1
|
Rangel-Huerta OD, Ivanova L, Uhlig S, Sivertsvik M, Sone I, Fernández EN, Fæste CK. Impact of Plasma-Activated Water Treatment on Quality and Shelf-Life of Fresh Spinach Leaves Evaluated by Comprehensive Metabolomic Analysis. Foods 2021; 10:foods10123067. [PMID: 34945618 PMCID: PMC8702185 DOI: 10.3390/foods10123067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Fresh baby spinach leaves are popular in salads and are sold as chilled and plastic-packed products. They are of high nutritional value but very perishable due to microbial contamination and enzymatic browning resulting from leaf senescence. Therefore, innovative food processing methods such as plasma-activated water (PAW) treatment are being explored regarding their applicability for ensuring food safety. PAW’s impact on food quality and shelf-life extension has, however, not been investigated extensively in vegetables so far. In the present study, a comprehensive metabolomic analysis was performed to determine possible changes in the metabolite contents of spinach leaves stored in a refrigerated state for eight days. Liquid chromatography high-resolution mass spectrometry, followed by stringent biostatistics, was used to compare the metabolomes in control, tap-water-rinsed or PAW-rinsed samples. No significant differences were discernible between the treatment groups at the beginning or end of the storage period. The observed loss of nutrients and activation of catabolic pathways were characteristic of a transition into the senescent state. Nonetheless, the presence of several polyphenolic antioxidants and γ-linolenic acid in the PAW-treated leaves indicated a significant increase in stress resistance and health-promoting antioxidant capacity in the sample. Furthermore, the enhancement of carbohydrate-related metabolisms indicated a delay in the senescence development. These findings demonstrated the potential of PAW to benefit food quality and the shelf-life of fresh spinach leaves.
Collapse
Affiliation(s)
- Oscar Daniel Rangel-Huerta
- Section for Chemistry and Toxinology, Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway; (L.I.); (S.U.); (C.K.F.)
- Correspondence: ; Tel.: +47-48646871
| | - Lada Ivanova
- Section for Chemistry and Toxinology, Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway; (L.I.); (S.U.); (C.K.F.)
| | - Silvio Uhlig
- Section for Chemistry and Toxinology, Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway; (L.I.); (S.U.); (C.K.F.)
| | - Morten Sivertsvik
- Nofima AS, Department of Processing Technology, Richard Johnsens Gate 4, 4021 Stavanger, Norway; (M.S.); (I.S.); (E.N.F.)
| | - Izumi Sone
- Nofima AS, Department of Processing Technology, Richard Johnsens Gate 4, 4021 Stavanger, Norway; (M.S.); (I.S.); (E.N.F.)
| | - Estefanía Noriega Fernández
- Nofima AS, Department of Processing Technology, Richard Johnsens Gate 4, 4021 Stavanger, Norway; (M.S.); (I.S.); (E.N.F.)
- European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126 Parma, Italy
| | - Christiane Kruse Fæste
- Section for Chemistry and Toxinology, Norwegian Veterinary Institute, P.O. Box 64, N-1431 Ås, Norway; (L.I.); (S.U.); (C.K.F.)
| |
Collapse
|
2
|
Buet A, Costa ML, Martínez DE, Guiamet JJ. Chloroplast Protein Degradation in Senescing Leaves: Proteases and Lytic Compartments. FRONTIERS IN PLANT SCIENCE 2019; 10:747. [PMID: 31275332 PMCID: PMC6593067 DOI: 10.3389/fpls.2019.00747] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
Leaf senescence is characterized by massive degradation of chloroplast proteins, yet the protease(s) involved is(are) not completely known. Increased expression and/or activities of serine, cysteine, aspartic, and metalloproteases were detected in senescing leaves, but these studies have not provided information on the identities of the proteases responsible for chloroplast protein breakdown. Silencing some senescence-associated proteases has delayed progression of senescence symptoms, yet it is still unclear if these proteases are directly involved in chloroplast protein breakdown. At least four cellular pathways involved in the traffic of chloroplast proteins for degradation outside the chloroplast have been described (i.e., "Rubisco-containing bodies," "senescence-associated vacuoles," "ATI1-plastid associated bodies," and "CV-containing vesicles"), which differ in their dependence on the autophagic machinery, and the identity of the proteins transported and/or degraded. Finding out the proteases involved in, for example, the degradation of Rubisco, may require piling up mutations in several senescence-associated proteases. Alternatively, targeting a proteinaceous protein inhibitor to chloroplasts may allow the inhibitor to reach "Rubisco-containing bodies," "senescence-associated vacuoles," "ATI1-plastid associated bodies," and "CV-containing vesicles" in essentially the way as chloroplast-targeted fluorescent proteins re-localize to these vesicular structures. This might help to reduce proteolytic activity, thereby reducing or slowing down plastid protein degradation during senescence.
Collapse
Affiliation(s)
- Agustina Buet
- Instituto de Fisiología Vegetal (INFIVE, CONICET-UNLP), La Plata, Argentina
| | - M Lorenza Costa
- Instituto de Fisiología Vegetal (INFIVE, CONICET-UNLP), La Plata, Argentina
| | - Dana E Martínez
- Instituto de Fisiología Vegetal (INFIVE, CONICET-UNLP), La Plata, Argentina
| | - Juan J Guiamet
- Instituto de Fisiología Vegetal (INFIVE, CONICET-UNLP), La Plata, Argentina
| |
Collapse
|
3
|
Suzuki Y, Suzuki T, Awai K, Shioi Y. Isolation and characterization of a tandem-repeated cysteine protease from the symbiotic dinoflagellate Symbiodinium sp. KB8. PLoS One 2019; 14:e0211534. [PMID: 30703144 PMCID: PMC6355014 DOI: 10.1371/journal.pone.0211534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
A cysteine protease belonging to peptidase C1A superfamily from the eukaryotic, symbiotic dinoflagellate, Symbiodinium sp. strain KB8, was characterized. The protease was purified to near homogeneity (566-fold) by (NH4)2SO4 fractionation, ultrafiltration, and column chromatography using a fluorescent peptide, butyloxycarbonyl-Val-Leu-Lys-4-methylcoumaryl-7-amide (Boc-VLK-MCA), as a substrate for assay purposes. The enzyme was termed VLKP (VLK protease), and its activity was strongly inhibited by cysteine protease inhibitors and activated by reducing agents. Based on the results for the amino acid sequence determined by liquid chromatography-coupled tandem mass spectrometry, a cDNA encoding VLKP was synthesized. VLKP was classified into the peptidase C1A superfamily of cysteine proteases (C1AP). The predicted amino acid sequence of VLKP indicated a tandem array of highly conserved precursors of C1AP with a molecular mass of approximately 71 kDa. The results of gel-filtration chromatography and SDS-PAGE suggested that VLKP exists as a monomer of 31-32 kDa, indicating that the tandem array is likely divided into two mass-equivalent halves that undergo equivalent posttranslational modifications. The VLKP precursor contains an inhibitor prodomain that might become activated after acidic autoprocessing at approximately pH 4. Both purified and recombinant VLKPs had a similar substrate specificity and kinetic parameters for common C1AP substrates. Most C1APs reside in acidic organelles such as the vacuole and lysosomes, and indeed VLKP was most active at pH 4.5. Since VLKP exhibited maximum activity during the late logarithmic growth phase, these attributes suggest that, VLKP is involved in the metabolism of proteins in acidic organelles.
Collapse
Affiliation(s)
- Yuya Suzuki
- Graduate School of Science, Shizuoka University, Shizuoka, Japan
| | - Tomohiro Suzuki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Koichiro Awai
- Graduate School of Science, Shizuoka University, Shizuoka, Japan
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
- PRESTO, JST, Kawaguchi, Japan
- * E-mail:
| | - Yuzo Shioi
- Graduate School of Science, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
4
|
Velasco-Arroyo B, Martinez M, Diaz I, Diaz-Mendoza M. Differential response of silencing HvIcy2 barley plants against Magnaporthe oryzae infection and light deprivation. BMC PLANT BIOLOGY 2018; 18:337. [PMID: 30522452 PMCID: PMC6282322 DOI: 10.1186/s12870-018-1560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/22/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Phytocystatins (PhyCys) act as endogenous regulators of cysteine proteases (CysProt) involved in various physiological processes. Besides, PhyCys are involved in plant reactions to abiotic stresses like drought or darkness and have been used as effective molecules against different pests and pathogens. The barley PhyCys-CysProt system is considered a model of protease-inhibitor regulation of protein turnover. Thirteen barley cystatins (HvCPI-1 to HvCPI-13) have been previously identified and characterized. Among them HvCPI-2 has been shown to have a relevant role in plant responses to pathogens and pests, as well as in the plant response to drought. RESULTS The present work explores the multiple role of this barley PhyCys in response to both, biotic and abiotic stresses, focusing on the impact of silencing this gene. HvIcy-2 silencing lines behave differentially against the phytopathogenic fungus Magnaporthe oryzae and a light deprivation treatment. The induced expression of HvIcy-2 by the fungal stress correlated to a higher susceptibility of silencing HvIcy-2 plants. In contrast, a reduction in the expression of HvIcy-2 and in the cathepsin-L and -B like activities in the silencing HvIcy-2 plants was not accompanied by apparent phenotypical differences with control plants in response to light deprivation. CONCLUSION These results highlight the specificity of PhyCys in the responses to diverse external prompts as well as the complexity of the regulatory events leading to the response to a particular stress. The mechanism of regulation of these stress responses seems to be focused in maintaining the balance of CysProt and PhyCys levels, which is crucial for the modulation of physiological processes induced by biotic or abiotic stresses.
Collapse
Affiliation(s)
- Blanca Velasco-Arroyo
- Centro de Biotecnologia y Genomica de Plantas (CBGP, UPM-INIA), Universidad Politecnica de Madrid (UPM) - Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Madrid, Pozuelo de Alarcon Spain
| | - Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas (CBGP, UPM-INIA), Universidad Politecnica de Madrid (UPM) - Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Madrid, Pozuelo de Alarcon Spain
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas (CBGP, UPM-INIA), Universidad Politecnica de Madrid (UPM) - Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Madrid, Pozuelo de Alarcon Spain
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Tecnica Superior de Ingenieria Agronomica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Mercedes Diaz-Mendoza
- Centro de Biotecnologia y Genomica de Plantas (CBGP, UPM-INIA), Universidad Politecnica de Madrid (UPM) - Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Madrid, Pozuelo de Alarcon Spain
| |
Collapse
|
5
|
Aceituno-Valenzuela U, Covarrubias MP, Aguayo MF, Valenzuela-Riffo F, Espinoza A, Gaete-Eastman C, Herrera R, Handford M, Norambuena L. Identification of a type II cystatin in Fragaria chiloensis: A proteinase inhibitor differentially regulated during achene development and in response to biotic stress-related stimuli. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:158-167. [PMID: 29883898 DOI: 10.1016/j.plaphy.2018.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/13/2018] [Accepted: 05/18/2018] [Indexed: 05/24/2023]
Abstract
The equilibrium between protein synthesis and degradation is key to maintaining efficiency in different physiological processes. The proteinase inhibitor cystatin regulates protease activities in different developmental and physiological contexts. Here we describe for the first time the identification and the biological function of the cysteine protease inhibitor cystatin of Fragaria chiloensis, FchCYS1. Based on primary sequence and 3D-structural homology modelling, FchCYS1 is a type II phytocystatin with high identity to other cystatins of the Fragaria genus. Both the papain-like and the legumain-like protease inhibitory domains are indeed functional, based on in vitro assays performed with Escherichia coli protein extracts containing recombinant FchCYS1. FchCYS1 is differentially-expressed in achenes of F. chiloensis fruits, with highest expression as the fruit reaches the ripened stage, suggesting a role in preventing degradation of storage proteins that will nourish the embryo during seed germination. Furthermore, FchCYS1 responds transcriptionally to the application of salicylic acid and to mechanical injury, strongly suggesting that FchCYS1 could be involved in the response against pathogen attack. Overall these results point to a role for FchCYS1 in diverse physiological processes in F. chiloensis.
Collapse
Affiliation(s)
- Uri Aceituno-Valenzuela
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - María Paz Covarrubias
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - María Francisca Aguayo
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | - Analía Espinoza
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | - Raúl Herrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Michael Handford
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Liu J, Sharma A, Niewiara MJ, Singh R, Ming R, Yu Q. Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion. BMC Genomics 2018; 19:26. [PMID: 29306330 PMCID: PMC5756445 DOI: 10.1186/s12864-017-4394-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/15/2017] [Indexed: 11/30/2022] Open
Abstract
Background Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases structurally related to papain, play important roles in plant development, senescence, and defense responses. Papain, the first cysteine protease whose structure was determined by X-ray crystallography, plays a crucial role in protecting papaya from herbivorous insects. Except the four major PLCPs purified and characterized in papaya latex, the rest of the PLCPs in papaya genome are largely unknown. Results We identified 33 PLCP genes in papaya genome. Phylogenetic analysis clearly separated plant PLCP genes into nine subfamilies. PLCP genes are not equally distributed among the nine subfamilies and the number of PLCPs in each subfamily does not increase or decrease proportionally among the seven selected plant species. Papaya showed clear lineage-specific gene expansion in the subfamily III. Interestingly, all four major PLCPs purified from papaya latex, including papain, chymopapain, glycyl endopeptidase and caricain, were grouped into the lineage-specific expansion branch in the subfamily III. Mapping PLCP genes on chromosomes of five plant species revealed that lineage-specific expansions of PLCP genes were mostly derived from tandem duplications. We estimated divergence time of papaya PLCP genes of subfamily III. The major duplication events leading to lineage-specific expansion of papaya PLCP genes in subfamily III were estimated at 48 MYA, 34 MYA, and 16 MYA. The gene expression patterns of the papaya PLCP genes in different tissues were assessed by transcriptome sequencing and qRT-PCR. Most of the papaya PLCP genes of subfamily III expressed at high levels in leaf and green fruit tissues. Conclusions Tandem duplications played the dominant role in affecting copy number of PLCPs in plants. Significant variations in size of the PLCP subfamilies among species may reflect genetic adaptation of plant species to different environments. The lineage-specific expansion of papaya PLCPs of subfamily III might have been promoted by the continuous reciprocal selective effects of herbivore attack and plant defense. Electronic supplementary material The online version of this article (10.1186/s12864-017-4394-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Liu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Anupma Sharma
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Marie Jamille Niewiara
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ratnesh Singh
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Qingyi Yu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA. .,Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Tan Y, Yang Y, Li C, Liang B, Li M, Ma F. Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., delays natural and stress-induced leaf senescence in apple. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:219-228. [PMID: 28384562 DOI: 10.1016/j.plaphy.2017.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 05/23/2023]
Abstract
Phytocystatins are a well-characterized class of naturally occurring protease inhibitors that prevent the catalysis of papain-like cysteine proteases. The action of cystatins in stress tolerance has been studied intensively, but relatively little is known about their functions in plants during leaf senescence. Here, we examined the potential roles of the apple cystatin, MpCYS4, in leaf photosynthesis as well as the concentrations and composition of leaf proteins when plants encounter natural or stress-induced senescence. Overexpression of this gene in apple rootstock M26 effectively slowed the senescence-related declines in photosynthetic activity and chlorophyll concentrations and prevented the action of cysteine proteinases during the process of degrading proteins (e.g., Rubisco) in senescing leaves. Moreover, MpCYS4 alleviated the associated oxidative damage and enhanced the capacity of plants to eliminate reactive oxygen species by activating antioxidant enzymes such as ascorbate peroxidase, peroxidase, and catalase. Consequently, plant cells were protected against damage from free radicals during leaf senescence. Based on these results, we conclude that MpCYS4 functions in delaying natural and stress-induced senescence of apple leaves.
Collapse
Affiliation(s)
- Yanxiao Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yingli Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Bowen Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
8
|
Paireder M, Tholen S, Porodko A, Biniossek ML, Mayer B, Novinec M, Schilling O, Mach L. The papain-like cysteine proteinases NbCysP6 and NbCysP7 are highly processive enzymes with substrate specificities complementary to Nicotiana benthamiana cathepsin B. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:444-452. [PMID: 28188928 DOI: 10.1016/j.bbapap.2017.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
Abstract
The tobacco-related plant Nicotiana benthamiana is gaining interest as a versatile host for the production of monoclonal antibodies and other protein therapeutics. However, the susceptibility of plant-derived recombinant proteins to endogenous proteolytic enzymes limits their use as biopharmaceuticals. We have now identified two previously uncharacterized N. benthamiana proteases with high antibody-degrading activity, the papain-like cysteine proteinases NbCysP6 and NbCysP7. Both enzymes are capable of hydrolysing a wide range of synthetic substrates, although only NbCysP6 tolerates basic amino acids in its specificity-determining S2 subsite. The overlapping substrate specificities of NbCysP6 and NbCysP7 are also documented by the closely related properties of their other subsites as deduced from the action of the enzymes on proteome-derived peptide libraries. Notable differences were observed to the substrate preferences of N. benthamiana cathepsin B, another antibody-degrading papain-like cysteine proteinase. The complementary activities of NbCysP6, NbCysP7 and N. benthamiana cathepsin B indicate synergistic roles of these proteases in the turnover of recombinant and endogenous proteins in planta, thus representing a paradigm for the shaping of plant proteomes by the combined action of papain-like cysteine proteinases.
Collapse
Affiliation(s)
- Melanie Paireder
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stefan Tholen
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Germany
| | - Andreas Porodko
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Martin L Biniossek
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Germany
| | - Bettina Mayer
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Germany
| | - Marko Novinec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Oliver Schilling
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Germany
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
9
|
Pružinská A, Shindo T, Niessen S, Kaschani F, Tóth R, Millar AH, van der Hoorn RAL. Major Cys protease activities are not essential for senescence in individually darkened Arabidopsis leaves. BMC PLANT BIOLOGY 2017; 17:4. [PMID: 28061816 PMCID: PMC5217659 DOI: 10.1186/s12870-016-0955-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/19/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Papain-like Cys Proteases (PLCPs) and Vacuolar Processing Enzymes (VPEs) are amongst the most highly expressed proteases during leaf senescence in Arabidopsis. Using activity-based protein profiling (ABPP), a method that enables detection of active enzymes within a complex sample using chemical probes, the activities of PLCPs and VPEs were investigated in individually darkened leaves of Arabidopsis, and their role in senescence was tested in null mutants. RESULTS ABPP and mass spectrometry revealed an increased activity of several PLCPs, particularly RD21A and AALP. By contrast, despite increased VPE transcript levels, active VPE decreased in individually darkened leaves. Eight protease knock-out lines and two protease over expressing lines were subjected to senescence phenotype analysis to determine the importance of individual protease activities to senescence. Unexpectedly, despite the absence of dominating PLCP activities in these plants, the rubisco and chlorophyll decline in individually darkened leaves and the onset of whole plant senescence were unaltered. However, a significant delay in progression of whole plant senescence was observed in aalp-1 and rd21A-1/aalp-1 mutants, visible in the reduced number of senescent leaves. CONCLUSIONS Major Cys protease activities are not essential for dark-induced and developmental senescence and only a knock out line lacking AALP shows a slight but significant delay in plant senescence.
Collapse
Affiliation(s)
- Adriana Pružinská
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA Australia
| | - Takayuki Shindo
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Sherry Niessen
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Center for Physiological Proteomics, The Scripps Research Institute, La Jolla, 92037 California USA
| | - Farnusch Kaschani
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Réka Tóth
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - A. Harvey Millar
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA Australia
| | - Renier A. L. van der Hoorn
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| |
Collapse
|
10
|
Szewińska J, Simińska J, Bielawski W. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:10-21. [PMID: 27771502 DOI: 10.1016/j.jplph.2016.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteolysis is an important process for development and germination of cereal seeds. Among the many types of proteases identified in plants are the cysteine proteases (CPs) of the papain and legumain families, which play a crucial role in hydrolysing storage proteins during seed germination as well as in processing the precursors of these proteins and the inactive forms of other proteases. Moreover, all of the tissues of cereal seeds undergo progressive degradation via programed cell death, which is integral to their growth. In view of the important roles played by proteases, their uncontrolled activity could be harmful to the development of seeds and young seedlings. Thus, the activities of these enzymes are regulated by intracellular inhibitors called phytocystatins (PhyCys). The phytocystatins inhibit the activity of proteases of the papain family, and the presence of an additional motif in their C-termini allows them to also regulate the activity of members of the legumain family. A balance between the levels of cysteine proteases and phytocystatins is necessary for proper cereal seed development, and this is maintained through the antagonistic activities of gibberellins (GAs) and abscisic acid (ABA), which regulate the expression of the corresponding genes. Transcriptional regulation of cysteine proteases and phytocystatins is determined by cis-acting elements located in the promoters of these genes and by the expression of their corresponding transcription factors (TFs) and the interactions between different TFs.
Collapse
Affiliation(s)
- Joanna Szewińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland.
| | - Joanna Simińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| | - Wiesław Bielawski
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| |
Collapse
|
11
|
Diaz-Mendoza M, Velasco-Arroyo B, Santamaria ME, González-Melendi P, Martinez M, Diaz I. Plant senescence and proteolysis: two processes with one destiny. Genet Mol Biol 2016; 39:329-38. [PMID: 27505308 PMCID: PMC5004835 DOI: 10.1590/1678-4685-gmb-2016-0015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/10/2016] [Indexed: 01/03/2023] Open
Abstract
Senescence-associated proteolysis in plants is a complex and controlled process,
essential for mobilization of nutrients from old or stressed tissues, mainly leaves,
to growing or sink organs. Protein breakdown in senescing leaves involves many
plastidial and nuclear proteases, regulators, different subcellular locations and
dynamic protein traffic to ensure the complete transformation of proteins of high
molecular weight into transportable and useful hydrolysed products. Protease
activities are strictly regulated by specific inhibitors and through the activation
of zymogens to develop their proteolytic activity at the right place and at the
proper time. All these events associated with senescence have deep effects on the
relocation of nutrients and as a consequence, on grain quality and crop yield. Thus,
it can be considered that nutrient recycling is the common destiny of two processes,
plant senescence and, proteolysis. This review article covers the most recent
findings about leaf senescence features mediated by abiotic and biotic stresses as
well as the participants and steps required in this physiological process, paying
special attention to C1A cysteine proteases, their specific inhibitors, known as
cystatins, and their potential targets, particularly the chloroplastic proteins as
source for nitrogen recycling.
Collapse
Affiliation(s)
- Mercedes Diaz-Mendoza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Blanca Velasco-Arroyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Shukla P, Subhashini M, Singh NK, Ahmed I, Trishla S, Kirti PB. Targeted expression of cystatin restores fertility in cysteine protease induced male sterile tobacco plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:52-61. [PMID: 26993235 DOI: 10.1016/j.plantsci.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 05/22/2023]
Abstract
Fertility restoration in male sterile plants is an essential requirement for their utilization in hybrid seed production. In an earlier investigation, we have demonstrated that the targeted expression of a cysteine protease in tapetal cell layer resulted in complete male sterility in tobacco transgenic plants. In the present investigation, we have used a cystatin gene, which encodes for a cysteine protease inhibitor, from a wild peanut, Arachis diogoi and developed a plant gene based restoration system for cysteine protease induced male sterile transgenic tobacco plants. We confirmed the interaction between the cysteine protease and a cystatin of the wild peanut, A. diogoi through in silico modeling and yeast two-hybrid assay. Pollen from primary transgenic tobacco plants expressing cystatin gene under the tapetum specific promoter- TA29 restored fertility on cysteine protease induced male sterile tobacco plants developed earlier. This has confirmed the in vivo interaction of cysteine protease and cystatin in the tapetal cells, and the inactivation of cysteine protease and modulation of its negative effects on pollen fertility. Both the cysteine protease and cystatin genes are of plant origin in contrast to the analogous barnase-barstar system that deploys genes of prokaryotic origin. Because of the deployment of genes of plant origin, this system might not face biosafety problems in developing hybrids in food crops.
Collapse
Affiliation(s)
- Pawan Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| | - Mranu Subhashini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Naveen Kumar Singh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Israr Ahmed
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shalibhadra Trishla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - P B Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
13
|
Grosse-Holz FM, van der Hoorn RAL. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants. THE NEW PHYTOLOGIST 2016; 210:794-807. [PMID: 26800491 DOI: 10.1111/nph.13839] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/01/2015] [Indexed: 05/13/2023]
Abstract
Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design.
Collapse
Affiliation(s)
- Friederike M Grosse-Holz
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
14
|
TcCYPR04, a Cacao Papain-Like Cysteine-Protease Detected in Senescent and Necrotic Tissues Interacts with a Cystatin TcCYS4. PLoS One 2015; 10:e0144440. [PMID: 26641247 PMCID: PMC4671599 DOI: 10.1371/journal.pone.0144440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
The interaction amongst papain-like cysteine-proteases (PLCP) and their substrates and inhibitors, such as cystatins, can be perceived as part of the molecular battlefield in plant-pathogen interaction. In cacao, four cystatins were identified and characterized by our group. We identified 448 proteases in cacao genome, whereof 134 were cysteine-proteases. We expressed in Escherichia coli a PLCP from cacao, named TcCYSPR04. Immunoblottings with anti-TcCYSPR04 exhibited protein increases during leaf development. Additional isoforms of TcCYSPR04 appeared in senescent leaves and cacao tissues infected by Moniliophthora perniciosa during the transition from the biotrophic to the saprophytic phase. TcCYSPR04 was induced in the apoplastic fluid of Catongo and TSH1188 cacao genotypes, susceptible and resistant to M. perniciosa, respectively, but greater intensity and additional isoforms were observed in TSH1188. The fungal protein MpNEP induced PLCP isoform expression in tobacco leaves, according to the cross reaction with anti-TcCYSPR04. Several protein isoforms were detected at 72 hours after treatment with MpNEP. We captured an active PLCP from cacao tissues, using a recombinant cacao cystatin immobilized in CNBr-Sepharose. Mass spectrometry showed that this protein corresponds to TcCYSPR04. A homology modeling was obtained for both proteins. In order to become active, TcCYSPR04 needs to lose its inhibitory domain. Molecular docking showed the physical-chemical complementarities of the interaction between the cacao enzyme and its inhibitor. We propose that TcCYSPR04 and its interactions with cacao cystatins are involved in the senescence and necrosis events related to witches' broom symptoms. This molecular interaction may be the target for future interventions to control witches' broom disease.
Collapse
|
15
|
Kunert KJ, van Wyk SG, Cullis CA, Vorster BJ, Foyer CH. Potential use of phytocystatins in crop improvement, with a particular focus on legumes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3559-70. [PMID: 25944929 DOI: 10.1093/jxb/erv211] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phytocystatins are a well-characterized class of naturally occurring protease inhibitors that function by preventing the catalysis of papain-like cysteine proteases. The action of cystatins in biotic stress resistance has been studied intensively, but relatively little is known about their functions in plant growth and defence responses to abiotic stresses, such as drought. Extreme weather events, such as drought and flooding, will have negative impacts on the yields of crop plants, particularly grain legumes. The concepts that changes in cellular protein content and composition are required for acclimation to different abiotic stresses, and that these adjustments are achieved through regulation of proteolysis, are widely accepted. However, the nature and regulation of the protein turnover machinery that underpins essential stress-induced cellular restructuring remain poorly characterized. Cysteine proteases are intrinsic to the genetic programmes that underpin plant development and senescence, but their functions in stress-induced senescence are not well defined. Transgenic plants including soybean that have been engineered to constitutively express phytocystatins show enhanced tolerance to a range of different abiotic stresses including drought, suggesting that manipulation of cysteine protease activities by altered phytocystatin expression in crop plants might be used to improve resilience and quality in the face of climate change.
Collapse
Affiliation(s)
- Karl J Kunert
- Department of Plant Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stefan G van Wyk
- Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Christopher A Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Barend J Vorster
- Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
16
|
Quain MD, Makgopa ME, Cooper JW, Kunert KJ, Foyer CH. Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency. PHYTOCHEMISTRY 2015; 112:179-87. [PMID: 25659749 DOI: 10.1016/j.phytochem.2014.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 05/04/2023]
Abstract
Cysteine proteases and cystatins have many functions that remain poorly characterised, particularly in crop plants. We therefore investigated the responses of these proteins to nitrogen deficiency in wild-type soybeans and in two independent transgenic soybean lines (OCI-1 and OCI-2) that express the rice cystatin, oryzacystatin-I (OCI). Plants were grown for four weeks under either a high (5 mM) nitrate (HN) regime or in the absence of added nitrate (LN) in the absence or presence of symbiotic rhizobial bacteria. Under the LN regime all lines showed similar classic symptoms of nitrogen deficiency including lower shoot biomass and leaf chlorophyll. However, the LN-induced decreases in leaf protein and increases in root protein tended to be smaller in the OCI-1 and OCI-2 lines than in the wild type. When LN-plants were grown with rhizobia, OCI-1 and OCI-2 roots had significantly more crown nodules than wild-type plants. The growth nitrogen regime had a significant effect on the abundance of transcripts encoding vacuolar processing enzymes (VPEs), LN-dependent increases in VPE2 and VPE3 transcripts in all lines. However, the LN-dependent increases of VPE2 and VPE3 transcripts were significantly lower in the leaves of OCI-1 and OCI-2 plants than in the wild type. These results show that nitrogen availability regulates the leaf and root cysteine protease, VPE and cystatin transcript profiles in a manner that is in some cases influenced by ectopic OCI expression. Moreover, the OCI-dependent inhibition of papain-like cysteine proteases favours increased nodulation and enhanced tolerance to nitrogen limitation, as shown by the smaller LN-dependent decreases in leaf protein observed in the OCI-1 and OCI-2 plants relative to the wild type.
Collapse
Affiliation(s)
- Marian D Quain
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK; Council for Scientific and Industrial Research, Crops Research Institute, P.O. Box 3785, Kumasi, Ghana
| | - Matome E Makgopa
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK; Forestry and Agricultural Biotechnology Institute, Plant Science Department, University of Pretoria, Pretoria 0002, South Africa
| | - James W Cooper
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Karl J Kunert
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK; Forestry and Agricultural Biotechnology Institute, Plant Science Department, University of Pretoria, Pretoria 0002, South Africa
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
17
|
van Wyk SG, Du Plessis M, Cullis CA, Kunert KJ, Vorster BJ. Cysteine protease and cystatin expression and activity during soybean nodule development and senescence. BMC PLANT BIOLOGY 2014; 14:294. [PMID: 25404209 PMCID: PMC4243279 DOI: 10.1186/s12870-014-0294-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/17/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Nodules play an important role in fixing atmospheric nitrogen for soybean growth. Premature senescence of nodules can negatively impact on nitrogen availability for plant growth and, as such, we need a better understanding of nodule development and senescence. Cysteine proteases are known to play a role in nodule senescence, but knowledge is still fragmented regarding the function their inhibitors (cystatins) during the development and senescence of soybean nodules. This study provides the first data with regard to cystatin expression during nodule development combined with biochemical characterization of their inhibition strength. RESULTS Seventy nine non-redundant cysteine protease gene sequences with homology to papain, belonging to different subfamilies, and several legumain-like cysteine proteases (vacuole processing enzymes) were identified from the soybean genome assembly with eighteen of these cysteine proteases actively transcribed during nodule development and senescence. In addition, nineteen non-redundant cystatins similar to oryzacystatin-I and belonging to cystatin subgroups A and C were identified from the soybean genome assembly with seven actively transcribed in nodules. Most cystatins had preferential affinity to cathepsin L-like cysteine proteases. Transcription of cystatins Glyma05g28250, Glyma15g12211, Glyma15g36180 particularly increased during onset of senescence, possibly regulating proteolysis when nodules senesce and undergo programmed cell death. Both actively transcribed and non-actively transcribed nodule cystatins inhibited cathepsin-L- and B-like activities in different age nodules and they also inhibited papain and cathepsin-L activity when expressed and purified from bacterial cells. CONCLUSIONS Overlap in activities and specificities of actively and non-actively transcribed cystatins raises the question if non-transcribed cystatins provide a reservoir for response to particular environments. This data might be applicable to the development of strategies to extend the active life span of nodules or prevent environmentally induced senescence.
Collapse
Affiliation(s)
- Stefan George van Wyk
- />Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| | - Magdeleen Du Plessis
- />Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| | | | - Karl Josef Kunert
- />Department of Plant Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| | - Barend Juan Vorster
- />Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| |
Collapse
|
18
|
Díaz-Mendoza M, Velasco-Arroyo B, González-Melendi P, Martínez M, Díaz I. C1A cysteine protease-cystatin interactions in leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3825-33. [PMID: 24600023 DOI: 10.1093/jxb/eru043] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Senescence-associated proteolysis in plants is a crucial process to relocalize nutrients from leaves to growing or storage tissues. The massive net degradation of proteins involves broad metabolic networks, different subcellular compartments, and several types of proteases and regulators. C1A cysteine proteases, grouped as cathepsin L-, B-, H-, and F-like according to their gene structures and phylogenetic relationships, are the most abundant enzymes responsible for the proteolytic activity during leaf senescence. Besides, cystatins as specific modulators of C1A peptidase activities exert a complex regulatory role in this physiological process. This overview article covers the most recent information on C1A proteases in leaf senescence in different plant species. Particularly, it is focussed on barley, as the unique species where the whole gene family members of C1A cysteine proteases and cystatins have been analysed.
Collapse
Affiliation(s)
- Mercedes Díaz-Mendoza
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Blanca Velasco-Arroyo
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Manuel Martínez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, Universidad Politécnica de Madrid, Autovia M40 (Km 38), 28223-Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
19
|
Zhu M, Zhu N, Song WY, Harmon AC, Assmann SM, Chen S. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:491-515. [PMID: 24580573 PMCID: PMC4019734 DOI: 10.1111/tpj.12490] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 12/22/2013] [Accepted: 02/17/2014] [Indexed: 05/19/2023]
Abstract
Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox-sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard-cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis and isotope-coded affinity tagging. In total, 65 and 118 potential redox-responsive proteins were identified in ABA- and MeJA-treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of 'energy', 'stress and defense' and 'metabolism'. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA- and MeJA-treated samples. A total of 44 cysteines were mapped in the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a sucrose non-fermenting 1-related protein kinase and an isopropylmalate dehydrogenase, were confirmed to be redox-regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in ABA and MeJA signal transduction in guard cells.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ning Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Wen-yuan Song
- Department of Plant Pathology, University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Alice C. Harmon
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Sarah M. Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
- Corresponding author: Sixue Chen, Ph.D., Tel: (352) 273-8330; Fax: (352) 273-8284,
| |
Collapse
|
20
|
Wang R, Liu S, Wang J, Dong Q, Xu L, Rui Q. Purification, characterization and identification of a senescence related serine protease in dark-induced senescent wheat leaves. PHYTOCHEMISTRY 2013; 95:118-126. [PMID: 23910959 DOI: 10.1016/j.phytochem.2013.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/27/2012] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Senescence-related proteases play important roles in leaf senescence by regulating protein degradation and nutrient recycling. A 98.9kDa senescence-related protease EP3 in wheat leaves was purified by ammonium sulfate precipitation, Q-Sepharose fast flow anion exchange chromatography and gel slicing after gel electrophoresis. Due to its relatively high thermal stability, its protease activity did not decrease after incubation at 40°C for 1-h. EP3 protease was suggested to be a metal-dependent serine protease, because its activity was inhibited by serine protease inhibitors PMSF and AEBSF and metal related protease inhibitor EGTA. It was identified as a subtilisin-like serine protease of the S8A family based on data from both mass spectrometry and the cloned cDNA sequence. Therefore, these data suggest that a serine protease of the S8A subfamily with specific biochemical properties is involved in senescence-associated protein degradation.
Collapse
Affiliation(s)
- Renxian Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
21
|
Doehlemann G, Hemetsberger C. Apoplastic immunity and its suppression by filamentous plant pathogens. THE NEW PHYTOLOGIST 2013; 198:1001-1016. [PMID: 23594392 DOI: 10.1111/nph.12277] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 05/19/2023]
Abstract
Microbial plant pathogens have evolved a variety of strategies to enter plant hosts and cause disease. In particular, biotrophic pathogens, which parasitize living plant tissue, establish sophisticated interactions in which they modulate the plant's metabolism to their own good. The prime decision, whether or not a pathogen can accommodate itself in its host tissue, is made during the initial phase of infection. At this stage, the plant immune system recognizes conserved molecular patterns of the invading microbe, which initiate a set of basal immune responses. Induced plant defense proteins, toxic compounds and antimicrobial proteins encounter a broad arsenal of pathogen-derived virulence factors that aim to disarm host immunity. Crucial regulatory processes and protein-protein interactions take place in the apoplast, that is, intercellular spaces, plant cell walls and defined host-pathogen interfaces which are formed between the plant cytoplasm and the specialized infection structures of many biotrophic pathogens. This article aims to provide an insight into the most important principles and components of apoplastic plant immunity and its modulation by filamentous microbial pathogens.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| | - Christoph Hemetsberger
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043, Marburg, Germany
| |
Collapse
|
22
|
Martínez M, Cambra I, González-Melendi P, Santamaría ME, Díaz I. C1A cysteine-proteases and their inhibitors in plants. PHYSIOLOGIA PLANTARUM 2012; 145:85-94. [PMID: 22221156 DOI: 10.1111/j.1399-3054.2012.01569.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant cysteine-proteases (CysProt) represent a well-characterized type of proteolytic enzymes that fulfill tightly regulated physiological functions (senescence and seed germination among others) and defense roles. This article is focused on the group of papain-proteases C1A (family C1, clan CA) and their inhibitors, phytocystatins (PhyCys). In particular, the protease-inhibitor interaction and their mutual participation in specific pathways throughout the plant's life are reviewed. C1A CysProt and PhyCys have been molecularly characterized, and comparative sequence analyses have identified consensus functional motifs. A correlation can be established between the number of identified CysProt and PhyCys in angiosperms. Thus, evolutionary forces may have determined a control role of cystatins on both endogenous and pest-exogenous proteases in these species. Tagging the proteases and inhibitors with fluorescence proteins revealed common patterns of subcellular localization in the endoplasmic reticulum-Golgi network in transiently transformed onion epidermal cells. Further in vivo interactions were demonstrated by bimolecular fluorescent complementation, suggesting their participation in the same physiological processes.
Collapse
Affiliation(s)
- Manuel Martínez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Gu C, Shabab M, Strasser R, Wolters PJ, Shindo T, Niemer M, Kaschani F, Mach L, van der Hoorn RAL. Post-translational regulation and trafficking of the granulin-containing protease RD21 of Arabidopsis thaliana. PLoS One 2012; 7:e32422. [PMID: 22396764 PMCID: PMC3292552 DOI: 10.1371/journal.pone.0032422] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/26/2012] [Indexed: 12/18/2022] Open
Abstract
RD21-like proteases are ubiquitous, plant-specific papain-like proteases typified by carrying a C-terminal granulin domain. RD21-like proteases are involved in immunity and associated with senescence and various types of biotic and abiotic stresses. Here, we interrogated Arabidopsis RD21 regulation and trafficking by site-directed mutagenesis, agroinfiltration, western blotting, protease activity profiling and protein degradation. Using an introduced N-glycan sensor, deglycosylation experiments and glyco-engineered N. benthamiana plants, we show that RD21 passes through the Golgi where it becomes fucosylated. Our studies demonstrate that RD21 is regulated at three post-translational levels. Prodomain removal is not blocked in the catalytic Cys mutant, indicating that RD21 is activated by a proteolytic cascade. However, RD21 activation in Arabidopsis does not require vacuolar processing enzymes (VPEs) or aleurain-like protease AALP. In contrast, granulin domain removal requires the catalytic Cys and His residues and is therefore autocatalytic. Furthermore, SDS can (re-)activate latent RD21 in Arabidopsis leaf extracts, indicating the existence of a third layer of post-translational regulation, possibly mediated by endogenous inhibitors. RD21 causes a dominant protease activity in Arabidopsis leaf extracts, responsible for SDS-induced proteome degradation.
Collapse
Affiliation(s)
- Christian Gu
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mohammed Shabab
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Pieter J. Wolters
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Takayuki Shindo
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Melanie Niemer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Farnusch Kaschani
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Renier A. L. van der Hoorn
- The Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|