1
|
Kaur I, Vasudevan A, Sanchez-Romero N, Sanyal A, Sharma A, Hemati H, Juneja P, Sharma A, Pla Palacin I, Rastogi A, Vijayaragavan P, Ghosh S, Ramakrishna S, Sarin SK, Baptista PM, Tripathi DM, Kaur S. In vivo transplantation of intrahepatic cholangiocyte organoids with decellularized liver-derived hydrogels supports hepatic cellular proliferation and differentiation in chronic liver injury. J Mater Chem B 2025; 13:918-928. [PMID: 39656267 DOI: 10.1039/d4tb01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The limited replicative potential of primary hepatocytes (Hep) is a major hurdle for obtaining sufficient quantity and quality hepatocytes during cell therapy in patients with liver failure. Intrahepatic cholangiocyte organoids (ICOs) derived from intrahepatic bile ducts differentiate into both hepatocytes and cholangiocytes in vitro. Here, we studied in vivo effects of transplanting ICOs and Hep in chronic liver injury mice models. Well characterized primary mouse ICOs and Hep were mixed in decellularized liver (DCL) matrix hydrogels and injected into the subcapsular left lateral liver lobe of CCl4-induced liver injury models whereas mice given DCL alone were in the sham group. Two weeks post-transplantation, transplanted liver lobes were collected and studied by histology and RNA sequencing. Transplanted animals did not exhibit any tumors, mortality or morbidity. Mice livers transplanted with ICOs had increased cellular proliferation and vascularization as compared to Hep transplanted mice or sham. Collagen deposition in the liver was significantly reduced and serum albumin levels were significantly increased in transplanted groups compared to the sham group. Expression of genes associated with hepatocyte differentiation was highest in Hep transplanted livers among the three groups, but they were also upregulated in ICO transplanted livers compared to sham. Our study demonstrates that ICOs encapsulated in DCL hydrogels when transplanted in chronically injured mice livers engraft well and show hepatocyte differentiation and reduction of fibrosis, indicating that hydrogel transplanted cholangiocyte organoids may serve as an efficient cell source and therapy for renewal of hepatocytes, restoration of hepatocyte functions and resolution of liver injury.
Collapse
Affiliation(s)
- Impreet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Ashwini Vasudevan
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Natalia Sanchez-Romero
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Be Cytes Biotechnologies, Barcelona, Spain
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830, Villanueva de Gallego, Zaragoza, Spain
| | - Arka Sanyal
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, India
| | - Aarushi Sharma
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, India
| | - Hamed Hemati
- Department of Toxicology and Cancer Biology, University of Kentucky, KY, USA
| | - Pinky Juneja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Aarti Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Iris Pla Palacin
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
| | | | - Pooja Vijayaragavan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201301, Uttar Pradesh, India
| | - Sourabh Ghosh
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, India
| | | | - Shiv K Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Pedro M Baptista
- Instituto de Investigación Sanitária de Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd), Madrid, Spain
- Fundación ARAID, Zaragoza, Spain
- Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Dinesh M Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
2
|
Piemonti L, Citro A, Tomajer V, Partelli S, Caldara R. Pig Xenotransplantation in Beta Cell Replacement: Addressing Challenges and Harnessing Potential for Type 1 Diabetes Therapy. Transpl Int 2024; 37:13122. [PMID: 39512630 PMCID: PMC11540633 DOI: 10.3389/ti.2024.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
This opinion paper evaluates the potential of porcine islets as a promising alternative in beta cell replacement therapy for Type 1 Diabetes (T1D), juxtaposed with the current limitations of human donor islets. It analyzes the compatibility of pig islets with human glucose metabolism, their prospects as a limitless and high-quality source of beta cells, and the unique immunogenic challenges they present in xenotransplantation. Additionally, the paper discusses the regulatory and ethical considerations pertinent to the use of porcine islets. By synthesizing current research and expert perspectives, the paper highlights both the opportunities and significant barriers that need addressing to advance pig islets as a viable therapeutic option. The findings advocate for a balanced and forward-looking approach to the integration of pig islets in T1D treatment, underscoring the need for continued research and dialogue in this evolving field.
Collapse
Affiliation(s)
- Lorenzo Piemonti
- Clinic Unit of Regenerative Medicine and Organ Transplants and Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- Diabetes Research Institute, Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- Clinic Unit of Regenerative Medicine and Organ Transplants and Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Valentina Tomajer
- Pancreatic Surgery, Pancreas Translational and Clinical Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Stefano Partelli
- Diabetes Research Institute, Università Vita-Salute San Raffaele, Milan, Italy
- Pancreatic Surgery, Pancreas Translational and Clinical Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Rossana Caldara
- Clinic Unit of Regenerative Medicine and Organ Transplants and Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
3
|
Cooper DKC, Mou L, Bottino R. A brief review of the current status of pig islet xenotransplantation. Front Immunol 2024; 15:1366530. [PMID: 38464515 PMCID: PMC10920266 DOI: 10.3389/fimmu.2024.1366530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
An estimated 1.5 million Americans suffer from Type I diabetes mellitus, and its incidence is increasing worldwide. Islet allotransplantation offers a treatment, but the availability of deceased human donor pancreases is limited. The transplantation of islets from gene-edited pigs, if successful, would resolve this problem. Pigs are now available in which the expression of the three known xenoantigens against which humans have natural (preformed) antibodies has been deleted, and in which several human 'protective' genes have been introduced. The transplantation of neonatal pig islets has some advantages over that of adult pig islets. Transplantation into the portal vein of the recipient results in loss of many islets from the instant blood-mediated inflammatory reaction (IBMIR) and so the search for an alternative site continues. The adaptive immune response can be largely suppressed by an immunosuppressive regimen based on blockade of the CD40/CD154 T cell co-stimulation pathway, whereas conventional therapy (e.g., based on tacrolimus) is less successful. We suggest that, despite the need for effective immunosuppressive therapy, the transplantation of 'free' islets will prove more successful than that of encapsulated islets. There are data to suggest that, in the absence of rejection, the function of pig islets, though less efficient than human islets, will be sufficient to maintain normoglycemia in diabetic recipients. Pig islets transplanted into immunosuppressed nonhuman primates have maintained normoglycemia for periods extending more than two years, illustrating the potential of this novel form of therapy.
Collapse
Affiliation(s)
- David K. C. Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Lisha Mou
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Rita Bottino
- Imagine Islet Center, Imagine Pharma, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Kanai N, Inagaki A, Nakamura Y, Imura T, Mitsugashira H, Saito R, Miyagi S, Watanabe K, Kamei T, Unno M, Tabata Y, Goto M. A gelatin hydrogel nonwoven fabric improves outcomes of subcutaneous islet transplantation. Sci Rep 2023; 13:11968. [PMID: 37488155 PMCID: PMC10366205 DOI: 10.1038/s41598-023-39212-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/21/2023] [Indexed: 07/26/2023] Open
Abstract
Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously reported that a recombinant peptide (RCP) enhances subcutaneous islet engraftment. However, it is impractical for clinical use because RCP must be removed when transplanting islets. We herein investigated whether a novel bioabsorbable gelatin hydrogel nonwoven fabric (GHNF) could improve subcutaneous islet engraftment. A silicon spacer with or without GHNF was implanted into the subcutaneous space of diabetic mice. Syngeneic islets were transplanted into the pretreated space or intraportally (Ipo group). Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, CT angiography and gene expression were evaluated. The cure rate and glucose tolerance of the GHNF group were significantly better than in the control and Ipo groups (p < 0.01, p < 0.05, respectively). In the GHNF group, a limited increase of vWF-positive vessels was detected in the islet capsule, whereas laminin (p < 0.05), collagen III and IV were considerably enhanced. TaqMan arrays revealed a significant upregulation of 19 target genes (including insulin-like growth factor-2) in the pretreated space. GHNF markedly improved the subcutaneous islet transplantation outcomes, likely due to ECM compensation and protection of islet function by various growth factors, rather than enhanced neovascularization.
Collapse
Affiliation(s)
- Norifumi Kanai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Graduate School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, 983-8536, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Hiroaki Mitsugashira
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Ryusuke Saito
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Shigehito Miyagi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Kimiko Watanabe
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, 606-8507, Japan
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-0872, Japan.
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
5
|
Kale A, Rogers NM. No Time to Die-How Islets Meet Their Demise in Transplantation. Cells 2023; 12:cells12050796. [PMID: 36899932 PMCID: PMC10000424 DOI: 10.3390/cells12050796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Islet transplantation represents an effective treatment for patients with type 1 diabetes mellitus (T1DM) and severe hypoglycaemia unawareness, capable of circumventing impaired counterregulatory pathways that no longer provide protection against low blood glucose levels. The additional beneficial effect of normalizing metabolic glycaemic control is the minimisation of further complications related to T1DM and insulin administration. However, patients require allogeneic islets from up to three donors, and the long-term insulin independence is inferior to that achieved with solid organ (whole pancreas) transplantation. This is likely due to the fragility of islets caused by the isolation process, innate immune responses following portal infusion, auto- and allo-immune-mediated destruction and β-cell exhaustion following transplantation. This review covers the specific challenges related to islet vulnerability and dysfunction that affect long-term cell survival following transplantation.
Collapse
Affiliation(s)
- Atharva Kale
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Renal and Transplant Unit, Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
6
|
Cell Replacement Therapy for Type 1 Diabetes Patients: Potential Mechanisms Leading to Stem-Cell-Derived Pancreatic β-Cell Loss upon Transplant. Cells 2023; 12:cells12050698. [PMID: 36899834 PMCID: PMC10000642 DOI: 10.3390/cells12050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cell replacement therapy using stem-cell-derived insulin-producing β-like cells (sBCs) has been proposed as a practical cure for patients with type one diabetes (T1D). sBCs can correct diabetes in preclinical animal models, demonstrating the promise of this stem cell-based approach. However, in vivo studies have demonstrated that most sBCs, similarly to cadaveric human islets, are lost upon transplantation due to ischemia and other unknown mechanisms. Hence, there is a critical knowledge gap in the current field concerning the fate of sBCs upon engraftment. Here we review, discuss effects, and propose additional potential mechanisms that could contribute toward β-cell loss in vivo. We summarize and highlight some of the literature on phenotypic loss in β-cells under both steady, stressed, and diseased diabetic conditions. Specifically, we focus on β-cell death, dedifferentiation into progenitors, trans-differentiation into other hormone-expressing cells, and/or interconversion into less functional β-cell subtypes as potential mechanisms. While current cell replacement therapy efforts employing sBCs carry great promise as an abundant cell source, addressing the somewhat neglected aspect of β-cell loss in vivo will further accelerate sBC transplantation as a promising therapeutic modality that could significantly enhance the life quality of T1D patients.
Collapse
|
7
|
Naqvi RA, Naqvi AR, Singh A, Priyadarshini M, Balamurugan AN, Layden BT. The future treatment for type 1 diabetes: Pig islet- or stem cell-derived β cells? Front Endocrinol (Lausanne) 2023; 13:1001041. [PMID: 36686451 PMCID: PMC9849241 DOI: 10.3389/fendo.2022.1001041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Replacement of β cells is only a curative approach for type 1 diabetes (T1D) patients to avoid the threat of iatrogenic hypoglycemia. In this pursuit, islet allotransplantation under Edmonton's protocol emerged as a medical miracle to attain hypoglycemia-free insulin independence in T1D. Shortage of allo-islet donors and post-transplantation (post-tx) islet loss are still unmet hurdles for the widespread application of this therapeutic regimen. The long-term survival and effective insulin independence in preclinical studies have strongly suggested pig islets to cure overt hyperglycemia. Importantly, CRISPR-Cas9 technology is pursuing to develop "humanized" pig islets that could overcome the lifelong immunosuppression drug regimen. Lately, induced pluripotent stem cell (iPSC)-derived β cell approaches are also gaining momentum and may hold promise to yield a significant supply of insulin-producing cells. Theoretically, personalized β cells derived from a patient's iPSCs is one exciting approach, but β cell-specific immunity in T1D recipients would still be a challenge. In this context, encapsulation studies on both pig islet as well as iPSC-β cells were found promising and rendered long-term survival in mice. Oxygen tension and blood vessel growth within the capsules are a few of the hurdles that need to be addressed. In conclusion, challenges associated with both procedures, xenotransplantation (of pig-derived islets) and stem cell transplantation, are required to be cautiously resolved before their clinical application.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Afsar Raza Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Amar Singh
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Medha Priyadarshini
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Appakalai N. Balamurugan
- Center for Clinical and Translational Research, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Brian T. Layden
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Teratani T, Kasahara N, Fujimoto Y, Sakuma Y, Miki A, Goto M, Sata N, Kitayama J. Mesenchymal Stem Cells Secretions Enhanced ATP Generation on Isolated Islets during Transplantation. Islets 2022; 14:69-81. [PMID: 35034568 PMCID: PMC8765074 DOI: 10.1080/19382014.2021.2022423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The success of islet transplantation in both basic research and clinical settings has proven that cell therapy has the potential to cure diabetes. Islets intended for transplantation are inevitably subjected to damage from a number of sources, including ischemic injury during removal and delivery of the donor pancreas, enzymatic digestion during islet isolation, and reperfusion injury after transplantation in the recipient. Here, we found that protein factors secreted by porcine adipose-tissue mesenchymal stem cells (AT-MSCs) were capable of activating preserved porcine islets. A conditioned medium was prepared from the supernatant obtained by culturing porcine AT-MSCs for 2 days in serum-free medium. Islets were preserved at 4°C in University of Wisconsin solution during transportation and then incubated at 37°C in RPMI-1620 medium with fractions of various molecular weights prepared from the conditioned medium. After treatment with certain fractions of the AT-MSC secretions, the intracellular ATP levels of the activated islets had increased to over 160% of their initial values after 4 days of incubation. Our novel system may be able to restore the condition of isolated islets after transportation or preservation and may help to improve the long-term outcome of islet transplantation.Abbreviations: AT-MSC, adipose-tissue mesenchymal stem cell; Cas-3, caspase-3; DAPI, 4,6-diamidino-2-phenylindole; DTZ, dithizone; ES cell, embryonic stem cell; FITC, fluorescein isothiocyanate; IEQ, islet equivalent; INS, insulin; iPS cell, induced pluripotent stem cell; Luc-Tg rat, luciferase-transgenic rat; PCNA, proliferating cell nuclear antigen; PDX1, pancreatic and duodenal homeobox protein-1; UW, University of Wisconsin; ZO1, zona occludens 1.
Collapse
Affiliation(s)
- Takumi Teratani
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
- CONTACT Takumi Teratani Division of Clinical Investigation, Jichi Medical University, 3311-1, Yakushiji, Shimotsukeshi, Tochigi329-0498, Japan
| | - Naoya Kasahara
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Atsushi Miki
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Masafumi Goto
- New Industry Creation Hatchery Center, Tohoku University, Miyagi, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Joji Kitayama
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
9
|
Cotransplantation With Adipose Tissue-derived Stem Cells Improves Engraftment of Transplanted Hepatocytes. Transplantation 2022; 106:1963-1973. [PMID: 35404871 PMCID: PMC9521584 DOI: 10.1097/tp.0000000000004130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocyte transplantation is expected to be an alternative therapy to liver transplantation; however, poor engraftment is a severe obstacle to be overcome. The adipose tissue-derived stem cells (ADSCs) are known to improve engraftment of transplanted pancreatic islets, which have many similarities to the hepatocytes. Therefore, we examined the effects and underlying mechanisms of ADSC cotransplantation on hepatocyte engraftment. METHODS Hepatocytes and ADSCs were cotransplanted into the renal subcapsular space and livers of syngeneic analbuminemic rats, and the serum albumin level was quantified to evaluate engraftment. Immunohistochemical staining and fluorescent staining to trace transplanted cells in the liver were also performed. To investigate the mechanisms, cocultured supernatants were analyzed by a multiplex assay and inhibition test using neutralizing antibodies for target factors. RESULTS Hepatocyte engraftment at both transplant sites was significantly improved by ADSC cotransplantation ( P < 0.001, P < 0.001). In the renal subcapsular model, close proximity between hepatocytes and ADSCs was necessary to exert this effect. Unexpectedly, ≈50% of transplanted hepatocytes were attached by ADSCs in the liver. In an in vitro study, the hepatocyte function was significantly improved by ADSC coculture supernatant ( P < 0.001). The multiplex assay and inhibition test demonstrated that hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6 may be key factors for the abovementioned effects of ADSCs. CONCLUSIONS The present study revealed that ADSC cotransplantation can improve the engraftment of transplanted hepatocytes. This effect may be based on crucial factors, such as hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6, which are secreted by ADSCs.
Collapse
|
10
|
Development of a novel method for measuring tissue oxygen pressure to improve the hypoxic condition in subcutaneous islet transplantation. Sci Rep 2022; 12:14731. [PMID: 36042259 PMCID: PMC9427780 DOI: 10.1038/s41598-022-19189-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
Subcutaneous tissue is a promising site for islet transplantation, but poor engraftment, due to hypoxia and low vascularity, hinders its prevalence. However, oxygen partial pressure (pO2) of the subcutaneous space (SC) and other sites were reported to be equivalent in several previous reports. This contradiction may be based on accidental puncture to the indwelling micro-vessels in target tissues. We therefore developed a novel optical sensor system, instead of a conventional Clark-type needle probe, for measuring tissue pO2 and found that pO2 of the SC was extremely low in comparison to other sites. To verify the utility of this method, we transplanted syngeneic rat islets subcutaneously into diabetic recipients under several oxygenation conditions using an oxygen delivery device, then performed pO2 measurement, glucose tolerance, and immunohistochemistry. The optical sensor system was validated by correlating the pO2 values with the transplanted islet function. Interestingly, this novel technique revealed that islet viability estimated by ATP/DNA assay reduced to less than 75% by hypoxic condition at the SC, indicating that islet engraftment may substantially improve if the pO2 levels reach those of the renal subcapsular space. Further refinements for a hypoxic condition using the present technique may contribute to improving the efficiency of subcutaneous islet transplantation.
Collapse
|
11
|
Miyagawa S, Maeda A, Toyama C, Kogata S, Okamatsu C, Yamamoto R, Masahata K, Kamiyama M, Eguchi H, Watanabe M, Nagashima H, Ikawa M, Matsunami K, Okuyama H. Aspects of the Complement System in New Era of Xenotransplantation. Front Immunol 2022; 13:860165. [PMID: 35493484 PMCID: PMC9046582 DOI: 10.3389/fimmu.2022.860165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 01/16/2023] Open
Abstract
After producing triple (Gal, H-D and Sda)-KO pigs, hyperacute rejection appeared to no longer be a problem. However, the origin of xeno-rejection continues to be a controversial topic, including small amounts of antibodies and subsequent activation of the graft endothelium, the complement recognition system and the coagulation systems. The complement is activated via the classical pathway by non-Gal/H-D/Sda antigens and by ischemia-reperfusion injury (IRI), via the alternative pathway, especially on islets, and via the lectin pathway. The complement system therefore is still an important recognition and effector mechanism in xeno-rejection. All complement regulatory proteins (CRPs) regulate complement activation in different manners. Therefore, to effectively protect xenografts against xeno-rejection, it would appear reasonable to employ not only one but several CRPs including anti-complement drugs. The further assessment of antigens continues to be an important issue in the area of clinical xenotransplantation. The above conclusions suggest that the expression of sufficient levels of human CRPs on Triple-KO grafts is necessary. Moreover, multilateral inhibition on local complement activation in the graft, together with the control of signals between macrophages and lymphocytes is required.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- *Correspondence: Shuji Miyagawa,
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahito Watanabe
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Short-term inhalation of isoflurane improves the outcomes of intraportal hepatocyte transplantation. Sci Rep 2022; 12:4241. [PMID: 35273344 PMCID: PMC8913608 DOI: 10.1038/s41598-022-08237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Clinical hepatocyte transplantation (HTx) is only performed without general anesthesia, while inhalation anesthetics are usually used in animal experiments. We hypothesized that isoflurane may be a possible reason for the discrepancy between the results of animal experiments and the clinical outcomes of HTx. Syngeneic rat hepatocytes (1.0 × 107) were transplanted to analbuminemic rats with (ISO group) and without (AW group) isoflurane. The serum albumin, AST, ALT, LDH levels and several inflammatory mediators were analyzed. Immunohistochemical staining and ex vivo imaging were also performed. The serum albumin levels of the ISO group were significantly higher in comparison to the AW group (p < 0.05). The serum AST, ALT, LDH levels of the ISO group were significantly suppressed in comparison to the AW group (p < 0.0001, respectively). The serum IL-1β, IL-10, IL-18, MCP-1, RNTES, Fractalkine and LIX levels were significantly suppressed in the ISO group. The ischemic regions of the recipient livers in the ISO group tended to be smaller than the AW group; however, the distribution of transplanted hepatocytes in the liver parenchyma was comparable between the two groups. Isoflurane may at least in part be a reason for the discrepancy between the results of animal experiments and the clinical outcomes of HTx.
Collapse
|
13
|
Graham ML, Ramachandran S, Singh A, Moore MEG, Flanagan EB, Azimzadeh A, Burlak C, Mueller KR, Martins K, Anazawa T, Balamurugan AN, Bansal-Pakala P, Murtaugh MP, O’Brien TD, Papas KK, Spizzo T, Schuurman HJ, Hancock WW, Hering BJ. Clinically available immunosuppression averts rejection but not systemic inflammation after porcine islet xenotransplant in cynomolgus macaques. Am J Transplant 2022; 22:745-760. [PMID: 34704345 PMCID: PMC9832996 DOI: 10.1111/ajt.16876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 01/25/2023]
Abstract
A safe, efficacious, and clinically applicable immunosuppressive regimen is necessary for islet xenotransplantation to become a viable treatment option for diabetes. We performed intraportal transplants of wild-type adult porcine islets in 25 streptozotocin-diabetic cynomolgus monkeys. Islet engraftment was good in 21, partial in 3, and poor in 1 recipient. Median xenograft survival was 25 days with rapamycin and CTLA4Ig immunosuppression. Adding basiliximab induction and maintenance tacrolimus to the base regimen significantly extended median graft survival to 147 days (p < .0001), with three animals maintaining insulin-free xenograft survival for 265, 282, and 288 days. We demonstrate that this regimen suppresses non-Gal anti-pig antibody responses, circulating effector memory T cell expansion, effector function, and infiltration of the graft. However, a chronic systemic inflammatory state manifested in the majority of recipients with long-term graft survival indicated by increased neutrophil to lymphocyte ratio, IL-6, MCP-1, CD40, and CRP expression. This suggests that this immunosuppression regimen fails to regulate innate immunity and resulting inflammation is significantly associated with increased incidence and severity of adverse events making this regimen unacceptable for translation. Additional studies are needed to optimize a maintenance regimen for regulating the innate inflammatory response.
Collapse
Affiliation(s)
- Melanie L. Graham
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Meghan E. G. Moore
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - E. Brian Flanagan
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Agnes Azimzadeh
- Department of Surgery, University of Maryland, Baltimore, MD
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Kate R. Mueller
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Kyra Martins
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Takayuki Anazawa
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Pratima Bansal-Pakala
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Michael P. Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Timothy D. O’Brien
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Klearchos K. Papas
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | - Henk-J. Schuurman
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN,Spring Point Project, Minneapolis, MN
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bernhard. J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| |
Collapse
|
14
|
Goel I, Noiri M, Yamauchi Y, Kato K, Chung UI, Teramura Y. Enhancement of intercellular interaction between iPSC-derived neural progenitor cells and activated endothelial cells using cell surface modification with functional oligopeptides. Biomater Sci 2022; 10:925-938. [PMID: 35014994 DOI: 10.1039/d1bm01503f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell-based therapy has been used to treat stroke related disorders, which have no treatment options available 4.5 hours after onset. Although the administration of tissue plasminogen activator and mechanical thrombectomy are potent treatments, their clinical implementation is limited within the available time. Here, we aimed to use induced pluripotent stem cell-derived neural progenitor cells (NPCs) for stroke treatment with higher delivery efficiency in stroke areas, which will improve the therapeutic effect. E-selectin binding oligopeptide (Esbp) was conjugated with poly(ethylene glycol)-conjugated-lipid (Esbp-PEG-lipid) with different molecular weights of PEG (5 and 40 kDa) for cell surface modification. Then, we optimized the cell surface modification of NPCs by studying cell-binding ability onto the model surfaces of stroke areas, such as recombinant E-selectin-immobilized surfaces and TNF-α activated endothelium. As a result, the cell surface modification of NPCs with Esbp-PEG-lipid was found to induce specific intercellular interactions with the activated endothelium through the binding of Esbp with E-selectin. Additionally, the shorter PEG spacer was suitable for intercellular interactions. Thus, our technique shows potential for use in cell therapy with enhanced cell accumulation in infarct areas.
Collapse
Affiliation(s)
- Isha Goel
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Makoto Noiri
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuka Yamauchi
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.,Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Koichi Kato
- Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Ung-Il Chung
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuji Teramura
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central fifth, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. .,Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| |
Collapse
|
15
|
Gao Q, Davis R, Fitch Z, Mulvihill M, Ezekian B, Schroder P, Schmitz R, Song M, Leopardi F, Ribeiro M, Miller A, Moris D, Shaw B, Samy K, Reimann K, Williams K, Collins B, Kirk AD. Anti-thymoglobulin induction improves neonatal porcine xenoislet engraftment and survival. Xenotransplantation 2021; 28:e12713. [PMID: 34951057 PMCID: PMC8715890 DOI: 10.1111/xen.12713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
Porcine islet xenotransplantation is a viable strategy to treat diabetes. Its translation has been limited by the pre-clinical development of a clinically available immunosuppressive regimen. We tested two clinically relevant induction agents in a non-human primate (NHP) islet xenotransplantation model to compare depletional versus nondepletional induction immunosuppression. Neonatal porcine islets were isolated from GKO or hCD46/GKO transgenic piglets and transplanted via portal vein infusion in diabetic rhesus macaques. Induction therapy consisted of either basiliximab (n = 6) or rhesus-specific anti-thymocyte globulin (rhATG, n = 6), combined with a maintenance regimen using B7 costimulation blockade, tacrolimus with a delayed transition to sirolimus, and mycophenolate mofetil. Xenografts were monitored by blood glucose levels and porcine C-peptide measurements. Of the six receiving basiliximab induction, engraftment was achieved in 4 with median graft survival of 14 days. All six receiving rhATG induction engrafted with significantly longer xenograft survival at 40.5 days (P = 0.03). These data suggest that depletional induction provides superior xenograft survival to nondepletional induction, in the setting of a costimulation blockade-based maintenance regimen.
Collapse
Affiliation(s)
- Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Robert Davis
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Zachary Fitch
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Michael Mulvihill
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Brian Ezekian
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Paul Schroder
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Robin Schmitz
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Frank Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Marianna Ribeiro
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Allison Miller
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Dimitrios Moris
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Brian Shaw
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Kannan Samy
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Keith Reimann
- MassBiologics, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Kyha Williams
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Bradley Collins
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, 27710, USA
| |
Collapse
|
16
|
Ogasawara H, Inagaki A, Fathi I, Imura T, Yamana H, Saitoh Y, Matsumura M, Fukuoka K, Miyagi S, Nakamura Y, Ohashi K, Unno M, Kamei T, Goto M. Preferable Transplant Site for Hepatocyte Transplantation in a Rat Model. Cell Transplant 2021; 30:9636897211040012. [PMID: 34525872 PMCID: PMC8450989 DOI: 10.1177/09636897211040012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intraportal injection is regarded as the current standard procedure of hepatocyte transplantation (HTx). In islet transplantation, which shares many aspects with HTx, recent studies have clarified that instant blood-mediated inflammatory reaction (IBMIR), characterized by strong innate immune responses, can cause poor engraftment, so other transplant sites to avoid such a reaction have been established. Although IBMIR was reported to occur in HTx, few reports have evaluated alternative transplant sites for HTx. In this study, we sought to determine the optimum transplant site for HTx. Rat hepatocytes (1.0 × 107) were transplanted at the 9 transplant sites (intraportal (IPO), intrasplenic (IS), liver parenchyma, subcutaneous, intraperitoneal, renal subcapsular, muscle, inguinal subcutaneous white adipose tissue, and omentum) of analbuminemic rats. The serum albumin levels, immunohistochemical staining (albumin, TUNEL, and BrdU), and in vivo imaging of the grafts were evaluated. The serum albumin levels of the IPO group were significantly higher than those of the other groups (p < .0001). The BrdU-positive hepatocyte ratio of liver in the IS group (0.9% ± 0.2%) was comparable to that of the IPO group (0.9% ± 0.3%) and tended to be higher than that of the spleen in the IS group (0.5% ± 0.1%, p = .16). Considering the in vivo imaging evaluation and the influence of splenectomy, the graft function in the IS group may be almost entirely achieved by hepatocytes that have migrated to the liver. The present study clearly showed that the intraportal injection procedure is more efficient than other procedures for performing HTx
Collapse
Affiliation(s)
- Hiroyuki Ogasawara
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ibrahim Fathi
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Yamana
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikatsu Saitoh
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Muneyuki Matsumura
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kengo Fukuoka
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigehito Miyagi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuo Ohashi
- Laboratory of Drug Development and Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masafumi Goto
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Song M, Fitch ZW, Samy KP, Martin BM, Gao Q, Patrick Davis R, Leopardi FV, Huffman N, Schmitz R, Devi GR, Collins BH, Kirk AD. Coagulation, inflammation, and CD46 transgene expression in neonatal porcine islet xenotransplantation. Xenotransplantation 2021; 28:e12680. [PMID: 33619844 DOI: 10.1111/xen.12680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Thrombosis is a known consequence of intraportal islet transplantation, particularly for xenogeneic islets. To define the origins of thrombosis after islet xenotransplantation and relate it to early inflammation, we examined porcine islets transplanted into non-human primates using a dual-transplant model to directly compare islet characteristics. METHODS α1,3-Galactosyltransferase gene-knockout (GTKO) islets with and without expression of the human complement regulatory transgene CD46 (hCD46) were studied. Biologically inert polyethylene microspheres were used to examine the generic pro-thrombotic effects of particle embolization. Immunohistochemistry was performed 1 and 24 hours after transplantation. RESULTS Xeno-islet transplantation activated both extrinsic and intrinsic coagulation pathways. The intrinsic pathway was also initiated by microsphere embolization, while extrinsic pathway tissue factor (TF) and platelet aggregation were more specific to engrafted islets. hCD46 expression significantly reduced TF, platelet, fibrin, and factor XIIIa accumulation in and around islets but did not alter intrinsic factor activation. Layers of TF+ cells emerged around islets within 24 hours, particularly co-localized with vimentin, and identified as CD3+ and CD68+ cells inflammatory cells. CONCLUSIONS These findings detail the origins of thrombosis following islet xenotransplantation, relate it to early immune activation, and suggest a role for transgenic hCD46 expression in its mitigation. Layers of TF-positive inflammatory cells and fibroblasts around islets at 24 hours may have important roles in the progressive events of thrombosis, inflammatory cell recruitment, rejection, and the ultimate outcome of transplanted grafts. These suggest that the strategies targeting these elements could yield more progress toward successful xenogeneic islet engraftment and survival.
Collapse
Affiliation(s)
- Mingqing Song
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Zachary W Fitch
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Kannan P Samy
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin M Martin
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Qimeng Gao
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Francis V Leopardi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Niki Huffman
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Robin Schmitz
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Gayathri R Devi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Bradley H Collins
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
18
|
Inagaki A, Imura T, Nakamura Y, Ohashi K, Goto M. The Liver Surface Is an Attractive Transplant Site for Pancreatic Islet Transplantation. J Clin Med 2021; 10:jcm10040724. [PMID: 33673132 PMCID: PMC7918755 DOI: 10.3390/jcm10040724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
In the current clinical islet transplantation, intraportal transplantation is regarded as the gold-standard procedure. However, in this procedure, 50 to 70% of the transplanted islets are immediately damaged due to a strong innate immune response based on islet–blood contact. We investigated the transplant efficiency of a novel method of liver surface transplantation using a syngeneic keratinocyte sheet to avoid islet–blood contact. To examine the influence of the keratinocyte sheet, substantial amounts of syngeneic islets (8 IEQs/g) were transplanted on the liver surface of diabetic rats, while marginal amounts of islets (4 IEQs/g) were transplanted via intraportal transplantation to compare the transplant efficiency. Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, and in vivo imaging findings of the cell sheet were evaluated. The study showed that islet transplantation to the liver surface immediately followed by a syngeneic keratinocyte sheet covering was effective for curing diabetic rats, while no rats were cured in the group without the cell sheet. Notably, islet grafts transplanted via this approach appeared to penetrate into the liver parenchyma. However, the transplant efficiency did not reach that of intraportal transplantation. Further refinements of this approach by introducing mesothelial or fibroblast cell sheets in combination with a preferable scaffold for islet grafts may help to improve the transplant efficiency.
Collapse
Affiliation(s)
- Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-0872, Japan; (A.I.); (T.I.)
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-0872, Japan; (A.I.); (T.I.)
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan;
| | - Kazuo Ohashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan;
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-0872, Japan; (A.I.); (T.I.)
- Correspondence: ; Tel.: +81-22-717-7895
| |
Collapse
|
19
|
Safety and Clinical Outcomes of Using Low-Molecular-Weight Dextran During Islet Autotransplantation in Children. Pancreas 2020; 49:774-780. [PMID: 32541632 DOI: 10.1097/mpa.0000000000001571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate potential safety and clinical benefit of low-molecular-weight dextran (dextran) use in patients undergoing total pancreatectomy with islet auto transplantation (TPIAT). METHODS We evaluated 124 children undergoing TPIAT at a single institution, either with (n = 72) or without (n = 52) perioperative dextran infusion. Data on islet graft function and postoperative complications were collected through electronic medical records and patient-reported outcomes from research questionnaires. RESULTS Islet graft failure was less likely at 1 year (odds ratio, 0.186; 95% confidence interval, 0.04-0.65) and 2 years (odds ratio, 0.063; 95% confidence interval, 0.003-0.35) post-TPIAT in the dextran group. This finding remained significant at 2 years in multivariate logistic regression modeling adjusting for islet mass, body surface area, and sex. Likewise, in multivariate regression, the odds of partial islet graft function were higher at 1 and 2 years in the dextran group. Dextran use was overall safe, although it did lead to a higher incidence of postoperative bleeding requiring blood transfusions (P < 0.001). CONCLUSIONS These findings suggest that dextran use may increase the likelihood for sustained post-TPIAT islet graft function, potentially mitigating severity of postoperative diabetes for these children.
Collapse
|
20
|
Noiri M, Asawa K, Okada N, Kodama T, Murayama Y, Inoue Y, Ishihara K, Ekdahl KN, Nilsson B, Teramura Y. Modification of human MSC surface with oligopeptide‐PEG‐lipids for selective binding to activated endothelium. J Biomed Mater Res A 2019; 107:1779-1792. [DOI: 10.1002/jbm.a.36697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Makoto Noiri
- Department of Bioengineering School of Engineering, The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo, 113‐8656 Japan
| | - Kenta Asawa
- Department of Bioengineering School of Engineering, The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo, 113‐8656 Japan
| | - Naoya Okada
- Department of Bioengineering School of Engineering, The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo, 113‐8656 Japan
| | - Tomonobu Kodama
- Department of Neurosurgery The Jikei University Hospital Tokyo Japan
| | - Yuichi Murayama
- Department of Neurosurgery The Jikei University Hospital Tokyo Japan
| | - Yuuki Inoue
- Department of Material Engineering School of Engineering, The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo, 113‐8656 Japan
| | - Kazuhiko Ishihara
- Department of Bioengineering School of Engineering, The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo, 113‐8656 Japan
- Department of Material Engineering School of Engineering, The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo, 113‐8656 Japan
| | - Kristina N Ekdahl
- Linnaeus Center of Biomaterials Chemistry Linnaeus University SE‐391 82, Kalmar Sweden
- Department of Immunology, Genetics, and Pathology (IGP) Uppsala University Dag Hammarskjölds väg 20, SE‐751 85, Uppsala Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics, and Pathology (IGP) Uppsala University Dag Hammarskjölds väg 20, SE‐751 85, Uppsala Sweden
| | - Yuji Teramura
- Department of Bioengineering School of Engineering, The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo, 113‐8656 Japan
- Department of Immunology, Genetics, and Pathology (IGP) Uppsala University Dag Hammarskjölds väg 20, SE‐751 85, Uppsala Sweden
| |
Collapse
|
21
|
Li X, Meng Q, Zhang L. Overcoming Immunobiological Barriers Against Porcine Islet Xenografts: What Should Be Done? Pancreas 2019; 48:299-308. [PMID: 30855426 DOI: 10.1097/mpa.0000000000001259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Porcine islets might represent an ideal solution to the severe shortage of living donor islets available for transplantation and thus have great potential for the treatment of diabetes. Although tremendous progress has been achieved through recent experiments, the immune response remains a major obstacle. This review first describes the 3 major pathways of rejection: hyperacute rejection mediated by preformed natural antibodies and complement, instant blood-mediated inflammatory reactions, and acute cell-mediated rejection. Furthermore, this review examines immune-related strategies, including major advances, which have been shown to extend the life and/or function of porcine islets in vitro and in vivo: (1) genetic modification to make porcine islets more compatible with the recipient, (2) optimization of the newly defined biological agents that have been shown to promote long-term survival of xenografts in nonhuman primates, and (3) development of novel immunoisolation technologies that maintain the long-term survival of islet xenografts without the use of systemic immunosuppressive drugs. Finally, the clinical application of porcine islet transplantation is presented. Even though less clinical information is available, experimental data indicate that porcine islet xenografts are likely to become a standard treatment for patients with type 1 diabetes in the future.
Collapse
Affiliation(s)
- Xinyu Li
- From the Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | |
Collapse
|
22
|
Venkataiah VS, Handa K, Njuguna MM, Hasegawa T, Maruyama K, Nemoto E, Yamada S, Sugawara S, Lu L, Takedachi M, Murakami S, Okura H, Matsuyama A, Saito M. Periodontal Regeneration by Allogeneic Transplantation of Adipose Tissue Derived Multi-Lineage Progenitor Stem Cells in vivo. Sci Rep 2019; 9:921. [PMID: 30696909 PMCID: PMC6351614 DOI: 10.1038/s41598-018-37528-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
The ultimate goal of periodontal disease treatment is the reorganization of functional tissue that can regenerate lost periodontal tissue. Regeneration of periodontal tissues is clinically possible by using autogenic transplantation of MSCs. However, autologous MSC transplantation is limited depending on age, systemic disease and tissue quality, thus precluding their clinical application. Therefore, we evaluated the efficacy of allogeneic transplantation of adipose-derived multi-lineage progenitor cells (ADMPC) in a micro-mini pig periodontal defect model. ADMPC were isolated from the greater omentum of micro-mini pigs, and flow cytometry analysis confirmed that the ADMPC expressed MSC markers, including CD44 and CD73. ADMPC exhibited osteogenic, adipogenic and periodontal ligament differentiation capacities in differentiation medium. ADMPC showed high expression of the immune suppressive factors GBP4 and IL1-RA upon treatment with a cytokine cocktail containing interferon-γ, tumor necrosis factor-α and interleukin-6. Allogeneic transplantation of ADMPC in a micro-mini pig periodontal defect model showed significant bone regeneration ability based on bone-morphometric analysis. Moreover, the regeneration ability of ADMPC by allogeneic transplantation was comparable to those of autologous transplantation by histological analysis. These results indicate that ADMPC have immune-modulation capability that can induce periodontal tissue regeneration by allogeneic transplantation.
Collapse
Affiliation(s)
- Venkata Suresh Venkataiah
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keisuke Handa
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Mary M Njuguna
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tatsuya Hasegawa
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kentaro Maruyama
- Department of Oral Biology, Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Nemoto
- Department of Oral Biology, Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoru Yamada
- Department of Oral Biology, Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Lu Lu
- Division of Oral Immunology, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Division of Oral Diagnosis, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hanayuki Okura
- Center for Research Promotion and Support, Fujita Health University, Toyoake, Japan
| | - Akifumi Matsuyama
- Department of Regenerative Medicine, Fujita Health University, Graduate School of Medicine, Toyoake, Japan
| | - Masahiro Saito
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| |
Collapse
|
23
|
Stephens CH, Orr KS, Acton AJ, Tersey SA, Mirmira RG, Considine RV, Voytik-Harbin SL. In situ type I oligomeric collagen macroencapsulation promotes islet longevity and function in vitro and in vivo. Am J Physiol Endocrinol Metab 2018; 315:E650-E661. [PMID: 29894201 PMCID: PMC6230705 DOI: 10.1152/ajpendo.00073.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Widespread use of pancreatic islet transplantation for treatment of type 1 diabetes (T1D) is currently limited by requirements for long-term immunosuppression, limited donor supply, and poor long-term engraftment and function. Upon isolation from their native microenvironment, islets undergo rapid apoptosis, which is further exacerbated by poor oxygen and nutrient supply following infusion into the portal vein. Identifying alternative strategies to restore critical microenvironmental cues, while maximizing islet health and function, is needed to advance this cellular therapy. We hypothesized that biophysical properties provided through type I oligomeric collagen macroencapsulation are important considerations when designing strategies to improve islet survival, phenotype, and function. Mouse islets were encapsulated at various Oligomer concentrations (0.5 -3.0 mg/ml) or suspended in media and cultured for 14 days, after which viability, protein expression, and function were assessed. Oligomer-encapsulated islets showed a density-dependent improvement in in vitro viability, cytoarchitecture, and insulin secretion, with 3 mg/ml yielding values comparable to freshly isolated islets. For transplantation into streptozotocin-induced diabetic mice, 500 islets were mixed in Oligomer and injected subcutaneously, where rapid in situ macroencapsulation occurred, or injected with saline. Mice treated with Oligomer-encapsulated islets exhibited rapid (within 24 h) diabetes reversal and maintenance of normoglycemia for 14 (immunocompromised), 90 (syngeneic), and 40 days (allogeneic). Histological analysis showed Oligomer-islet engraftment with maintenance of islet cytoarchitecture, revascularization, and no foreign body response. Oligomer-islet macroencapsulation may provide a useful strategy for prolonging the health and function of cultured islets and has potential as a subcutaneous injectable islet transplantation strategy for treatment of T1D.
Collapse
Affiliation(s)
| | - Kara S Orr
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Anthony J Acton
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sarah A Tersey
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Raghavendra G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Robert V Considine
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University , West Lafayette, Indiana
- Department of Basic Medical Sciences, Purdue University , West Lafayette, Indiana
| |
Collapse
|
24
|
Abstract
β cell replacement with either pancreas or islet transplantation has progressed immensely over the last decades with current 1- and 5-year insulin independence rates of approximately 85% and 50%, respectively. Recent advances are largely attributed to improvements in immunosuppressive regimen, donor selection, and surgical technique. However, both strategies are compromised by a scarce donor source. Xenotransplantation offers a potential solution by providing a theoretically unlimited supply of islets, but clinical application has been limited by concerns for a potent immune response against xenogeneic tissue. β cell clusters derived from embryonic or induced pluripotent stem cells represent another promising unlimited source of insulin producing cells, but clinical application is pending further advances in the function of the β cell like clusters. Exciting developments and rapid progress in all areas of β cell replacement prompted a lively debate by members of the young investigator committee of the International Pancreas and Islet Transplant Association at the 15th International Pancreas and Islet Transplant Association Congress in Melbourne and at the 26th international congress of The Transplant Society in Hong Kong. This international group of young investigators debated which modality of β cell replacement would predominate the landscape in 10 years, and their arguments are summarized here.
Collapse
|
25
|
Kim JM, Shin JS, Han S, Min BH, Jeong WY, Lee GE, Kim MS, Kwon S, Chung H, Kang HJ, Park CG. Ascites formation accompanied by portal vein thrombosis after porcine islet xenotransplantation via the portal vein in Rhesus macaque (Macaca mulatta). Xenotransplantation 2018; 26:e12460. [PMID: 30194788 DOI: 10.1111/xen.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/16/2018] [Accepted: 08/17/2018] [Indexed: 12/01/2022]
Abstract
Pig-to-nonhuman primate (NHP) islet transplantation has been widely conducted as a preclinical xenotransplantation model prior to human clinical trial. Portal vein thrombosis is one of the complications associated with islet infusion through the portal vein into the liver. Here, we briefly report severe case of ascites formation accompanied by portal vein thrombi after pig-to-NHP islet xenotransplantation in a rhesus monkey. Meticulous prophylactic treatment such as continuous heparin infusion should be implemented to prevent portal vein thrombi in pig-to-NHP islet transplantation models.
Collapse
Affiliation(s)
- Jong-Min Kim
- Xenotransplantation Research Center, Seoul National University Graduate School, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University Graduate School, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University Graduate School, Seoul, Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center, Seoul National University Graduate School, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University Graduate School, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University Graduate School, Seoul, Korea
| | - Sungyoung Han
- Seoul Animal Medical Center, Seoul National University Graduate School, Seoul, Korea
| | - Byoung-Hoon Min
- Xenotransplantation Research Center, Seoul National University Graduate School, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University Graduate School, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University Graduate School, Seoul, Korea
| | - Won Young Jeong
- Xenotransplantation Research Center, Seoul National University Graduate School, Seoul, Korea
| | - Ga Eul Lee
- Xenotransplantation Research Center, Seoul National University Graduate School, Seoul, Korea
| | - Min Sun Kim
- Xenotransplantation Research Center, Seoul National University Graduate School, Seoul, Korea
| | - Seeun Kwon
- Xenotransplantation Research Center, Seoul National University Graduate School, Seoul, Korea
| | - Hyunwoo Chung
- Xenotransplantation Research Center, Seoul National University Graduate School, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University Graduate School, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University Graduate School, Seoul, Korea.,Department of Microbiology and Immunology, Seoul National University Graduate School, Seoul, Korea.,Institute of Endemic Diseases, Seoul National University Graduate School, Seoul, Korea.,Cancer Research Institute, Seoul National University Graduate School, Seoul, Korea.,Seoul Animal Medical Center, Seoul National University Graduate School, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
26
|
Abstract
INTRODUCTION Therapeutic modulation of complement activation is considered as a promising approach for the treatment of host tissue damage in several inflammatory and autoimmune diseases. Complement component protein C3 is a particularly attractive drug target for complement inhibitors, due to its central role in three pathways of complement activation cascade. Areas covered: The author provides a comprehensive review on compstatin family peptides which have been discovered and optimized as potent and selective C3 inhibitors via a combination of chemical, biophysical and computational approaches. New generations of the compstatin family with improved potency and therapeutic properties have been developed in recent years. Over two decades, compstatin demonstrated therapeutic potential as a first-of-its-kind complement inhibitor in a series of disease models, with encouraging efforts in clinical trials. Expert opinion: Compstatin holds promise for new therapeutic implications in blocking the effect of the complement cascade in a variety of disease conditions. The development of cost-effective treatment options with suitable dosing route and schedule will be critical for patients with complement mediated chronic diseases.
Collapse
Affiliation(s)
- Yijun Huang
- a WuXi AppTec Inc ., Philadelphia , PA , USA
| |
Collapse
|
27
|
Kang HJ, Lee H, Park EM, Kim JM, Shin JS, Park CG. The value of glycated albumin for the prediction of graft outcome in the non-human primate porcine islet transplantation model. Xenotransplantation 2018; 25:e12384. [PMID: 29359356 DOI: 10.1111/xen.12384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The development of a precise and easy-to-use tool for monitoring islet graft function is important in clarifying the causes of graft loss, identifying appropriate therapy, and ensuring graft survival in the nonhuman primate (NHP) model of porcine islet transplantation (PITx). Glycated albumin (GA) is an indicator of intermediate-term changes in blood glucose control and is useful in clinical diabetes management. The validity of GA for monitoring graft function in NHP recipients of PITx was evaluated using a retrospective analysis of cohort samples. METHODS Data from a total of 23 PITxs performed in 20 recipients (3 were retransplanted) were included in this study. Islet clusters purified from adult wild-type pigs were transplanted via the intraportal route into streptozotocin-induced diabetic rhesus monkeys with immune suppression. Blood samples were obtained once per week from the recipients until they lost insulin-independence. Blood samples were also obtained from 69 non-diabetic monkeys that served as a control group. The levels of GA and albumin in stored plasma aliquots were measured using each enzymatic method, and the GA result was expressed as the percentage of GA level to the total albumin level. RESULTS The median level of GA in the recipients on the day of PITx (median 18.6%, 95% confidence interval [CI] 16.7%-20.4%) was significantly higher than that of healthy controls (median 9.14%, 95% CI 9.0%-9.3%, P < .0001). However, the level decreased after PITx and remained low or increased depending on the extent of residual graft function. The GA level at a nadir (median 11.6%, 95% CI 10.8%-13.0%) and the time to reach a nadir (median 43 days, 95% CI 21.7-69.3 days) both correlated with the duration of insulin-independence (rho [ρ] = -.605, P = .0028 and ρ = .662, P = .0008, respectively). The GA level strongly correlated with KG , the glucose disappearance rate during intravenous glucose tolerance testing (ρ = -.76, P < .0001). At post-transplant week (PTW) 3 and at PTW 4, the GA levels in recipients with long-term insulin-independence (>90 days) were significantly lower than those with short-term insulin-independence, which revealed the excellent performance for the prediction of long-term insulin-independence that is comparable to that of porcine C-peptide (historic data). CONCLUSIONS As a surrogate indicator for graft function, serial measurement of GA may provide Supporting Information to that obtained from conventional monitoring techniques of graft function for assessing porcine islet grafts in NHP models.
Collapse
Affiliation(s)
- Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang-si, Korea
| | - Haneulnari Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang-si, Korea
| | - Eun Mi Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang-si, Korea
| | - Jong-Min Kim
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Seop Shin
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, Korea.,Department of Microbiology and Immunology, Department of Biomedical Sciences, Cancer Research Institute, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Kreutter G, Kassem M, El Habhab A, Baltzinger P, Abbas M, Boisrame‐Helms J, Amoura L, Peluso J, Yver B, Fatiha Z, Ubeaud‐Sequier G, Kessler L, Toti F. Endothelial microparticles released by activated protein C protect beta cells through EPCR/PAR1 and annexin A1/FPR2 pathways in islets. J Cell Mol Med 2017; 21:2759-2772. [PMID: 28524456 PMCID: PMC5661261 DOI: 10.1111/jcmm.13191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/12/2017] [Indexed: 01/08/2023] Open
Abstract
Islet transplantation is associated with early ischaemia/reperfusion, localized coagulation and redox-sensitive endothelial dysfunction. In animal models, islet cytoprotection by activated protein C (aPC) restores islet vascularization and protects graft function, suggesting that aPC triggers various lineages. aPC also prompts the release of endothelial MP that bear EPCR, its specific receptor. Microparticles (MP) are plasma membrane procoagulant vesicles, surrogate markers of stress and cellular effectors. We measured the cytoprotective effects of aPC on endothelial and insulin-secreting Rin-m5f β-cells and its role in autocrine and paracrine MP-mediated cell crosstalk under conditions of oxidative stress. MP from aPC-treated primary endothelial (EC) or β-cells were applied to H2 O2 -treated Rin-m5f. aPC activity was measured by enzymatic assay and ROS species by dihydroethidium. The capture of PKH26-stained MP and the expression of EPCR were probed by fluorescence microscopy and apoptosis by flow cytometry. aPC treatment enhanced both annexin A1 (ANXA1) and PAR-1 expression in EC and to a lesser extent in β-cells. MP from aPC-treated EC (eMaPC ) exhibited high EPCR and annexin A1 content, protected β-cells, restored insulin secretion and were captured by 80% of β cells in a phosphatidylserine and ANXA1-dependent mechanism. eMP activated EPCR/PAR-1 and ANXA1/FPR2-dependent pathways and up-regulated the expression of EPCR, and of FPR2/ALX, the ANXA1 receptor. Cytoprotection was confirmed in H2 O2 -treated rat islets with increased viability (62% versus 48% H2 O2 ), reduced apoptosis and preserved insulin secretion in response to glucose elevation (16 versus 5 ng/ml insulin per 10 islets). MP may prove a promising therapeutic tool in the protection of transplanted islets.
Collapse
Affiliation(s)
- Guillaume Kreutter
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
| | - Mohamad Kassem
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Ali El Habhab
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Philippe Baltzinger
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of DiabetologyUniversity HospitalCHU de Strasbourg1 place de l'HôpitalStrasbourg CedexFrance
| | - Malak Abbas
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Julie Boisrame‐Helms
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of Anesthesia‐ReanimationUniversity Hospital, CHU de Strasbourg, 1 place de l'HôpitalStrasbourg CedexFrance
| | - Lamia Amoura
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Jean Peluso
- UPS1401‐ Plateforme eBiocyteFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Blandine Yver
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
| | - Zobairi Fatiha
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
| | - Geneviève Ubeaud‐Sequier
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of Pharmacy‐sterilizationUniversity HospitalCHU de StrasbourgStrasbourgFrance
- UPS1401‐ Plateforme eBiocyteFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| | - Laurence Kessler
- EA7293Vascular and Tissular Stress in TransplantationFederation of Translational Medicine of StrasbourgFaculty of MedicineUniversity of StrasbourgIllkirchFrance
- Department of DiabetologyUniversity HospitalCHU de Strasbourg1 place de l'HôpitalStrasbourg CedexFrance
| | - Florence Toti
- UMR7213 CNRSLaboratory of Biophotonics and PharmacologyFaculty of PharmacyUniversity of StrasbourgIllkirchFrance
| |
Collapse
|
29
|
|
30
|
Cheng Y, Wang B, Li H, Zhao N, Liu Y. Mechanism for the Instant Blood-Mediated Inflammatory Reaction in Rat Islet Transplantation. Transplant Proc 2017; 49:1440-1443. [DOI: 10.1016/j.transproceed.2017.03.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
31
|
Liu Z, Hu W, He T, Dai Y, Hara H, Bottino R, Cooper DKC, Cai Z, Mou L. Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transplant 2017; 26:925-947. [PMID: 28155815 PMCID: PMC5657750 DOI: 10.3727/096368917x694859] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/21/2017] [Indexed: 12/17/2022] Open
Abstract
Islet allotransplantation results in increasing success in treating type 1 diabetes, but the shortage of deceased human donor pancreata limits progress. Islet xenotransplantation, using pigs as a source of islets, is a promising approach to overcome this limitation. The greatest obstacle is the primate immune/inflammatory response to the porcine (pig) islets, which may take the form of rapid early graft rejection (the instant blood-mediated inflammatory reaction) or T-cell-mediated rejection. These problems are being resolved by the genetic engineering of the source pigs combined with improved immunosuppressive therapy. The results of pig-to-diabetic nonhuman primate islet xenotransplantation are steadily improving, with insulin independence being achieved for periods >1 year. An alternative approach is to isolate islets within a micro- or macroencapsulation device aimed at protecting them from the human recipient's immune response. Clinical trials using this approach are currently underway. This review focuses on the major aspects of pig-to-primate islet xenotransplantation and its potential for treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Zhengzhao Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Wenbao Hu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Tian He
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hidetaka Hara
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - David K. C. Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
32
|
Executive Summary of IPITA-TTS Opinion Leaders Report on the Future of β-Cell Replacement. Transplantation 2017; 100:e25-31. [PMID: 27082827 DOI: 10.1097/tp.0000000000001054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The International Pancreas and Islet Transplant Association (IPITA), in conjunction with the Transplantation Society (TTS), convened a workshop to consider the future of pancreas and islet transplantation in the context of potential competing technologies that are under development, including the artificial pancreas, transplantation tolerance, xenotransplantation, encapsulation, stem cell derived beta cells, beta cell proliferation, and endogenous regeneration. Separate workgroups for each topic and then the collective group reviewed the state of the art, hurdles to application, and proposed research agenda for each therapy that would allow widespread application. Herein we present the executive summary of this workshop that focuses on obstacles to application and the research agenda to overcome them; the full length article with detailed background for each topic is published as an online supplement to Transplantation.
Collapse
|
33
|
Kang HJ, Lee H, Park EM, Kim JM, Min BH, Park CG. D-dimer level, in association with humoral responses, negatively correlates with survival of porcine islet grafts in non-human primates with immunosuppression. Xenotransplantation 2017; 24. [DOI: 10.1111/xen.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Hee Jung Kang
- Department of Laboratory Medicine; Hallym University College of Medicine; Anyang-si Korea
| | - Haneulnari Lee
- Department of Laboratory Medicine; Hallym University College of Medicine; Anyang-si Korea
| | - Eun Mi Park
- Department of Laboratory Medicine; Hallym University College of Medicine; Anyang-si Korea
| | - Jong-Min Kim
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
| | - Byoung-Hoon Min
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center; Seoul National University College of Medicine; Seoul Korea
- Department of Microbiology and Immunology; Department of Biomedical Sciences; Cancer Research Institute; Institute of Endemic Diseases; Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|
34
|
A preclinical evaluation of alternative site for islet allotransplantation. PLoS One 2017; 12:e0174505. [PMID: 28358858 PMCID: PMC5373587 DOI: 10.1371/journal.pone.0174505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/10/2017] [Indexed: 02/05/2023] Open
Abstract
The bone marrow cavity (BMC) has recently been identified as an alternative site to the liver for islet transplantation. This study aimed to compare the BMC with the liver as an islet allotransplantation site in diabetic monkeys. Diabetes was induced in Rhesus monkeys using streptozocin, and the monkeys were then divided into the following three groups: Group1 (islets transplanted in the liver with immunosuppressant), Group 2 (islets transplanted in the tibial BMC), and Group 3 (islets transplanted in the tibial BMC with immunosuppressant). The C-peptide and blood glucose levels were preoperatively measured. An intravenous glucose tolerance test (IVGTT) was conducted to assess graft function, and complete blood cell counts were performed to assess cell population changes. Cytokine expression was measured using an enzyme-linked immune sorbent assay (ELISA) and MILLIPLEX. Five monkeys in Group 3 exhibited a significantly increased insulin-independent time compared with the other groups (Group 1: 78.2 ± 19.0 days; Group 2: 58.8 ± 17.0 days; Group 3: 189.6 ± 26.2 days) and demonstrated increases in plasma C-peptide 4 months after transplantation. The infusion procedure was not associated with adverse effects. Functional islets in the BMC were observed 225 days after transplantation using the dithizone (DTZ) and insulin/glucagon stains. Our results showed that allogeneic islets transplanted in the BMC of diabetic Rhesus monkeys remained alive and functional for a longer time than those transplanted in the liver. This study was the first successful demonstration of allogeneic islet engraftment in the BMC of non-human primates (NHPs).
Collapse
|
35
|
Paredes-Juarez GA, de Vos P, Bulte JWM. Recent progress in the use and tracking of transplanted islets as a personalized treatment for type 1 diabetes. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017; 2:57-67. [PMID: 29276781 PMCID: PMC5737787 DOI: 10.1080/23808993.2017.1302305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Type 1 diabetes mellitus (T1DM) is an autoimmune disease in which the pancreas produces insufficient amounts of insulin. T1DM patients require exogenous sources of insulin to maintain euglycemia. Transplantation of naked or microencapsulated pancreatic islets represents an alternative paradigm to obtain an autonomous regulation of blood glucose levels in a controlled and personalized fashion. However, once transplanted, the fate of these personalized cellular therapeutics is largely unknown, justifying the development of non-invasive tracking techniques. AREAS COVERED In vivo imaging of naked pancreatic islet transplantation, monitoring of microencapsulated islet transplantation, visualizing pancreatic inflammation, imaging of molecular-genetic therapeutics, imaging of beta cell function. EXPERT COMMENTARY There are still several hurdles to overcome before (microencapsulated) islet cell transplantation will become a mainstay therapy. Non-invasive imaging methods that can track graft volume, graft rejection, graft function (insulin secretion) microcapsule engraftment, microcapsule rupture, and pancreatic inflammation are currently being developed to design the best experimental transplantation paradigms.
Collapse
Affiliation(s)
- Genaro A Paredes-Juarez
- Russell H. Morgan Department of Radiology, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul de Vos
- University Medical Center Groningen (UMCG), Department of Pathology and Medical Biology, Section Immunoendocrinology. Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
|
37
|
From orphan drugs to adopted therapies: Advancing C3-targeted intervention to the clinical stage. Immunobiology 2016; 221:1046-57. [PMID: 27353192 DOI: 10.1016/j.imbio.2016.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/23/2023]
Abstract
Complement dysregulation is increasingly recognized as an important pathogenic driver in a number of clinical disorders. Complement-triggered pathways intertwine with key inflammatory and tissue destructive processes that can either increase the risk of disease or exacerbate pathology in acute or chronic conditions. The launch of the first complement-targeted drugs in the clinic has undeniably stirred the field of complement therapeutic design, providing new insights into complement's contribution to disease pathogenesis and also helping to leverage a more personalized, comprehensive approach to patient management. In this regard, a rapidly expanding toolbox of complement therapeutics is being developed to address unmet clinical needs in several immune-mediated and inflammatory diseases. Elegant approaches employing both surface-directed and fluid-phase inhibitors have exploited diverse components of the complement cascade as putative points of therapeutic intervention. Targeting C3, the central hub of the system, has proven to be a promising strategy for developing biologics as well as small-molecule inhibitors with clinical potential. Complement modulation at the level of C3 has recently shown promise in preclinical primate models, opening up new avenues for therapeutic intervention in both acute and chronic indications fueled by uncontrolled C3 turnover. This review highlights recent developments in the field of complement therapeutics, focusing on C3-directed inhibitors and alternative pathway (AP) regulator-based approaches. Translational perspectives and considerations are discussed, particularly with regard to the structure-guided drug optimization and clinical advancement of a new generation of C3-targeted peptidic inhibitors.
Collapse
|
38
|
Abstract
The availability of cells, tissues and organs from a non-human species such as the pig could, at least in theory, meet the demand of organs necessary for clinical transplantation. At this stage, the important goal of getting over the first year of survival has been reported for both cellular and solid organ xenotransplantation in relevant preclinical primate models. In addition, xenotransplantation is already in the clinic as shown by the broad use of animal-derived medical devices, such as bioprosthetic heart valves and biological materials used for surgical tissue repair. At this stage, however, prior to starting a wide-scale clinical application of xenotransplantation of viable cells and organs, the important obstacle represented by the humoral immune response will need to be overcome. Likewise, the barriers posed by the activation of the innate immune system and coagulative pathway will have to be controlled. As far as xenogeneic nonviable xenografts, increasing evidence suggests that considerable immune reactions, mediated by both innate and adaptive immunity, take place and influence the long-term outcome of xenogeneic materials in patients, possibly precluding the use of bioprosthetic heart valves in young individuals. In this context, the present article provides an overview of current knowledge on the immune processes following xenotransplantation and on the possible therapeutic interventions to overcome the immunological drawbacks involved in xenotransplantation.
Collapse
Affiliation(s)
- M Vadori
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy
| | - E Cozzi
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy.,Transplant Immunology Unit, Department of Transfusion Medicine, Padua University Hospital, Via Giustiniani, 2, 35128 Padua, Italy
| |
Collapse
|
39
|
Publisher's note. Regen Ther 2016. [DOI: 10.1016/j.reth.2016.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Characterizing the Mechanistic Pathways of the Instant Blood-Mediated Inflammatory Reaction in Xenogeneic Neonatal Islet Cell Transplantation. Transplant Direct 2016; 2:e77. [PMID: 27500267 PMCID: PMC4946518 DOI: 10.1097/txd.0000000000000590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022] Open
Abstract
Supplemental digital content is available in the text. Introduction The instant blood-mediated inflammatory reaction (IBMIR) causes major loss of islets after transplantation and consequently represents the initial barrier to survival of porcine neonatal islet cell clusters (NICC) after xenotransplantation. Methods This study used novel assays designed to characterize the various immunologic components responsible for xenogeneic IBMIR to identify initiators and investigate processes of IBMIR-associated coagulation, complement activation and neutrophil infiltration. The IBMIR was induced in vitro by exposing NICC to platelet-poor or platelet-rich human plasma or isolated neutrophils. Results We found that xenogeneic IBMIR was characterized by rapid, platelet-independent thrombin generation, with addition of platelets both accelerating and exacerbating this response. Platelet-independent complement activation was observed as early as 30 minutes after NICC exposure to plasma. However, membrane attack complex formation was not observed in NICC histopathology sections until after 60 minutes. We demonstrated for the first time that NICC-mediated complement activation was necessary for neutrophil activation in the xenogeneic IBMIR setting. Finally, using the Seahorse extracellular flux analyzer, we identified substantial loss of islet function (up to 40%) after IBMIR with surviving NICC showing evidence of mitochondrial damage. Conclusions This study used novel assays to describe multiple key pathways by which xenogeneic IBMIR causes islet destruction, allowing further refinement of future interventions aimed at resolving the issue of IBMIR in xenotransplantation.
Collapse
|
41
|
Heparinization of cell surfaces with short peptide-conjugated PEG-lipid regulates thromboinflammation in transplantation of human MSCs and hepatocytes. Acta Biomater 2016; 35:194-205. [PMID: 26876877 DOI: 10.1016/j.actbio.2016.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
Abstract
Infusion of therapeutic cells into humans is associated with immune responses, including thromboinflammation, which result in a large loss of transplanted cells. To address these problems, heparinization of the cell surfaces was achieved by a cell-surface modification technique using polyethylene glycol-conjugated phospholipid (PEG-lipid) derivatives. A short heparin-binding peptide was conjugated to the PEG-lipid for immobilization of heparin conjugates on the surface of human mesenchymal stem cells (hMSCs) and human hepatocytes. Here three kinds of heparin-binding peptides were used for immobilizing heparin conjugates and examined for the antithrombogenic effects on the cell surface. The heparinized cells were incubated in human whole blood to evaluate their hemocompatibility by measuring blood parameters such as platelet count, coagulation markers, complement markers, and Factor Xa activity. We found that one of the heparin-binding peptides did not show cytotoxicity after the immobilization with heparin conjugates. The degree of binding of the heparin conjugates on the cell surface (analyzed by flow cytometer) depended on the ratio of the active peptide to control peptide. For both human MSCs and hepatocytes in whole-blood experiments, no platelet aggregation was seen in the heparin conjugate-immobilized cell group vs. the controls (non-coated cells or control peptide). Also, the levels of thrombin-antithrombin complex (TAT), C3a, and sC5b-9 were significantly lower than those of the controls, indicating a lower activation of coagulation and complement. Factor Xa analysis indicated that the heparin conjugate was still active on the cell surface at 24h post-coating. It is possible to immobilize heparin conjugates onto hMSC and human hepatocyte surfaces and thereby protect the cell surfaces from damaging thromboinflammation. STATEMENT OF SIGNIGFICANCE We present a promising approach to enhance the biocompatibility of therapeutic cells. Here we used short peptide-conjugated PEG-lipid for cell surface modification and heparin conjugates for the coating of human hepatocytes and MSCs. We screened the short peptides to find higher affinity for heparinization of cell surface and performed hemocompatibility assay of heparinized human hepatocytes and human MSCs in human whole blood. Using heparin-binding peptide with higher affinity, not only coagulation activation but also complement activation was significantly suppressed. Thus, it was possible to protect human hepatocytes and human MSCs from the attack of thromboinflammatory activation, which can contribute to the improvement graft survival.
Collapse
|
42
|
A hybrid of cells and pancreatic islets toward a new bioartificial pancreas. Regen Ther 2016; 3:68-74. [PMID: 31245475 PMCID: PMC6581840 DOI: 10.1016/j.reth.2016.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/31/2016] [Accepted: 02/12/2016] [Indexed: 01/30/2023] Open
Abstract
Cell surface engineering using single-stranded DNA-poly(ethylene glycol)-conjugated phospholipid (ssDNA-PEG-lipid) is useful for inducing cell-cell attachment two and three dimensionally. In this review, we summarize our recent techniques for cell surface engineering and their applications to islet transplantation. Because any DNA sequence can be immobilized onto the cell surface by hydrophobic interactions between ssDNA-PEG-lipid and the cellular membrane without impairing cell function, a cell-cell hybrid can be formed through the DNA hybridization. With this technique, it would be possible to create three-dimensional hybrid structures of pancreatic islets coated with various accessory cells, such as patients' own cells, mesenchymal and adipose-derived stem cells, endothelial progenitor cells, neural crest stem cells or regulatory T cells, which might significantly improve the outcome of islet transplantation in diabetic patients.
Collapse
|
43
|
Bartlett ST, Markmann JF, Johnson P, Korsgren O, Hering BJ, Scharp D, Kay TWH, Bromberg J, Odorico JS, Weir GC, Bridges N, Kandaswamy R, Stock P, Friend P, Gotoh M, Cooper DKC, Park CG, O'Connell P, Stabler C, Matsumoto S, Ludwig B, Choudhary P, Kovatchev B, Rickels MR, Sykes M, Wood K, Kraemer K, Hwa A, Stanley E, Ricordi C, Zimmerman M, Greenstein J, Montanya E, Otonkoski T. Report from IPITA-TTS Opinion Leaders Meeting on the Future of β-Cell Replacement. Transplantation 2016; 100 Suppl 2:S1-44. [PMID: 26840096 PMCID: PMC4741413 DOI: 10.1097/tp.0000000000001055] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/07/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen T. Bartlett
- Department of Surgery, University of Maryland School of Medicine, Baltimore MD
| | - James F. Markmann
- Division of Transplantation, Massachusetts General Hospital, Boston MA
| | - Paul Johnson
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bernhard J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - David Scharp
- Prodo Laboratories, LLC, Irvine, CA
- The Scharp-Lacy Research Institute, Irvine, CA
| | - Thomas W. H. Kay
- Department of Medicine, St. Vincent’s Hospital, St. Vincent's Institute of Medical Research and The University of Melbourne Victoria, Australia
| | - Jonathan Bromberg
- Division of Transplantation, Massachusetts General Hospital, Boston MA
| | - Jon S. Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Gordon C. Weir
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
| | - Nancy Bridges
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Raja Kandaswamy
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Peter Stock
- Division of Transplantation, University of San Francisco Medical Center, San Francisco, CA
| | - Peter Friend
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Mitsukazu Gotoh
- Department of Surgery, Fukushima Medical University, Fukushima, Japan
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Department of Microbiology and Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Phillip O'Connell
- The Center for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Cherie Stabler
- Diabetes Research Institute, School of Medicine, University of Miami, Coral Gables, FL
| | - Shinichi Matsumoto
- National Center for Global Health and Medicine, Tokyo, Japan
- Otsuka Pharmaceutical Factory inc, Naruto Japan
| | - Barbara Ludwig
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden and DZD-German Centre for Diabetes Research, Dresden, Germany
| | - Pratik Choudhary
- Diabetes Research Group, King's College London, Weston Education Centre, London, United Kingdom
| | - Boris Kovatchev
- University of Virginia, Center for Diabetes Technology, Charlottesville, VA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Coulmbia University Medical Center, New York, NY
| | - Kathryn Wood
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Kristy Kraemer
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Albert Hwa
- Juvenile Diabetes Research Foundation, New York, NY
| | - Edward Stanley
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Monash University, Melbourne, VIC, Australia
| | - Camillo Ricordi
- Diabetes Research Institute, School of Medicine, University of Miami, Coral Gables, FL
| | - Mark Zimmerman
- BetaLogics, a business unit in Janssen Research and Development LLC, Raritan, NJ
| | - Julia Greenstein
- Discovery Research, Juvenile Diabetes Research Foundation New York, NY
| | - Eduard Montanya
- Bellvitge Biomedical Research Institute (IDIBELL), Hospital Universitari Bellvitge, CIBER of Diabetes and Metabolic Diseases (CIBERDEM), University of Barcelona, Barcelona, Spain
| | - Timo Otonkoski
- Children's Hospital and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
45
|
Pancreatic Islets: Methods for Isolation and Purification of Juvenile and Adult Pig Islets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 938:35-55. [PMID: 27586421 DOI: 10.1007/978-3-319-39824-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current situation of organ transplantation is mainly determined by the disbalance between the number of available organs and the number of patients on the waiting list. This obvious dilemma might be solved by the transplantation of porcine organs into human patients. The metabolic similarities which exist between both species made pancreatic islets of Langerhans to that donor tissue which will be most likely transplanted in human recipients. Nevertheless, the successful isolation of significant yields of viable porcine islets is extremely difficult and requires extensive experiences in the field. This review is focussing on the technical challenges, pitfalls and particularities that are associated with the isolation of islets from juvenile and adult pigs considering donor variables that can affect porcine islet isolation outcome.
Collapse
|
46
|
Abualhassan N, Sapozhnikov L, Pawlick RL, Kahana M, Pepper AR, Bruni A, Gala-Lopez B, Kin T, Mitrani E, Shapiro AMJ. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation. PLoS One 2016; 11:e0156053. [PMID: 27227978 PMCID: PMC4881949 DOI: 10.1371/journal.pone.0156053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ.
Collapse
Affiliation(s)
| | - Lena Sapozhnikov
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rena L. Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Meygal Kahana
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andrew R. Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Antonio Bruni
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Boris Gala-Lopez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| | - A. M. James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Nagaraju S, Bertera S, Tanaka T, Hara H, Rayat GR, Wijkstrom M, Ayares D, Trucco M, Cooper DKC, Bottino R. In vitro exposure of pig neonatal isletlike cell clusters to human blood. Xenotransplantation 2015; 22:317-24. [PMID: 26179209 DOI: 10.1111/xen.12178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/07/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pig islet grafts have been successful in treating diabetes in animal models. One remaining question is whether neonatal pig isletlike cell clusters (NICC) are resistant to the early loss of islets from the instant blood-mediated inflammatory reaction (IBMIR). METHODS Neonatal isletlike cell clusters were harvested from three groups of piglets-(i) wild-type (genetically unmodified), (ii) α1,3-galactosyltransferase gene-knockout (GTKO)/CD46, and (iii) GTKO/CD46/CD39. NICC samples were mixed with human blood in vitro, and the following measurements were made-antibody binding; complement activation; speed of islet-induced coagulation; C-peptide; glutamic acid decarboxylase (GAD65) release; viability. RESULTS Time to coagulation and viability were both reduced in all groups compared to freshly drawn non-anticoagulated human blood and autologous combinations, respectively. Antibody binding to the NICC occurred in all groups. CONCLUSIONS Neonatal isletlike cell clusters were subject to humoral injury with no difference associated to their genetic characteristics.
Collapse
Affiliation(s)
- Santosh Nagaraju
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Suzanne Bertera
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Takayuki Tanaka
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Gina R Rayat
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Massimo Trucco
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rita Bottino
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Hårdstedt M, Lindblom S, Karlsson-Parra A, Nilsson B, Korsgren O. Characterization of Innate Immunity in an Extended Whole Blood Model of Human Islet Allotransplantation. Cell Transplant 2015; 25:503-15. [PMID: 26084381 DOI: 10.3727/096368915x688461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The instant blood-mediated inflammatory reaction (IBMIR) has been studied in whole blood models of human allo-islet transplantation for short periods (<6 h). Beyond this time frame the innate response to intraportally transplanted islets is less well described. A novel whole blood model was applied to study blood-islet-graft interactions up to 48 h. Heparinized polyvinyl chloride tubing was sealed into small bags containing venous blood together with allogeneic human islets and exocrine tissue, respectively. The bags were attached to a rotating wheel (37°C). Concentrated glucose and sodium hydrogen carbonate were added every 12 h to maintain physiological limits for sustained immune cell functions. Plasma was collected at repeated time points for analyses of coagulation/complement activation and chemokine/cytokine production. Immune cell infiltration was analyzed using immunohistochemistry. Coagulation and platelet activation markers, thrombin-antithrombin complex (TAT) and soluble CD40 ligand (sCD40L) showed early high concentrations (at 6-12 h). sC5b-9 steadily increased over 48 h. At 6 h neutrophils and monocytes surrounded the clotted cellular grafts with a following massive infiltration of neutrophils. High and increasing concentrations of CXCR1/2 ligands [IL-8 and growth-regulated oncogene α/β/γ (Gro-α/β/γ)] and IL-6 were produced in response to human islets and exocrine tissue. The CCR2 ligand monocyte chemoattractant protein 1 (MCP-1) exhibited increasing concentrations in response to exocrine tissue. The CXCR3 ligand interferon-inducible T cell α chemoattractant (I-TAC) was produced in response to both human islets and exocrine tissue from 6 h. Monokine induced by γ interferon (Mig) and interferon γ-induced protein 10 (IP-10) showed a later response, preferentially to exocrine tissue and with larger variations among preparations. An extended blood model of clinical islet transplantation allowed characterization of early immune activation in response to human islets and exocrine tissue. Increased production of chemokines targeting CXCR1/2, CCR2, and CXCR3 was observed, accompanied by massive intraislet neutrophil infiltration over 48 h. The model proved to be useful in exploring early blood-mediated reactions to cellular transplants and has relevance for evaluation of pharmacological interventions to prevent graft loss.
Collapse
Affiliation(s)
- Maria Hårdstedt
- Department of Immunology, Genetics and Pathology, Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
49
|
Martin BM, Samy KP, Lowe MC, Thompson PW, Cano J, Farris AB, Song M, Dove CR, Leopardi FV, Strobert EA, Jenkins JB, Collins BH, Larsen CP, Kirk AD. Dual islet transplantation modeling of the instant blood-mediated inflammatory reaction. Am J Transplant 2015; 15:1241-52. [PMID: 25702898 PMCID: PMC4631614 DOI: 10.1111/ajt.13098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/10/2014] [Indexed: 01/25/2023]
Abstract
Islet xenotransplantation is a potential treatment for diabetes without the limitations of tissue availability. Although successful experimentally, early islet loss remains substantial and attributed to an instant blood-mediated inflammatory reaction (IBMIR). This syndrome of islet destruction has been incompletely defined and characterization in pig-to-primate models has been hampered by logistical and statistical limitations of large animal studies. To further investigate IBMIR, we developed a novel in vivo dual islet transplant model to precisely characterize IBMIR as proof-of-concept that this model can serve to properly control experiments comparing modified xenoislet preparations. WT and α1,3-galactosyltransferase knockout (GTKO) neonatal porcine islets were studied in nonimmunosuppressed rhesus macaques. Inert polyethylene microspheres served as a control for the effects of portal embolization. Digital analysis of immunohistochemistry targeting IBMIR mediators was performed at 1 and 24 h after intraportal islet infusion. Early findings observed in transplanted islets include complement and antibody deposition, and infiltration by neutrophils, macrophages and platelets. Insulin, complement, antibody, neutrophils, macrophages and platelets were similar between GTKO and WT islets, with increasing macrophage infiltration at 24 h in both phenotypes. This model provides an objective and internally controlled study of distinct islet preparations and documents the temporal histology of IBMIR.
Collapse
Affiliation(s)
- BM Martin
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| | - KP Samy
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - MC Lowe
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| | - PW Thompson
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| | - J Cano
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| | - AB Farris
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - M Song
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| | - CR Dove
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602
| | - FV Leopardi
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| | - EA Strobert
- Yerkes National Primate Research Center, Atlanta, GA 30329
| | - JB Jenkins
- Yerkes National Primate Research Center, Atlanta, GA 30329
| | - BH Collins
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| | - CP Larsen
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322
| | - AD Kirk
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA 30322,Department of Surgery, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
50
|
Mastellos DC, Yancopoulou D, Kokkinos P, Huber-Lang M, Hajishengallis G, Biglarnia AR, Lupu F, Nilsson B, Risitano AM, Ricklin D, Lambris JD. Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention. Eur J Clin Invest 2015; 45:423-40. [PMID: 25678219 PMCID: PMC4380746 DOI: 10.1111/eci.12419] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
There is a growing awareness that complement plays an integral role in human physiology and disease, transcending its traditional perception as an accessory system for pathogen clearance and opsonic cell killing. As the list of pathologies linked to dysregulated complement activation grows longer, it has become clear that targeted modulation of this innate immune system opens new windows of therapeutic opportunity for anti-inflammatory drug design. Indeed, the introduction of the first complement-targeting drugs has reignited a vibrant interest in the clinical translation of complement-based inhibitors. Compstatin was discovered as a cyclic peptide that inhibits complement activation by binding C3 and interfering with convertase formation and C3 cleavage. As the convergence point of all activation pathways and a molecular hub for crosstalk with multiple pathogenic pathways, C3 represents an attractive target for therapeutic modulation of the complement cascade. A multidisciplinary drug optimization effort encompassing rational 'wet' and in silico synthetic approaches and an array of biophysical, structural and analytical tools has culminated in an impressive structure-function refinement of compstatin, yielding a series of analogues that show promise for a wide spectrum of clinical applications. These new derivatives have improved inhibitory potency and pharmacokinetic profiles and show efficacy in clinically relevant primate models of disease. This review provides an up-to-date survey of the drug design effort placed on the compstatin family of C3 inhibitors, highlighting the most promising drug candidates. It also discusses translational challenges in complement drug discovery and peptide drug development and reviews concerns related to systemic C3 interception.
Collapse
Affiliation(s)
- Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, INRASTES, National Center for Scientific Research 'Demokritos', Aghia Paraskevi Attikis, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|