerning premutation symptomatology and associated medical conditions are warranted. We suggest a national registry to be installed in different countries in order to identify fragile X premutation carriers at increased risk for various medical complications.
Collapse
Affiliation(s)
- Lidia V Gabis
- The Weinberg Child Development Center, Edmond and Lily Safra Children's Hospital, Tel Hashomer, Israel. .,Tel Aviv University, 52621, Tel Aviv, Israel.
| | - Noah Gruber
- Pediatric Endocrine and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Tel Hashomer, Israel
| | - Michal Berkenstadt
- The Danek Gertner Institute of Human Genetics, Tel Hashomer, Israel.,Tel Aviv University, 52621, Tel Aviv, Israel
| | - Shahar Shefer
- The Weinberg Child Development Center, Edmond and Lily Safra Children's Hospital, Tel Hashomer, Israel
| | - Odelia Leon Attia
- The Weinberg Child Development Center, Edmond and Lily Safra Children's Hospital, Tel Hashomer, Israel
| | - Dana Mula
- The Weinberg Child Development Center, Edmond and Lily Safra Children's Hospital, Tel Hashomer, Israel
| | - Yoram Cohen
- IVF Unit, Sheba Medical Center, Tel Hashomer, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Tel Aviv University, 52621, Tel Aviv, Israel
| | - Shai E Elizur
- IVF Unit, Sheba Medical Center, Tel Hashomer, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Tel Aviv University, 52621, Tel Aviv, Israel
| |
Collapse
|
29
|
Hall DA, Robertson-Dick EE, O'Keefe JA, Hadd AG, Zhou L, Berry-Kravis E. X-inactivation in the clinical phenotype of fragile X premutation carrier sisters. NEUROLOGY-GENETICS 2016; 2:e45. [PMID: 27066582 PMCID: PMC4817899 DOI: 10.1212/nxg.0000000000000045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Abstract
Objective: The purpose of this study is to describe a case series of 4 sisters with discordant clinical phenotypes associated with fragile X–associated tremor/ataxia syndrome (FXTAS) that may be explained by varying CGG repeat sizes and activation ratios (ARs) (the ratio of cells carrying the normal fragile X mental retardation 1 [FMR1] allele on the active X chromosome). Methods: Four sisters with premutation size FMR1 gene repeats underwent detailed clinical characterization. CGG repeat length was determined by PCR, and AR was determined using a newly developed commercial methylation PCR assay and was compared with the results from Southern blot with densitometric image analysis. Results: Sister 1 had the largest CGG expansion (82) and the lowest AR (12%), with the most severe clinical presentation. Sister 2 had a lower CGG expansion (70) and an AR of 10% but had a milder clinical presentation.Sister 3 had a similar CGG expansion (79) but a slightly higher AR of 15% and less neurologic involvement. Sister 4 had a similar CGG expansion size of 80 but had the largest AR (40%) and was the only sister not to be affected by FXTAS or have any neurologic signs on examination. Conclusions: These results suggest that premutation carrier women who have higher ARs may be less likely to show manifestations of FXTAS. If larger studies show similar patterns, AR data could potentially be beneficial to supplement CGG repeat size when counseling premutation carrier women in the clinic.
Collapse
Affiliation(s)
- Deborah A Hall
- Department of Neurological Sciences (D.A.H., E.B.-K.), Department of Anatomy and Cell Biology (E.E.R.-D., J.A.O.), Department of Biochemistry (L.Z., E.B.-K.), and Department of Pediatrics (E.B.-K.), Rush University, Chicago, IL; and Asuragen, Inc. (A.G.H.), Austin, TX
| | - Erin E Robertson-Dick
- Department of Neurological Sciences (D.A.H., E.B.-K.), Department of Anatomy and Cell Biology (E.E.R.-D., J.A.O.), Department of Biochemistry (L.Z., E.B.-K.), and Department of Pediatrics (E.B.-K.), Rush University, Chicago, IL; and Asuragen, Inc. (A.G.H.), Austin, TX
| | - Joan A O'Keefe
- Department of Neurological Sciences (D.A.H., E.B.-K.), Department of Anatomy and Cell Biology (E.E.R.-D., J.A.O.), Department of Biochemistry (L.Z., E.B.-K.), and Department of Pediatrics (E.B.-K.), Rush University, Chicago, IL; and Asuragen, Inc. (A.G.H.), Austin, TX
| | - Andrew G Hadd
- Department of Neurological Sciences (D.A.H., E.B.-K.), Department of Anatomy and Cell Biology (E.E.R.-D., J.A.O.), Department of Biochemistry (L.Z., E.B.-K.), and Department of Pediatrics (E.B.-K.), Rush University, Chicago, IL; and Asuragen, Inc. (A.G.H.), Austin, TX
| | - Lili Zhou
- Department of Neurological Sciences (D.A.H., E.B.-K.), Department of Anatomy and Cell Biology (E.E.R.-D., J.A.O.), Department of Biochemistry (L.Z., E.B.-K.), and Department of Pediatrics (E.B.-K.), Rush University, Chicago, IL; and Asuragen, Inc. (A.G.H.), Austin, TX
| | - Elizabeth Berry-Kravis
- Department of Neurological Sciences (D.A.H., E.B.-K.), Department of Anatomy and Cell Biology (E.E.R.-D., J.A.O.), Department of Biochemistry (L.Z., E.B.-K.), and Department of Pediatrics (E.B.-K.), Rush University, Chicago, IL; and Asuragen, Inc. (A.G.H.), Austin, TX
| |
Collapse
|
30
|
Hall D, Todorova-Koteva K, Pandya S, Bernard B, Ouyang B, Walsh M, Pounardjian T, Deburghraeve C, Zhou L, Losh M, Leehey M, Berry-Kravis E. Neurological and endocrine phenotypes of fragile X carrier women. Clin Genet 2015. [PMID: 26212380 DOI: 10.1111/cge.12646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Women who carry fragile X mental retardation 1 (FMR1)gene premutation expansions frequently report neurological or endocrine symptoms and prior studies have predominantly focused on questionnaire report of medical issues. Premutation carrier (PMC) women (n = 33) and non-carrier controls (n = 13) were recruited and evaluated by a neurologist, neuropsychologist, and endocrinologist. Blood and skin biopsies were collected for molecular measures. Scales for movement disorders, neuropathy, cognitive function, psychiatric symptoms, sleep, and quality of life were completed. The average age of the women was 51 years (n = 46) and average CGG repeat size was 91 ± 24.9 in the FMR1 PMC women. Seventy percent of the PMC women had an abnormal neurological examination. PMC women had significantly higher scores on the Fragile X-Associated Tremor Ataxia Syndrome (FXTAS) rating scale, more neuropathy, and difficulty with tandem gait compared to controls. Central sensitivity syndromes, a neuroticism profile on the NEO Personality Profile, and sleep disorders were also prevalent. Discrepancies between subject report and examination findings were also seen. This pilot study suggests that women with the FMR1 premutation may have a phenotype that overlaps with that seen in FXTAS. Additional research with larger sample sizes is warranted to better delineate the clinical features.
Collapse
Affiliation(s)
- D Hall
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | | | - S Pandya
- Rush Medical College, Rush University, Chicago, IL, USA
| | - B Bernard
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - B Ouyang
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - M Walsh
- Rush Medical College, Rush University, Chicago, IL, USA
| | - T Pounardjian
- Rush Medical College, Rush University, Chicago, IL, USA
| | - C Deburghraeve
- Department of Anesthesia, University of Illinois, Chicago, IL, USA
| | - L Zhou
- Department of Biochemistry, Rush University, Chicago, IL, USA
| | - M Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - M Leehey
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - E Berry-Kravis
- Department of Neurological Sciences, Rush University, Chicago, IL, USA.,Department of Biochemistry, Rush University, Chicago, IL, USA.,Department of Pediatrics, Rush University, Chicago, IL, USA
| |
Collapse
|
31
|
Hocking DR, Kraan CM, Godler DE, Bui QM, Li X, Bradshaw JL, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Turbitt E, Fielding J, Trollor J, Cohen J, Cornish KM. Evidence linking FMR1 mRNA and attentional demands of stepping and postural control in women with the premutation. Neurobiol Aging 2014; 36:1400-8. [PMID: 25541421 DOI: 10.1016/j.neurobiolaging.2014.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/25/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
Recent studies in young adult females with the fragile X mental retardation 1 (FMR1) gene premutation (PM) have shown subtle but significant impairments in executive control and postural stability. Less is known about the influence of age and FMR1 gene expression on executive control and postural stability in females with the PM. Here, we examined the attentional demands of reactive stepping using a well-validated measure of choice stepping reaction time under dual-task interference. We explored the interrelationships between step initiation times during a concurrent verbal fluency task and specific impairments in executive control previously reported in females with the PM. Our results showed increased dual-task interference on step initiation times and variability in female PM compared with control subjects. In addition, we observed greater choice stepping reaction time dual-task costs above the breakpoint of 81 CGG repeats relative to below this CGG range. Dual-task interference on both reaction time and movement time were significantly predicted by low working memory capacity in female PM carriers. Importantly, we revealed that FMR1 messenger RNA level is the most significant predictor accounting for dual-task stepping variability in both reaction time and movement time in PM females. These findings for the first time provide evidence linking elevated FMR1 messenger RNA levels that have been previously associated with FMR1 RNA toxicity and deficits in cerebellar motor and cognitive networks in a subgroup of at-risk PM women.
Collapse
Affiliation(s)
- Darren R Hocking
- Olga Tennison Autism Research Centre, School of Psychological Science, La Trobe University, Bundoora, Victoria, Australia.
| | - Claudine M Kraan
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - David E Godler
- Cyto-molecular Diagnostics Research, Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Quang M Bui
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Carlton, Victoria, Australia
| | - Xin Li
- Cyto-molecular Diagnostics Research, Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - John L Bradshaw
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Sylvia A Metcalfe
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alison D Archibald
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia; Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Erin Turbitt
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Joanne Fielding
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Julian Trollor
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, Australia; Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jonathan Cohen
- Genetics Education and Health Research, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Centre for Developmental Disability Health Victoria, Monash University, Clayton, Victoria, Australia; Fragile X Alliance Inc (Clinic and Resource Centre), North Caulfield, Victoria, Australia
| | - Kim M Cornish
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
32
|
Jalnapurkar I, Rafika N, Tassone F, Hagerman R. Immune mediated disorders in women with a fragile X expansion and FXTAS. Am J Med Genet A 2014; 167A:190-7. [PMID: 25399540 DOI: 10.1002/ajmg.a.36748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/06/2014] [Indexed: 12/17/2022]
Abstract
Premutation alleles in fragile X mental retardation 1 (FMR1) can cause the late-onset neurodegenerative disorder, fragile X-associated tremor ataxia syndrome (FXTAS) and/or the fragile X-associated primary ovarian insufficiency in approximately 20% of heterozygotes. Heterozygotes of the FMR1 premutation have a higher incidence of immune mediated disorders such as autoimmune thyroid disorder, especially when accompanied by FXTAS motor signs. We describe the time course of symptoms of immune mediated disorders and the subsequent development of FXTAS in four women with an FMR1 CGG expansion, including three with the premutation and one with a gray zone expansion. These patients developed an immune mediated disorder followed by neurological symptoms that become consistent with FXTAS. In all patients we observed a pattern involving an initial appearance of disease symptoms-often after a period of heightened stress (depression, anxiety, divorce, general surgery) followed by the onset of tremor and/or ataxia. Immune mediated diseases are associated with the manifestations of FXTAS temporally, although further studies are needed to clarify this association. If a cause and effect relationship can be established, treatment of pre-existing immune mediated disorders may benefit patients with pathogenic FMR1 mutations.
Collapse
Affiliation(s)
- Isha Jalnapurkar
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, California
| | | | | | | |
Collapse
|
33
|
Wheeler AC, Raspa M, Green A, Bishop E, Bann C, Edwards A, Bailey DB. Health and reproductive experiences of women with an FMR1 premutation with and without fragile X premature ovarian insufficiency. Front Genet 2014; 5:300. [PMID: 25250044 PMCID: PMC4157548 DOI: 10.3389/fgene.2014.00300] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/12/2014] [Indexed: 11/18/2022] Open
Abstract
Recently, research has indicated an increased risk for greater medical and emotional comorbidity and physical health symptoms among women with an FMR1 expansion. However, these studies have generally been limited in their ability to model multiple risk factors associated with these symptoms by small numbers (n = 112–146) of participants. This study used survey methodology to examine the health experiences of 458 adult women with the premutation with and without a history of a fragile X primary ovarian insufficiency (FXPOI) diagnosis. Results suggest similar findings to those reported in the literature with regard to the frequency of medical, emotional, and reproductive experiences of women with the premutation. In addition to expected reproductive differences, women with a diagnosis of FXPOI were also more likely to experience dizziness, nausea, and muscle weakness than women without a diagnosis of FXPOI. Women with and without FXPOI were more likely to have used reproductive assistance and were more likely to have experienced preeclampsia during at least one pregnancy than is reported in the general population. Having comorbid depression and anxiety was predictive of increased medical conditions and increased daily physical health symptoms.
Collapse
Affiliation(s)
| | | | | | - Ellen Bishop
- RTI International, Research Triangle Park, NC USA
| | - Carla Bann
- RTI International, Research Triangle Park, NC USA
| | - Anne Edwards
- RTI International, Research Triangle Park, NC USA
| | | |
Collapse
|
34
|
Yang JC, Simon C, Niu YQ, Bogost M, Schneider A, Tassone F, Seritan A, Grigsby J, Hagerman PJ, Hagerman RJ, Olichney JM. Phenotypes of hypofrontality in older female fragile X premutation carriers. Ann Neurol 2014; 74:275-83. [PMID: 23686745 DOI: 10.1002/ana.23933] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/28/2013] [Accepted: 04/26/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate the nature of cognitive impairments and underlying brain mechanisms in older female fragile X premutation carriers with and without fragile X-associated tremor/ataxia syndrome (FXTAS). METHODS Extensive neuropsychological testing and cognitive event-related brain potentials (ERPs; particularly, the auditory P300) were examined in 84 female participants: 33 fragile X premutation carriers with FXTAS (mean age = 62.8 years), 25 premutation carriers without FXTAS (mean age = 55.4 years), and 26 normal healthy controls (mean age = 59.3 years). RESULTS Both premutation groups exhibited executive dysfunction on the Behavioral Dyscontrol Scale, with subtle impairments in inhibition and performance monitoring in female carriers without FXTAS, and more substantial deficits in FXTAS women. However, the female carrier group without FXTAS showed more pronounced deficiencies in working memory. Abnormal ERPs were recorded over the frontal lobes, where FXTAS patients showed both P300 amplitude reduction and latency prolongation, whereas only decreased frontal P300 amplitudes were found in carriers without FXTAS. These frontal P300 measures correlated with executive function and information processing speed. INTERPRETATION The neuropsychological testing and ERP results of the present study provide support for the hypothesis that executive dysfunction is the primary cognitive impairment among older female premutation carriers both with and without FXTAS, although these deficits are relatively mild compared to those in FXTAS males. These findings are consistent with a synergistic effect of the premutation and aging on cognitive impairment among older female fragile X premutation carriers, even in those without FXTAS symptoms.
Collapse
Affiliation(s)
- Jin-Chen Yang
- Center for Mind and Brain, University of California, Davis, Davis, CA; Department of Neurology, University of California, Davis, Sacramento, CA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Grigsby J, Cornish K, Hocking D, Kraan C, Olichney JM, Rivera SM, Schneider A, Sherman S, Wang JY, Yang JC. The cognitive neuropsychological phenotype of carriers of the FMR1 premutation. J Neurodev Disord 2014; 6:28. [PMID: 25136377 PMCID: PMC4135346 DOI: 10.1186/1866-1955-6-28] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/27/2014] [Indexed: 11/10/2022] Open
Abstract
The fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder affecting a subset of carriers of the FMR1 (fragile X mental retardation 1) premutation. Penetrance and expression appear to be significantly higher in males than females. Although the most obvious aspect of the phenotype is the movement disorder that gives FXTAS its name, the disorder is also accompanied by progressive cognitive impairment. In this review, we address the cognitive neuropsychological and neurophysiological phenotype for males and females with FXTAS, and for male and female unaffected carriers. Despite differences in penetrance and expression, the cognitive features of the disorder appear similar for both genders, with impairment of executive functioning, working memory, and information processing the most prominent. Deficits in these functional systems may be largely responsible for impairment on other measures, including tests of general intelligence and declarative learning. FXTAS is to a large extent a white matter disease, and the cognitive phenotypes observed are consistent with what some have described as white matter dementia, in contrast to the impaired cortical functioning more characteristic of Alzheimer's disease and related disorders. Although some degree of impaired executive functioning appears to be ubiquitous among persons with FXTAS, the data suggest that only a subset of unaffected carriers of the premutation - both female and male - demonstrate such deficits, which typically are mild. The best-studied phenotype is that of males with FXTAS. The manifestations of cognitive impairment among asymptomatic male carriers, and among women with and without FXTAS, are less well understood, but have come under increased scrutiny.
Collapse
Affiliation(s)
- Jim Grigsby
- Department of Psychology, University of Colorado Denver, Denver, CO, USA ; Department of Medicine; Division of Health Care Policy and Research, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kim Cornish
- School of Psychology & Psychiatry; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Darren Hocking
- Olga Tennison Autism Research Centre, School of Psychological Science, La Trobe University, Melbourne, Victoria, Australia
| | - Claudine Kraan
- School of Psychology & Psychiatry; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - John M Olichney
- Center for Mind and Brain, University of California, Davis, CA, USA ; Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Susan M Rivera
- Center for Mind and Brain, University of California, Davis, CA, USA ; Department of Psychology, University of California-Davis, Sacramento, CA, USA ; MIND Institute, University of California-Davis Medical Center, Sacramento, CA, USA
| | - Andrea Schneider
- Center for Mind and Brain, University of California, Davis, CA, USA ; MIND Institute, University of California-Davis Medical Center, Sacramento, CA, USA
| | | | - Jun Yi Wang
- Center for Mind and Brain, University of California, Davis, CA, USA ; Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Jin-Chen Yang
- Center for Mind and Brain, University of California, Davis, CA, USA ; Department of Neurology, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
36
|
Wheeler AC, Bailey DB, Berry-Kravis E, Greenberg J, Losh M, Mailick M, Milà M, Olichney JM, Rodriguez-Revenga L, Sherman S, Smith L, Summers S, Yang JC, Hagerman R. Associated features in females with an FMR1 premutation. J Neurodev Disord 2014; 6:30. [PMID: 25097672 PMCID: PMC4121434 DOI: 10.1186/1866-1955-6-30] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/19/2014] [Indexed: 12/31/2022] Open
Abstract
Changes in the fragile X mental retardation 1 gene (FMR1) have been associated with specific phenotypes, most specifically those of fragile X syndrome (FXS), fragile X tremor/ataxia syndrome (FXTAS), and fragile X primary ovarian insufficiency (FXPOI). Evidence of increased risk for additional medical, psychiatric, and cognitive features and conditions is now known to exist for individuals with a premutation, although some features have been more thoroughly studied than others. This review highlights the literature on medical, reproductive, cognitive, and psychiatric features, primarily in females, that have been suggested to be associated with changes in the FMR1 gene. Based on this review, each feature is evaluated with regard to the strength of evidence of association with the premutation. Areas of need for additional focused research and possible intervention strategies are suggested.
Collapse
Affiliation(s)
- Anne C Wheeler
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA ; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Donald B Bailey
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | | | - Jan Greenberg
- Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI 53705, USA
| | - Molly Losh
- Northwestern University, 2240 Campus Drive, Evanston, IL 60208-3507, USA
| | - Marsha Mailick
- Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI 53705, USA
| | - Montserrat Milà
- Biochemistry and Molecular Genetics Department, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain
| | - John M Olichney
- Center for Mind and Brain, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA ; MIND Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain
| | | | - Leann Smith
- Waisman Center, University of Wisconsin, 1500 Highland Avenue, Madison, WI 53705, USA
| | - Scott Summers
- Center for Mind and Brain, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA ; MIND Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Jin-Chen Yang
- Center for Mind and Brain, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA ; MIND Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Randi Hagerman
- Center for Mind and Brain, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA ; MIND Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA
| |
Collapse
|
37
|
Visootsak J, Hipp H, Clark H, Berry-Kravis E, Anderson T, Laney D. Climbing the branches of a family tree: diagnosis of fragile X syndrome. J Pediatr 2014; 164:1292-5. [PMID: 24612903 PMCID: PMC4035419 DOI: 10.1016/j.jpeds.2014.01.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/30/2013] [Accepted: 01/24/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To determine the average number of family members diagnosed with a Fragile X Mental Retardation-1 (FMR1) mutation after a proband receives the initial diagnosis of fragile X syndrome (FXS). STUDY DESIGN We reviewed pedigrees of families who had been evaluated at the Fragile X Syndrome Center at Emory University in Atlanta, Georgia. Through these pedigrees, we determined the number of additional family members diagnosed as FMR1 premutation carriers or with full mutation FXS after the initial diagnosis in each proband. RESULTS The fragile X pedigree review identified 176 probands, including 108 males (61%) and 68 females (39%). A total of 785 family members were diagnosed with expanded fragile X alleles, including 278 males (35%) and 507 females (65%). These family members included 227 individuals with full mutation FXS (219 males and 8 females) and 558 premutation carriers (59 males and 499 females). After the initial diagnosis of a proband with FXS, on average at least 5 additional family members were diagnosed with an FMR1 mutation. CONCLUSION Our findings confirm that obtaining a detailed family history after diagnosis of a proband with FXS is likely to identify multiple family members with FMR1 mutations. It is important that the pediatrician or other health care provider making a diagnosis of FXS recognize the value of a detailed family history for timely diagnosis and treatment of additional individuals who may be FMR1 premutation carriers or have full mutation FXS.
Collapse
Affiliation(s)
| | - Heather Hipp
- Department of Human Genetics, Emory University, Atlanta, GA
| | - Heather Clark
- Department of Human Genetics, Emory University, Atlanta, GA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL
| | - Tovi Anderson
- Department of Human Genetics, Emory University, Atlanta, GA
| | - Dawn Laney
- Department of Human Genetics, Emory University, Atlanta, GA
| |
Collapse
|
38
|
Wong LM, Goodrich-Hunsaker NJ, McLennan Y, Tassone F, Zhang M, Rivera SM, Simon TJ. Eye movements reveal impaired inhibitory control in adult male fragile X premutation carriers asymptomatic for FXTAS. Neuropsychology 2014; 28:571-584. [PMID: 24773414 DOI: 10.1037/neu0000066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Fragile X premutation carriers (fXPCs) have an expansion of 55-200 CGG repeats in the FMR1 gene. Male fXPCs are at risk for developing a neurodegenerative motor disorder (FXTAS) often accompanied by inhibitory control impairments, even in fXPCs without motor symptoms. Inhibitory control impairments might precede, and thus indicate elevated risk for motor impairment associated with FXTAS. We tested whether inhibitory impairments are observable in fXPCs by assessing oculomotor performance. METHOD Participants were males aged 18-48 years asymptomatic for FXTAS. FXPCs (n = 21) and healthy age-matched controls (n = 22) performed four oculomotor tasks. In a Fixation task, participants fixated on a central cross and maintained gaze position when a peripheral stimulus appeared. In a Pursuit task, participants maintained gaze on a square moving at constant velocity. In a Prosaccade task, participants fixated on a central cross, then looked at a peripheral stimulus. An Antisaccade task was identical to the Prosaccade task, except participants looked in the direction opposite the stimulus. Inhibitory cost was the difference in saccade latency between the Antisaccade and Prosaccade tasks. RESULTS Relative to controls, fXPCs had longer saccade latency in the Antisaccade task. In fXPCs, inhibitory cost was positively associated with vermis area in lobules VI-VII. CONCLUSION Antisaccades require inhibitory control to inhibit reflexive eye movements. We found that eye movements are sensitive to impaired inhibitory control in fXPCs asymptomatic for FXTAS. Thus, eye movements may be useful in assessing FXTAS risk or disease progression.
Collapse
Affiliation(s)
- Ling M Wong
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| | | | - Yingratana McLennan
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis Medical Center
| | - Melody Zhang
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis
| | - Susan M Rivera
- Department of Psychology, University of California, Davis
| | - Tony J Simon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center
| |
Collapse
|
39
|
Kraan CM, Hocking DR, Bradshaw JL, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Fielding J, Trollor J, Cohen J, Cornish KM. Symbolic sequence learning is associated with cognitive-affective profiles in female FMR1 premutation carriers. GENES BRAIN AND BEHAVIOR 2014; 13:385-93. [PMID: 24521091 DOI: 10.1111/gbb.12122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/08/2014] [Accepted: 02/05/2014] [Indexed: 01/30/2023]
Abstract
This study examines implicit sequence learning impairments that may indicate at-risk cerebellar profiles proposed to underlie some aspects of subtle cognitive and affective dysfunctions found among female fragile X mental retardation 1 (FMR1) premutation (PM)-carriers. A total of 34 female PM-carriers and 33 age- and intelligence-matched controls completed an implicit symbolically primed serial reaction time task (SRTT) previously shown to be sensitive to cerebellar involvement. Implicit learning scores indicated a preservation of learning in both groups; however, PM-carriers demonstrated poorer learning through significantly elevated response latencies overall and at each specific block within the symbolic SRTT. Group comparisons also revealed a core deficit in response inhibition, alongside elevated inattentive symptoms in female PM-carriers. Finally, strong and significant associations were observed between poor symbolic SRTT performance and executive, visuospatial and affective deficits in the PM-carrier group. These associations remained strong even after controlling motor speed, and were not observed in age- and intelligence quotient-matched participants. The findings implicate cerebellar non-motor networks subserving the implicit sequencing of responses in cognitive-affective phenotypes previously observed in female PM-carriers. We contend that symbolic SRTT performance may offer clinical utility in future pharmaceutical interventions in female PM-carriers.
Collapse
Affiliation(s)
- C M Kraan
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Besterman AD, Wilke SA, Mulligan TE, Allison SC, Hagerman R, Seritan AL, Bourgeois JA. Towards an Understanding of Neuropsychiatric Manifestations in Fragile X Premutation Carriers. FUTURE NEUROLOGY 2014; 9:227-239. [PMID: 25013385 DOI: 10.2217/fnl.14.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fragile X-associated disorders (FXD) are a group of disorders caused by expansion of non-coding CGG repeat elements in the fragile X (FMR1) gene. One of these disorders, fragile X syndrome (FXS), is the most common heritable cause of intellectual disability, and is caused by large CGG repeat expansions (>200) resulting in silencing of the FMR1 gene. An increasingly recognized number of neuropsychiatric FXD have recently been identified that are caused by 'premutation' range expansions (55-200). These disorders are characterized by a spectrum of neuropsychiatric manifestations ranging from an increased risk of neurodevelopmental, mood and anxiety disorders to neurodegenerative phenotypes such as the fragile X-associated tremor ataxia syndrome (FXTAS). Here, we review advances in the clinical understanding of neuropsychiatric disorders in premutation carriers across the lifespan and offer guidance for the detection of such disorders by practicing psychiatrists and neurologists.
Collapse
Affiliation(s)
- Aaron D Besterman
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Scott A Wilke
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Tua-Elisabeth Mulligan
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Stephen C Allison
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Randi Hagerman
- Department of Pediatrics and MIND Institute, University of California Davis, Sacramento, California 95817 USA
| | - Andreea L Seritan
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis, Sacramento, California 95817 USA
| | - James A Bourgeois
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| |
Collapse
|
41
|
Wong LM, Goodrich-Hunsaker NJ, McLennan YA, Tassone F, Rivera SM, Simon TJ. A cross-sectional analysis of orienting of visuospatial attention in child and adult carriers of the fragile X premutation. J Neurodev Disord 2014; 6:45. [PMID: 25937844 PMCID: PMC4416306 DOI: 10.1186/1866-1955-6-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 11/15/2014] [Indexed: 11/13/2022] Open
Abstract
Background Fragile X premutation carriers (fXPCs) have an expansion of 55–200 CGG repeats in the FMR1 gene. Male fXPCs are at risk for developing a neurodegenerative motor disorder (fragile X-associated tremor/ataxia syndrome (FXTAS)) often accompanied by cognitive decline. Several broad domains are implicated as core systems of dysfunction in fXPCs, including perceptual processing of spatial information, orienting of attention to space, and inhibiting attention to irrelevant distractors. We tested whether orienting of spatial attention is impaired in fXPCs. Methods Participants were fXPCs or healthy controls (HCs) asymptomatic for FXTAS. In experiment 1, they were male and female children and adults (aged 7–45 years). They oriented attention in response to volitional (endogenous) and reflexive (exogenous) cues. In experiment 2, the participants were men (aged 18–48 years). They oriented attention in an endogenous cueing task that manipulated the amount of information in the cue. Results In women, fXPCs exhibited slower reaction times than HCs in both the endogenous and exogenous conditions. In men, fXPCs exhibited slower reaction times than HCs in the exogenous condition and in the challenging endogenous cueing task with probabilistic cues. In children, fXPCs did not differ from HCs. Conclusions Because adult fXPCs were slower even when controlling for psychomotor speed, results support the interpretation that a core dysfunction in fXPCs is the allocation of spatial attention, while perceptual processing and attention orienting are intact. These findings indicate the importance of considering age and sex when interpreting and generalizing studies of fXPCs.
Collapse
Affiliation(s)
- Ling M Wong
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; War Related Illness and Injury Study Center, Veterans Affairs Medical Center, Washington, DC 20422 USA
| | | | - Yingratana A McLennan
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA
| | - Flora Tassone
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; Department of Biochemistry and Molecular Medicine, University of California, Davis Medical Center, Sacramento, CA 95817 USA
| | - Susan M Rivera
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; Department of Psychology, University of California, Davis, CA 95616 USA ; Center for Mind and Brain, University of California, Davis, CA 95616 USA
| | - Tony J Simon
- Davis Medical Center, MIND Institute, University of California, Sacramento, CA 95817 USA ; Department of Psychiatry and Behavioral Sciences, University of California, Davis Medical Center, Sacramento, CA 95817 USA
| |
Collapse
|
42
|
Kraan CM, Hocking DR, Georgiou-Karistianis N, Metcalfe SA, Archibald AD, Fielding J, Trollor J, Bradshaw JL, Cohen J, Cornish KM. Impaired response inhibition is associated with self-reported symptoms of depression, anxiety, and ADHD in female FMR1 premutation carriers. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:41-51. [PMID: 24166828 DOI: 10.1002/ajmg.b.32203] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/27/2013] [Indexed: 12/30/2022]
Abstract
Fragile X Mental Retardation 1 (FMR1) premutation carriers (PM-carriers) have a defective trinucleotide expansion on the FMR1 gene that is associated with continuum of neuropsychological and mental disorders. Currently, little is known about the distinct subcomponents of executive function potentially impaired in female PM-carriers, and there have been no investigations into associations between executive function and incidences of mental disorders. A total of 35 female PM-carriers confirmed by Asuragen triple primed PCR DNA testing and 35 age- and intelligence-matched controls completed tests of executive function (i.e., response inhibition and working memory) and self-reported on social anxiety, depression, and ADHD predominantly inattentive (ADHD-PI) symptoms. Compared to controls, PM-carriers were significantly elevated on self-reported social anxiety and ADHD-PI symptoms. Irrespective of mental symptoms, female PM-carries performed significantly worse than controls on a response inhibition test, and further investigations revealed significant correlations between executive function performance and self-reported symptoms of anxiety, depression and ADHD-PI. Critically, among PM-carriers with good executive function performance, no women exceeded threshold markers for probable caseness of mental disorder. However, rates of probable caseness were elevated in those with average performance (response inhibition: social anxiety: 41.7%; depression: 20%; ADHD: 44.4%; working memory: social anxiety: 27.3%; depression: 9.1%; ADHD: 18.2%) and highly elevated for those with poor executive function performance (response inhibition: social anxiety: 58.3%; depression: 80%; ADHD: 55.6%; working memory: social anxiety: 100%; depression: 50%; ADHD: 83.3%). These data suggest that subtle executive dysfunction may be a useful neuropsychological indicator for a range of mental disorders previously reported in female PM-carriers.
Collapse
Affiliation(s)
- Claudine M Kraan
- Faculty of Medicine, Nursing, and Health Sciences, School of Psychology & Psychiatry, Monash University, Clayton, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kenna HA, Tartter M, Hall SS, Lightbody AA, Nguyen Q, de los Angeles CP, Reiss AL, Rasgon NL. High rates of comorbid depressive and anxiety disorders among women with premutation of the FMR1 gene. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:872-8. [PMID: 24003006 PMCID: PMC5756731 DOI: 10.1002/ajmg.b.32196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 08/02/2013] [Indexed: 11/09/2022]
Abstract
Phenotypic variations are emerging from investigations of carriers of the fragile X mental retardation 1 (FMR1) premutation gene (55 to 200 CGG repeats). Initial studies suggest elevated psychiatric and reproductive system dysfunction, but have largely used self-reports for assessment of psychiatric history. The present study used diagnostic psychiatric interviews and assessed reproductive and menstrual history in women with FMR1 premutation. History of psychiatric diagnoses and data on reproductive functioning were collected in 46 women with FMR1 premutation who were mothers of at least one child with the fragile X full mutation. Results showed a significantly earlier age of menopause (mean age = 45.6 years) relative to the national average age of menopause (mean age = 51 years) and a high rate (76%) of lifetime depressive or anxiety history, with 43% of the overall sample reporting a comorbid history of both diagnoses. Compared to those free of psychiatric history, significantly longer premutation length was observed among women with psychiatric history after adjusting for age, with comorbid women having the highest number of CGG repeats (mean = 95.8) compared to women free of psychiatric history (mean = 79.9). Psychiatric history did not appear significantly related to reproductive system dysfunction, though results may have been obscured by the high rates of psychiatric dysfunction in the sample. These data add to the growing evidence base that women with the FMR1 premutation have an increased risk of psychiatric illness and risk for early menopause. Future investigations may benefit from inclusion of biochemical reproductive markers and longitudinal assessment of psychiatric and reproductive functioning.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Natalie L. Rasgon
- Correspondence to: Natalie Rasgon, M.D., Ph.D., Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305-5723.
| |
Collapse
|
44
|
Hunsaker MR. The importance of considering all attributes of memory in behavioral endophenotyping of mouse models of genetic disease. Behav Neurosci 2013; 126:371-80. [PMID: 22642882 DOI: 10.1037/a0028453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In order to overcome difficulties in evaluating cognitive function in mouse models of genetic disorders, it is critical to take into account the background strain of the mouse and reported phenotypes in the clinical population being studied. Recent studies have evaluated cognitive function across a number of background strains and found that spatial memory assayed by the water maze and contextual fear conditioning often does not provide optimal results. The logical extension to these results is to emphasize not only spatial, but all attributes or domains of memory function in behavioral phenotyping experiments. A careful evaluation of spatial, temporal, sensory/perceptual, affective, response, executive, proto-linguistic, and social behaviors designed to specifically evaluate the cognitive function each mouse model can be performed in a rapid, relatively high throughput manner. Such results would not only provide a more comprehensive snapshot of brain function in mouse disease models than the more common approach that approaches nonspecific spatial memory tasks to evaluate cognition, but also would better model the disorders being studied.
Collapse
Affiliation(s)
- Michael R Hunsaker
- Department of Neurological Surgery, University of California, Davis, CA 95616, USA.
| |
Collapse
|
45
|
Neurobehavioural evidence for the involvement of the FMR1 gene in female carriers of fragile X syndrome. Neurosci Biobehav Rev 2013; 37:522-47. [DOI: 10.1016/j.neubiorev.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 12/11/2012] [Accepted: 01/06/2013] [Indexed: 12/19/2022]
|
46
|
Smith LE, Seltzer MM, Greenberg JS. Daily health symptoms of mothers of adolescents and adults with fragile x syndrome and mothers of adolescents and adults with autism spectrum disorder. J Autism Dev Disord 2013; 42:1836-46. [PMID: 22167342 DOI: 10.1007/s10803-011-1422-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Health symptoms of mothers of adolescents and adults with fragile X syndrome (FXS; n = 112) were compared to a nationally-representative sample of mothers of similarly-aged children without disabilities (n = 230) as well as to a sample of mothers of adolescents and adults with autism spectrum disorders (ASD; n = 96). Health symptoms experienced in the previous 24 h were recorded during 8 consecutive days of a daily diary study. Both mothers of a son or daughter with FXS and mothers of a son or daughter with ASD had a higher proportion of days with headaches, backaches, muscle soreness, fatigue, and hot flashes than mothers of children without disabilities. Mothers of children with disabilities appear to be at particular risk for health problems, highlighting a need for comprehensive services for families across the lifespan.
Collapse
Affiliation(s)
- Leann E Smith
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave., Madison, WI, 53705, USA.
| | | | | |
Collapse
|
47
|
Seritan AL, Ortigas M, Seritan S, Bourgeois JA, Hagerman RJ. PSYCHIATRIC DISORDERS ASSOCIATED WITH FXTAS. ACTA ACUST UNITED AC 2013; 9:59-64. [PMID: 25620899 DOI: 10.2174/157340013805289699] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carriers of the FMR1 premutation (with 55-200 CGG repeats) may present with multiple medical and psychiatric disorders. Middle-aged carriers (males more often than females) may suffer from fragile X-associated tremor/ataxia syndrome (FXTAS). FXTAS is a newly discovered neurodegenerative disease characterized by intention tremor and ataxia, along with several other neurological features. Psychiatric manifestations are common in premutation carriers of both genders and include attention deficits, anxiety, depression, irritability, impulse dyscontrol, and substance abuse or dependence. Major depressive disorder, panic disorder with or without agoraphobia, generalized anxiety disorder, social phobia, and specific phobia are among the psychiatric diagnoses often encountered in premutation carriers, including those with FXTAS. Later in the course of the illness, cognitive deficits (including dementia) may occur. In this paper, we discuss common psychiatric phenotypes in FXTAS, based on a thorough review of the literature, as well as our own research experience. Symptomatic pharmacologic treatments are available, although disease modifying agents have not yet been developed.
Collapse
Affiliation(s)
- Andreea L Seritan
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, California ; Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California
| | - Melina Ortigas
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California
| | - Stefan Seritan
- University of California Santa Barbara, College for Creative Studies, Santa Barbara, California
| | - James A Bourgeois
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California ; Department of Pediatrics, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
48
|
Abstract
Premutation carriers of the fragile X mental retardation gene (especially men) older than 50 may develop a neurodegenerative disease, the fragile X-associated tremor/ataxia syndrome (FXTAS). Carriers may present with varied cognitive impairments. Attention, working memory, declarative and procedural learning, information processing speed, and recall are among the cognitive domains affected. Executive dysfunction is a prominent deficit, which has been demonstrated mostly in men with FXTAS. In more advanced stages of FXTAS, both men and women may develop a mixed cortical-subcortical dementia, manifested by psychomotor slowing and deficits in attention, retrieval, recall, visuospatial skills, occasional apraxia, as well as overt personality changes. Studies have shown dementia rates as high as 37-42% in older men with FXTAS, although more research is needed to understand the prevalence and risk factors of dementia in women with FXTAS. Neuropsychiatric symptoms are common and reflect the dysfunction of underlying frontal-subcortical neural circuits, along with components of the cerebellar cognitive affective syndrome. These include labile or depressed mood, anxiety, disinhibition, impulsivity, and (rarely) psychotic symptoms. In this paper we review the information available to date regarding the prevalence and clinical picture of FXTAS dementia. Differential diagnosis may be difficult, given overlapping motor and non-motor signs with several other neurodegenerative diseases. Anecdotal response to cholinesterase inhibitors and memantine has been reported, while symptomatic treatments can address the neuropsychiatric manifestations of FXTAS dementia.
Collapse
Affiliation(s)
- Andreea Seritan
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, California
| | - Jennifer Cogswell
- Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute, University of California Davis Medical Center, Sacramento, California
| | - Jim Grigsby
- Departments of Psychology and Medicine, University of Colorado Denver, Denver, Colorado
| |
Collapse
|
49
|
Visootsak J, Charen K, Rohr J, Allen E, Sherman S. Diagnosis of fragile X syndrome: a qualitative study of African American families. J Genet Couns 2012; 21:845-53. [PMID: 22134579 PMCID: PMC3508319 DOI: 10.1007/s10897-011-9454-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 11/16/2011] [Indexed: 01/08/2023]
Abstract
Fragile X syndrome (FXS) is an inherited genetic condition with critical consequences to the proband and family members at all levels in the generations. Although evidence demonstrates that the rates of diagnosis for FXS are the same in all racial groups, age of diagnosis in African American children has been reported to occur later than in Caucasian children. Additionally, African American families are seriously under-represented in existing FXS research studies. As such, it is important to understand the possible disparities in the underlying factors to receiving a diagnosis in African American families with FXS. Herein, a qualitative approach was adopted to describe the overall FXS diagnosis experiences (pre-diagnosis, diagnosis, and post-diagnosis stages) of a convenience sample of 10 African American mothers. We identified three major findings among our participants: (1) FXS testing is not ordered immediately once a parent expresses concerns of developmental delays to the pediatricians, (2) the diagnosis is sometimes delivered in an insensitive manner with information often being outdated and unbalanced towards negative aspects, (3) communication issues among family members exists once the diagnosis is discovered. Although these qualitative data may not be representative of the whole group, these findings have significant implications for genetic counseling and our understanding in providing support and advocacy for African American families with FXS.
Collapse
|
50
|
Screening for the presence of FMR1 premutation alleles in women with fibromyalgia. Gene 2012; 512:305-8. [PMID: 23111161 DOI: 10.1016/j.gene.2012.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/02/2012] [Accepted: 10/14/2012] [Indexed: 11/20/2022]
Abstract
Fibromyalgia is a chronic condition characterized by widespread pain, fatigue, non-restorative sleep and cognitive difficulties that affects 2-4% of the general population. Recently a possible relationship between the FMR1 premutation and fibromyalgia has been pointed out. In attempt to gather more data we screened for the FMR1 CGG expansion 700 DNA samples from unrelated fibromyalgia patients. This data might be useful for evaluating the incorporation of this test in rheumatologic procedures for women with fibromyalgia. The observed frequency of FMR1 premutation carriers (3 of 700, 0.4%) is not significantly different from the estimated rate in the general female population (1/250-1/400) (P=0.539, P=0.716). Clinical examination of the FMR1 premutation carriers identified revealed that all of them had important neurological symptoms with regard to muscular symptoms, neurocognitive alterations and neurovegetative impairments. With regard to other clinical aspects of the disease the cases apparently did not differ from the average fibromyalgia patients. On the basis of our results an FMR1 screening among fibromyalgia female patients would not be recommended. However it would be worthwhile to further evaluate the different clinical presentations that fibromyalgia patients might present based on their FMR1 premutation carrier status.
Collapse
|