1
|
Chatti K, Kmeli N, Bettaieb I, Hamdi J, Gaaied S, Mlouka R, Mars M, Bouktila D. Genome-Wide Analysis of the Common Fig (Ficus carica L.) R2R3-MYB Genes Reveals Their Structure, Evolution, and Roles in Fruit Color Variation. Biochem Genet 2024:10.1007/s10528-024-10960-w. [PMID: 39508995 DOI: 10.1007/s10528-024-10960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
The R2R3-MYB transcription factor (TF) family is crucial for regulating plant growth, stress response, and fruit ripening. Although this TF family has been examined in a multitude of plants, the R2R3-MYB TFs in Ficus carica, a Mediterranean fruit species, have yet to be characterized. This study identified and classified 63 R2R3-MYB genes (FcMYB1 to FcMYB63) in the F. carica genome. We analyzed these genes for physicochemical properties, conserved motifs, phylogenetic relationships, gene architecture, selection pressure, and gene expression profiles and networks. The genes were classified into 29 clades, with members of the same clade showing similar exon-intron structures and motif compositions. Of the 54 orthologous gene pairs shared with mulberry (Morus notabilis), 52 evolved under negative selection, while two pairs (FcMYB55/MnMYB20 and FcMYB59/MnMYB31) experienced diversifying selection. RNA-Seq analysis showed that FcMYB26, FcMYB33, and FcMYB34 were significantly overexpressed in fig fruit peel during maturation phase III. Weighted gene co-expression network analysis (WGCNA) indicated that these genes are part of an expression module associated with the anthocyanin pathway. RT-qPCR validation confirmed these findings and revealed that the Tunisian cultivars 'Zidi' and 'Soltani' have cultivar-specific R2R3-FcMYB genes highly overexpressed during the final stage of fruit maturation and color acquisition. These genes likely influence cultivar-specific pigment synthesis. This study provides a comprehensive overview of the R2R3-MYB TF family in fig, offering a framework for selecting genes related to fruit peel color in breeding programs.
Collapse
Affiliation(s)
- Khaled Chatti
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Narjes Kmeli
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Inchirah Bettaieb
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Jihen Hamdi
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia
| | - Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Rania Mlouka
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Messaoud Mars
- Laboratory of Agrobiodiversity and Ecotoxicology (LR02AGR21), Higher Institute of Agronomy of Chott-Mariem, University of Sousse, 4042, Sousse, Tunisia
| | - Dhia Bouktila
- Laboratory of Genetics, Biodiversity and Bioressources Exploitation (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, 5000, Monastir, Tunisia.
| |
Collapse
|
2
|
Wang H, Jian L, Wang Z, Jiao Y, Wang Y, Ma F, Li P. Glycosylation mode of phloretin affects the morphology and stress resistance of apple plant. PLANT, CELL & ENVIRONMENT 2024; 47:4398-4415. [PMID: 38995178 DOI: 10.1111/pce.15031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Phloretin has different glycosylation modes in plants. Phlorizin (phloretin 2'-O-glucoside) is one of the glycosylation products of phloretin, and accumulates abundantly in apple plants. However, it is still unclear whether phlorizin is more beneficial for apple plants compared with other glycosylation products of phloretin. We created transgenic apple plants with different glycosylation modes of phloretin. In transgenic plants, the accumulation of phlorizin was partly replaced by that of trilobatin (phloretin 4'-O-glucoside) or phloretin 3',5'-di-C-glycoside. Compared with wild type, transgenic plants with less phlorizin showed dwarf phenotype, larger stomatal size, higher stomatal density and less tolerance to drought stress. Transcriptome and phytohormones assay indicate that phlorizin might regulate stomatal development and behaviour via controlling auxin and abscisic acid signalling pathways as well as carbonic anhydrase expressions. Transgenic apple plants with less phlorizin also showed less resistance to spider mites. Apple plants may hydrolyse phlorizin to produce phloretin, but cannot hydrolyse trilobatin or phloretin 3',5'-di-C-glycoside. Compared with its glycosylation products, phloretin is more toxic to spider mites. These results suggest that the glycosylation of phloretin to produce phlorizin is the optimal glycosylation mode in apple plants, and plays an important role in apple resistance to stresses.
Collapse
Affiliation(s)
- Haojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Liru Jian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhipeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuzhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Cao H, Gong R, Xiong L, Wang F, Gu H, Li S, He G, Liang S, Luo W, Qiu X. Comparative Metabolome and Transcriptome Analysis Reveals the Possible Roles of Rice Phospholipase A Genes in the Accumulation of Oil in Grains. Int J Mol Sci 2024; 25:11498. [PMID: 39519050 PMCID: PMC11546879 DOI: 10.3390/ijms252111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The phospholipase A (PLA) gene family plays a crucial role in the regulation of plant growth, development and stress response. Although PLA genes have been identified in various plant species, their specific functions and characteristics in oil quality formation of rice grains (Oryza sativa L.) have not been studied yet. Here, we identified and characterized 35 rice PLA genes, which were divided into three subgroups based on gene structures and phylogenetic relationships. These genes are distributed unevenly across 11 rice chromosomes. The promoter sequence of rice PLAs contain multiple plant hormones and stress-related elements. Gene expression analyses in various tissues and under stress conditions indicated that PLAs may be involved in rice growth, development and stress response. In addition, metabolomics, transcriptomics and qRT-PCR analyses between two rice varieties Guang8B (G8B, high oil content) and YueFengB (YFB, low oil content) revealed that the different expressional levels of rice PLA genes were closely related to the differences in the oil content between 'G8B' and 'YFB' grains. The findings of this study provide potential novel insights into the molecular information of the phospholipase A gene family in rice, and underscore the potential functions of PLA genes in rice oil content accumulation, providing valuable resources for future genetic improvement and breeding strategies.
Collapse
Affiliation(s)
- Huasheng Cao
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Rong Gong
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Liang Xiong
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Fujun Wang
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Haiyong Gu
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shuguang Li
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Gao He
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shihu Liang
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Wenyong Luo
- Rice Research Institue, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (H.C.); (R.G.); (L.X.); (F.W.); (H.G.); (G.H.); (S.L.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China Co-Construction by Ministry, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xianjin Qiu
- College of Agriculture, Yangte University, Jingzhou 434025, China
| |
Collapse
|
4
|
Sun C, Cao Y, Li X, Fang S, Yang W, Shang X. The impact of genetic similarity and environment on the flavonoids variation pattern of Cyclocarya paliurus. Sci Rep 2024; 14:24187. [PMID: 39406858 PMCID: PMC11480345 DOI: 10.1038/s41598-024-74957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The leaves of Cyclocarya paliurus (Batalin) Iljinskaja, an endemic tree with a scattered distribution in subtropical China, are rich in flavonoids with beneficial, health-promoting properties. To understand the impact of environment and genetic similarity on the variation pattern of flavonoids in this species, we analyzed C. paliurus germplasm resources from 26 different populations previously sampled from the main distribution area. Environmental, genetic and biochemical data was associated by genetic structure analysis, non-parametric tests, correlation analysis and principal component analysis. We found that populations with higher flavonoid contents were distributed at higher elevations and latitudes and fell into two groups with similar genetic diversities. Significant accumulations of isoquercitrin and kaempferol 3-O-glucoside were detected in the higher flavonoid-content resources. In addition, the genetic clusters with higher flavonoid contents exhibited broader environmental-adaptive capacities. Even in the presence of environmental factors promoting C. paliurus flavonoid accumulation, only those populations having a specific level of genetic similarity were able to exploit such environments.
Collapse
Affiliation(s)
- Caowen Sun
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yanni Cao
- Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212499, People's Republic of China
| | - Xiaochun Li
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Wanxia Yang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xulan Shang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
5
|
Yang S, Amanullah S, Duan Y, Guo Y, Xu M, Bao X, An B, Yuan C, Liu X, Liu J, Gao Y, Zhao W, Li X, Gao M. Fine genetic mapping and transcriptomic analysis revealed major gene modulating the clear stripe margin pattern of watermelon peel. FRONTIERS IN PLANT SCIENCE 2024; 15:1462141. [PMID: 39297011 PMCID: PMC11409187 DOI: 10.3389/fpls.2024.1462141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
The peel stripe margin pattern is one of the most important quality traits of watermelon. In this study, two contrasted watermelon lines [slb line (P1) with a clear peel stripe margin pattern and GWAS-38 line (P2) with a blurred peel stripe margin pattern] were crossed, and biparental F2 mapping populations were developed. Genetic segregation analysis revealed that a single recessive gene is modulating the main-effect genetic locus (Clcsm) of the clear stripe margin pattern of peel. Bulked segregant analysis-based sequencing (BSA-Seq) and fine genetic mapping exposed the delimited Clcsm locus to a 19.686-kb interval on chromosome 6, and the Cla97C06G126680 gene encoding the MYB transcription factor family was identified. The gene mutation analysis showed that two non-synonymous single-nucleotide polymorphism (nsSNP) sites [Chr6:28438793 (A-T) and Chr6:28438845 (A-C)] contribute to the clear peel stripe margin pattern, and quantitative real-time polymerase chain reaction (qRT-PCR) also showed a higher expression trend in the slb line than in the GWAS-38 line. Further, comparative transcriptomic analysis identified major differentially expressed genes (DEGs) in three developmental periods [4, 12, and 20 days after pollination (DAP)] of both parental lines. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses indicated highly enriched DEGs involved in metabolic processes and catalytic activity. A total of 44 transcription factor families and candidate genes belonging to the ARR-B transcription factor family are believed to regulate the clear stripe margin trait of watermelon peel. The gene structure, sequence polymorphism, and expression trends depicted significant differences in the peel stripe margin pattern of both parental lines. The ClMYB36 gene showed a higher expression trend for regulating the clear peel stripe margin of the slb line, and the ClAPRR5 gene depicted a higher expression for modulating the blurred peel stripe margin in the GWAS-38 line. Overall, our fine genetic mapping and transcriptomic analysis revealed candidate genes differentiating the clear and blurred peel stripe patterns of watermelon fruit.
Collapse
Affiliation(s)
- Shao Yang
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Sikandar Amanullah
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Center, Mills River, NC, United States
| | - Yaru Duan
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Yu Guo
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Ming Xu
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xiuping Bao
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Bohan An
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Chengzhi Yuan
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xiujie Liu
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Jixiu Liu
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Yue Gao
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Wen Zhao
- Qiqihar Agricultural Technology Extension Center, Qiqihar, China
| | - Xinyuan Li
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Meiling Gao
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, China
| |
Collapse
|
6
|
Zhu X, Chen Y, Jiao J, Zhao S, Yan Y, Ma F, Yao JL, Li P. Four glycosyltransferase genes are responsible for synthesis and accumulation of different flavonol glycosides in apple tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1937-1952. [PMID: 38923617 DOI: 10.1111/tpj.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Flavonols are widely synthesized throughout the plant kingdom, playing essential roles in plant physiology and providing unique health benefits for humans. Their glycosylation plays significant role in improving their stability and solubility, thus their accumulation and function. However, the genes encoding the enzymes catalyze this glycosylation remain largely unknown in apple. This study utilized a combination of methods to identify genes encoding such enzymes. Initially, candidate genes were selected based on their potential to encode UDP-dependent glycosyltransferases (UGTs) and their expression patterns in response to light induction. Subsequently, through testing the in vitro enzyme activity of the proteins produced in Escherichia coli cells, four candidates were confirmed to encode a flavonol 3-O-galactosyltransferase (UGT78T6), flavonol 3-O-glucosyltransferase (UGT78S1), flavonol 3-O-xylosyltransferase/arabinosyltransferase (UGT78T5), and flavonol 3-O-rhamnosyltransferase (UGT76AE22), respectively. Further validation of these genes' functions was conducted by modulating their expression levels in stably transformed apple plants. As anticipated, a positive correlation was observed between the expression levels of these genes and the content of specific flavonol glycosides corresponding to each gene. Moreover, overexpression of a flavonol synthase gene, MdFLS, resulted in increased flavonol glycoside content in apple roots and leaves. These findings provide valuable insights for breeding programs aimed at enriching apple flesh with flavonols and for identifying flavonol 3-O-glycosyltransferases of other plant species.
Collapse
Affiliation(s)
- Xiaoping Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ju Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shanshan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfang Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, 1142, New Zealand
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
7
|
Zhao Q, Li X, Jiao Y, Chen Y, Yan Y, Wang Y, Hamiaux C, Wang Y, Ma F, Atkinson RG, Li P. Identification of two key genes involved in flavonoid catabolism and their different roles in apple resistance to biotic stresses. THE NEW PHYTOLOGIST 2024; 242:1238-1256. [PMID: 38426393 DOI: 10.1111/nph.19644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Biosynthesis of flavonoid aglycones and glycosides is well established. However, key genes involved in their catabolism are poorly understood, even though the products of hydrolysis and oxidation play important roles in plant resistance to biotic stress. Here, we report on catabolism of dihydrochalcones (DHCs), the most abundant flavonoids in domesticated apple and wild Malus. Two key genes, BGLU13.1 and PPO05, were identified by activity-directed protein purification. BGLU13.1-A hydrolyzed phlorizin, (the most abundant DHC in domesticated apple) to produce phloretin which was then oxidized by PPO05. The process differed in some wild Malus, where trilobatin (a positional isomer of phlorizin) was mainly oxidized by PPO05. The effects of DHC catabolism on apple resistance to biotic stresses was investigated using transgenic plants. Either directly or indirectly, phlorizin hydrolysis affected resistance to the phytophagous pest two-spotted spider mite, while oxidation of trilobatin was involved in resistance to the biotrophic fungus Podosphaera leucotricha. DHC catabolism did not affect apple resistance to necrotrophic pathogens Valsa mali and Erwinia amylovara. These results suggest that different DHC catabolism pathways play different roles in apple resistance to biotic stresses. The role of DHC catabolism on apple resistance appeared closely related to the mode of invasion/damage used by pathogen/pest.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoning Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfang Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuzhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cyril Hamiaux
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Yule Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
8
|
Wang Y, Ding Y, Zhao Q, Wu C, Deng CH, Wang J, Wang Y, Yan Y, Zhai R, Yauk YK, Ma F, Atkinson RG, Li P. Dihydrochalcone glycoside biosynthesis in Malus is regulated by two MYB-like transcription factors and is required for seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1492-1507. [PMID: 37648286 DOI: 10.1111/tpj.16444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Dihydrochalcones (DHCs) including phlorizin (phloretin 2'-O-glucoside) and its positional isomer trilobatin (phloretin 4'-O-glucoside) are the most abundant phenylpropanoids in apple (Malus spp.). Transcriptional regulation of DHC production is poorly understood despite their importance in insect- and pathogen-plant interactions in human physiology research and in pharmaceuticals. In this study, segregation in hybrid populations and bulked segregant analysis showed that the synthesis of phlorizin and trilobatin in Malus leaves are both single-gene-controlled traits. Promoter sequences of PGT1 and PGT2, two glycosyltransferase genes involved in DHC glycoside synthesis, were shown to discriminate Malus with different DHC glycoside patterns. Differential PGT1 and PGT2 promoter activities determined DHC glycoside accumulation patterns between genotypes. Two transcription factors containing MYB-like DNA-binding domains were then shown to control DHC glycoside patterns in different tissues, with PRR2L mainly expressed in leaf, fruit, flower, stem, and seed while MYB8L mainly expressed in stem and root. Further hybridizations between specific genotypes demonstrated an absolute requirement for DHC glycoside production in Malus during seed development which explains why no Malus spp. with a null DHC chemotype have been reported.
Collapse
Affiliation(s)
- Yule Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuduan Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Wu
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Jingru Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yufan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfang Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yar-Khing Yauk
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
9
|
Yang H, Li Y, Zhao J, Chen Z, Huang X, Fan G. Regulating the composition and secondary structure of wheat protein through canopy shading to improve dough performance and nutritional index. Food Res Int 2023; 173:113399. [PMID: 37803737 DOI: 10.1016/j.foodres.2023.113399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023]
Abstract
Viscoelastic properties of gluten proteins critically determine the biscuit-making quality. However, cultivar genetics and light conditions closely regulate the composition of the gluten proteins. The impact of pre- and post-anthesis shading (60 %) on amino acid profile, gluten protein composition, secondary structure, dough performance, and biscuit-making quality were evaluated using four wheat cultivars that differ in gluten protein composition. Pre- and post-anthesis shading increased the contents of gliadin, by 35.8 and 3.1 %; glutenin, by 27.6 and 7.3 %; and total protein, by 21.7 and 10.6 %, respectively, compared with those of unshaded plants. Conversely, the ratios of glutenin/gliadin, ω-/(α,β + γ)-gliadin, and high-molecular-weight/low-molecular-weight glutenin subunits decreased with shading. Strong-gluten cultivars exhibited smaller declines in these parameters than weak-gluten cultivars. Secondary structure analysis of the wheat protein revealed that shading increased β-sheet content but decreased β-turn content. Changes in protein components and their secondary structures caused an increase in wet gluten content, dough development time, and gluten performance index, thereby decreasing the biscuit spread ratio. Shading stress increased the protein content and nutrition index but decreased the biological value of protein by 2.5 %. Transcriptomic results revealed that shading induced 139 differentially expressed genes that decreased carbohydrate metabolism and increased amino acid metabolism, involved in increased protein content. Thus, canopy shading improves dough performance and nutrition index by regulating the amino acid profiles, protein compositions, and secondary structures. The study provides key insights for achieving superior grain quality under global dimming.
Collapse
Affiliation(s)
- Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Yong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China
| | - Jiarong Zhao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiulan Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, China; Key Laboratory of Crop Ecophysiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China; Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
10
|
Su X, Zhang X, Bai C, Liu H, Cao X, Yao L. Asymmetric distribution of mineral nutrients aggravates uneven fruit pigmentation driven by sunlight exposure in litchi. PLANTA 2023; 258:96. [PMID: 37819558 DOI: 10.1007/s00425-023-04250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
MAIN CONCLUSION Sunlight boosts anthocyanin synthesis/accumulation in sunny pericarp of litchi fruit, directly leading to uneven pigmentation. Distribution discrepancy of mineral element aggravates uneven coloration by modulating synthesis/accumulation of anthocyanin and sugar. Uneven coloration, characterized by red pericarp on sunny side and green pericarp on shady side, impacts fruit quality of 'Feizixiao' (cv.) litchi. The mechanisms of this phenomenon were explored by investigating the distribution of chlorophyll, flavonoids, sugars, and mineral elements in both types of pericarp. Transcriptome analysis in pericarp was conducted as well. Sunny pericarp contained higher anthocyanins in an order of magnitude and higher fructose, glucose, co-pigments (flavanols, flavonols, ferulic acid), and mineral elements like Ca, Mg and Mn, along with lower N, P, K, S, Cu, Zn and B (P < 0.01), compared to shady pericarp. Sunlight regulated the expression of genes involved in synthesis/accumulation of flavonoids and sugars and genes functioning in nutrient uptake and transport, leading to asymmetric distribution of these substances. Anthocyanins conferred red color on sunny pericarp, sugars, Ca and Mg promoted synthesis/accumulation of anthocyanins, and co-pigments enhanced color display of anthocyanins. The insufficiencies of anthocyanins, sugars and co-pigments, and inhibition effect of excess K, S, N and P on synthesis/accumulation of anthocyanins and sugars, jointly contributed to green color of shady pericarp. These findings highlight the role of asymmetric distribution of substances, mineral elements in particular, on uneven pigmentation in litchi, and provide insights into coloration improvement via precise fertilization.
Collapse
Affiliation(s)
- Xuexia Su
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaotong Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Huilin Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaoying Cao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
11
|
Waite JM, Kelly EA, Zhang H, Hargarten HL, Waliullah S, Altman NS, dePamphilis CW, Honaas LA, Kalcsits L. Transcriptomic approach to uncover dynamic events in the development of mid-season sunburn in apple fruit. G3 (BETHESDA, MD.) 2023; 13:jkad120. [PMID: 37259608 PMCID: PMC10411604 DOI: 10.1093/g3journal/jkad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/20/2022] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
Apples grown in high heat, high light, and low humidity environments are at risk for sun injury disorders like sunburn and associated crop losses. Understanding the physiological and molecular mechanisms underlying sunburn will support improvement of mitigation strategies and breeding for more resilient varieties. Numerous studies have highlighted key biochemical processes involved in sun injury, such as the phenylpropanoid and reactive oxygen species (ROS) pathways, demonstrating both enzyme activities and expression of related genes in response to sunburn conditions. Most previous studies have focused on at-harvest activity of a small number of genes in response to heat stress. Thus, it remains unclear how stress events earlier in the season affect physiology and gene expression. Here, we applied heat stress to mid-season apples in the field and collected tissue along a time course-24, 48, and 72 h following a heat stimulus-to investigate dynamic gene expression changes using a transcriptomic lens. We found a relatively small number of differentially expressed genes (DEGs) and enriched functional terms in response to heat treatments. Only a few of these belonged to pathways previously described to be involved in sunburn, such as the AsA-GSH pathway, while most DEGs had not yet been implicated in sunburn or heat stress in pome fruit.
Collapse
Affiliation(s)
- Jessica M Waite
- USDA Agricultural Research Service, Tree Fruit Research Laboratory, 1104 N. Western Ave., Wenatchee, WA, 98801, USA
- Tree Fruit Research and Extension Center, Department of Horticulture, Washington State University, 1100 N. Western Ave., Wenatchee, WA, 98801, USA
| | - Elizabeth A Kelly
- Department of Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, 101 Huck Life Sciences Building, University Park, PA, 16802, USA
| | - Huiting Zhang
- USDA Agricultural Research Service, Tree Fruit Research Laboratory, 1104 N. Western Ave., Wenatchee, WA, 98801, USA
- Department of Horticulture, Washington State University, 251 Clark Hall, Pullman, WA, 99164, USA
| | - Heidi L Hargarten
- USDA Agricultural Research Service, Tree Fruit Research Laboratory, 1104 N. Western Ave., Wenatchee, WA, 98801, USA
| | - Sumyya Waliullah
- Tree Fruit Research and Extension Center, Department of Horticulture, Washington State University, 1100 N. Western Ave., Wenatchee, WA, 98801, USA
- Department of Plant Pathology, University of Georgia, 2360 Rainwater Rd, Tifton, GA, 31798, USA
| | - Naomi S Altman
- Department of Statistics, The Huck Institutes of the Life Sciences, Pennsylvania State University, 312 Thomas Building, University Park, PA, 16802, USA
| | - Claude W dePamphilis
- Department of Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, 101 Huck Life Sciences Building, University Park, PA, 16802, USA
| | - Loren A Honaas
- USDA Agricultural Research Service, Tree Fruit Research Laboratory, 1104 N. Western Ave., Wenatchee, WA, 98801, USA
| | - Lee Kalcsits
- Tree Fruit Research and Extension Center, Department of Horticulture, Washington State University, 1100 N. Western Ave., Wenatchee, WA, 98801, USA
| |
Collapse
|
12
|
Liao L, Li Y, Lan X, Yang Y, Wei W, Ai J, Feng X, Chen H, Tang Y, Xi L, Wang Z. Integrative Analysis of Fruit Quality and Anthocyanin Accumulation of Plum cv. 'Cuihongli' ( Prunus salicina Lindl.) and Its Bud Mutation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1357. [PMID: 36987044 PMCID: PMC10059968 DOI: 10.3390/plants12061357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Fruit color is one of the quality indicators to judge the freshness of a plum. The coloring process of plum skin is valuable for research due to the high nutritional quality of anthocyanins found in plums. 'Cuihongli' (CHL) and its precocious mutant variety 'Cuihongli Red' (CHR) were used to analyze the changes of fruit quality and anthocyanin biosynthesis during plum development. The results showed that, during the development of the two plums, the total soluble solid and soluble sugar contents were highest at the mature stage, as the titratable acid trended gradually downward as the fruits of the two cultivars matured, and the CHR fruit showed higher sugar content and lower acid content. In addition, the skin of CHR turned red in color earlier than CHL. Compared with CHL, the skin of CHR had higher anthocyanin concentrations, higher activities of phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), dihydroflavonol-4-reductase (DFR), and UDPglucose: flavonoid-3-O-glucosyltransferase (UFGT), and higher transcript levels of genes associated with anthocyanin production. In the flesh of the two cultivars, no anthocyanin content was detected. Taken together, these results suggest that the mutation exerted a major effect on anthocyanin accumulation via modification of the level of transcription; thus, CHR advances the ripening period of 'Cuihongli' plum and improves the fruit quality.
Collapse
Affiliation(s)
- Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Yaman Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Xuejiao Lan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Yiyue Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Wen Wei
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Jinglan Ai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Xiangning Feng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Hongyu Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Yuhang Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| | - Lijuan Xi
- Agriculture and Rural Bureau of Qingshen County, Meishan 620000, China;
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (X.L.); (Y.Y.); (W.W.); (J.A.); (X.F.); (H.C.); (Y.T.)
| |
Collapse
|
13
|
Łata B, Żakowska-Biemans S, Wrona D. Apple Antioxidant Properties as an Effect of N Dose and Rate-Mycorrhization Involvement: A Long-Term Study. Antioxidants (Basel) 2022; 11:antiox11122446. [PMID: 36552654 PMCID: PMC9774935 DOI: 10.3390/antiox11122446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The genetic and/or the agronomic approaches are two main ways to enhance concentrations of biologically active compounds in fruits and vegetables. In this study, the apple antioxidant status was evaluated from the second to the fourth year after planting in relation to an increasing N-dose applied-with or without plant microbial inoculation in the field conditions. Cultivar 'Šampion Arno' was selected to test these relationships. In the growing season, N treatment and inoculation effects were monitored for the apple peel total phenolics and selected individual phenolic compounds ((+)-catechin, (-)-epicatechin, chlorogenic and caffeic acids, rutin and phloridzin) and total ascorbate concentration. Additionally, as an environmental stress marker measurement of glutathione reductase, ascorbate peroxidase and catalase activity were conducted. The year effect was most pronounced, while the N or applied inoculum effects were much weaker. Great differences in antioxidative enzyme activity and phenolic concentrations between years were revealed. Nitrogen fertilization reduced the fruit's global phenolic accumulation compared to the control, but the N-effect varied depending on individual phenolic compounds, N dose and N application method. None of the tested factors influenced the ascorbate concentration. There was a certain tendency to increase antioxidant properties in the control group (without mineral N fertilization) but with the application of bio-fertilizer, which may seem promising for future research in this scope.
Collapse
Affiliation(s)
- Barbara Łata
- Section of Basic Sciences in Horticulture, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Sylwia Żakowska-Biemans
- Department of Food Market Research and Consumption, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Correspondence:
| | - Dariusz Wrona
- Department of Pomology and Horticulture Economics, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
14
|
Hajam TA, H S. Phytochemistry, biological activities, industrial and traditional uses of fig (Ficus carica): A review. Chem Biol Interact 2022; 368:110237. [DOI: 10.1016/j.cbi.2022.110237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/24/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2022]
|
15
|
Zhao S, Blum JA, Ma F, Wang Y, Borejsza-Wysocka E, Ma F, Cheng L, Li P. Anthocyanin Accumulation Provides Protection against High Light Stress While Reducing Photosynthesis in Apple Leaves. Int J Mol Sci 2022; 23:ijms232012616. [PMID: 36293472 PMCID: PMC9604341 DOI: 10.3390/ijms232012616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
The photoprotective role of anthocyanin remains controversial. In this study, we explored the effects of anthocyanin on photosynthesis and photoprotection using transgenic ‘Galaxy Gala’ apple plants overexpressing MdMYB10 under high light stress. The overexpression of MdMYB10 dramatically enhanced leaf anthocyanin accumulation, allowing more visible light to be absorbed, particularly in the green region. However, through post-transcriptional regulation, anthocyanin accumulation lowered leaf photosynthesis in both photochemical reaction and CO2 fixation capacities. Anthocyanin accumulation also led to a decreased de-epoxidation state of the xanthophyll cycle and antioxidant capacities, but this is most likely a response to the light-shielding effect of anthocyanin, as indicated by a higher chlorophyll concentration and lower chlorophyll a/b ratio. Under laboratory conditions when detached leaves lost carbon fixation capacity due to the limitation of CO2 supply, the photoinhibition of detached transgenic red leaves was less severe under strong white, green, or blue light, but it became more severe in response to strong red light compared with that of the wild type. In field conditions when photosynthesis was performed normally in both green and transgenic red leaves, the degree of photoinhibition was comparable between transgenic red leaves and wild type leaves, but it was less severe in transgenic young shoot bark compared with the wild type. Taken together, these data show that anthocyanin protects plants from high light stress by absorbing excessive visible light despite reducing photosynthesis.
Collapse
Affiliation(s)
- Shanshan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Jeremie A. Blum
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Fangfang Ma
- Donald Danforth Plant Science Center and Agricultural Research Service, US Department of Agriculture, St. Louis, MO 63132, USA
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yuzhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Ewa Borejsza-Wysocka
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (L.C.); (P.L.)
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Correspondence: (L.C.); (P.L.)
| |
Collapse
|
16
|
Validation of Appropriate Reference Genes for qRT–PCR Normalization in Oat (Avena sativa L.) under UV-B and High-Light Stresses. Int J Mol Sci 2022; 23:ijms231911187. [PMID: 36232488 PMCID: PMC9570368 DOI: 10.3390/ijms231911187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Oat is a food and forage crop species widely cultivated worldwide, and it is also an important forage grass in plateau regions of China, where there is a high level of ultraviolet radiation and sunlight. Screening suitable reference genes for oat under UV-B and high-light stresses is a prerequisite for ensuring the accuracy of real-time quantitative PCR (qRT–PCR) data used in plant adaptation research. In this study, eight candidate reference genes (sulfite oxidase, SUOX; victorin binding protein, VBP; actin-encoding, Actin1; protein PSK SIMULATOR 1-like, PSKS1; TATA-binding protein 2-like, TBP2; ubiquitin-conjugating enzyme E2, UBC2; elongation factor 1-alpha, EF1-α; glyceraldehyde-3-phosphate dehydrogenase 1, GAPDH1;) were selected based on previous studies and our oat transcriptome data. The expression stability of these reference genes in oat roots, stems, and leaves under UV-B and high-light stresses was first calculated using three frequently used statistical software (geNorm, NormFinder, and BestKeeper), and then the comprehensive stability of these genes was evaluated using RefFinder. The results showed that the most stably expressed reference genes in the roots, stems, and leaves of oat under UV-B stress were EF1-α, TBP2, and PSKS1, respectively; the most stably expressed reference genes in the roots, stems, and leaves under high-light stress were PSKS1, UBC2, and PSKS1, respectively. PSKS1 was the most stably expressed reference gene in all the samples. The reliability of the selected reference genes was further validated by analysis of the expression of the phenylalanine ammonia-lyase (PAL) gene. This study highlights reference genes for accurate quantitative analysis of gene expression in different tissues of oat under UV-B and high-light stresses.
Collapse
|
17
|
Wang D, Wang J, Wang Y, Yao D, Niu Y. Metabolomic and Transcriptomic Profiling Uncover the Underlying Mechanism of Color Differentiation in Scutellaria baicalensis Georgi. Flowers. FRONTIERS IN PLANT SCIENCE 2022; 13:884957. [PMID: 35755689 PMCID: PMC9218823 DOI: 10.3389/fpls.2022.884957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Scutellaria baicalensis Georgi. (Chinese skullcap or Huang-qin) is an extremely crucial medicinal plant in the Labiate family, and the color of its flowers naturally appears purple. However, during the long-term cultivation of S. baicalensis, very few plants of S. baicalensis also present white and purple-red flower colors under the same ecological conditions. However, the complex metabolic and transcriptional networks underlying color formation in white, purple-red, and purple flowers of S. baicalensis remain largely unclarified. To gain an insight into this issue, we conducted transcriptome and metabolomic profiling to elucidate the anthocyanin synthesis metabolic pathway in the flowers of S. baicalensis, and to identify the differentially expressed candidate genes potentially involved in the biosynthesis of anthocyanins. The results showed that 15 anthocyanins were identified, among which cyanidin 3-rutinoside and delphin chloride were the primary anthocyanins, and accumulation was significantly related to the flower color changes of S. baicalensis. Furthermore, the down-regulation of SbDFR (Sb02g31040) reduced the anthocyanin levels in the flowers of S. baicalensis. The differential expression of the Sb3GT (Sb07g04780 and Sb01g72290) gene in purple and purple-red flowers affected anthocyanin accumulation, suggesting that anthocyanin levels were closely associated with the expression of SbDFR and Sb3GT, which play important roles in regulating the anthocyanin biosynthesis process of S. baicalensis flowers. Transcriptomic analysis revealed that transcription factors WRKY, bHLH, and NAC were also highly correlated with anthocyanin accumulation, especially for NAC35, which positively regulated SbDFR (Sb02g31040) gene expression and modulated anthocyanin biosynthesis in flower color variation of S. baicalensis. Overall, this study presents the first experimental evidence for the metabolomic and transcriptomic profiles of S. baicalensis in response to flower coloration, which provides a foundation for dynamic metabolic engineering and plant breeding, and to understand floral evolution in S. baicalensis plants.
Collapse
Affiliation(s)
| | | | | | | | - Yanbing Niu
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
18
|
Yang R, Li J, Wang J, Wang Y, Ma F, Zhai R, Li P. Kaempferol inhibits the growth of Helicobacter pylori in a manner distinct from antibiotics. J Food Biochem 2022; 46:e14210. [PMID: 35484877 DOI: 10.1111/jfbc.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
Helicobacter pylori is associated with gastric disorders. In this study, the anti-H. pylori capacity of natural products from "Winter Red" crabapple flowers were evaluated, including flavonoids, organic acids, terpenoids, and phenolic acids. Among these products, kaempferol showed the highest antibacterial capacity. Structure-activity relationship assays indicated that all hydroxyls contributed to the antibacterial capacity of kaempferol, with the most important being hydroxyls in the A-ring. Kaempferol had comparable anti-H. pylori capacities to clarithromycin and amoxicillin. Both kaempferol and the two antibiotics might damage the cell membrane of H. pylori. However, the RNA-sequence assay demonstrated that their antibacterial mechanisms were different. The ATP-binding cassette transporters, flagellar assembly, and fatty acid metabolism were the major pathways in H. pylori cells responding to kaempferol treatment. We suggest that crabapple containing abundant kaempferol may benefit humans by inhibiting gastric H. pylori. PRACTICAL APPLICATIONS: The anti-Helicobacter pylori capacity of natural products including flavonoids, organic acids, terpenoids, and phenolic acids from "Winter Red" crabapple flowers were evaluated in the present study. Among these products, kaempferol showed the highest antibacterial capacity. More importantly, kaempferol had comparable anti-H. pylori capacities to clarithromycin and amoxicillin, but in a manner distinct from the antibiotics. We suggest that crabapple flowers containing abundant kaempferol may be processed into various products for the patients who have gastric disorders caused by H. pylori. Or the extracted kaempferol from crabapples or other plants could be tested for the clinical treatment of gastric H. pylori.
Collapse
Affiliation(s)
- Ruijia Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiajia Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jingru Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Yufan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Rui Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
A review on rice yellowing: Physicochemical properties, affecting factors, and mechanism. Food Chem 2022; 370:131265. [PMID: 34788950 DOI: 10.1016/j.foodchem.2021.131265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
Yellowing is a critical issue that reduces quality and commodity value of rice. This article presents an overview on rice yellowing and the mechanism of rice yellowing was addressed as the emphasis. The change of physicochemical and nutritive properties in yellowed rice depends on the exposure temperature and time, as well as rice cultivar. The temperature and moisture on rice yellowing were dominant. There is no consensus on the relationship between microorganisms and rice yellowing. The occurrence of yellowing is mainly associated with heat stress induced by heaping heat or respiration of grain, and the yellowing is the collective result of primary and secondary metabolism. The upregulation of flavonoids is the direct cause of rice yellowing, which can be used as metabolic markers of rice yellowing. The Maillard reaction also contributes to yellowing during storage. Aeration and cooling are recommended to lessen the occurring of rice yellowing during commercial storage.
Collapse
|
20
|
Chen W, Xiao Z, Wang Y, Wang J, Zhai R, Lin-Wang K, Espley R, Ma F, Li P. Competition between anthocyanin and kaempferol glycosides biosynthesis affects pollen tube growth and seed set of Malus. HORTICULTURE RESEARCH 2021; 8:173. [PMID: 34333541 PMCID: PMC8325685 DOI: 10.1038/s41438-021-00609-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/20/2021] [Indexed: 05/03/2023]
Abstract
Flavonoids play important roles in regulating plant growth and development. In this study, three kaempferol 3-O-glycosides were identified and mainly accumulated in flowers but not in leaves or fruits of Malus. In Malus, flower petal color is normally white, but some genotypes have red flowers containing anthocyanin. Anthocyanin biosynthesis appears to be in competition with kaempferol 3-O-glycosides production and controlled by the biosynthetic genes. The white flower Malus genotypes had better-developed seeds than the red flower genotypes. In flowers, the overexpression of MYB10 in Malus domestica enhanced the accumulation of anthocyanin, but decreased that of kaempferol 3-O-glycosides. After pollination the transgenic plants showed slower pollen tube growth and fewer developed seeds. Exogenous application of different flavonoid compounds suggested that kaempferol 3-O-glycosides, especially kaempferol 3-O-rhamnoside, regulated pollen tube growth and seed set rather than cyanidin or quercetin 3-O-glycosides. It was found that kaempferol 3-O-rhamnoside might regulate pollen tube growth through effects on auxin, the Rho of plants (ROP) GTPases, calcium and the phosphoinositides signaling pathway. With the inhibition of auxin transport, the transcription levels of Heat Shock Proteins (HSPs) and ROP GTPases were downregulated while the levels were not changed or even enhanced when blocking calcium signaling, suggesting that HSPs and ROP GTPases were downstream of auxin signaling, but upstream of calcium signaling. In summary, kaempferol glycoside concentrations in pistils correlated with auxin transport, the transcription of HSPs and ROP GTPases, and calcium signaling in pollen tubes, culminating in changes to pollen tube growth and seed set.
Collapse
Affiliation(s)
- Weifeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhengcao Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yule Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinxiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag, 92169, Auckland, New Zealand
| | - Richard Espley
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag, 92169, Auckland, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
21
|
Xue X, Duan Y, Wang J, Ma F, Li P. Nighttime Temperatures and Sunlight Intensities Interact to Influence Anthocyanin Biosynthesis and Photooxidative Sunburn in "Fuji" Apple. FRONTIERS IN PLANT SCIENCE 2021; 12:694954. [PMID: 34367217 PMCID: PMC8343144 DOI: 10.3389/fpls.2021.694954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Light and low temperatures induce anthocyanin accumulation, but intense sunlight causes photooxidative sunburn. Nonetheless, there have been few studies of anthocyanin synthesis under different sunlight intensities and low nighttime temperatures. Here, low nighttime temperatures followed by low light intensity were associated with greater anthocyanin accumulation and the expression of anthocyanin biosynthesis genes in "Fuji" apple peel. UDP-glucose flavonoid-3-O-glucosyltransferase (UFGT) activity was positively associated with anthocyanin enrichment. Ascorbic acid can be used as an electron donor of APX to scavenge H2O2 in plants, which makes it play an important role in oxidative defense. Exogenous ascorbate altered the anthocyanin accumulation and reduced the occurrence of high light-induced photooxidative sunburn by removing hydrogen peroxide from the peel. Overall, low light intensity was beneficial for the accumulation of anthocyanin and did not cause photooxidative sunburn, whereas natural light had the opposite effect on the apple peel at low nighttime temperatures. This study provides an insight into the mechanisms by which low temperatures induce apple coloration and high light intensity causes photooxidative sunburn.
Collapse
Affiliation(s)
- Xiaomin Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
- Shandong Institute of Pomology, Tai’an, China
| | - Ying Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | | | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang, China
| |
Collapse
|
22
|
Zhang G, Cui X, Niu J, Ma F, Li P. Visible light regulates anthocyanin synthesis via malate dehydrogenases and the ethylene signaling pathway in plum (Prunus salicina L.). PHYSIOLOGIA PLANTARUM 2021; 172:1739-1749. [PMID: 33665852 DOI: 10.1111/ppl.13383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Light regulates anthocyanins synthesis in plants. Upon exposure to visible light, the inhibition of photosynthetic electron transfer significantly lowered the contents of anthocyanins and the expression levels of key genes involved in anthocyanins synthesis in plum fruit peel. Meanwhile, the expression levels of PsmMDH2 (encoding the malate dehydrogenase in mitochondria) and PschMDH (encoding the malate dehydrogenase in chloroplasts) decreased significantly. The contents of anthocyanins and the levels of the key genes involved in anthocyanin synthesis decreased significantly with the treatment of 1-MCP (an inhibitor of ethylene perception) but were enhanced by the exogenous application of ethylene. The ethylene treatment could also recover the anthocyanin synthesis capacity lowered by the photosynthetic electron transfer inhibition. Silencing PsmMDH2 and PschMDH significantly lowered the contents of anthocyanins in plum fruit. At low temperature, visible light irradiation induced anthocyanin accumulation in Arabidopsis leaves. However, the mmdh, chmdh, and etr1-1 mutants had significantly lower anthocyanins content and expressions of the key genes involved in anthocyanins synthesis compared to wild type. Overall, the present study demonstrates that both photosynthesis and respiration were involved in the regulation of anthocyanin synthesis in visible light. The visible light regulates anthocyanin synthesis by controlling the malate metabolism via MDHs and the ethylene signaling pathway.
Collapse
Affiliation(s)
- Guojing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaohui Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Junping Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
23
|
Metabolomic Characterization of Commercial, Old, and Red-Fleshed Apple Varieties. Metabolites 2021; 11:metabo11060378. [PMID: 34208114 PMCID: PMC8230845 DOI: 10.3390/metabo11060378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, a metabolomic investigation was presented to correlate single polyphenolic compounds in apple pulp with quality characteristics such as antioxidant activity and content of phenolic compounds and anthocyanins in apple skin. Since the concentration of these compounds is influenced by environmental factors, the twenty-two apple cultivars originate from the same site. The polyphenolic compounds were analyzed by ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). The antioxidant activity, phenolic content, and anthocyanins were evaluated on the sunny and the shady sides of apple skin by spectrometric assays. In old apple varieties, the measured parameters were higher than in the commercial and red-fleshed varieties. By contrast, the profile of flavan-3-ols and anthocyanins was variable amongst commercial and red-fleshed varieties. The partial least square (PLS) method was applied to investigate the association between the skin proprieties and the metabolic profile of the pulp. The highest coefficients of determination in prediction (Q2) were obtained for compounds quantified in old cultivars. These results provided information to define the old apple varieties as a reliable group based on the pathway of the antioxidant compounds and anthocyanins content. Our results show the possibility to find cultivars with promising health features based on their content of polyphenols suitable for commercialization or breeding.
Collapse
|
24
|
Zhang A, Zheng J, Chen X, Shi X, Wang H, Fu Q. Comprehensive Analysis of Transcriptome and Metabolome Reveals the Flavonoid Metabolic Pathway Is Associated with Fruit Peel Coloration of Melon. Molecules 2021; 26:molecules26092830. [PMID: 34068821 PMCID: PMC8126211 DOI: 10.3390/molecules26092830] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
The peel color is an important external quality of melon fruit. To explore the mechanisms of melon peel color formation, we performed an integrated analysis of transcriptome and metabolome with three different fruit peel samples (grey-green ‘W’, dark-green ‘B’, and yellow ‘H’). A total of 40 differentially expressed flavonoids were identified. Integrated transcriptomic and metabolomic analyses revealed that flavonoid biosynthesis was associated with the fruit peel coloration of melon. Twelve differentially expressed genes regulated flavonoids synthesis. Among them, nine (two 4CL, F3H, three F3′H, IFS, FNS, and FLS) up-regulated genes were involved in the accumulation of flavones, flavanones, flavonols, and isoflavones, and three (2 ANS and UFGT) down-regulated genes were involved in the accumulation of anthocyanins. This study laid a foundation to understand the molecular mechanisms of melon peel coloration by exploring valuable genes and metabolites.
Collapse
Affiliation(s)
| | | | | | | | - Huaisong Wang
- Correspondence: (H.W.); (Q.F.); Tel.: +86-010-8210-5984 (H.W. & Q.F.)
| | - Qiushi Fu
- Correspondence: (H.W.); (Q.F.); Tel.: +86-010-8210-5984 (H.W. & Q.F.)
| |
Collapse
|
25
|
Chen C, Zhou G, Chen J, Liu X, Lu X, Chen H, Tian Y. Integrated Metabolome and Transcriptome Analysis Unveils Novel Pathway Involved in the Formation of Yellow Peel in Cucumber. Int J Mol Sci 2021; 22:ijms22031494. [PMID: 33540857 PMCID: PMC7867363 DOI: 10.3390/ijms22031494] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
Yellow peel will adversely affect the appearance quality of cucumber fruit, but the metabolites and the molecular mechanism of pigment accumulation in cucumber peel remain unclear. Flavonoid metabolome and transcriptome analyses were carried out on the young peel and old peel of the color mutant L19 and the near-isogenic line L14. The results showed that there were 165 differential flavonoid metabolites in the old peel between L14 and L19. The total content of representative flavonoid metabolites in the old peel of L14 was 95 times that of L19, and 35 times that of young peel of L14, respectively. This might explain the difference of pigment accumulation in yellow peel. Furthermore, transcriptome analysis showed that there were 3396 and 1115 differentially expressed genes in the yellow color difference group (Young L14 vs. Old L14 and Old L14 vs. Old L19), respectively. These differentially expressed genes were significantly enriched in the MAPK signaling pathway-plant, plant-pathogen interaction, flavonoid biosynthesis and cutin, suberine and wax biosynthesis pathways. By analyzing the correlation between differential metabolites and differentially expressed genes, six candidate genes related to the synthesis of glycitein, kaempferol and homoeriodictyol are potentially important. In addition, four key transcription factors that belong to R2R3-MYB, bHLH51 and WRKY23 might be the major drivers of transcriptional changes in the peel between L14 and L19. Then, the expression patterns of these important genes were confirmed by qRT-PCR. These results suggested that the biosynthesis pathway of homoeriodictyol was a novel way to affect the yellowing of cucumber peel. Together, the results of this study provide a research basis for the biosynthesis and regulation of flavonoids in cucumber peel and form a significant step towards identifying the molecular mechanism of cucumber peel yellowing.
Collapse
Affiliation(s)
- Chen Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Geng Zhou
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Juan Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Xiaohong Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
| | - Huiming Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (G.Z.); (J.C.); (X.L.)
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Correspondence: (H.C.); (Y.T.); Tel.: +86-731-8463-5292 (H.C. & Y.T.)
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.L.)
- Correspondence: (H.C.); (Y.T.); Tel.: +86-731-8463-5292 (H.C. & Y.T.)
| |
Collapse
|
26
|
Kou X, Chai L, Yang S, He Y, Wu CE, Liu Y, Zhou J, Xue Z, Wang Z. Physiological and metabolic analysis of winter jujube after postharvest treatment with calcium chloride and a composite film. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:703-717. [PMID: 32710440 DOI: 10.1002/jsfa.10683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/09/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ziziphus jujuba Miller cv. Dongzao is extremely susceptible to reddening, browning, nutritional loss, and perishability after harvest. In this study, we evaluated the mechanisms of calcium chloride and chitosan/nano-silica composite film treatments on the quality, especially in reddening, by physiological and metabolomic assays. RESULTS The treatment delayed the decline of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and chalcone isomerase (CHI) activities. Meanwhile, the treated groups retarded the increases in anthocyanin and quercetin contents by inhibiting the gene expressions of flavonol synthase (ZjFLS), dihydroflavonol 4-reductase (ZjDFR), and anthocyanidin synthase (ZjANS), while promoting leucoanthocyanidin reductase (ZjLAR) expression, which leads to retardation of fruit reddening. Anthocyanins were found to be responsible for post-harvest winter jujube reddening through principal component analysis. Results from the technique for order preference by similarity to an ideal solution indicated that the treated group delayed the decline of the quality of 'Dongzao' and extended its shelf life. CONCLUSION The treatment induced the heightening of flavonoids metabolism. They enhanced the nutritional value and the ability to resist stress by delaying the decline of PAL, CHS, and CHI activities. Meanwhile, the treated groups retarded the increase in anthocyanin and quercetin contents by inhibiting the gene expressions of ZjFLS, ZjDFR, and ZjANS and promoting ZjLAR expression, which leads to retardation of fruit reddening. Anthocyanins are responsible for post-harvest winter jujube reddening. Coating treatment effectively delayed the decline of winter jujube quality. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Liping Chai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Sen Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Yulong He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Cai E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yefang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Jiaqian Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
27
|
Zheng T, Zhang Q, Su KX, Liu SM. Transcriptome and metabolome analyses reveal the regulation of peel coloration in green, red Chinese prickly ash ( Zanthoxylum L.). FOOD CHEMISTRY. MOLECULAR SCIENCES 2020; 1:100004. [PMID: 35415618 PMCID: PMC8991852 DOI: 10.1016/j.fochms.2020.100004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 01/08/2023]
Abstract
Peel colour is an important external economic characteristic of Chinese prickly ash cultivars (Zanthoxylum bungeanum Maxim.). To gain insight into their coloration mechanisms, we performed an integrated analysis of green and red peels using combined metabolomic and transcriptomic analyses. Pelargonin-O-hexoside-O-rhamnoside-O-hexoside, pelargonidin 3,5-diglucoside, peonidin O-hexoside, cyanidin O-syringic acid and peonidin 3-O-glucoside were found to be the key anthocyanins. Transcriptome data indicated that the anthocyanidin synthase genes and UDP-glucose flavonoid 3-O-glucosytransferase genes were significantly increased to promote the redness of the peels. In addition, we discussed the role of R2R3-MYB transcription factors in coloration, of which the c80935 and c226097 genes may be the key regulatory factors for anthocyanin biosynthesis. Generally, this is the first study to identify and reveal the main anthocyanins in Chinese prickly ash peels during different developmental periods. The results of this research lay the foundation for understanding the regulation of coloration in Chinese prickly ash peels.
Collapse
Affiliation(s)
- Tao Zheng
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qun Zhang
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ke-Xing Su
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shu-Ming Liu
- College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
Di Stefano V, Scandurra S, Pagliaro A, Di Martino V, Melilli MG. Effect of Sunlight Exposure on Anthocyanin and Non-Anthocyanin Phenolic Levels in Pomegranate Juices by High Resolution Mass Spectrometry Approach. Foods 2020; 9:E1161. [PMID: 32842539 PMCID: PMC7555681 DOI: 10.3390/foods9091161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 02/05/2023] Open
Abstract
Quali-quantitative analyses of anthocyanins and non-anthocyanin phenolic compounds performed with the use of liquid chromatography coupled with high resolution mass spectrometry, were evaluated in juice of pomegranate fruits ('Dente di Cavallo'), in relation to different light exposures (North, South, West and East). A total of 16 compounds were identified, including phenolic acids, flavonoids, hydrolysable tannins, and anthocyanins, known for their health-promoting effects. Striking differences were observed about the total phenolic content, which was high in juices from fruits with east- and north-facing position, while it was lower in juices facing south. The greatest contents of total flavonoids and anthocyanins were recorded in fruit juices with southern exposure; however, there are no great differences in the content in phenolic acids. Tannins were mainly synthesized in fruit juices with West exposure. The results showed that the position within the tree had no significant effects on color juice, however, it significantly (p < 0.05) affected data on fruit weight, soluble sugars and juice yield. Remarkable synergies existed among polyphenols and phytochemicals in pomegranate juice, but collecting fruits with different solar exposure could enhance different health benefits, i.e., the juices with higher polyphenols content could have more anticancer effect or those with higher tannins content could have more antimicrobial effect.
Collapse
Affiliation(s)
- Vita Di Stefano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Salvatore Scandurra
- Institute for Agricultural and Forest Systems in the Mediterranean, National Council of Research, Via Empedocle, 58, 95128 Catania, Italy; (S.S.); (V.D.M.)
| | - Antonella Pagliaro
- CREA Research Centre for Cereal and Industrial Crops, 95024 Acireale (Catania), Italy;
| | - Vincenzo Di Martino
- Institute for Agricultural and Forest Systems in the Mediterranean, National Council of Research, Via Empedocle, 58, 95128 Catania, Italy; (S.S.); (V.D.M.)
| | - Maria Grazia Melilli
- Institute for Agricultural and Forest Systems in the Mediterranean, National Council of Research, Via Empedocle, 58, 95128 Catania, Italy; (S.S.); (V.D.M.)
| |
Collapse
|
29
|
Chemical Composition and Biological Activities of the Nord-West Romanian Wild Bilberry (Vaccinium myrtillus L. ) and Lingonberry (Vaccinium vitis-idaea L. ) Leaves. Antioxidants (Basel) 2020; 9:antiox9060495. [PMID: 32517130 PMCID: PMC7346130 DOI: 10.3390/antiox9060495] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/29/2022] Open
Abstract
This study was performed to evaluate and compare the in vitro antioxidant, antimicrobial, and antimutagenic activities, and the polyphenolic content of the Nord-West Romanian wild bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) leaves from three different natural habitats (Smida, Turda, Borsa). In the case of both species, the flavanols level was higher in Smida habitat (altitude 1100 m), whereas quercetin derivates were more abundant in Borsa habitat (altitude 850 m). The bilberry leaf extracts contained in the highest amounts the feruloylquinic acid (59.65 ± 0.44 mg/g for Borsa habitat) and rutin (49.83 ± 0.63 mg/g for Borsa habitat), and showed relevant 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity (271.65 mM Trolox/100 g plant material for Borsa habitat, 262.77 mM Trolox/100 g plant material for Smida habitat, and 320.83 mM Trolox/100 g plant material for Turda habitat), for all the three extracts. Gallocatechin was the dominant flavanol in lingonberry species, with the highest amount being registered for Smida habitat (46.81 ± 0.3 mg/g), revealing a DPPH antioxidant activity of 251.49 mM Trolox/100 g plant material. The results obtained in the antimicrobial tests showed that the best inhibitory effect among bilberry species was attributed to the Turda (altitude 436 m) and Smida locations, against both Gram-positive and Gram-negative bacterial strains. For lingonberry, the differences in habitat did not influence the antibacterial effect, but the antifungal effect, only in the case of Candida zeylanoides. A strong antimutagenic effect was registered by the bilberry leaves toward Salmonella typhimurium TA100. Our study may be able to provide a better understanding of the correlation between natural habitat conditions and the accumulation of secondary metabolites and their related bioactivities in studied leaves.
Collapse
|
30
|
Torres CA, Azocar C, Ramos P, Pérez-Díaz R, Sepulveda G, Moya-León MA. Photooxidative stress activates a complex multigenic response integrating the phenylpropanoid pathway and ethylene, leading to lignin accumulation in apple ( Malus domestica Borkh.) fruit. HORTICULTURE RESEARCH 2020; 7:22. [PMID: 32140231 PMCID: PMC7049307 DOI: 10.1038/s41438-020-0244-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 05/19/2023]
Abstract
Photooxidative stress, when combined with elevated temperatures, triggers various defense mechanisms leading to physiological, biochemical, and morphological changes in fruit tissue. Furthermore, during sun damage, apple fruit undergo textural changes characterized by high flesh firmness compared to unexposed fruit. Fuji and Royal Gala apples were suddenly exposed to sunlight on the tree and then sampled for up to 29 days. Cell wall components and lignin biosynthetic pathway analyses were carried out on the fruit tissue. At harvest, Fuji apples with different sun exposure levels, such as exposed to direct sunlight (Exp), shaded (Non-Exp), and with severe sun damage (Sev), were also characterized. In fruit suddenly exposed to sunlight, the expression levels of phenylpropanoid-related genes, phenylalanine ammonia lyase (MdPAL), chalcone synthase (MdCHS), and flavanone-3-hydroxylase (MdF3H), were upregulated in the skin and flesh of Exp and Sev. Exposure had little effect on the lignin-related genes caffeic acid O-methyltransferase 1 (MdCOMT1) and cinnamyl alcohol dehydrogenase (MdCAD) in the skin; however, the expression of these genes was highly induced in the flesh of Exp and Sev in both cultivars. Lignin deposition increased significantly in skin with sun injury (Sev); in flesh, this increase occurred late during the stress treatment. Additionally, the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase (MdACS) and 1-aminocyclopropane-1-carboxylate oxidase (MdACO) were highly expressed in the skin and flesh tissues but were more upregulated in Sev than in Exp during the time-course experiment, which paralleled the induction of the phenylpropanoid pathway and lignin accumulation. At harvest, flesh from Sev fruit exhibited higher firmness than that from Non-Exp and Exp fruit, although no differences were observed in the alcohol-insoluble residues (AIR) among groups. The fractionation of cell wall polymers revealed an increase in the uronic acid contents of the water-soluble pectin fraction (WSF) in Exp and Sev tissues compared to Non-Exp tissues, while the other pectin-rich fractions, that is, CDTA-soluble (CSF) and Na2CO3-soluble (NSF), were increased only in Sev. The amount of hemicellulose and cellulose did not differ among fruit conditions. These findings suggest that increases in the flesh firmness of apples can be promoted by photooxidative stress, which is associated with the induction of lignin accumulation in the skin and flesh of stressed fruit, with the involvement of stress phytohormones such as ethylene.
Collapse
Affiliation(s)
- Carolina A. Torres
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
- Department of Horticulture, Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA USA
| | - Constanza Azocar
- Universidad Andres Bello, Facultad Ciencias Biologicas, Santiago, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Núcleo Científico Multidisciplinario-DI, Universidad de Talca, Talca, Chile
| | - Ricardo Pérez-Díaz
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Gloria Sepulveda
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
- Department of Horticulture, Tree Fruit Research & Extension Center, Washington State University, Wenatchee, WA USA
| | | |
Collapse
|
31
|
Chen W, Zhang M, Zhang G, Li P, Ma F. Differential Regulation of Anthocyanin Synthesis in Apple Peel under Different Sunlight Intensities. Int J Mol Sci 2019; 20:E6060. [PMID: 31805676 PMCID: PMC6928825 DOI: 10.3390/ijms20236060] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Sunlight radiation is a main environmental factor which affects anthocyanin synthesis. To clarify the regulatory mechanism of sunlight on the synthesis of anthocyanin in apple peel, bagged apples were exposed to diverse intensities of sunlight through different shading treatments. Under an increased solar ultraviolet-B (UV-B) light intensity, the concentration of anthocyanin in apple peels was consistent with the Michaelis-Menten equation. Under lower sunlight intensities, diphenyleneiodonium chloride (DPI, an inhibitor of plasma membrane NAD(P)H oxidase) treatment increased both the concentration of cyanidin-3-glycoside and the activity of dihydroflavonol 4-reductase (DFR). However, under higher sunlight intensities, DPI treatment decreased the concentrations of cyanidin-3-glycoside and quercetin-3-glycoside, as well as the activities of DFR and UDP-glycose: flavonoid 3-O-glycosyltransferase (UFGT). These results indicate that, under low sunlight intensity, anthocyanin synthesis in apple peel was limited by the supply of the substrate cyanidin, which was regulated by the DFR activity. Nevertheless, after exposure to high sunlight intensity, the anthocyanin produced in the apple peel was dependent on UFGT activity.
Collapse
Affiliation(s)
| | | | | | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.C.); (M.Z.); (G.Z.); (F.M.)
| | | |
Collapse
|
32
|
Bui TTA, Wright SAI, Falk AB, Vanwalleghem T, Van Hemelrijck W, Hertog MLATM, Keulemans J, Davey MW. Botrytis cinerea differentially induces postharvest antioxidant responses in 'Braeburn' and 'Golden Delicious' apple fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5662-5670. [PMID: 31150567 PMCID: PMC6771965 DOI: 10.1002/jsfa.9827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The fruit of two apple cultivars - 'Braeburn', which is susceptible to inoculation with Botrytis cinerea, and the less susceptible cv. 'Golden Delicious' - were investigated with respect to their response to inoculation with B. cinerea. Successful infection by B. cinerea leads to an oxidative burst and perturbation of plant redox homeostasis. To investigate the interaction between apple fruit and B. cinerea, antioxidant metabolism in fruit samples from sun-exposed and shaded sides of different tissue types was measured over time. RESULTS The sun-exposed tissue of 'Braeburn' had higher initial levels of total vitamin C in the peel and phenolic compounds in the flesh than 'Golden Delicious', despite its greater susceptibility to gray mold. A substantial antioxidant response was recorded in diseased 'Braeburn' fruit 14 days after inoculation, which involved an elevated superoxide dismutase activity and ascorbate peroxidase activity, a progressive oxidation of total vitamin C, and a decrease in peroxidase activity and phenolic content. Disease development was slower on the sun-exposed sides than on the shaded sides. CONCLUSION The two cultivars appeared to utilize different strategies to defend themselves against B. cinerea. 'Golden Delicious' almost entirely escaped infection. Preharvest exposure of apple fruit to high light / temperature stress appears to prepare them to better resist subsequent postharvest attack and disease. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tuyet TA Bui
- Lab. of Fruit Breeding and Biotechnology, Department of Biosystems, Faculty of Bioscience EngineeringKU LeuvenLeuvenBelgium
| | - Sandra AI Wright
- Section of BiologyFaculty of Engineering and Sustainable Development, University of GävleGävleSweden
| | | | | | | | - Maarten LATM Hertog
- Division of MeBioS, Department of Biosystems, Faculty of Bioscience EngineeringKU LeuvenLeuvenBelgium
| | - Johan Keulemans
- Lab. of Fruit Breeding and Biotechnology, Department of Biosystems, Faculty of Bioscience EngineeringKU LeuvenLeuvenBelgium
| | - Mark W Davey
- Lab. of Fruit Breeding and Biotechnology, Department of Biosystems, Faculty of Bioscience EngineeringKU LeuvenLeuvenBelgium
| |
Collapse
|
33
|
Zhai R, Zhao Y, Wu M, Yang J, Li X, Liu H, Wu T, Liang F, Yang C, Wang Z, Ma F, Xu L. The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit. BMC PLANT BIOLOGY 2019; 19:85. [PMID: 30791875 PMCID: PMC6385385 DOI: 10.1186/s12870-019-1687-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/18/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND As a class of natural antioxidants in plants, fruit flavonol metabolites are beneficial to human health. However, the regulatory networks for flavonol biosynthesis in most fruits are largely unknown. Previously, we reported a spontaneous pear bud sport 'Red Zaosu' (Pyrus bretschneideri Rehd.) with a high flavonoid content in its fruit. The identification of the flavonol biosynthetic regulatory network in this mutant pear fruit is crucial for elucidating the flavonol biosynthetic mechanism in fruit. RESULTS Here, we demonstrated the PbMYB12b positively regulated flavonols biosynthesis in 'Red Zaosu' fruit. Initially, we investigated the accumulation patterns of four major quercetin glycosides and two major isorhamnetin glycosides in the fruit of 'Red Zaosu' and its wild-type 'Zaosu'. A PRODUCTION OF FLAVONOL GLYCOSIDES (PFG)-type MYB transcription factor PbMYB12b was also screened for because of its correlation with flavonol accumulation in pear fruit. The biofunction of PbMYB12b was verified by transient overexpression and RNAi assays in pear fruit and young leaves. Overexpression of PbMYB12b enhanced the biosynthesis of quercetin glycosides and isorhamnetin glycosides by positively regulating a general flavonoids biosynthesis gene PbCHSb and a flavonol biosynthesis gene PbFLS. This finding was also supported by dual-luciferase transient expression assay and transient β-glucuronidase (GUS) reporter assay. CONCLUSIONS Our study indicated that PbMYB12b positively regulated flavonol biosynthesis, including four major quercetin glycosides and two major isorhamnetin glycosides, by promoting the expression of PbCHSb and PbFLS in pear fruit.
Collapse
Affiliation(s)
- Rui Zhai
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Yingxiao Zhao
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Meng Wu
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Jie Yang
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Xieyu Li
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Hanting Liu
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Ting Wu
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Fangfang Liang
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| |
Collapse
|
34
|
Beshir WF, Tohge T, Watanabe M, Hertog MLATM, Hoefgen R, Fernie AR, Nicolaï BM. Non-aqueous fractionation revealed changing subcellular metabolite distribution during apple fruit development. HORTICULTURE RESEARCH 2019; 6:98. [PMID: 31666959 PMCID: PMC6804870 DOI: 10.1038/s41438-019-0178-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 05/07/2023]
Abstract
In developing apple fruit, metabolic compartmentation is poorly understood due to the lack of experimental data. Distinguishing subcellular compartments in fruit using non-aqueous fractionation has been technically difficult due to the excess amount of sugars present in the different subcellular compartments limiting the resolution of the technique. The work described in this study represents the first attempt to apply non-aqueous fractionation to developing apple fruit, covering the major events occurring during fruit development (cell division, cell expansion, and maturation). Here we describe the non-aqueous fractionation method to study the subcellular compartmentation of metabolites during apple fruit development considering three main cellular compartments (cytosol, plastids, and vacuole). Evidence is presented that most of the sugars and organic acids were predominantly located in the vacuole, whereas some of the amino acids were distributed between the cytosol and the vacuole. The results showed a shift in the plastid marker from the lightest fractions in the early growth stage to the dense fractions in the later fruit growth stages. This implies that the accumulation of starch content with progressing fruit development substantially influenced the distribution of plastidial fragments within the non-aqueous density gradient applied. Results from this study provide substantial baseline information on assessing the subcellular compartmentation of metabolites in apple fruit in general and during fruit growth in particular.
Collapse
Affiliation(s)
- Wasiye F. Beshir
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Leuven, Belgium
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Potsdam-Golm, Germany
| | - Maarten L. A. T. M. Hertog
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Leuven, Belgium
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), Potsdam-Golm, Germany
| | - Bart M. Nicolaï
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven, Leuven, Belgium
- Flanders Centre of Postharvest Technology (VCBT), Leuven, Belgium
| |
Collapse
|
35
|
Zhang X, Wei J, Huang Y, Shen W, Chen X, Lu C, Su N, Cui J. Increased Cytosolic Calcium Contributes to Hydrogen-Rich Water-Promoted Anthocyanin Biosynthesis Under UV-A Irradiation in Radish Sprouts Hypocotyls. FRONTIERS IN PLANT SCIENCE 2018; 9:1020. [PMID: 30061912 PMCID: PMC6055044 DOI: 10.3389/fpls.2018.01020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 05/14/2023]
Abstract
Our previous studies showed that hydrogen-rich water (HRW) promoted the biosynthesis of anthocyanin under UV-A in radish. However, molecular mechanism involved in the regulation of the anthocyanin biosynthesis is still unclear. In this study, the role of calcium (Ca2+) in HRW-promoted anthocyanin biosynthesis in radish sprouts hypocotyls under UV-A was investigated. The results showed that a positive effect of HRW on the content of cytosolic calcium and anthocyanin accumulation, mimicking the effects of induced CaCl2. Exogenous addition of Ca2+ chelator bis (β-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and inositol 1,4,5-trisphosphate (IP3) synthesis inhibitor neomycin partially reversed the facilitated effect of HRW. The positive effects of HRW on activity of anthocyanin biosynthetic-enzymes (L-phenylalanine ammonia-lyase, PAL; chalcone isomerase, CHI; dihydroflavonol 4-reductase, DFR and UDP glc-flavonoid 3-O-glucosyl transferase, UFGT) were reversed by EGTA and neomycin. Further tests confirmed that the upregulation of anthocyanin biosynthetic related genes induced by HRW was substantially inhibited by calcium antagonists. The possible involvement of CaM in HRW-regulated anthocyanin biosynthesis was also preliminarily investigated in this study. Taken together, our results indicate that IP3-dependent calcium signaling pathway might be involved in HRW-regulated anthocyanin biosynthesis under UV-A irradiation.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Junyu Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yifan Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Senica M, Bavec M, Stampar F, Mikulic-Petkovsek M. Blue honeysuckle (Lonicera caerulea subsp. edulis (Turcz. ex Herder) Hultén.) berries and changes in their ingredients across different locations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3333-3342. [PMID: 29240233 DOI: 10.1002/jsfa.8837] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Interest in organic blue honeysuckle berries has increased in recent years. They are rich in various health-promoting compounds which are sensitive to different environmental factors and are modified during the growing season. RESULTS Honeysuckle berries from different locations differed significantly in their contents of primary and secondary metabolites. The location Ogulin, with the highest altitude and consequently high UV radiation, had the highest phenolic content (259.85 mg per 100 g). Additionally, Vukovski Vrh, with the lowest temperature, had the highest ascorbic acid content (36.83 mg per 100 g), while Šmartno pri Litiji and Višnja Gora, with the highest precipitation, had the highest organic acid contents (885.85 and 850.01 mg per 100 g respectively). A combination of stressful environmental conditions of temperature, water source and light intensity led to the highest saponin content in Višnja Gora (695 mg per 100 g), the highest tannin content in Dolnje Impolje (134 mg per 100 g) and the highest sugar content (2585.45 mg per 100 g) in Vučetinac. CONCLUSION The contents of bioactive substances were influenced by various environmental factors such as temperature, UV radiation, altitude, light intensity and fruit ripening stage. Different compounds respond distinctly to different environmental factors. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mateja Senica
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Bavec
- Chair for Organic Farming, Field Crops, Vegetables and Ornamentals, Faculty of Agriculture and Life Sciences, University of Maribor, Hoče, Maribor, Slovenia
| | - Franci Stampar
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Mikulic-Petkovsek
- Chair for Fruit Growing, Viticulture and Vegetable Growing, Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
37
|
Henry-Kirk RA, Plunkett B, Hall M, McGhie T, Allan AC, Wargent JJ, Espley RV. Solar UV light regulates flavonoid metabolism in apple (Malus x domestica). PLANT, CELL & ENVIRONMENT 2018; 41:675-688. [PMID: 29315644 DOI: 10.1111/pce.13125] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Ultraviolet-B light (UV-B) is one environmental signal perceived by plants that affects the flavonoid pathway and influences the levels of anthocyanins, flavonols, and proanthocyanidins. To understand the mechanisms underlying UV exposure, apple trees were grown under spectral filters that altered transmission of solar UV light. Fruit analysis showed that UV induced changes in physiology, metabolism, and gene expression levels during development over a season. These changes were sustained after storage. Under low UV, ripening was delayed, fruit size decreased, and anthocyanin and flavonols were reduced. Expression analysis showed changes in response to UV light levels for genes in the regulation and biosynthesis of anthocyanin and flavonols. Transcription of flavonol synthase (FLS), ELONGATED HYPOCOTYL 5 (HY5), MYB10, and MYB22 were down-regulated throughout fruit development under reduced UV. Functional testing showed that the FLS promoter was activated by HY5, and this response was enhanced by the presence of MYB22. The MYB22 promoter can also be activated by the anthocyanin regulator, MYB10. As ambient levels of UV light vary around the globe, this study has implications for future crop production, the quality of which can be determined by the response to UV.
Collapse
Affiliation(s)
- Rebecca A Henry-Kirk
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Miriam Hall
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Tony McGhie
- Plant and Food Research, Palmerston North Research Centre, Palmerston North, 4442, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Jason J Wargent
- Institute of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag, 92169, Auckland, New Zealand
| |
Collapse
|
38
|
Li M, Li P, Ma F, Dandekar AM, Cheng L. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. HORTICULTURE RESEARCH 2018; 5:60. [PMID: 30510767 PMCID: PMC6269491 DOI: 10.1038/s41438-018-0064-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/27/2018] [Accepted: 06/07/2018] [Indexed: 05/05/2023]
Abstract
Both sorbitol and sucrose are synthesized in source leaves and transported to fruit for supporting fruit growth in tree fruit species of the Rosaceae family. In apple (Malus domestica), antisense suppression of aldose-6-phosphate reductase, the key enzyme for sorbitol synthesis, significantly decreased the sorbitol concentration but increased the sucrose concentration in leaves, leading to a lower sorbitol but a higher sucrose supply to fruit in these plants. In response to this altered carbon supply, the transgenic fruit had lower concentration of sorbitol and much higher concentration of glucose but similar levels of fructose, sucrose, and starch throughout fruit development relative to the untransformed control. Activities of sorbitol dehydrogenase, fructokinase, and sucrose phosphate synthase were lower, whereas activities of neutral invertase, sucrose synthase, and hexokinase were higher in the transgenic fruit during fruit development. Transcript levels of MdSOT1, MdSDHs, MdFK2, and MdSPS3/6 were downregulated, whereas transcript levels of MdSUC1/4, MdSUSY1-3, MdNIV1/3, MdHKs, and MdTMT1 were upregulated in the transgenic fruit. These findings suggest that the Sucrose cycle and the sugar transport system are very effective in maintaining the level of fructose and provide insights into the roles of sorbitol and sucrose in regulating sugar metabolism and accumulation in sorbitol-synthesizing species.
Collapse
Affiliation(s)
- Mingjun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi P. R. China
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi P. R. China
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi P. R. China
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
39
|
Niu J, Zhang G, Zhang W, Goltsev V, Sun S, Wang J, Li P, Ma F. Anthocyanin concentration depends on the counterbalance between its synthesis and degradation in plum fruit at high temperature. Sci Rep 2017; 7:7684. [PMID: 28794463 PMCID: PMC5550432 DOI: 10.1038/s41598-017-07896-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/30/2017] [Indexed: 01/27/2023] Open
Abstract
Anthocyanin synthesis and degradation processes were analyzed at transcript, enzyme, and metabolite levels to clarify the effects of high temperature on the concentration of anthocyanin in plum fruit (Prunus salicina Lindl.). The transcript levels of PsPAL, PsCHS, and PsDFR decreased while those of PsANS and PsUFGT were similar at 35 °C compared with 20 °C. The activities of the enzymes encoded by these genes were all increased in fruits at 35 °C. The concentrations of anthocyanins were higher at 35 °C on day 5 but then decreased to lower values on day 9 compared with that at 20 °C. Furthermore, high temperature (35 °C) increased the concentration of hydrogen peroxide and the activity of class III peroxidase in the fruit. The concentration of procatechuic acid, a product of the reaction between anthocyanin and hydrogen peroxide, hardly changed at 20 °C but was significantly increased at 35 °C on day 9, indicating that anthocyanin was degraded by hydrogen peroxide, which was catalyzed by class III peroxidase. Based on mathematical modeling, it was estimated that more than 60-70% was enzymatically degraded on day 9 when the temperature increased from 20 °C to 35 °C. We conclude that at the high temperature, the anthocyanin content in plum fruit depend on the counterbalance between its synthesis and degradation.
Collapse
Affiliation(s)
- Junping Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guojing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, Faculty of Biology, St. Kliment Ohridski University of Sofia, 8 Dr. Tzankov Blvd, 1164, Sofia, Bulgaria
| | - Shan Sun
- Shandong Institute of Pomology, Taian, Shandong, 271000, China
| | - Jinzheng Wang
- Shandong Institute of Pomology, Taian, Shandong, 271000, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
40
|
Guan L, Wu B, Hilbert G, Li S, Gomès E, Delrot S, Dai Z. Cluster shading modifies amino acids in grape ( Vitis vinifera L.) berries in a genotype- and tissue-dependent manner. Food Res Int 2017; 98:2-9. [DOI: 10.1016/j.foodres.2017.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
41
|
Xiao Z, Zhang Y, Chen X, Wang Y, Chen W, Xu Q, Li P, Ma F. Extraction, identification, and antioxidant and anticancer tests of seven dihydrochalcones from Malus 'Red Splendor' fruit. Food Chem 2017; 231:324-331. [PMID: 28450013 DOI: 10.1016/j.foodchem.2017.03.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/09/2023]
Abstract
Five dihydrochalcone compounds, including phlorizin, trilobatin, 3-hydroxyphlorizin, sieboldin and phloretin 2'-xyloglucoside, were isolated from ornamental Malus 'Red Splendor' fruit. The chemical structures of these compounds were elucidated by LC-ESI-MS and NMR. Phloretin and 3-hydroxyphloretin were produced by hydrolysis. The antioxidant capacities of these seven compounds were examined by DPPH and ABTS assays, while their cytotoxicity to five cancer cell lines were evaluated by the MTT assay. The results showed that the DPPH assay mainly reflected the antioxidant capacity of the B ring, whereas the ABTS assay was mostly related to the A ring of the dihydrochalcone molecule. Moreover, 3-hydroxyphloretin was the best antioxidant among the seven compounds. Both glycosylation of the A ring and the ortho phenolic hydroxyl groups of the B ring were important for the cytotoxicity of dihydrochalcone molecules. Sieboldin and 3-hydroxyphlorizin exhibited better cytotoxicity than other dihydrochalcone compounds. Dihydrochalcones from Malus may benefit human health.
Collapse
Affiliation(s)
- Zhengcao Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunyuan Zhang
- Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, China
| | - Xian Chen
- Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, China
| | - Yule Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weifeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qipeng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
42
|
Lu Y, Bu Y, Hao S, Wang Y, Zhang J, Tian J, Yao Y. MYBs affect the variation in the ratio of anthocyanin and flavanol in fruit peel and flesh in response to shade. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:40-49. [PMID: 28167273 DOI: 10.1016/j.jphotobiol.2017.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 12/20/2022]
Abstract
Fruit pigment accumulation, which represents an important indicator of nutrient quality and appearance value, is often affected by low light under rain, cloud, fog and haze conditions during the veraison period. It is not known whether continuous low light interferes with the production and accumulation of secondary metabolites in veraison fruit. In this paper, we measured pigments and the transcriptional level of genes related to secondary metabolites, i.e., flavonoid biosynthesis in the peel and flesh of Malus crabapple 'Radiant' fruit in response to normal light and shade from 10th July to 30th August. The results showed crosstalk between the flavonoid biosynthetic genes and the involvement of key transcription factors such as McMYB4, McMYB7, McMYB10, and McMYB16 in the regulation of the ratio of anthocyanins and flavanols, which accounted for the different colouration of the fruit peel and flesh under shade conditions. A model is proposed for the regulation of the flavonoid pathway in the peel and flesh of 'Radiant' fruit based on our study results. Moreover, the molecular mechanism for 'Radiant' fruit colouration provides reference information for understanding the light regulatory mechanism involved in the biosynthesis of flavonoids and for designing the next generation of apple breeding.
Collapse
Affiliation(s)
- Yanfen Lu
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Yufen Bu
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Suxiao Hao
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Yaru Wang
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193,China
| | - Jie Zhang
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Ji Tian
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Yuncong Yao
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
43
|
Wang Z, Cui Y, Vainstein A, Chen S, Ma H. Regulation of Fig ( Ficus carica L.) Fruit Color: Metabolomic and Transcriptomic Analyses of the Flavonoid Biosynthetic Pathway. FRONTIERS IN PLANT SCIENCE 2017; 8:1990. [PMID: 29209349 PMCID: PMC5701927 DOI: 10.3389/fpls.2017.01990] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/06/2017] [Indexed: 05/19/2023]
Abstract
Combined metabolomic and transcriptomic analyses were carried out with fig cultivar Green Peel and its color mutant "Purple Peel." Five and twenty-two metabolites were identified as having significantly different contents between fruit peels of the two cultivars at young and mature stages, respectively. Cyanidin O-malonylhexoside demonstrated a 3,992-fold increase in the mature purple peel, the first identification of a major cyanidin in fig fruit; cyanidin 3-O-glucoside, cyanidin O-malonylhexoside O-hexoside and cyanidin-3,5-O-diglucoside were upregulated 100-fold, revealing the anthocyanins underlying the purple mutation. Beyond the visible differences, there was very significant accumulation of the colorless flavonoids procyanidin B1, luteolin-3',7-di-O-glucoside, epicatechin and quercetin-3-O-rhamnoside in the mature "Purple Peel" compared to "Green Peel." At the young stage, only cyanidin O-malonylhexoside, cyanidin O-malonylhexoside O-hexoside and esculetin were upregulated a few fold in the mutant. Transcriptome analysis revealed a downregulated expression trend of genes encoding phenylpropanoid and flavonoid biosynthetic pathway enzyme in the young "Purple Peel" compared to the young "Green Peel," whereas significant and simultaneous upregulation was revealed in almost all of the flavonoid and anthocyanin pathway components and relevant transcription factors in the mature-stage mutant. The role of R2R3-MYB transcription factors in the color morph mutation and its possible relation to the activity of retrotransposons are discussed. Moreover, large-scale upregulation of small heat-shock protein genes was found in the mature mutant. This is the first work to reveal comprehensive metabolome and transcriptome network changes underlying a fig mutation in a single horticultural attribute, and its profound effects on fruit nutrition and quality.
Collapse
Affiliation(s)
- Ziran Wang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Yuanyuan Cui
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Alexander Vainstein
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shangwu Chen
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
- *Correspondence: Huiqin Ma
| |
Collapse
|
44
|
Beshir WF, Mbong VBM, Hertog MLATM, Geeraerd AH, Van den Ende W, Nicolaï BM. Dynamic Labeling Reveals Temporal Changes in Carbon Re-Allocation within the Central Metabolism of Developing Apple Fruit. FRONTIERS IN PLANT SCIENCE 2017; 8:1785. [PMID: 29093725 PMCID: PMC5651688 DOI: 10.3389/fpls.2017.01785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/02/2017] [Indexed: 05/05/2023]
Abstract
In recent years, the application of isotopically labeled substrates has received extensive attention in plant physiology. Measuring the propagation of the label through metabolic networks may provide information on carbon allocation in sink fruit during fruit development. In this research, gas chromatography coupled to mass spectrometry based metabolite profiling was used to characterize the changing metabolic pool sizes in developing apple fruit at five growth stages (30, 58, 93, 121, and 149 days after full bloom) using 13C-isotope feeding experiments on hypanthium tissue discs. Following the feeding of [U-13C]glucose, the 13C-label was incorporated into the various metabolites to different degrees depending on incubation time, metabolic pathway activity, and growth stage. Evidence is presented that early in fruit development the utilization of the imported sugars was faster than in later developmental stages, likely to supply the energy and carbon skeletons required for cell division and fruit growth. The declined 13C-incorporation into various metabolites during growth and maturation can be associated with the reduced metabolic activity, as mirrored by the respiratory rate. Moreover, the concentration of fructose and sucrose increased during fruit development, whereas concentrations of most amino and organic acids and polyphenols declined. In general, this study showed that the imported compounds play a central role not only in carbohydrate metabolism, but also in the biosynthesis of amino acid and related protein synthesis and secondary metabolites at the early stage of fruit development.
Collapse
Affiliation(s)
- Wasiye F. Beshir
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Victor B. M. Mbong
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Maarten L. A. T. M. Hertog
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Annemie H. Geeraerd
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bart M. Nicolaï
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
- *Correspondence: Bart M. Nicolaï
| |
Collapse
|
45
|
Zhao J, Xie X, Shen X, Wang Y. Effect of sunlight-exposure on antioxidants and antioxidant enzyme activities in 'd'Anjou' pear in relation to superficial scald development. Food Chem 2016; 210:18-25. [PMID: 27211615 DOI: 10.1016/j.foodchem.2016.04.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 01/13/2023]
Abstract
Influence of preharvest sunlight exposure on superficial scald development in 'd'Anjou' pears during cold storage was investigated. The biochemical changes related to scald including α-farnesene, conjugated trienols (CTols), antioxidants, antioxidant enzyme activities were monitored among separated blushed and shaded peels of unbagged fruit as well as the whole peel of bagged fruit. In unbagged fruit, scald symptom was restricted to shaded peel; while there was no difference in α-farnesene between blushed and shaded peels, CTols increased significantly in shaded peel along with scald development after 3months storage. Bagging treatment increased both α-farnesene and CTols significantly and enhanced scald. Preharvest sunlight exposure significantly increased certain antioxidant contents and antioxidant enzyme activities in blushed peel at harvest and during storage. These results reveal a direct role of CTols during development of scald, however, antioxidant systems may play an important role in α-farnesene oxidation to CTols and scald susceptibility in 'd'Anjou pears.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Horticulture, Oregon State University, Mid-Columbia Agricultural Research and Extension Center, 3005 Experiment Station Dr., Hood River, OR 97031, United States; National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiang Shen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yan Wang
- Department of Horticulture, Oregon State University, Mid-Columbia Agricultural Research and Extension Center, 3005 Experiment Station Dr., Hood River, OR 97031, United States.
| |
Collapse
|
46
|
Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:838. [PMID: 27379130 PMCID: PMC4908137 DOI: 10.3389/fpls.2016.00838] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/27/2016] [Indexed: 05/18/2023]
Abstract
Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance.
Collapse
Affiliation(s)
- Vicente Martinez
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Teresa C. Mestre
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Francisco Rubio
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Amadeo Girones-Vilaplana
- Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Diego A. Moreno
- Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North TexasDenton, TX, USA
| | - Rosa M. Rivero
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
- *Correspondence: Rosa M. Rivero
| |
Collapse
|
47
|
Neugart S, Krumbein A, Zrenner R. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica). FRONTIERS IN PLANT SCIENCE 2016; 7:326. [PMID: 27066016 PMCID: PMC4812050 DOI: 10.3389/fpls.2016.00326] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/03/2016] [Indexed: 05/05/2023]
Abstract
Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the 2 × 105 K format Brassica microarray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization.
Collapse
|
48
|
Eisenstecken D, Panarese A, Robatscher P, Huck CW, Zanella A, Oberhuber M. A Near Infrared Spectroscopy (NIRS) and Chemometric Approach to Improve Apple Fruit Quality Management: A Case Study on the Cultivars "Cripps Pink" and "Braeburn". Molecules 2015. [PMID: 26213913 PMCID: PMC6331841 DOI: 10.3390/molecules200813603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The potential of near infrared spectroscopy (NIRS) in the wavelength range of 1000–2500 nm for predicting quality parameters such as total soluble solids (TSS), acidity (TA), firmness, and individual sugars (glucose, fructose, sucrose, and xylose) for two cultivars of apples (“Braeburn” and “Cripps Pink”) was studied during the pre- and post-storage periods. Simultaneously, a qualitative investigation on the capability of NIRS to discriminate varieties, harvest dates, storage periods and fruit inhomogeneity was carried out. In order to generate a sample set with high variability within the most relevant apple quality traits, three different harvest time points in combination with five different storage periods were chosen, and the evolution of important quality parameters was followed both with NIRS and wet chemical methods. By applying a principal component analysis (PCA) a differentiation between the two cultivars, freshly harvested vs. long-term stored apples and, notably, between the sun-exposed vs. shaded side of apples could be found. For the determination of quality parameters effective prediction models for titratable acid (TA) and individual sugars such as fructose, glucose and sucrose by using partial least square (PLS) regression have been developed. Our results complement earlier reports, highlighting the versatility of NIRS as a fast, non-invasive method for quantitative and qualitative studies on apples.
Collapse
Affiliation(s)
- Daniela Eisenstecken
- Laimburg Research Centre for Agriculture and Forestry, Laimburg 6-Pfatten (Vadena), Auer (Ora) 39040, BZ, Italy.
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria.
| | - Alessia Panarese
- Laimburg Research Centre for Agriculture and Forestry, Laimburg 6-Pfatten (Vadena), Auer (Ora) 39040, BZ, Italy.
| | - Peter Robatscher
- Laimburg Research Centre for Agriculture and Forestry, Laimburg 6-Pfatten (Vadena), Auer (Ora) 39040, BZ, Italy.
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and Biomedicine, Leopold-Franzens University, Innrain 80-82, Innsbruck 6020, Austria.
| | - Angelo Zanella
- Laimburg Research Centre for Agriculture and Forestry, Laimburg 6-Pfatten (Vadena), Auer (Ora) 39040, BZ, Italy.
| | - Michael Oberhuber
- Laimburg Research Centre for Agriculture and Forestry, Laimburg 6-Pfatten (Vadena), Auer (Ora) 39040, BZ, Italy.
| |
Collapse
|
49
|
Zhang J, Niu J, Duan Y, Zhang M, Liu J, Li P, Ma F. Photoprotection mechanism in the 'Fuji' apple peel at different levels of photooxidative sunburn. PHYSIOLOGIA PLANTARUM 2015; 154:54-65. [PMID: 25185895 DOI: 10.1111/ppl.12272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 05/06/2023]
Abstract
The xanthophyll cycle, flavonoid metabolism, the antioxidant system and the production of active oxygen species were analyzed in the peel of 'Fuji' apples re-exposed to sunlight after extended periods of fruit bagging treatment, resulting in different levels of photooxidative sunburn. After re-exposing bagged fruits to sunlight, the production of active oxygen species and the photoprotective capacity in apple peels were both significantly enhanced. As sunburn severity increased, the concentration of hydrogen peroxide increased, while xanthophyll cycle pool size decreased. For the key genes involved in flavonoid synthesis, expressions of MdMYB10 and MdPAL were upregulated, whereas the expressions of MdCHS, MdANS, MdFLS and MdUFGT were downregulated in sunburnt fruit peel. Correspondingly, concentrations of both quercetin-3-glycoside and cyanidin-3-galactoside decreased. Total ascorbate concentrations decreased as sunburn severity increased, with the decrease being faster for oxidized than for reduced ascorbate. Transcription levels of MdGMP, MdGME, MdGGP, MdGPP, MdGalDH and MdGalLDH, the genes involved in ascorbate synthesis, were similar in non-sunburnt and sunburnt fruit peels, whereas activities of l-galactose dehydrogenase and l-galactono-1,4-lactone dehydrogenase decreased in severely sunburnt peel. Although activities of superoxide dismutase and ascorbate peroxidase increased, the activities of monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase decreased as sunburn severity increased. In summary, the occurrence of photooxidative sunburn in 'Fuji' apple peel is closely associated with a relatively lower xanthophyll cycle pool size, reduced levels of ascorbate reduction and synthesis and reduced flavonoid synthesis. Our data are consistent with the idea that ascorbate plays a key role in protecting apple fruit from photooxidative sunburn.
Collapse
Affiliation(s)
- Jiangli Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R. A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:776-85. [PMID: 25186189 DOI: 10.1002/jsfa.6897] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 05/29/2014] [Accepted: 08/31/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND As a part of the ongoing interest in nutritional and nutraceutical properties of locally produced fruits, the aim of the article was to determine sugars, organic acids, polyphenols and antioxidant capacity of wild bilberries grown in Slovenia. Primary and secondary metabolite composition of bilberry fruit was compared among six phyto-climatic conditions, differing in photosynthetic active radiation and light intensity. RESULTS Three sugars were quantified in bilberry fruit, the predominant being fructose and glucose, along with five organic acids. Bilberry fruit contained high levels of anthocyanins (cyanidin, delphinidin, malvidin, petunidin and peonidin glycosides), hydroxycinnamic acid derivatives and low levels of flavonol glycosides (mainly quercetin and myricetin glycosides), flavan-3-ols, proanthocyanidins and iridoids. The results of the study indicate that bilberries growing in sites with high photosynthetic active radiation (PAR) contained higher levels of total sugars, anthocyanins, flavonols and hydroxycinnamic acids and lower levels of organic acids compared with bilberry fruit from low-light locations. Consequently, total phenolic content and antioxidative capacity of the fruit from high-PAR locations were significantly increased. CONCLUSION Bilberries from different natural habitats differ significantly in the quantity of sugars, organic acids and phenolic compounds. Our results contribute to a fuller understanding of the relationships between environmental factors and accumulation of primary and secondary metabolites in bilberry fruits.
Collapse
Affiliation(s)
- Maja Mikulic-Petkovsek
- University of Ljubljana, Biotechnical Faculty, Agronomy Department, Chair for Fruit, Wine and Vegetable Growing, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|