1
|
Liu JJ, Sniezko RA, Houston S, Alger G, Krakowski J, Schoettle AW, Sissons R, Zamany A, Williams H, Rancourt B, Kegley A. A New Threat to Limber Pine ( Pinus flexilis) Restoration in Alberta and Beyond: First Documentation of a Cronartium ribicola Race ( vcr4) Virulent to Cr4-Controlled Major Gene Resistance. PHYTOPATHOLOGY 2025; 115:44-53. [PMID: 39321129 DOI: 10.1094/phyto-04-24-0129-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The coevolution of virulence reduces the effectiveness of host resistance to pathogens, posing a direct threat to forest species and their key ecosystem functions. This is a threat to limber pine (Pinus flexilis), an endangered species in Canada due to rapid decline mainly driven by white pine blister rust caused by Cronartium ribicola. We present the first report of a new, virulent race of C. ribicola (designated vcr4) that overcomes limber pine major gene (Cr4) resistance (MGR). Field surveys found that three parental trees (pf-503, pf-508, and pf-2015-0070) were cankered with white pine blister rust in Alberta, but their progenies showed MGR-related phenotypic segregation postinoculation with an avirulent race of C. ribicola (Avcr4). Genotyping of their progenies using Cr4-linked DNA markers and a genome-wide association study provided additional support that these cankered parental trees had Cr4-controlled MGR. To confirm the presence of vcr4, aeciospores were collected from the cankered pf-503 tree to inoculate resistant seedlings that had survived prior inoculation using the Avcr4 race, as well as seedlings of two U.S. seed parents, one previously confirmed with MGR (Cr4) and one without MGR, respectively. All inoculated seedlings showed clear stem symptoms, confirming that the virulent race is vcr4. These results provide insights into the evolution of C. ribicola virulence and reinforce caution on deployment of Cr4-controlled MGR. The information will be useful for designing a breeding program for durable resistance by layering both R genes with quantitative trait loci for resistance to white pine blister rust in North America.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Richard A Sniezko
- U.S. Department of Agriculture Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Drive, Cottage Grove, OR 97424, U.S.A
| | - Sydney Houston
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Genoa Alger
- Parks Canada, Waterton Lakes National Park, Waterton Park, Alberta, T0K 2M0, Canada
| | - Jodie Krakowski
- Independent Consultant, Box 774, Coleman, AB, T0K 0M0, Canada
| | - Anna W Schoettle
- U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO 80526, U.S.A
| | - Robert Sissons
- Parks Canada, Waterton Lakes National Park, Waterton Park, Alberta, T0K 2M0, Canada
| | - Arezoo Zamany
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Holly Williams
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Benjamin Rancourt
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Angelia Kegley
- U.S. Department of Agriculture Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Drive, Cottage Grove, OR 97424, U.S.A
| |
Collapse
|
2
|
Schmey T, Small C, Einspanier S, Hoyoz LM, Ali T, Gamboa S, Mamani B, Sepulveda GC, Thines M, Stam R. Small-spored Alternaria spp. (section Alternaria) are common pathogens on wild tomato species. Environ Microbiol 2023; 25:1830-1846. [PMID: 37171093 DOI: 10.1111/1462-2920.16394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
The wild relatives of modern tomato crops are native to South America. These plants occur in habitats as different as the Andes and the Atacama Desert and are, to some degree, all susceptible to fungal pathogens of the genus Alternaria. Alternaria is a large genus. On tomatoes, several species cause early blight, leaf spots and other diseases. We collected Alternaria-like infection lesions from the leaves of eight wild tomato species from Chile and Peru. Using molecular barcoding markers, we characterized the pathogens. The infection lesions were caused predominantly by small-spored species of Alternaria of the section Alternaria, like A. alternata, but also by Stemphylium spp., Alternaria spp. from the section Ulocladioides and other related species. Morphological observations and an infection assay confirmed this. Comparative genetic diversity analyses show a larger diversity in this wild system than in studies of cultivated Solanum species. As A. alternata has been reported to be an increasing problem in cultivated tomatoes, investigating the evolutionary potential of this pathogen is not only interesting to scientists studying wild plant pathosystems. It could also inform crop protection and breeding programs to be aware of potential epidemics caused by species still confined to South America.
Collapse
Affiliation(s)
- Tamara Schmey
- Chair of Phytopathology, TUM School of Life Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Corinn Small
- Chair of Phytopathology, TUM School of Life Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Severin Einspanier
- Department for Phytopathology and Crop Protection, Institute for Phytopathology, Faculty of Agricultural and Nutritional Sciences, Christian Albrechts University, Kiel, Germany
| | - Lina Muñoz Hoyoz
- Chair of Phytopathology, TUM School of Life Science, Technische Universität München, Freising-Weihenstephan, Germany
| | - Tahir Ali
- Translational Biodiversity Genomics Centre, Senckenberg Institute, Frankfurt am Main, Germany
- Institute of Plant Sciences, University of Cologne, Cologne, Germany
| | - Soledad Gamboa
- Plant Pathology and Bacteriology, International Potato Centre, Lima, Peru
| | - Betty Mamani
- Instituto Basadre de Investigación en Agrobiotecnología y Recursos Genéticos, Escuela de Agronomía, Facultad Ciencias Agropecuarias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Peru
| | - German C Sepulveda
- Departmento de recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Arapacá, Arica, Chile
| | - Marco Thines
- Translational Biodiversity Genomics Centre, Senckenberg Institute, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Center, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Department of Biology, Institute of Ecology, Evolution, and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Remco Stam
- Department for Phytopathology and Crop Protection, Institute for Phytopathology, Faculty of Agricultural and Nutritional Sciences, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
3
|
Jiranek J, Miller IF, An R, Bruns E, Metcalf CJE. Mechanistic models to meet the challenge of climate change in plant-pathogen systems. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220017. [PMID: 36744564 PMCID: PMC9900714 DOI: 10.1098/rstb.2022.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 02/07/2023] Open
Abstract
Evidence that climate change will impact the ecology and evolution of individual plant species is growing. However, little, as yet, is known about how climate change will affect interactions between plants and their pathogens. Climate drivers could affect the physiology, and thus demography, and ultimately evolutionary processes affecting both plant hosts and their pathogens. Because the impacts of climate drivers may operate in different directions at different scales of infection, and, furthermore, may be nonlinear, abstracting across these processes may mis-specify outcomes. Here, we use mechanistic models of plant-pathogen interactions to illustrate how counterintuitive outcomes are possible, and we introduce how such framing may contribute to understanding climate effects on plant-pathogen systems. We discuss the evidence-base derived from wild and agricultural plant-pathogen systems that could inform such models, specifically in the direction of estimates of physiological, demographic and evolutionary responses to climate change. We conclude by providing an overview of knowledge gaps and directions for future research in this important area. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- Juliana Jiranek
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81244, USA
| | - Ian F. Miller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08450, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81244, USA
| | - Ruby An
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08450, USA
| | - Emme Bruns
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08450, USA
| |
Collapse
|
4
|
Natural Flora Is Indiscriminately Hosting High Loads of Generalist Fungal Pathogen Colletotrichum gloeosporioides Complex over Forest Niches, Vegetation Strata and Elevation Gradient. J Fungi (Basel) 2023; 9:jof9030296. [PMID: 36983464 PMCID: PMC10058380 DOI: 10.3390/jof9030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Crop pathogenic fungi may originate from reservoir pools including wild vegetation surrounding fields, and it is thus important to characterize any potential source of pathogens. We therefore investigated natural vegetation’s potential for hosting a widespread pathogenic group, Colletotrichum gloeosporioides species complex. We stratified sampling in different forest environments and natural vegetation strata to determine whether the fungi were found preferentially in specific niches and areas. We found that the fungi complex was fairly broadly distributed in the wild flora, with high prevalence in every study environment and stratum. Some significant variation in prevalence nevertheless occurred and was possibly associated with fungal growth conditions (more humid areas had greater prevalence levels while drier places had slightly lower presence). Results also highlighted potential differences in disease effects of strains between strata components of study flora, suggesting that while natural vegetation is a highly probable source of inoculums for local crops nearby, differences in aggressiveness between vegetation strata might also lead to differential impact on cultivated crops.
Collapse
|
5
|
PATHOGEN SURVEY AND PREDICTORS OF LYMPHOPROLIFERATIVE DISEASE VIRUS INFECTION IN WILD TURKEYS (MELEAGRIS GALLOPAVO). J Wildl Dis 2022; 58:537-549. [PMID: 35704504 DOI: 10.7589/jwd-d-21-00152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Growing populations of Wild Turkeys (Meleagris gallopavo) may result in increased disease transmission among wildlife and spillover to poultry. Lymphoproliferative disease virus (LPDV) is an avian retrovirus that is widespread in Wild Turkeys of eastern North America, and infections may influence mortality and parasite co-infections. We aimed to identify individual and spatial risk factors of LPDV in Maine's Wild Turkeys. We also surveyed for co-infections between LPDV and reticuloendotheliosis virus (REV), Mycoplasma gallisepticum, and Salmonella pullorum to estimate trends in prevalence and examine covariance with LPDV. From 2017 to 2020, we sampled tissues from hunter-harvested (n=72) and live-captured (n=627) Wild Turkeys, in spring and winter, respectively, for molecular detection of LPDV and REV. In a subset of captured individuals (n=235), we estimated seroprevalence of the bacteria M. gallisepticum and S. pullorum using a plate agglutination test. Infection rates for LPDV and REV were 59% and 16% respectively, with a co-infection rate of 10%. Seroprevalence for M. gallisepticum and S. pullorum were 74% and 3.4%, with LPDV co-infection rates of 51% and 2.6%, respectively. Infection with LPDV and seroprevalence of M. gallisepticum and S. pullorum decreased, whereas REV infection increased, between 2018 and 2020. Females (64%), adults (72%), and individuals sampled in spring (76%) had higher risks of LPDV infection than males (47%), juveniles (39%), and individuals sampled in winter (57%). Furthermore, LPDV infection increased with percent forested cover (β=0.014±0.007) and decreased with percent agriculture cover for juveniles (β=-0.061±0.018) sampled in winter. These data enhance our understanding of individual and spatial predictors of LPDV infection in Wild Turkeys and aid in assessing the associated risk to Wild Turkey populations and poultry operations.
Collapse
|
6
|
Susi H, Sallinen S, Laine A. Coinfection with a virus constrains within-host infection load but increases transmission potential of a highly virulent fungal plant pathogen. Ecol Evol 2022; 12:e8673. [PMID: 35342557 PMCID: PMC8928890 DOI: 10.1002/ece3.8673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
The trade-off between within-host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life-history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross-kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within-host infection rate and transmission potential. The strains differed in the measured life-history traits and their correlations. Moreover, we found that under virus coinfection, within-host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within-host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within-host and between-host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between-hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within-host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade-off between within-host infection load and transmission may be strain specific, and that the pathogen life-history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Suvi Sallinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
7
|
Falgueras-Cano J, Falgueras-Cano JA, Moya A. A Study of the Coevolution of Digital Organisms with an Evolutionary Cellular Automaton. BIOLOGY 2021; 10:biology10111147. [PMID: 34827140 PMCID: PMC8614957 DOI: 10.3390/biology10111147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023]
Abstract
This paper presents an Evolutionary Cellular Automaton (ECA) that simulates the evolutionary dynamics of biological interactions by manipulating strategies of dispersion and associations between digital organisms. The parameterization of the different types of interaction and distribution strategies using configuration files generates easily interpretable results. In that respect, ECA is an effective instrument for measuring the effects of relative adaptive advantages and a good resource for studying natural selection. Although ECA works effectively in obtaining the expected results from most well-known biological interactions, some unexpected effects were observed. For example, organisms uniformly distributed in fragmented habitats do not favor eusociality, and mutualism evolved from parasitism simply by varying phenotypic flexibility. Finally, we have verified that natural selection represents a cost for the emergence of sex by destabilizing the stable evolutionary strategy of the 1:1 sex ratio after generating randomly different distributions in each generation.
Collapse
Affiliation(s)
- Javier Falgueras-Cano
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, 46980 Valencia, Spain
- Correspondence: (J.F.-C.); (A.M.)
| | | | - Andrés Moya
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, 46980 Valencia, Spain
- Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), 46020 Valencia, Spain
- Biomedical Research Centre Network of Epidemiology and Public Health (CIBEResp), 28029 Madrid, Spain
- Correspondence: (J.F.-C.); (A.M.)
| |
Collapse
|
8
|
Singh NK, Karisto P, Croll D. Population-level deep sequencing reveals the interplay of clonal and sexual reproduction in the fungal wheat pathogen Zymoseptoria tritici. Microb Genom 2021; 7:000678. [PMID: 34617882 PMCID: PMC8627204 DOI: 10.1099/mgen.0.000678] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/29/2021] [Indexed: 11/18/2022] Open
Abstract
Pathogens cause significant challenges to global food security. On annual crops, pathogens must re-infect from environmental sources in every growing season. Fungal pathogens have evolved mixed reproductive strategies to cope with the distinct challenges of colonizing growing plants. However, how pathogen diversity evolves during growing seasons remains largely unknown. Here, we performed a deep hierarchical sampling in a single experimental wheat field infected by the major fungal pathogen Zymoseptoria tritici. We analysed whole genome sequences of 177 isolates collected from 12 distinct cultivars replicated in space at three time points of the growing season to maximize capture of genetic diversity. The field population was highly diverse with 37 SNPs per kilobase, a linkage disequilibrium decay within 200-700 bp and a high effective population size. Using experimental infections, we tested a subset of the collected isolates on the dominant cultivar planted in the field. However, we found no significant difference in virulence of isolates collected from the same cultivar compared to isolates collected on other cultivars. About 20 % of the isolate genotypes were grouped into 15 clonal groups. Pairs of clones were disproportionally found at short distances (<5 m), consistent with experimental estimates for per-generation dispersal distances performed in the same field. This confirms predominant leaf-to-leaf transmission during the growing season. Surprisingly, levels of clonality did not increase over time in the field although reproduction is thought to be exclusively asexual during the growing season. Our study shows that the pathogen establishes vast and stable gene pools in single fields. Monitoring short-term evolutionary changes in crop pathogens will inform more durable strategies to contain diseases.
Collapse
Affiliation(s)
- Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Petteri Karisto
- Plant Health, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
9
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
10
|
Höckerstedt L, Susi H, Laine A. Effect of maternal infection on progeny growth and resistance mediated by maternal genotype and nutrient availability. THE JOURNAL OF ECOLOGY 2021; 109:1439-1451. [PMID: 33776136 PMCID: PMC7986887 DOI: 10.1111/1365-2745.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Maternal effects of pathogen infection on progeny development and disease resistance may be adaptive and have important consequences for population dynamics. However, these effects are often context-dependent and examples of adaptive transgenerational responses from perennials are scarce, although they may be a particularly important mechanism generating variation in the offspring of long-lived species.Here, we studied the effect of maternal infection of Plantago lanceolata by Podosphaera plantaginis, a fungal parasite, on the growth, flower production and resistance of the progeny of six maternal genotypes in nutrient-rich and nutrient-poor environments. For this purpose, we combined a common garden study with automated phenotyping measurements of early life stages, and an inoculation experiment.Our results show that the effects of infection on the mother plants transcend to impact their progeny. Although maternal infection decreased total leaf and flower production of the progeny by the end of the growing season, it accelerated early growth and enhanced resistance to the pathogen P. plantaginis.We also discovered that the effects of maternal infection affected progeny development and resistance through a three way-interaction between maternal genotype, maternal infection status and nutrient availability. Synthesis. Our results emphasize the importance of maternal effects mediated through genotypic and environmental factors in long-living perennials and suggest that maternal infection can create a layer of phenotypic diversity in resistance. These results may have important implications for both epidemiological and evolutionary dynamics of host-parasite interactions in the wild.
Collapse
Affiliation(s)
- Layla Höckerstedt
- Research Centre for Ecological Change, Organismal and Evolutionary BiologyFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Climate System ResearchFinnish Meteorological InstituteHelsinkiFinland
| | - Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary BiologyFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary BiologyFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
11
|
Papaïx J, Burdon JJ, Walker E, Barrett LG, Thrall PH. Metapopulation Structure Predicts Population Dynamics in the Cakile maritima- Alternaria brassicicola Host-Pathogen Interaction. Am Nat 2021; 197:E55-E71. [PMID: 33523787 DOI: 10.1086/712248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn symbiotic interactions, spatiotemporal variation in the distribution or population dynamics of one species represents spatial and temporal heterogeneity of the landscape for the other. Such interdependent demographic dynamics result in situations where the relative importance of biotic and abiotic factors in determining ecological processes is complicated to decipher. Using a detailed survey of three metapopulations of the succulent plant Cakile maritima and the necrotrophic fungus Alternaria brassicicola located along the southeastern Australian coast, we developed a series of statistical analyses-namely, synchrony analysis, patch occupancy dynamics, and a spatially explicit metapopulation model-to understand how habitat quality, weather conditions, dispersal, and spatial structure determine metapopulation dynamics. Climatic conditions are important drivers, likely explaining the high synchrony among populations. Host availability, landscape features facilitating dispersal, and habitat conditions also impact the occurrence and spread of disease. Overall, we show that the collection of extensive data on host and pathogen population dynamics, in combination with spatially explicit epidemiological modeling, makes it possible to accurately predict disease dynamics-even when there is extreme variability in host population dynamics. Finally, we discuss the importance of genetic information for predicting demographic dynamics in this pathosystem.
Collapse
|
12
|
Dutta A, Croll D, McDonald BA, Barrett LG. Maintenance of variation in virulence and reproduction in populations of an agricultural plant pathogen. Evol Appl 2021; 14:335-347. [PMID: 33664780 PMCID: PMC7896723 DOI: 10.1111/eva.13117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Accepted: 08/13/2020] [Indexed: 11/27/2022] Open
Abstract
Genetic diversity within pathogen populations is critically important for predicting pathogen evolution, disease outcomes and prevalence. However, we lack a good understanding of the processes maintaining genetic variation and constraints on pathogen life-history evolution. Here, we analysed interactions between 12 wheat host genotypes and 145 strains of Zymoseptoria tritici from five global populations to investigate the evolution and maintenance of variation in pathogen virulence and reproduction. We found a strong positive correlation between virulence (amount of leaf necrosis) and reproduction (pycnidia density within lesions), with substantial variation in both traits maintained within populations. On average, highly virulent isolates exhibited higher reproduction, which might increase transmission potential in agricultural fields planted to homogeneous hosts at a high density. We further showed that pathogen strains with a narrow host range (i.e. specialists) for reproduction were on average less virulent, and those with a broader host range (i.e. generalists) were on average less fecund on a given specific host. These costs associated with adaptation to different host genotypes might constrain the emergence of generalists by disrupting the directional evolution of virulence and fecundity. We conclude that selection favouring pathogen strains that are virulent across diverse hosts, coupled with selection that maximizes fecundity on specific hosts, may explain the maintenance of these pathogenicity traits within and among populations.
Collapse
Affiliation(s)
- Anik Dutta
- Plant PathologyInstitute of Integrative BiologyETH ZurichZurichSwitzerland
| | - Daniel Croll
- Laboratory of Evolutionary GeneticsInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Bruce A. McDonald
- Plant PathologyInstitute of Integrative BiologyETH ZurichZurichSwitzerland
| | | |
Collapse
|
13
|
Johnson P, Calhoun DM, Moss WE, McDevitt-Galles T, Riepe TB, Hallas JM, Parchman TL, Feldman CR, Achatz TJ, Tkach VV, Cropanzano J, Bowerman J, Koprivnikar J. The cost of travel: How dispersal ability limits local adaptation in host-parasite interactions. J Evol Biol 2020; 34:512-524. [PMID: 33314323 DOI: 10.1111/jeb.13754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023]
Abstract
Classical theory suggests that parasites will exhibit higher fitness in sympatric relative to allopatric host populations (local adaptation). However, evidence for local adaptation in natural host-parasite systems is often equivocal, emphasizing the need for infection experiments conducted over realistic geographic scales and comparisons among species with varied life history traits. Here, we used infection experiments to test how two trematode (flatworm) species (Paralechriorchis syntomentera and Ribeiroia ondatrae) with differing dispersal abilities varied in the strength of local adaptation to their amphibian hosts. Both parasites have complex life cycles involving sequential transmission among aquatic snails, larval amphibians and vertebrate definitive hosts that control dispersal across the landscape. By experimentally pairing 26 host-by-parasite population infection combinations from across the western USA with analyses of host and parasite spatial genetic structure, we found that increasing geographic distance-and corresponding increases in host population genetic distance-reduced infection success for P. syntomentera, which is dispersed by snake definitive hosts. For the avian-dispersed R. ondatrae, in contrast, the geographic distance between the parasite and host populations had no influence on infection success. Differences in local adaptation corresponded to parasite genetic structure; although populations of P. syntomentera exhibited ~10% mtDNA sequence divergence, those of R. ondatrae were nearly identical (<0.5%), even across a 900 km range. Taken together, these results offer empirical evidence that high levels of dispersal can limit opportunities for parasites to adapt to local host populations.
Collapse
Affiliation(s)
- Pieter Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Dana M Calhoun
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Wynne E Moss
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | | | - Tawni B Riepe
- Fish, Wildlife, and Conservation Biology, Colorado State University, CO, USA
| | - Joshua M Hallas
- Department of Biology, and Graduate Program in Ecology, Evolution and Conservation Biology, University of Nevada Reno, Reno, NV, USA
| | - Thomas L Parchman
- Department of Biology, and Graduate Program in Ecology, Evolution and Conservation Biology, University of Nevada Reno, Reno, NV, USA
| | - Chris R Feldman
- Department of Biology, and Graduate Program in Ecology, Evolution and Conservation Biology, University of Nevada Reno, Reno, NV, USA
| | - Tyler J Achatz
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Vasyl V Tkach
- Department of Biology, University of North Dakota, Grand Forks, ND, USA
| | - Josh Cropanzano
- Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | | | - Janet Koprivnikar
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
14
|
Patterns and drivers of fungal disease communities on Arabica coffee along a management gradient. Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Facilitative priority effects drive parasite assembly under coinfection. Nat Ecol Evol 2020; 4:1510-1521. [PMID: 32868915 DOI: 10.1038/s41559-020-01289-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Host individuals are often coinfected with diverse parasite assemblages, resulting in complex interactions among parasites within hosts. Within hosts, priority effects occur when the infection sequence alters the outcome of interactions among parasites. Yet, the role of host immunity in this process remains poorly understood. We hypothesized that the host response to the first infection could generate priority effects among parasites, altering the assembly of later-arriving strains during epidemics. We tested this by infecting sentinel host genotypes of Plantago lanceolata with strains of the fungal parasite Podosphaera plantaginis and measuring susceptibility to subsequent infection during experimental and natural epidemics. In these experiments, prior infection by one strain often increased susceptibility to other strains, and these facilitative priority effects altered the structure of parasite assemblages, but this effect depended on host genotype, host population and parasite genotype. Thus, host genotype, spatial structure and priority effects among strains all independently altered parasite assembly. Using a fine-scale survey and sampling of infections on wild hosts in several populations, we then identified a signal of facilitative priority effects, which altered parasite assembly during natural epidemics. Together, these results provide evidence that within-host priority effects of early-arriving strains can drive parasite assembly, with implications for how strain diversity is spatially and temporally distributed during epidemics.
Collapse
|
16
|
Susi H, Burdon JJ, Thrall PH, Nemri A, Barrett LG. Genetic analysis reveals long-standing population differentiation and high diversity in the rust pathogen Melampsora lini. PLoS Pathog 2020; 16:e1008731. [PMID: 32810177 PMCID: PMC7454959 DOI: 10.1371/journal.ppat.1008731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/28/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
A priority for research on infectious disease is to understand how epidemiological and evolutionary processes interact to influence pathogen population dynamics and disease outcomes. However, little is understood about how population adaptation changes across time, how sexual vs. asexual reproduction contribute to the spread of pathogens in wild populations and how diversity measured with neutral and selectively important markers correlates across years. Here, we report results from a long-term study of epidemiological and genetic dynamics within several natural populations of the Linum marginale-Melampsora lini plant-pathogen interaction. Using pathogen isolates collected from three populations of wild flax (L. marginale) spanning 16 annual epidemics, we probe links between pathogen population dynamics, phenotypic variation for infectivity and genomic polymorphism. Pathogen genotyping was performed using 1567 genome-wide SNP loci and sequence data from two infectivity loci (AvrP123, AvrP4). Pathogen isolates were phenotyped for infectivity using a differential set. Patterns of epidemic development were assessed by conducting surveys of infection prevalence in one population (Kiandra) annually. Bayesian clustering analyses revealed host population and ecotype as key predictors of pathogen genetic structure. Despite strong fluctuations in pathogen population size and severe annual bottlenecks, analysis of molecular variance revealed that pathogen population differentiation was relatively stable over time. Annually, varying levels of clonal spread (0–44.8%) contributed to epidemics. However, within populations, temporal genetic composition was dynamic with rapid turnover of pathogen genotypes, despite the dominance of only four infectivity phenotypes across the entire study period. Furthermore, in the presence of strong fluctuations in population size and migration, spatial selection may maintain pathogen populations that, despite being phenotypically stable, are genetically highly dynamic. Melampsora lini is a rust fungus that infects native flax, Linum marginale in south-eastern Australia where its epidemiology and evolution have been intensively studied since 1987. Over that time, substantial diversity in the pathotypic structure of M. lini has been demonstrated but an understanding of how genetic diversity in pathogen populations is maintained through space and time is lacking. Here we integrated phenotypic, genotypic and epidemiological datasets spanning 16 annual epidemics across three host populations to examine long-term pathogen genetic dynamics. The results show that host ecotype is the dominant selective force in the face of strong bottlenecks and annual patterns of genetic turnover. Results from previous studies indicate that in this geographic region, M. lini lacks the capacity to reproduce sexually–we thus expected to find limited genetic diversity and evidence for strong clonality influencing genetic dynamics within growing seasons. However, the breadth of genomic coverage provided by the SNP markers revealed high levels of genotypic variation within M. lini populations. This discovery contrasts with observed phenotypic dynamics as the epidemics of this pathogen were largely dominated by four pathotypes across the study period. Based on a detailed assessment and comparison of pathotypic and genotypic patterns, our study increases the understanding of how genetic diversity is generated and maintained through space and time within wild pathogen populations. The implications for the management of resistance to pathogens in agricultural or conservation contexts are significant: the appearance of clonality may be hiding high levels of pathogen diversity and recombination. Understanding how this diversity is generated could provide new and unique ways to mitigate or suppress the emergence of infectious strains, allowing to efficiently combat harmful diseases.
Collapse
Affiliation(s)
- Hanna Susi
- CSIRO Agriculture & Food, Canberra, Australia
- * E-mail:
| | | | | | | | | |
Collapse
|
17
|
Lynton‐Jenkins JG, Bründl AC, Cauchoix M, Lejeune LA, Sallé L, Thiney AC, Russell AF, Chaine AS, Bonneaud C. Contrasting the seasonal and elevational prevalence of generalist avian haemosporidia in co-occurring host species. Ecol Evol 2020; 10:6097-6111. [PMID: 32607216 PMCID: PMC7319113 DOI: 10.1002/ece3.6355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/17/2020] [Accepted: 04/08/2020] [Indexed: 12/02/2022] Open
Abstract
Understanding the ecology and evolution of parasites is contingent on identifying the selection pressures they face across their infection landscape. Such a task is made challenging by the fact that these pressures will likely vary across time and space, as a result of seasonal and geographical differences in host susceptibility or transmission opportunities. Avian haemosporidian blood parasites are capable of infecting multiple co-occurring hosts within their ranges, yet whether their distribution across time and space varies similarly in their different host species remains unclear. Here, we applied a new PCR method to detect avian haemosporidia (genera Haemoproteus, Leucocytozoon, and Plasmodium) and to determine parasite prevalence in two closely related and co-occurring host species, blue tits (Cyanistes caeruleus, N = 529) and great tits (Parus major, N = 443). Our samples were collected between autumn and spring, along an elevational gradient in the French Pyrenees and over a three-year period. Most parasites were found to infect both host species, and while these generalist parasites displayed similar elevational patterns of prevalence in the two host species, this was not always the case for seasonal prevalence patterns. For example, Leucocytozoon group A parasites showed inverse seasonal prevalence when comparing between the two host species, being highest in winter and spring in blue tits but higher in autumn in great tits. While Plasmodium relictum prevalence was overall lower in spring relative to winter or autumn in both species, spring prevalence was also lower in blue tits than in great tits. Together, these results reveal how generalist parasites can exhibit host-specific epidemiology, which is likely to complicate predictions of host-parasite co-evolution.
Collapse
Affiliation(s)
| | - Aisha C. Bründl
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Station d'Ecologie Théorique et Expérimentale (UMR5321)CNRSUniversité Paul SabatierMoulisFrance
- Present address:
Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Maxime Cauchoix
- Station d'Ecologie Théorique et Expérimentale (UMR5321)CNRSUniversité Paul SabatierMoulisFrance
| | - Léa A. Lejeune
- Station d'Ecologie Théorique et Expérimentale (UMR5321)CNRSUniversité Paul SabatierMoulisFrance
| | - Louis Sallé
- Station d'Ecologie Théorique et Expérimentale (UMR5321)CNRSUniversité Paul SabatierMoulisFrance
| | - Alice C. Thiney
- Station d'Ecologie Théorique et Expérimentale (UMR5321)CNRSUniversité Paul SabatierMoulisFrance
| | - Andrew F. Russell
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Station d'Ecologie Théorique et Expérimentale (UMR5321)CNRSUniversité Paul SabatierMoulisFrance
| | - Alexis S. Chaine
- Station d'Ecologie Théorique et Expérimentale (UMR5321)CNRSUniversité Paul SabatierMoulisFrance
- Institute for Advanced Studies in ToulouseToulouseFrance
| | - Camille Bonneaud
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Station d'Ecologie Théorique et Expérimentale (UMR5321)CNRSUniversité Paul SabatierMoulisFrance
| |
Collapse
|
18
|
Bartholomé J, Brachi B, Marçais B, Mougou-Hamdane A, Bodénès C, Plomion C, Robin C, Desprez-Loustau ML. The genetics of exapted resistance to two exotic pathogens in pedunculate oak. THE NEW PHYTOLOGIST 2020; 226:1088-1103. [PMID: 31711257 DOI: 10.1111/nph.16319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/05/2019] [Indexed: 05/16/2023]
Abstract
Exotic pathogens cause severe damage in natural populations in the absence of coevolutionary dynamics with their hosts. However, some resistance to such pathogens may occur in naive populations. The objective of this study was to investigate the genetics of this so-called 'exapted' resistance to two pathogens of Asian origin (Erysiphe alphitoides and Phytophthora cinnamomi) in European oak. Host-pathogen compatibility was assessed by recording infection success and pathogen growth in a full-sib family of Quercus robur under controlled and natural conditions. Two high-resolution genetic maps anchored on the reference genome were used to study the genetic architecture of resistance and to identify positional candidate genes. Two genomic regions, each containing six strong and stable quantitative trait loci (QTLs) accounting for 12-19% of the phenotypic variation, were mainly associated with E. alphitoides infection. Candidate genes, especially genes encoding receptor-like-kinases and galactinol synthases, were identified in these regions. The three QTLs associated with P. cinnamomi infection did not colocate with QTLs found for E. alphitoides. These findings provide evidence that exapted resistance to E. alphitoides and P. cinnamomi is present in Q. robur and suggest that the underlying molecular mechanisms involve genes encoding proteins with extracellular signaling functions.
Collapse
Affiliation(s)
- Jérôme Bartholomé
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, 34398, France
- CIRAD, UMR AGAP, TA A-108 / 03 - Avenue Agropolis, Montpellier, 34398, France
| | - Benjamin Brachi
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
| | - Benoit Marçais
- IAM, INRA, Université de Lorraine, Champenoux, Nancy, 54000, France
| | - Amira Mougou-Hamdane
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
- Institut National Agronomique de Tunisie, Université de Carthage, 43 avenue Charles Nicolle Cité el Mahrajène, Tunis, 1082, Tunisia
| | - Catherine Bodénès
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
| | - Christophe Plomion
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
| | - Cécile Robin
- BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France
| | | |
Collapse
|
19
|
Bellis ES, Kelly EA, Lorts CM, Gao H, DeLeo VL, Rouhan G, Budden A, Bhaskara GB, Hu Z, Muscarella R, Timko MP, Nebie B, Runo SM, Chilcoat ND, Juenger TE, Morris GP, dePamphilis CW, Lasky JR. Genomics of sorghum local adaptation to a parasitic plant. Proc Natl Acad Sci U S A 2020; 117:4243-4251. [PMID: 32047036 PMCID: PMC7049153 DOI: 10.1073/pnas.1908707117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Host-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.
Collapse
Affiliation(s)
- Emily S Bellis
- Department of Biology, The Pennsylvania State University, University Park, PA 16802;
- Arkansas Biosciences Institute, Arkansas State University, State University, AR 72467
- Department of Computer Science, Arkansas State University, State University, AR 72467
| | - Elizabeth A Kelly
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
| | - Claire M Lorts
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Huirong Gao
- Applied Science and Technology, Corteva Agriscience, Johnston, IA 50131
| | - Victoria L DeLeo
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
| | - Germinal Rouhan
- Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, École Pratique des Hautes Études, CP39, 75005 Paris, France
| | - Andrew Budden
- Identification & Naming, Royal Botanic Gardens, Kew, TW9 3AB Richmond, United Kingdom
| | - Govinal B Bhaskara
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Robert Muscarella
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, SE-75236 Uppsala, Sweden
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Baloua Nebie
- West and Central Africa Regional Program, International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali
| | - Steven M Runo
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - N Doane Chilcoat
- Applied Science and Technology, Corteva Agriscience, Johnston, IA 50131
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Geoffrey P Morris
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Jesse R Lasky
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
20
|
Numminen E, Vaumourin E, Parratt SR, Poulin L, Laine AL. Variation and correlations between sexual, asexual and natural enemy resistance life-history traits in a natural plant pathogen population. BMC Evol Biol 2019; 19:142. [PMID: 31299905 PMCID: PMC6624897 DOI: 10.1186/s12862-019-1468-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Understanding the mechanisms by which diversity is maintained in pathogen populations is critical for epidemiological predictions. Life-history trade-offs have been proposed as a hypothesis for explaining long-term maintenance of variation in pathogen populations, yet the empirical evidence supporting trade-offs has remained mixed. This is in part due to the challenges of documenting successive pathogen life-history stages in many pathosystems. Moreover, little is understood of the role of natural enemies of pathogens on their life-history evolution. RESULTS We characterize life-history-trait variation and possible trade-offs in fungal pathogen Podosphaera plantaginis infecting the host plant Plantago lanceolata. We measured the timing of both asexual and sexual stages, as well as resistance to a hyperparasite of seven pathogen strains that vary in their prevalence in nature. We find significant variation among the strains in their life-history traits that constitute the infection cycle, but no evidence for trade-offs among pathogen development stages, apart from fast pathogen growth coninciding with fast hyperparasite growth. Also, the seemingly least fit pathogen strain was the most prevalent in the nature. CONCLUSIONS We conclude that in the nature environmental variation, and interactions with the antagonists of pathogens themselves may maintain variation in pathogen populations.
Collapse
Affiliation(s)
- Elina Numminen
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.
| | - Elise Vaumourin
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland
| | - Steven R Parratt
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,University of Liverpool, Institute of Integrative Biology, Liverpool, L69 3BX, UK
| | - Lucie Poulin
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,Université de Nantes, Faculté des Sciences et des Techniques, Laboratoire de Biologie et de Pathologie Végétales (LBPV), EA 1157, SFR 4207 QUASAV, 2, rue de la Houssinière, BP 92 208, F-44322, Nantes Cedex 3, France
| | - Anna-Liisa Laine
- Department of Biosciences, University of Helsinki, Viikinkaari 1, PO Box 65, FI-00014, Helsinki, Finland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
21
|
Wang Z, Jiang Y, Deane DC, He F, Shu W, Liu Y. Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest. THE NEW PHYTOLOGIST 2019; 223:462-474. [PMID: 30861145 DOI: 10.1111/nph.15786] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/04/2019] [Indexed: 05/04/2023]
Abstract
Soil plant-pathogenic (PF) and mycorrhizal fungi (MF) are both important in maintaining plant diversity, for example via host-specialized effects. However, empirical knowledge on the degree of host specificity and possible factors affecting the fungal assemblages is lacking. We identified PF and MF in fine roots of 519 individuals across 45 subtropical tree species in southern China in order to quantify the importance of host phylogeny (including via its effects on functional traits), habitat and space in determining fungal communities. We also compared host specificity in PF and MF at different host-phylogenetic scales. In both PF and MF, host phylogeny independently accounted for > 19% of the variation in fungal richness and composition, whereas environmental and spatial factors each explained no more than 4% of the variation. Over 77% of the variation explained by phylogeny was attributable to covariation in plant functional traits. Host specificity was phylogenetically scale-dependent, being stronger in PF than in MF at low host-phylogenetic scales (e.g. within genus) but similar at larger scales. Our study suggests that host-phylogenetic effects dominate the assembly of both PF and MF communities, resulting from phylogenetically clustered plant traits. The scale-dependent host specificity implies that PF were specialized at lower-level and MF at higher-level host taxa.
Collapse
Affiliation(s)
- Zihui Wang
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510271, China
| | - Yuan Jiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510271, China
| | - David C Deane
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Fangliang He
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
| | - Wensheng Shu
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
22
|
Klemme I, Karvonen A. Within-host interactions shape virulence-related traits of trematode genotypes. J Evol Biol 2019; 32:572-579. [PMID: 30851229 DOI: 10.1111/jeb.13438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 11/27/2022]
Abstract
Within-host interactions between co-infecting parasites can significantly influence the evolution of key parasite traits, such as virulence (pathogenicity of infection). The type of interaction is expected to predict the direction of selection, with antagonistic interactions favouring more virulent genotypes and synergistic interactions less virulent genotypes. Recently, it has been suggested that virulence can further be affected by the genetic identity of co-infecting partners (G × G interactions), complicating predictions on disease dynamics. Here, we used a natural host-parasite system including a fish host and a trematode parasite to study the effects of G × G interactions on infection virulence. We exposed rainbow trout (Oncorhynchus mykiss) either to single genotypes or to mixtures of two genotypes of the eye fluke Diplostomum pseudospathaceum and estimated parasite infectivity (linearly related to pathogenicity of infection, measured as coverage of eye cataracts) and relative cataract coverage (controlled for infectivity). We found that both traits were associated with complex G × G interactions, including both increases and decreases from single infection to co-infection, depending on the genotype combination. In particular, combinations where both genotypes had low average infectivity and relative cataract coverage in single infections benefited from co-infection, while the pattern was opposite for genotypes with higher performance. Together, our results show that infection outcomes vary considerably between single and co-infections and with the genetic identity of the co-infecting parasites. This can result in variation in parasite fitness and consequently impact evolutionary dynamics of host-parasite interactions.
Collapse
Affiliation(s)
- Ines Klemme
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
23
|
Portet A, Pinaud S, Chaparro C, Galinier R, Dheilly NM, Portela J, Charriere GM, Allienne JF, Duval D, Gourbal B. Sympatric versus allopatric evolutionary contexts shape differential immune response in Biomphalaria / Schistosoma interaction. PLoS Pathog 2019; 15:e1007647. [PMID: 30893368 PMCID: PMC6443186 DOI: 10.1371/journal.ppat.1007647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Selective pressures between hosts and their parasites can result in reciprocal evolution or adaptation of specific life history traits. Local adaptation of resident hosts and parasites should lead to increase parasite infectivity/virulence (higher compatibility) when infecting hosts from the same location (in sympatry) than from a foreign location (in allopatry). Analysis of geographic variations in compatibility phenotypes is the most common proxy used to infer local adaptation. However, in some cases, allopatric host-parasite systems demonstrate similar or greater compatibility than in sympatry. In such cases, the potential for local adaptation remains unclear. Here, we study the interaction between Schistosoma and its vector snail Biomphalaria in which such discrepancy in local versus foreign compatibility phenotype has been reported. Herein, we aim at bridging this gap of knowledge by comparing life history traits (immune cellular response, host mortality, and parasite growth) and molecular responses in highly compatible sympatric and allopatric Schistosoma/Biomphalaria interactions originating from different geographic localities (Brazil, Venezuela and Burundi). We found that despite displaying similar prevalence phenotypes, sympatric schistosomes triggered a rapid immune suppression (dual-RNAseq analyses) in the snails within 24h post infection, whereas infection by allopatric schistosomes (regardless of the species) was associated with immune cell proliferation and triggered a non-specific generalized immune response after 96h. We observed that, sympatric schistosomes grow more rapidly. Finally, we identify miRNAs differentially expressed by Schistosoma mansoni that target host immune genes and could be responsible for hijacking the host immune response during the sympatric interaction. We show that despite having similar prevalence phenotypes, sympatric and allopatric snail-Schistosoma interactions displayed strong differences in their immunobiological molecular dialogue. Understanding the mechanisms allowing parasites to adapt rapidly and efficiently to new hosts is critical to control disease emergence and risks of Schistosomiasis outbreaks. Schistosomiasis, the second most widespread human parasitic disease after malaria, is caused by helminth parasites of the genus Schistosoma. More than 200 million people in 74 countries suffer from the pathological, and societal consequences of this disease. To complete its life cycle, the parasite requires an intermediate host, a freshwater snail of the genus Biomphalaria for its transmission. Given the limited options for treating Schistosoma mansoni infections in humans, much research has focused on developing methods to control transmission by its intermediate snail host. Biomphalaria glabrata. Comparative studies have shown that infection of the snail triggers complex cellular and humoral immune responses resulting in significant variations in parasite infectivity and snail susceptibility, known as the so-called polymorphism of compatibility. However, studies have mostly focused on characterizing the immunobiological mechanisms in sympatric interactions. Herein we used a combination of molecular and phenotypic approaches to compare the effect of infection in various sympatric and allopatric evolutionary contexts, allowing us to better understand the mechanisms of host-parasite local adaptation. Learning more about the immunobiological interactions between B. glabrata and S. mansoni could have important socioeconomic and public health impacts by changing the way we attempt to eradicate parasitic diseases and prevent or control schistosomiasis in the field.
Collapse
Affiliation(s)
- Anaïs Portet
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Silvain Pinaud
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Richard Galinier
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Julien Portela
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Guillaume M. Charriere
- Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Montpellier, France
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| |
Collapse
|
24
|
Evidence of within-species specialization by soil microbes and the implications for plant community diversity. Proc Natl Acad Sci U S A 2019; 116:7371-7376. [PMID: 30842279 DOI: 10.1073/pnas.1810767116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microbes are thought to maintain diversity in plant communities by specializing on particular species, but it is not known whether microbes that specialize within species (i.e., on genotypes) affect diversity or dynamics in plant communities. Here we show that soil microbes can specialize at the within-population level in a wild plant species, and that such specialization could promote species diversity and seed dispersal in plant communities. In a shadehouse experiment in Panama, we found that seedlings of the native tree species, Virola surinamensis (Myristicaceae), had reduced performance in the soil microbial community of their maternal tree compared with in the soil microbial community of a nonmaternal tree from the same population. Performance differences were unrelated to soil nutrients or to colonization by mycorrhizal fungi, suggesting that highly specialized pathogens were the mechanism reducing seedling performance in maternal soils. We then constructed a simulation model to explore the ecological and evolutionary consequences of genotype-specific pathogens in multispecies plant communities. Model results indicated that genotype-specific pathogens promote plant species coexistence-albeit less strongly than species-specific pathogens-and are most effective at maintaining species richness when genetic diversity is relatively low. Simulations also revealed that genotype-specific pathogens select for increased seed dispersal relative to species-specific pathogens, potentially helping to create seed dispersal landscapes that allow pathogens to more effectively promote diversity. Combined, our results reveal that soil microbes can specialize within wild plant populations, affecting seedling performance near conspecific adults and influencing plant community dynamics on ecological and evolutionary time scales.
Collapse
|
25
|
Tian D, Guo X, Zhang Z, Wang M, Wang F. Improving blast resistance of the rice restorer line, Hui 316, by introducing Pi9 or Pi2 with marker-assisted selection. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1649095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Dagang Tian
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xinrui Guo
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhujian Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mo Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Wang
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
26
|
Giraud T, Koskella B, Laine AL. Introduction: microbial local adaptation: insights from natural populations, genomics and experimental evolution. Mol Ecol 2018; 26:1703-1710. [PMID: 28409900 DOI: 10.1111/mec.14091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 02/14/2017] [Accepted: 03/02/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Tatiana Giraud
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| |
Collapse
|
27
|
Parratt SR, Laine A. Pathogen dynamics under both bottom-up host resistance and top-down hyperparasite attack. J Appl Ecol 2018; 55:2976-2985. [PMID: 30449900 PMCID: PMC6220889 DOI: 10.1111/1365-2664.13185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/19/2018] [Indexed: 02/04/2023]
Abstract
The relative importance of bottom-up versus top-down control of population dynamics has been the focus of much debate. In infectious disease biology, research is typically focused on the bottom-up process of host resistance, wherein the direction of control flows from the lower to the higher trophic level to impact on pathogen population size and epidemiology. However, the importance of top-down control by a pathogen's natural enemies has been mostly overlooked.Here, we explore the effects of, and interaction between, host genotype (i.e., genetic susceptibility to pathogen infection) and infection by a hyperparasitic fungus, Ampelomyces spp., on the establishment and early epidemic growth and transmission of a powdery mildew plant pathogen (Podosphaera plantaginis). We used a semi-natural field experiment to contrast the impacts of hyperparasite infection, host-plant resistance and spatial structure to reveal the key factors that determine pathogen spread. We then used a laboratory-based inoculation approach to test whether the field experiment results hold across multiple pathogen-host genetic combinations and to explore hyperparasite effects on the pathogen's later life-history stages.We found that hyperparasite infection had a negligible effect on within-host infection development and between-host spread of the pathogen during the onset of epidemics. In contrast, host-plant resistance was the major determinant of whether plants became infected, and host genotype and proximity to an infection source determined infection severity.Our laboratory study showed that, while the interaction between host and pathogen genotypes was the key determinant of infection outcome, hyperparasitism did, on average, reduce the severity of infection. Moreover, hyperparasite infection negatively influenced the production of the pathogen's overwintering structures. Synthesis and applications. Our results suggest that bottom-up host resistance affects pathogen spread, but top-down control of powdery mildew pathogens is likely more effective against later life-history stages. Further, while hyperparasitism in this system can reduce early pathogen growth under stable laboratory conditions, this effect is not detectable in a semi-natural environment. Considering the effects of hyperparasites at multiple points in pathogen's life history will be important when considering hyperparasite-derived biocontrol measures in other natural and agricultural systems.
Collapse
Affiliation(s)
- Steven R. Parratt
- Research Centre for Ecological ChangeUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological ChangeUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
28
|
Laine AL, Mäkinen H. Life-history correlations change under coinfection leading to higher pathogen load. Evol Lett 2018; 2:126-133. [PMID: 30283670 PMCID: PMC6121793 DOI: 10.1002/evl3.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
The ability of a parasite strain to establish and grow on its host may be drastically altered by simultaneous infection by other parasite strains. However, we still lack an understanding of how life-history allocations may change under coinfection, although life-history correlations are a critical mechanism restricting the evolutionary potential and epidemiological dynamics of pathogens. Here, we study how life-history stages and their correlations change in the obligate fungal pathogen Podosphaera plantaginis under single infection and coinfection scenarios. We find increased pathogen loads under coinfection, but this is not explained by an enhanced performance at any of the life-history stages that constitute infections. Instead, we show that under coinfection the correlation between timing of sporulation and final pathogen load becomes positive. The changes in pathogen life-history allocations leading to more severe infections under coinfection can have far-reaching epidemiological consequences, as well as implication for our understanding of the evolution of virulence.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Research Programme in Organismal & Evolutionary Biology University of Helsinki PO Box 65 (Viikinkaari 1) FI-00014 Finland
| | - Hannu Mäkinen
- Research Programme in Organismal & Evolutionary Biology University of Helsinki PO Box 65 (Viikinkaari 1) FI-00014 Finland
| |
Collapse
|
29
|
|
30
|
Abdullah AS, Turo C, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A. Real-Time PCR for Diagnosing and Quantifying Co-infection by Two Globally Distributed Fungal Pathogens of Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1086. [PMID: 30140271 PMCID: PMC6095046 DOI: 10.3389/fpls.2018.01086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/05/2018] [Indexed: 06/01/2023]
Abstract
Co-infections - invasions of a host-plant by multiple pathogen species or strains - are common, and are thought to have consequences for pathogen ecology and evolution. Despite their apparent significance, co-infections have received limited attention; in part due to lack of suitable quantitative tools for monitoring of co-infecting pathogens. Here, we report on a duplex real-time PCR assay that simultaneously distinguishes and quantifies co-infections by two globally important fungal pathogens of wheat: Pyrenophora tritici-repentis and Parastagonospora nodorum. These fungi share common characteristics and host species, creating a challenge for conventional disease diagnosis and subsequent management strategies. The assay uses uniquely assigned fluorogenic probes to quantify fungal biomass as nucleic acid equivalents. The probes provide highly specific target quantification with accurate discrimination against non-target closely related fungal species and host genes. Quantification of the fungal targets is linear over a wide range (5000-0.5 pg DNA μl-1) with high reproducibility (RSD ≤ 10%). In the presence of host DNA in the assay matrix, fungal biomass can be quantified up to a fungal to wheat DNA ratio of 1 to 200. The utility of the method was demonstrated using field samples of a cultivar sensitive to both pathogens. While visual and culture diagnosis suggested the presence of only one of the pathogen species, the assay revealed not only presence of both co-infecting pathogens (hence enabling asymptomatic detection) but also allowed quantification of relative abundances of the pathogens as a function of disease severity. Thus, the assay provides for accurate diagnosis; it is suitable for high-throughput screening of co-infections in epidemiological studies, and for exploring pathogen-pathogen interactions and dynamics, none of which would be possible with conventional approaches.
Collapse
Affiliation(s)
- Araz S. Abdullah
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Chala Turo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Caroline S. Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Francisco J. Lopez-Ruiz
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Mark R. Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - John Hamblin
- Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - Ayalsew Zerihun
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
31
|
Kovacova V, Zukal J, Bandouchova H, Botvinkin AD, Harazim M, Martínková N, Orlov OL, Piacek V, Shumkina AP, Tiunov MP, Pikula J. White-nose syndrome detected in bats over an extensive area of Russia. BMC Vet Res 2018; 14:192. [PMID: 29914485 PMCID: PMC6007069 DOI: 10.1186/s12917-018-1521-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background Spatiotemporal distribution patterns are important infectious disease epidemiological characteristics that improve our understanding of wild animal population health. The skin infection caused by the fungus Pseudogymnoascus destructans emerged as a panzootic disease in bats of the northern hemisphere. However, the infection status of bats over an extensive geographic area of the Russian Federation has remained understudied. Results We examined bats at the geographic limits of bat hibernation in the Palearctic temperate zone and found bats with white-nose syndrome (WNS) on the European slopes of the Ural Mountains through the Western Siberian Plain, Central Siberia and on to the Far East. We identified the diagnostic symptoms of WNS based on histopathology in the Northern Ural region at 11° (about 1200 km) higher latitude than the current northern limit in the Nearctic. While body surface temperature differed between regions, bats at all study sites hibernated in very cold conditions averaging 3.6 °C. Each region also differed in P. destructans fungal load and the number of UV fluorescent skin lesions indicating skin damage intensity. Myotis bombinus, M. gracilis and Murina hilgendorfi were newly confirmed with histopathological symptoms of WNS. Prevalence of UV-documented WNS ranged between 16 and 76% in species of relevant sample size. Conclusions To conclude, the bat pathogen P. destructans is widely present in Russian hibernacula but infection remains at low intensity, despite the high exposure rate. Electronic supplementary material The online version of this article (10.1186/s12917-018-1521-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic.
| | - Jan Zukal
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alexander D Botvinkin
- Irkutsk State Medical University, Krasnogo Vosstania street 1, Irkutsk, Russian Federation, 664003
| | - Markéta Harazim
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Natália Martínková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, v.v.i., Květná 8, 603 65, Brno, Czech Republic.,Institute of Biostatistics and Analyses, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Oleg L Orlov
- International Complex Research Laboratory for Study of Climate Change, Land Use and Biodiversity, Tyumen State University, Volodarckogo 6, 625003, Tyumen, Russia.,Department of Biochemistry, Ural State Medical University, Repina 3, 620014, Ekaterinburg, Russia
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alexandra P Shumkina
- Western Baikal protected areas, Federal State Budgetary Institution "Zapovednoe Pribaikalye", Baikalskaya st. 291B, 664050, Irkutsk, Russia
| | - Mikhail P Tiunov
- Institute of Biology and Soil Science, Far East Branch of the Russian Academy of Sciences, Pr-t 100-letiya Vladivostoka 159, 690022, Vladivostok, Russia
| | - Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
32
|
Suffert F, Goyeau H, Sache I, Carpentier F, Gélisse S, Morais D, Delestre G. Epidemiological trade-off between intra- and interannual scales in the evolution of aggressiveness in a local plant pathogen population. Evol Appl 2018; 11:768-780. [PMID: 29875818 PMCID: PMC5979725 DOI: 10.1111/eva.12588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 11/30/2017] [Indexed: 01/15/2023] Open
Abstract
The efficiency of plant resistance to fungal pathogen populations is expected to decrease over time, due to their evolution with an increase in the frequency of virulent or highly aggressive strains. This dynamics may differ depending on the scale investigated (annual or pluriannual), particularly for annual crop pathogens with both sexual and asexual reproduction cycles. We assessed this time-scale effect, by comparing aggressiveness changes in a local Zymoseptoria tritici population over an 8-month cropping season and a 6-year period of wheat monoculture. We collected two pairs of subpopulations to represent the annual and pluriannual scales: from leaf lesions at the beginning and end of a single annual epidemic and from crop debris at the beginning and end of a 6-year period. We assessed two aggressiveness traits-latent period and lesion size-on sympatric and allopatric host varieties. A trend toward decreased latent period concomitant with a significant loss of variability was established during the course of the annual epidemic, but not over the 6-year period. Furthermore, a significant cultivar effect (sympatric vs. allopatric) on the average aggressiveness of the isolates revealed host adaptation, arguing that the observed patterns could result from selection. We thus provide an experimental body of evidence of an epidemiological trade-off between the intra- and interannual scales in the evolution of aggressiveness in a local plant pathogen population. More aggressive isolates were collected from upper leaves, on which disease severity is usually lower than on the lower part of the plants left in the field as crop debris after harvest. We suggest that these isolates play little role in sexual reproduction, due to an Allee effect (difficulty finding mates at low pathogen densities), particularly as the upper parts of the plant are removed from the field, explaining the lack of transmission of increases in aggressiveness between epidemics.
Collapse
Affiliation(s)
- Frédéric Suffert
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - Henriette Goyeau
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - Ivan Sache
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - Florence Carpentier
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - Sandrine Gélisse
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - David Morais
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | - Ghislain Delestre
- UMR BIOGER, INRA, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| |
Collapse
|
33
|
Mas MT, Verdú AM. Soil spatial distribution in a smut fungus-annual grass interaction: Exploring patterns to understand disease dynamics at plot scale. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Höckerstedt LM, Siren JP, Laine AL. Effect of spatial connectivity on host resistance in a highly fragmented natural pathosystem. J Evol Biol 2018; 31:844-852. [PMID: 29569292 PMCID: PMC6032904 DOI: 10.1111/jeb.13268] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Both theory and experimental evolution studies predict migration to influence the outcome of antagonistic coevolution between hosts and their parasites, with higher migration rates leading to increased diversity and evolutionary potential. Migration rates are expected to vary in spatially structured natural pathosystems, yet how spatial structure generates variation in coevolutionary trajectories across populations occupying the same landscape has not been tested. Here, we studied the effect of spatial connectivity on host evolutionary potential in a natural pathosystem characterized by a stable Plantago lanceolata host network and a highly dynamic Podosphaera plantaginis parasite metapopulation. We designed a large inoculation experiment to test resistance of five isolated and five well‐connected host populations against sympatric and allopatric pathogen strains, over 4 years. Contrary to our expectations, we did not find consistently higher resistance against sympatric pathogen strains in the well‐connected populations. Instead, host local adaptation varied considerably among populations and through time with greater fluctuations observed in the well‐connected populations. Jointly, our results suggest that in populations where pathogens have successfully established, they have the upper hand in the coevolutionary arms race, but hosts may be better able to respond to pathogen‐imposed selection in the well‐connected than in the isolated populations. Hence, the ongoing and extensive fragmentation of natural habitats may increase vulnerability to diseases.
Collapse
Affiliation(s)
| | - Jukka Pekka Siren
- Department of Computer Science, School of Sciences, Aalto University, Espoo, Finland
| | - Anna-Liisa Laine
- Faculty of Environmental and Biological Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Ben-David R, Dinoor A, Peleg Z, Fahima T. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor. FRONTIERS IN PLANT SCIENCE 2018; 9:75. [PMID: 29527213 PMCID: PMC5829517 DOI: 10.3389/fpls.2018.00075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/15/2018] [Indexed: 03/14/2024]
Abstract
The biotroph wheat powdery mildew, Blumeria graminis (DC.) E.O. Speer, f. sp. tritici Em. Marchal (Bgt), has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes (Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum, and T. aestivum) and 241 accessions of its direct progenitor, wild emmer wheat (T. turgidum ssp. dicoccoides)]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant). Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host). Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [P(F) < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance). By testing the association between disease severity and geographical distance from the source of inoculum, we have found higher susceptibility in wild emmer close to the source. Both qualitative and quantitative assays showed a reciprocal resistance pattern in the wheat host and are well aligned with the recent findings of significant differentiation into wild-emmer and domesticated-wheat populations in the pathogen.
Collapse
Affiliation(s)
- Roi Ben-David
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization-Volcani Center, Rishon LeZion, Israel
| | - Amos Dinoor
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Zvi Peleg
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
36
|
da Luz SFM, Yamaguchi LF, Kato MJ, de Lemos OF, Xavier LP, Maia JGS, Ramos ADR, Setzer WN, da Silva JKDR. Secondary Metabolic Profiles of Two Cultivars of Piper nigrum (Black Pepper) Resulting from Infection by Fusarium solani f. sp. piperis. Int J Mol Sci 2017; 18:ijms18122434. [PMID: 29215548 PMCID: PMC5751101 DOI: 10.3390/ijms18122434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
Abstract
Bragantina and Cingapura are the main black pepper (Piper nigrum L.) cultivars and the Pará state is the largest producer in Brazil with about 90% of national production, representing the third largest production in the world. The infection of Fusarium solani f. sp. piperis, the causal agent of Fusarium disease in black pepper, was monitored on the cultivars Bragantina (susceptible) and Cingapura (tolerant), during 45 days’ post infection (dpi). Gas Chromatography-Mass spectrometry (GC-MS) analysis of the volatile concentrates of both cultivars showed that the Bragantina responded with the production of higher contents of α-bisabolol at 21 dpi and a decrease of elemol, mostly at 30 dpi; while Cingapura displayed an decrease of δ-elemene production, except at 15 dpi. The phenolic content determined by the Folin Ciocalteu method showed an increase in the leaves of plants inoculated at 7 dpi (Bragantina) and 7–15 dpi (Cingapura); in the roots, the infection caused a phenolic content decrease in Bragantina cultivar at 45 dpi and an increase in the Cingapura cultivar at 15, 30 and 45 dpi. High Performance Liquid Chromatography-Mass spectrometry (HPLC-MS) analysis of the root extracts showed a qualitative variation of alkamides during infection. The results indicated that there is a possible relationship between secondary metabolites and tolerance against phytopathogens.
Collapse
Affiliation(s)
- Shirlley F M da Luz
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-900, Brazil.
| | - Lydia F Yamaguchi
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil.
| | - Massuo J Kato
- Laboratório de Química de Produtos Naturais, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil.
| | - Oriel F de Lemos
- Centro de Pesquisa Agroflorestal da Amazônia Oriental, Empresa Brasileira de Pesquisa Agropecuária, Belém 66095-903, Brazil.
| | - Luciana P Xavier
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-900, Brazil.
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Santarém 68035-110, Brazil.
| | - Alessandra de R Ramos
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá 68501-970, Brazil.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | | |
Collapse
|
37
|
Call AC, St Clair SB. Outbreak of Drepanopeziza fungus in aspen forests and variation in stand susceptibility: leaf functional traits, compensatory growth and phenology. TREE PHYSIOLOGY 2017; 37:1198-1207. [PMID: 28938057 DOI: 10.1093/treephys/tpx088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
In the spring of 2015, a severe outbreak of the necrotrophic pathogen Drepanopeziza (also known as Marssonina) spread across large portions of aspen (Populus tremuloides Michx.) forests in the western United States. Among adjacent stands, some were diseased and others were not. Drepanopeziza infection in diseased aspen stands stimulated compensatory growth of second-flush leaves at the top of the canopy. These patterns of infection provided an opportunity to characterize associations of pathogen infection and leaf functional traits. Eight pairs of adjacent healthy and diseased aspen stands were identified across a forest landscape in northern Utah. Average leaf surface area, specific leaf area (SLA), photosynthesis, starch concentration and defense chemistry expression (phenolic glycosides and condensed tannins) were measured on original, first-flush leaves in the lower portion of the tree canopy of healthy and diseased stands and compensatory, second-flush leaves produced in the canopy top of diseased stands. Only first-flush leaves of diseased stands showed high levels of Drepanopeziza infection. Leaf area of second-flush leaves of diseased stands was threefold larger than all other leaf types in healthy or diseased stands. Lower canopy leaves of healthy stands had the highest SLA. Photosynthesis was lowest in infected first-flush leaves, highest in second-flush leaves of diseased stands and intermediate in leaves of healthy stands. Foliar starch concentrations were lower in leaves of diseased stands than leaves from healthy stands. Condensed tannins were greater in second-flush leaves than first-flush leaves in both healthy and diseased stands. Phenolic glycoside concentrations were lowest in infected leaves of diseased stands. Diseased stands leafed out a week earlier in the spring than healthy stands, which may have exposed their emerging leaves to rainy conditions that promote Drepanopeziza infection. Compensatory leaf regrowth of diseased stands appears to offset some of the functional loss (i.e., photosynthetic capacity) of infected leaves.
Collapse
Affiliation(s)
- Anson C Call
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Samuel B St Clair
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
38
|
Ekholm A, Roslin T, Pulkkinen P, Tack AJM. Dispersal, host genotype and environment shape the spatial dynamics of a parasite in the wild. Ecology 2017; 98:2574-2584. [DOI: 10.1002/ecy.1949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/06/2017] [Accepted: 07/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Ekholm
- Department of Ecology; Swedish University of Agricultural Sciences; Box 7044 Uppsala SE-750 07 Sweden
| | - Tomas Roslin
- Department of Ecology; Swedish University of Agricultural Sciences; Box 7044 Uppsala SE-750 07 Sweden
- Department of Agricultural Sciences; University of Helsinki; PO Box 27, Latokartanonkaari 5 Helsinki FI-00014 Finland
| | - Pertti Pulkkinen
- Haapastensyrjä Unit; Natural Resources Institute Finland; Haapastensyrjäntie 34 Läyliäinen FI-12600 Finland
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant Sciences; Stockholm University; Svante Arrhenius väg 20A Stockholm Sweden
| |
Collapse
|
39
|
Evidence for Adaptive Introgression of Disease Resistance Genes Among Closely Related Arabidopsis Species. G3-GENES GENOMES GENETICS 2017. [PMID: 28630104 PMCID: PMC5555472 DOI: 10.1534/g3.117.043984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The generation and maintenance of functional variation in the pathogen defense system of plants is central to the constant evolutionary battle between hosts and parasites. If a species is susceptible to a given pathogen, hybridization and subsequent introgression of a resistance allele from a related species can potentially be an important source of new immunity and is therefore expected to be selected for in a process referred to as adaptive introgression. Here, we survey sequence variation in 10 resistance (R-) genes and compare them with 37 reference genes in natural populations of the two closely related and interfertile species: Arabidopsis lyrata and A. halleri. The R-genes are highly polymorphic in both species and show clear signs of trans-species polymorphisms. We show that A. lyrata and A. halleri have had a history of limited introgression for the reference genes. For the R-genes, the introgression rate has been significantly higher than for the reference genes, resulting in fewer fixed differences between species and a higher sharing of identical haplotypes. We conclude that R-genes likely cross the species boundaries at a higher rate than reference genes and therefore also that some of the increased diversity and trans-specific polymorphisms in R-genes is due to adaptive introgression.
Collapse
|
40
|
Parratt SR, Barrès B, Penczykowski RM, Laine AL. Local adaptation at higher trophic levels: contrasting hyperparasite-pathogen infection dynamics in the field and laboratory. Mol Ecol 2017; 26:1964-1979. [PMID: 27859910 PMCID: PMC5412677 DOI: 10.1111/mec.13928] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 12/23/2022]
Abstract
Predicting and controlling infectious disease epidemics is a major challenge facing the management of agriculture, human and wildlife health. Co-evolutionarily derived patterns of local adaptation among pathogen populations have the potential to generate variation in disease epidemiology; however, studies of local adaptation in disease systems have mostly focused on interactions between competing pathogens or pathogens and their hosts. In nature, parasites and pathogens are also subject to attack by hyperparasitic natural enemies that can severely impact upon their infection dynamics. However, few studies have investigated whether this interaction varies across combinations of pathogen-hyperparasite strains, and whether this influences hyperparasite incidence in natural pathogen populations. Here, we test whether the association between a hyperparasitic fungus, Ampelomyces, and a single powdery mildew host, Podosphaera plantaginis, varies among genotype combinations, and whether this drives hyperparasite incidence in nature. Laboratory inoculation studies reveal that genotype, genotype × genotype interactions and local adaptation affect hyperparasite infection. However, observations of a natural pathogen metapopulation reveal that spatial rather than genetic factors predict the risk of hyperparasite presence. Our results highlight how sensitive the outcome of biocontrol using hyperparasites is to selection of hyperparasite strains.
Collapse
Affiliation(s)
- Steven R Parratt
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| | - Benoit Barrès
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| | - Rachel M Penczykowski
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| |
Collapse
|
41
|
Gurney J, Aldakak L, Betts A, Gougat-Barbera C, Poisot T, Kaltz O, Hochberg ME. Network structure and local adaptation in co-evolving bacteria-phage interactions. Mol Ecol 2017; 26:1764-1777. [PMID: 28092408 DOI: 10.1111/mec.14008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 01/21/2023]
Abstract
Numerous theoretical and experimental studies have investigated antagonistic co-evolution between parasites and their hosts. Although experimental tests of theory from a range of biological systems are largely concordant regarding the influence of several driving processes, we know little as to how mechanisms acting at the smallest scales (individual molecular and phenotypic changes) may result in the emergence of structures at larger scales, such as co-evolutionary dynamics and local adaptation. We capitalized on methods commonly employed in community ecology to quantify how the structure of community interaction matrices, so-called bipartite networks, reflected observed co-evolutionary dynamics, and how phages from these communities may or may not have adapted locally to their bacterial hosts. We found a consistent nested network structure for two phage types, one previously demonstrated to exhibit arms race co-evolutionary dynamics and the other fluctuating co-evolutionary dynamics. Both phages increased their host ranges through evolutionary time, but we found no evidence for a trade-off with impact on bacteria. Finally, only bacteria from the arms race phage showed local adaptation, and we provide preliminary evidence that these bacteria underwent (sometimes different) molecular changes in the wzy gene associated with the LPS receptor, while bacteria co-evolving with the fluctuating selection phage did not show local adaptation and had partial deletions of the pilF gene associated with type IV pili. We conclude that the structure of phage-bacteria interaction networks is not necessarily specific to co-evolutionary dynamics, and discuss hypotheses for why only one of the two phages was, nevertheless, locally adapted.
Collapse
Affiliation(s)
- James Gurney
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Lafi Aldakak
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Alex Betts
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Claire Gougat-Barbera
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Timothée Poisot
- Département de Sciences Biologiques, Université de Montréal, Pavillon Marie-Victorin, 90, avenue Vincent-d'Indy, Montréal, H2V 2S9, Canada
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France.,Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, 87501, USA
| |
Collapse
|
42
|
Croll D, Laine AL. What the population genetic structures of host and pathogen tell us about disease evolution. THE NEW PHYTOLOGIST 2016; 212:537-539. [PMID: 27735071 DOI: 10.1111/nph.14203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Daniel Croll
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 2, Zürich, CH-8092, Switzerland.
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Plant Biology, Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki, FI-00014, Finland.
| |
Collapse
|
43
|
Parratt SR, Numminen E, Laine AL. Infectious Disease Dynamics in Heterogeneous Landscapes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032321] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infectious diseases dynamics are affected by both spatial and temporal heterogeneity in their environments. Our ability to quantify and predict how this heterogeneity impacts risks of infection and disease emergence is the key to successful disease prevention efforts. Here, we review the literature on infectious diseases from human, agricultural, and wildlife ecosystems to describe the rapid ecological and evolutionary responses in pathogens to environmental heterogeneity, with expected impacts on their epidemiology. To date, the underlying network structures through which disease transmission proceeds have been notoriously difficult to quantify because of this variation. We show that with recent advances in statistical methods and genomic approaches, it is now more feasible than ever to trace disease transmission networks, the molecular underpinning of infection, and the environmental variation relevant to disease dynamics. We end by identifying major new opportunities and challenges in understanding disease dynamics in an ever-changing world.
Collapse
Affiliation(s)
- Steven R. Parratt
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| | - Elina Numminen
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| |
Collapse
|
44
|
Burdon JJ, Zhan J, Barrett LG, Papaïx J, Thrall PH. Addressing the Challenges of Pathogen Evolution on the World's Arable Crops. PHYTOPATHOLOGY 2016; 106:1117-1127. [PMID: 27584868 DOI: 10.1094/phyto-01-16-0036-fi] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Advances in genomic and molecular technologies coupled with an increasing understanding of the fine structure of many resistance and infectivity genes, have opened up a new era of hope in controlling the many plant pathogens that continue to be a major source of loss in arable crops. Some new approaches are under consideration including the use of nonhost resistance and the targeting of critical developmental constraints. However, the major thrust of these genomic and molecular approaches is to enhance the identification of resistance genes, to increase their ease of manipulation through marker and gene editing technologies and to lock a range of resistance genes together in simply manipulable resistance gene cassettes. All these approaches essentially continue a strategy that assumes the ability to construct genetic-based resistance barriers that are insurmountable to target pathogens. Here we show how the recent advances in knowledge and marker technologies can be used to generate more durable disease resistance strategies that are based on broad evolutionary principles aimed at presenting pathogens with a shifting, landscape of fluctuating directional selection.
Collapse
Affiliation(s)
- Jeremy J Burdon
- First and second authors: Fujian Key Lab of Plant Virology, Institute of Plant Virology; Fujian Agriculture and Forestry University, Fuzhou, China; first, third, and fifth authors: CSIRO Agriculture, PO Box 1600, Canberra, A.C.T. 2601, Australia; and fourth author: INRA Biostatistics and Spatial Processes, Domaine Saint-Paul AgroParc, 84914 Avignon, France
| | - Jiasui Zhan
- First and second authors: Fujian Key Lab of Plant Virology, Institute of Plant Virology; Fujian Agriculture and Forestry University, Fuzhou, China; first, third, and fifth authors: CSIRO Agriculture, PO Box 1600, Canberra, A.C.T. 2601, Australia; and fourth author: INRA Biostatistics and Spatial Processes, Domaine Saint-Paul AgroParc, 84914 Avignon, France
| | - Luke G Barrett
- First and second authors: Fujian Key Lab of Plant Virology, Institute of Plant Virology; Fujian Agriculture and Forestry University, Fuzhou, China; first, third, and fifth authors: CSIRO Agriculture, PO Box 1600, Canberra, A.C.T. 2601, Australia; and fourth author: INRA Biostatistics and Spatial Processes, Domaine Saint-Paul AgroParc, 84914 Avignon, France
| | - Julien Papaïx
- First and second authors: Fujian Key Lab of Plant Virology, Institute of Plant Virology; Fujian Agriculture and Forestry University, Fuzhou, China; first, third, and fifth authors: CSIRO Agriculture, PO Box 1600, Canberra, A.C.T. 2601, Australia; and fourth author: INRA Biostatistics and Spatial Processes, Domaine Saint-Paul AgroParc, 84914 Avignon, France
| | - Peter H Thrall
- First and second authors: Fujian Key Lab of Plant Virology, Institute of Plant Virology; Fujian Agriculture and Forestry University, Fuzhou, China; first, third, and fifth authors: CSIRO Agriculture, PO Box 1600, Canberra, A.C.T. 2601, Australia; and fourth author: INRA Biostatistics and Spatial Processes, Domaine Saint-Paul AgroParc, 84914 Avignon, France
| |
Collapse
|
45
|
Thrall PH, Barrett LG, Dodds PN, Burdon JJ. Epidemiological and Evolutionary Outcomes in Gene-for-Gene and Matching Allele Models. FRONTIERS IN PLANT SCIENCE 2016; 6:1084. [PMID: 26779200 PMCID: PMC4703789 DOI: 10.3389/fpls.2015.01084] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/19/2015] [Indexed: 05/30/2023]
Abstract
Gene-for-gene (GFG) and matching-allele (MA) models are qualitatively different paradigms for describing the outcome of genetic interactions between hosts and pathogens. The GFG paradigm was largely built on the foundations of Flor's early work on the flax-flax rust interaction and is based on the concept of genetic recognition leading to incompatible disease outcomes, typical of host immune recognition. In contrast, the MA model is based on the assumption that genetic recognition leads to compatible interactions, which can result when pathogens require specific host factors to cause infection. Results from classical MA and GFG models have led to important predictions regarding various coevolutionary phenomena, including the role of fitness costs associated with resistance and infectivity, the distribution of resistance genes in wild populations, patterns of local adaptation and the evolution and maintenance of sexual reproduction. Empirical evidence (which we review briefly here), particularly from recent molecular advances in understanding of the mechanisms that determine the outcome of host-pathogen encounters, suggests considerable variation in specific details of the functioning of interactions between hosts and pathogens, which may contain elements of both models. In this regard, GFG and MA scenarios likely represent endpoints of a continuum of potentially more complex interactions that occur in nature. Increasingly, this has been recognized in theoretical studies of coevolutionary processes in plant host-pathogen and animal host-parasite associations (e.g., departures from strict GFG/MA assumptions, diploid genetics, multi-step infection processes). However, few studies have explored how different genetic assumptions about host resistance and pathogen infectivity might impact on disease epidemiology or pathogen persistence within and among populations. Here, we use spatially explicit simulations of the basic MA and GFG scenarios to highlight qualitative differences between these scenarios with regard to patterns of disease and impacts on host demography. Given that such impacts drive evolutionary trajectories, future theoretical advances that aim to capture more complex genetic scenarios should explicitly address the interaction between epidemiology and different models of host-pathogen interaction genetics.
Collapse
|
46
|
Penczykowski RM, Laine A, Koskella B. Understanding the ecology and evolution of host-parasite interactions across scales. Evol Appl 2016; 9:37-52. [PMID: 27087838 PMCID: PMC4780374 DOI: 10.1111/eva.12294] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
Predicting the emergence, spread and evolution of parasites within and among host populations requires insight to both the spatial and temporal scales of adaptation, including an understanding of within-host up through community-level dynamics. Although there are very few pathosystems for which such extensive data exist, there has been a recent push to integrate studies performed over multiple scales or to simultaneously test for dynamics occurring across scales. Drawing on examples from the literature, with primary emphasis on three diverse host-parasite case studies, we first examine current understanding of the spatial structure of host and parasite populations, including patterns of local adaptation and spatial variation in host resistance and parasite infectivity. We then explore the ways to measure temporal variation and dynamics in host-parasite interactions and discuss the need to examine change over both ecological and evolutionary timescales. Finally, we highlight new approaches and syntheses that allow for simultaneous analysis of dynamics across scales. We argue that there is great value in examining interplay among scales in studies of host-parasite interactions.
Collapse
Affiliation(s)
- Rachel M. Penczykowski
- Department of BiosciencesMetapopulation Research CentreUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Department of BiosciencesMetapopulation Research CentreUniversity of HelsinkiHelsinkiFinland
| | - Britt Koskella
- BiosciencesUniversity of ExeterTremoughUK
- Integrative BiologyUniversity of CaliforniaBerkeleyUSA
| |
Collapse
|
47
|
Lu HL, St. Leger R. Insect Immunity to Entomopathogenic Fungi. GENETICS AND MOLECULAR BIOLOGY OF ENTOMOPATHOGENIC FUNGI 2016; 94:251-85. [DOI: 10.1016/bs.adgen.2015.11.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Fleming-Davies AE, Dukic V, Andreasen V, Dwyer G. Effects of host heterogeneity on pathogen diversity and evolution. Ecol Lett 2015; 18:1252-1261. [PMID: 26365355 PMCID: PMC10425259 DOI: 10.1111/ele.12506] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/28/2015] [Accepted: 08/10/2015] [Indexed: 11/29/2022]
Abstract
Phenotypic variation is common in most pathogens, yet the mechanisms that maintain this diversity are still poorly understood. We asked whether continuous host variation in susceptibility helps maintain phenotypic variation, using experiments conducted with a baculovirus that infects gypsy moth (Lymantria dispar) larvae. We found that an empirically observed tradeoff between mean transmission rate and variation in transmission, which results from host heterogeneity, promotes long-term coexistence of two pathogen types in simulations of a population model. This tradeoff introduces an alternative strategy for the pathogen: a low-transmission, low-variability type can coexist with the high-transmission type favoured by classical non-heterogeneity models. In addition, this tradeoff can help explain the extensive phenotypic variation we observed in field-collected pathogen isolates, in traits affecting virus fitness including transmission and environmental persistence. Similar heterogeneity tradeoffs might be a general mechanism promoting phenotypic variation in any pathogen for which hosts vary continuously in susceptibility.
Collapse
Affiliation(s)
- Arietta E. Fleming-Davies
- Department of Ecology & Evolution, University of Chicago, 900 E 57th St, Chicago, IL 60637, USA
- Biology Department, Radford University, PO BOX 6931, Radford, VA 24141, USA
| | - Vanja Dukic
- Department of Applied Mathematics, University of Colorado, 526 UCB, Boulder, CO 80309, USA
| | - Viggo Andreasen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Greg Dwyer
- Department of Ecology & Evolution, University of Chicago, 900 E 57th St, Chicago, IL 60637, USA
| |
Collapse
|
49
|
Tack AJM, Laine AL, Burdon JJ, Bissett A, Thrall PH. Below-ground abiotic and biotic heterogeneity shapes above-ground infection outcomes and spatial divergence in a host-parasite interaction. THE NEW PHYTOLOGIST 2015; 207:1159-1169. [PMID: 25872137 PMCID: PMC4523403 DOI: 10.1111/nph.13408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/13/2015] [Indexed: 05/29/2023]
Abstract
We investigated the impact of below-ground and above-ground environmental heterogeneity on the ecology and evolution of a natural plant-pathogen interaction. We combined field measurements and a reciprocal inoculation experiment to investigate the potential for natural variation in abiotic and biotic factors to mediate infection outcomes in the association between the fungal pathogen Melampsora lini and its wild flax host, Linum marginale, where pathogen strains and plant lines originated from two ecologically distinct habitat types that occur in close proximity ('bog' and 'hill'). The two habitat types differed strikingly in soil moisture and soil microbiota. Infection outcomes for different host-pathogen combinations were strongly affected by the habitat of origin of the plant lines and pathogen strains, the soil environment and their interactions. Our results suggested that tradeoffs play a key role in explaining the evolutionary divergence in interaction traits among the two habitat types. Overall, we demonstrate that soil heterogeneity, by mediating infection outcomes and evolutionary divergence, can contribute to the maintenance of variation in resistance and pathogenicity within a natural host-pathogen metapopulation.
Collapse
Affiliation(s)
- Ayco J. M. Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland
| | - Anna-Liisa Laine
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland
| | - Jeremy J. Burdon
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, A.C.T. 2601, Australia
| | - Andrew Bissett
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, A.C.T. 2601, Australia
| | - Peter H. Thrall
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, A.C.T. 2601, Australia
| |
Collapse
|
50
|
Susi H, Vale PF, Laine AL. Host Genotype and Coinfection Modify the Relationship of within and between Host Transmission. Am Nat 2015; 186:252-63. [PMID: 26655153 DOI: 10.1086/682069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Variation in individual-level disease transmission is well documented, but the underlying causes of this variation are challenging to disentangle in natural epidemics. In general, within-host replication is critical in determining the extent to which infected hosts shed transmission propagules, but which factors cause variation in this relationship are poorly understood. Here, using a plant host, Plantago lanceolata, and the powdery mildew fungus Podosphaera plantaginis, we quantify how the distinct stages of within-host spread (autoinfection), spore release, and successful transmission to new hosts (alloinfection) are influenced by host genotype, pathogen genotype, and the coinfection status of the host. We find that within-host spread alone fails to predict transmission rates, as this relationship is modified by genetic variation in hosts and pathogens. Their contributions change throughout the course of the epidemic. Host genotype and coinfection had particularly pronounced effects on the dynamics of spore release from infected hosts. Confidently predicting disease spread from local levels of individual transmission, therefore, requires a more nuanced understanding of genotype-specific infection outcomes. This knowledge is key to better understanding the drivers of epidemiological dynamics and the resulting evolutionary trajectories of infectious disease.
Collapse
Affiliation(s)
- Hanna Susi
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| | | | | |
Collapse
|