1
|
Bilska B, Damulewicz M, Abaquita TAL, Pyza E. Changes in heme oxygenase level during development affect the adult life of Drosophila melanogaster. Front Cell Neurosci 2023; 17:1239101. [PMID: 37876913 PMCID: PMC10591093 DOI: 10.3389/fncel.2023.1239101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Heme oxygenase (HO) has been shown to control various cellular processes in both mammals and Drosophila melanogaster. Here, we investigated how changes in HO levels in neurons and glial cells during development affect adult flies, by using the TARGET Drosophila system to manipulate the expression of the ho gene. The obtained data showed differences in adult survival, maximum lifespan, climbing, locomotor activity, and sleep, which depended on the level of HO (after ho up-regulation or downregulation), the timing of expression (chronic or at specific developmental stages), cell types (neurons or glia), sex (males or females), and age of flies. In addition to ho, the effects of changing the mRNA level of the Drosophila CNC factor gene (NRF2 homolog in mammals and master regulator of HO), were also examined to compare with those observed after changing ho expression. We showed that HO levels in neurons and glia must be maintained at an appropriate physiological level during development to ensure the well-being of adults. We also found that the downregulation of ho in either neurons or glia in the brain is compensated by ho expressed in the retina.
Collapse
Affiliation(s)
| | | | | | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
2
|
Learning from Yeast about Mitochondrial Carriers. Microorganisms 2021; 9:microorganisms9102044. [PMID: 34683364 PMCID: PMC8539049 DOI: 10.3390/microorganisms9102044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are organelles that play an important role in both energetic and synthetic metabolism of eukaryotic cells. The flow of metabolites between the cytosol and mitochondrial matrix is controlled by a set of highly selective carrier proteins localised in the inner mitochondrial membrane. As defects in the transport of these molecules may affect cell metabolism, mutations in genes encoding for mitochondrial carriers are involved in numerous human diseases. Yeast Saccharomyces cerevisiae is a traditional model organism with unprecedented impact on our understanding of many fundamental processes in eukaryotic cells. As such, the yeast is also exceptionally well suited for investigation of mitochondrial carriers. This article reviews the advantages of using yeast to study mitochondrial carriers with the focus on addressing the involvement of these carriers in human diseases.
Collapse
|
3
|
Fiorito V, Allocco AL, Petrillo S, Gazzano E, Torretta S, Marchi S, Destefanis F, Pacelli C, Audrito V, Provero P, Medico E, Chiabrando D, Porporato PE, Cancelliere C, Bardelli A, Trusolino L, Capitanio N, Deaglio S, Altruda F, Pinton P, Cardaci S, Riganti C, Tolosano E. The heme synthesis-export system regulates the tricarboxylic acid cycle flux and oxidative phosphorylation. Cell Rep 2021; 35:109252. [PMID: 34133926 DOI: 10.1016/j.celrep.2021.109252] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/21/2020] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Heme is an iron-containing porphyrin of vital importance for cell energetic metabolism. High rates of heme synthesis are commonly observed in proliferating cells. Moreover, the cell-surface heme exporter feline leukemia virus subgroup C receptor 1a (FLVCR1a) is overexpressed in several tumor types. However, the reasons why heme synthesis and export are enhanced in highly proliferating cells remain unknown. Here, we illustrate a functional axis between heme synthesis and heme export: heme efflux through the plasma membrane sustains heme synthesis, and implementation of the two processes down-modulates the tricarboxylic acid (TCA) cycle flux and oxidative phosphorylation. Conversely, inhibition of heme export reduces heme synthesis and promotes the TCA cycle fueling and flux as well as oxidative phosphorylation. These data indicate that the heme synthesis-export system modulates the TCA cycle and oxidative metabolism and provide a mechanistic basis for the observation that both processes are enhanced in cells with high-energy demand.
Collapse
Affiliation(s)
- Veronica Fiorito
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Anna Lucia Allocco
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Sara Petrillo
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Gazzano
- Department of Oncology, University of Torino, Torino, Italy
| | - Simone Torretta
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Francesca Destefanis
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Valentina Audrito
- Immunogenetics Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Paolo Provero
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Omics Sciences, San Raffaele Scientific Institute IRCSS, Milano, Italy
| | - Enzo Medico
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Deborah Chiabrando
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paolo Ettore Porporato
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Candiolo, TO, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Silvia Deaglio
- Immunogenetics Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Cardaci
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
4
|
Chiabrando D, Fiorito V, Petrillo S, Bertino F, Tolosano E. HEME: a neglected player in nociception? Neurosci Biobehav Rev 2021; 124:124-136. [PMID: 33545213 DOI: 10.1016/j.neubiorev.2021.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Despite increasing progress in the understanding of the pathophysiology of pain, current management of pain syndromes is still unsatisfactory. The recent discovery of novel pathways associated with pain insensitivity in humans represents a unique opportunity to improve our knowledge on the pathophysiology of pain. Heme metabolism recently emerged as a crucial regulator of nociception. Of note, alteration of heme metabolism has been associated with pain insensitivity as well as with acute and chronic pain in porphyric neuropathy and hemolytic diseases. However, the molecular mechanisms linking heme to the pain pathways still remain unclear. The review focuses on the major heme-regulated processes relevant for sensory neurons' maintenance, peripheral and central sensitization as well as for pain comorbidities, like anxiety and depression. By discussing the body of knowledge on the topic, we provide a novel perspective on the molecular mechanisms linking heme to nociception.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy.
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
5
|
Fiorito V, Chiabrando D, Petrillo S, Bertino F, Tolosano E. The Multifaceted Role of Heme in Cancer. Front Oncol 2020; 9:1540. [PMID: 32010627 PMCID: PMC6974621 DOI: 10.3389/fonc.2019.01540] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Heme, an iron-containing porphyrin, is of vital importance for cells due to its involvement in several biological processes, including oxygen transport, energy production and drug metabolism. Besides these vital functions, heme also bears toxic properties and, therefore, the amount of heme inside the cells must be tightly regulated. Similarly, heme intake from dietary sources is strictly controlled to meet body requirements. The multifaceted nature of heme renders it a best candidate molecule exploited/controlled by tumor cells in order to modulate their energetic metabolism, to interact with the microenvironment and to sustain proliferation and survival. The present review summarizes the literature on heme and cancer, emphasizing the importance to consider heme as a prominent player in different aspects of tumor onset and progression.
Collapse
Affiliation(s)
- Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
6
|
Ogunbona OB, Claypool SM. Emerging Roles in the Biogenesis of Cytochrome c Oxidase for Members of the Mitochondrial Carrier Family. Front Cell Dev Biol 2019; 7:3. [PMID: 30766870 PMCID: PMC6365663 DOI: 10.3389/fcell.2019.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial carrier family (MCF) is a group of transport proteins that are mostly localized to the inner mitochondrial membrane where they facilitate the movement of various solutes across the membrane. Although these carriers represent potential targets for therapeutic application and are repeatedly associated with human disease, research on the MCF has not progressed commensurate to their physiologic and pathophysiologic importance. Many of the 53 MCF members in humans are orphans and lack known transport substrates. Even for the relatively well-studied members of this family, such as the ADP/ATP carrier and the uncoupling protein, there exist fundamental gaps in our understanding of their biological roles including a clear rationale for the existence of multiple isoforms. Here, we briefly review this important family of mitochondrial carriers, provide a few salient examples of their diverse metabolic roles and disease associations, and then focus on an emerging link between several distinct MCF members, including the ADP/ATP carrier, and cytochrome c oxidase biogenesis. As the ADP/ATP carrier is regarded as the paradigm of the entire MCF, its newly established role in regulating translation of the mitochondrial genome highlights that we still have a lot to learn about these metabolite transporters.
Collapse
Affiliation(s)
- Oluwaseun B. Ogunbona
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Steven M. Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
7
|
da Fonseca-Pereira P, Neri-Silva R, Cavalcanti JHF, Brito DS, Weber APM, Araújo WL, Nunes-Nesi A. Data-Mining Bioinformatics: Connecting Adenylate Transport and Metabolic Responses to Stress. TRENDS IN PLANT SCIENCE 2018; 23:961-974. [PMID: 30287161 DOI: 10.1016/j.tplants.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Adenine nucleotides are essential in countless processes within the cellular metabolism. In plants, ATP is mainly produced in chloroplasts and mitochondria through photophosphorylation and oxidative phosphorylation, respectively. Thus, efficient adenylate transport systems are required for intracellular energy partitioning between the cell organelles. Adenylate carriers present in different subcellular compartments have been previously identified and biochemically characterized in plants. Here, by using data-mining bioinformatics tools, we propose how, and to what extent, these carriers integrate energy metabolism within a plant cell under different environmental conditions. We demonstrate that the expression pattern of the corresponding genes is variable under different environmental conditions, suggesting that specific adenylate carriers have distinct and nonredundant functions in plants.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; These authors contributed equally to this work
| | - Roberto Neri-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; These authors contributed equally to this work
| | - João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Panck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Danielle S Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Panck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Chiabrando D, Fiorito V, Petrillo S, Tolosano E. Unraveling the Role of Heme in Neurodegeneration. Front Neurosci 2018; 12:712. [PMID: 30356807 PMCID: PMC6189481 DOI: 10.3389/fnins.2018.00712] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/19/2018] [Indexed: 12/24/2022] Open
Abstract
Heme (iron-protoporphyrin IX) is an essential co-factor involved in several biological processes, including neuronal survival and differentiation. Nevertheless, an excess of free-heme promotes oxidative stress and lipid peroxidation, thus leading to cell death. The toxic properties of heme in the brain have been extensively studied during intracerebral or subarachnoid hemorrhages. Recently, a growing number of neurodegenerative disorders have been associated to alterations of heme metabolism. Hence, the etiology of such diseases remains undefined. The aim of this review is to highlight the neuropathological role of heme and to discuss the major heme-regulated pathways that might be crucial for the survival of neuronal cells. The understanding of the molecular mechanisms linking heme to neurodegeneration will be important for therapeutic purposes.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Veronica Fiorito
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Sara Petrillo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| |
Collapse
|
9
|
Mitochondrial Targeting in Neurodegeneration: A Heme Perspective. Pharmaceuticals (Basel) 2018; 11:ph11030087. [PMID: 30231533 PMCID: PMC6161291 DOI: 10.3390/ph11030087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction has achieved an increasing interest in the field of neurodegeneration as a pathological hallmark for different disorders. The impact of mitochondria is related to a variety of mechanisms and several of them can co-exist in the same disease. The central role of mitochondria in neurodegenerative disorders has stimulated studies intended to implement therapeutic protocols based on the targeting of the distinct mitochondrial processes. The review summarizes the most relevant mechanisms by which mitochondria contribute to neurodegeneration, encompassing therapeutic approaches. Moreover, a new perspective is proposed based on the heme impact on neurodegeneration. The heme metabolism plays a central role in mitochondrial functions, and several evidences indicate that alterations of the heme metabolism are associated with neurodegenerative disorders. By reporting the body of knowledge on this topic, the review intends to stimulate future studies on the role of heme metabolism in neurodegeneration, envisioning innovative strategies in the struggle against neurodegenerative diseases.
Collapse
|
10
|
Ogunbona OB, Baile MG, Claypool SM. Cardiomyopathy-associated mutation in the ADP/ATP carrier reveals translation-dependent regulation of cytochrome c oxidase activity. Mol Biol Cell 2018; 29:1449-1464. [PMID: 29688796 PMCID: PMC6014099 DOI: 10.1091/mbc.e17-12-0700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/16/2018] [Accepted: 04/18/2018] [Indexed: 01/07/2023] Open
Abstract
How the absence of the major mitochondrial ADP/ATP carrier in yeast, Aac2p, results in a specific defect in cytochrome c oxidase (COX; complex IV) activity is a long-standing mystery. Aac2p physically associates with respiratory supercomplexes, which include complex IV, raising the possibility that its activity is dependent on its association with Aac2p. Here, we have leveraged a transport-dead pathogenic AAC2 point mutant to determine the basis for the reduced COX activity in the absence of Aac2p. The steady-state levels of complex IV subunits encoded by the mitochondrial genome are significantly reduced in the absence of Aac2p function, whether its association with respiratory supercomplexes is preserved or not. This diminution in COX amounts is not caused by a reduction in the mitochondrial genome copy number or the steady-state level of its transcripts, and does not reflect a defect in complex IV assembly. Instead, the absence of Aac2p activity, genetically or pharmacologically, results in an aberrant pattern of mitochondrial translation. Interestingly, compared with the complete absence of Aac2p, the complex IV-related defects are greater in mitochondria expressing the transport-inactive Aac2p mutant. Our results highlight a critical role for Aac2p transport in mitochondrial translation whose disturbance uniquely impacts cytochrome c oxidase.
Collapse
Affiliation(s)
- Oluwaseun B. Ogunbona
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | | | - Steven M. Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| |
Collapse
|
11
|
Sugahara R, Jouraku A, Nakakura T, Kusakabe T, Yamamoto T, Shinohara Y, Miyoshi H, Shiotsuki T. Two adenine nucleotide translocase paralogues involved in cell proliferation and spermatogenesis in the silkworm Bombyx mori. PLoS One 2015; 10:e0119429. [PMID: 25742135 PMCID: PMC4351007 DOI: 10.1371/journal.pone.0119429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/13/2015] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1) and the testis-specific paralogue (BmANTI2). The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1), but not those of other insect species (or PxANTI2), restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4.
Collapse
Affiliation(s)
- Ryohei Sugahara
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akiya Jouraku
- Insect Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takayo Nakakura
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takahiro Kusakabe
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Takenori Yamamoto
- Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiro Shiotsuki
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
12
|
Yeast mitochondrial interactosome model: metabolon membrane proteins complex involved in the channeling of ADP/ATP. Int J Mol Sci 2012; 13:1858-1885. [PMID: 22408429 PMCID: PMC3291998 DOI: 10.3390/ijms13021858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/31/2012] [Indexed: 01/06/2023] Open
Abstract
The existence of a mitochondrial interactosome (MI) has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK) in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp) and inorganic phosphate (PiC) carriers as well as the VDAC (or mitochondrial porin) catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1) under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.
Collapse
|
13
|
Rcf1 and Rcf2, members of the hypoxia-induced gene 1 protein family, are critical components of the mitochondrial cytochrome bc1-cytochrome c oxidase supercomplex. Mol Cell Biol 2012; 32:1363-73. [PMID: 22310663 DOI: 10.1128/mcb.06369-11] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We report that Rcf1 (formerly Aim31), a member of the conserved hypoxia-induced gene 1 (Hig1) protein family, represents a novel component of the yeast cytochrome bc(1)-cytochrome c oxidase (COX) supercomplex. Rcf1 (respiratory supercomplex factor 1) partitions with the COX complex, and evidence that it may act as a bridge to the cytochrome bc(1) complex is presented. Rcf1 interacts with the Cox3 subunit and can do so prior to their assembly into the COX complex. A close proximity of Rcf1 and members of the ADP/ATP carrier (AAC) family was also established. Rcf1 displays overlapping function with another Hig1-related protein, Rcf2 (formerly Aim38), and their joint presence is required for optimal COX enzyme activity and the correct assembly of the cytochrome bc(1)-COX supercomplex. Rcf1 and Rcf2 can independently associate with the cytochrome bc(1)-COX supercomplex, indicating that at least two forms of this supercomplex exist within mitochondria. We provide evidence that the association with the cytochrome bc(1)-COX supercomplex and regulation of the COX complex are a conserved feature of Hig1 family members. Based on our findings, we propose a model where the Hig1 proteins regulate the COX enzyme activity through Cox3 and associated Cox12 protein, in a manner that may be influenced by the neighboring AAC proteins.
Collapse
|
14
|
Lim CH, Hamazaki T, Braun EL, Wade J, Terada N. Evolutionary genomics implies a specific function of Ant4 in mammalian and anole lizard male germ cells. PLoS One 2011; 6:e23122. [PMID: 21858006 PMCID: PMC3155547 DOI: 10.1371/journal.pone.0023122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022] Open
Abstract
Most vertebrates have three paralogous genes with identical intron-exon structures and a high degree of sequence identity that encode mitochondrial adenine nucleotide translocase (Ant) proteins, Ant1 (Slc25a4), Ant2 (Slc25a5) and Ant3 (Slc25a6). Recently, we and others identified a fourth mammalian Ant paralog, Ant4 (Slc25a31), with a distinct intron-exon structure and a lower degree of sequence identity. Ant4 was expressed selectively in testis and sperm in adult mammals and was indeed essential for mouse spermatogenesis, but it was absent in birds, fish and frogs. Since Ant2 is X-linked in mammalian genomes, we hypothesized that the autosomal Ant4 gene may compensate for the loss of Ant2 gene expression during male meiosis in mammals. Here we report that the Ant4 ortholog is conserved in green anole lizard (Anolis carolinensis) and demonstrate that it is expressed in the anole testis. Further, a degenerate DNA fragment of putative Ant4 gene was identified in syntenic regions of avian genomes, indicating that Ant4 was present in the common amniote ancestor. Phylogenetic analyses suggest an even more ancient origin of the Ant4 gene. Although anole lizards are presumed male (XY) heterogametic, like mammals, copy numbers of the Ant2 as well as its neighboring gene were similar between male and female anole genomes, indicating that the anole Ant2 gene is either autosomal or located in the pseudoautosomal region of the sex chromosomes, in contrast to the case to mammals. These results imply the conservation of Ant4 is not likely simply driven by the sex chromosomal localization of the Ant2 gene and its subsequent inactivation during male meiosis. Taken together with the fact that Ant4 protein has a uniquely conserved structure when compared to other somatic Ant1, 2 and 3, there may be a specific advantage for mammals and lizards to express Ant4 in their male germ cells.
Collapse
Affiliation(s)
- Chae Ho Lim
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Takashi Hamazaki
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Edward L. Braun
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Juli Wade
- Neuroscience Program, Department of Psychology, Department of Zoology, Michigan State University, East Lansing, Michigan, United States of America
| | - Naohiro Terada
- Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
15
|
Brenner C, Subramaniam K, Pertuiset C, Pervaiz S. Adenine nucleotide translocase family: four isoforms for apoptosis modulation in cancer. Oncogene 2010; 30:883-95. [PMID: 21076465 DOI: 10.1038/onc.2010.501] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mitochondria have important functions in mammalian cells as the energy powerhouse and integrators of the mitochondrial pathway of apoptosis. The adenine nucleotide translocase (ANT) is a family of proteins involved in cell death pathways that perform distinctly opposite functions to regulate cell fate decisions. On the one hand, ANT catalyzes the adenosine triphosphate export from the mitochondrial matrix to the intermembrane space with the concomitant import of ADP from the intermembrane space to the matrix. On the other hand, during periods of stress, ANT could function as a lethal pore and trigger the process of mitochondrial membrane permeabilization, which leads irreversibly to cell death. In human, ANT is encoded by four homologous genes, whose expression is not only tissue specific, but also varies according to the pathophysiological state of the cell. Recent evidence revealed a differential role of the ANT isoforms in apoptosis and a deregulation of their expression in cancer. In this review, we introduce the current knowledge of ANT in apoptosis and cancer cells and propose a novel classification of ANT isoforms.
Collapse
Affiliation(s)
- C Brenner
- Univ Paris-Sud, Châtenay-Malabry, France.
| | | | | | | |
Collapse
|
16
|
Chevrollier A, Loiseau D, Reynier P, Stepien G. Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:562-7. [PMID: 20950584 DOI: 10.1016/j.bbabio.2010.10.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/12/2022]
Abstract
Adenine nucleotide translocase (ANT), a mitochondrial protein that facilitates the exchange of ADP and ATP across the mitochondrial inner membrane, plays an essential role in cellular energy metabolism. Human ANT presents four isoforms (ANT1-4), each with a specific expression depending on the nature of the tissue, cell type, developmental stage and status of cell proliferation. Thus, ANT1 is specific to muscle and brain tissues; ANT2 occurs mainly in proliferative, undifferentiated cells; ANT3 is ubiquitous; and ANT4 is found in germ cells. ANT1 and ANT3 export the ATP produced by oxidative phosphorylation (OxPhos) from the mitochondria into the cytosol while importing ADP. In contrast, the expression of ANT2, which is linked to the rate of glycolytic metabolism, is an important indicator of carcinogenesis. In fact, cancers are characterized by major metabolic changes that switch cells from the normally dual oxidative and glycolytic metabolisms to an almost exclusively glycolytic metabolism. When OxPhos activity is impaired, ANT2 imports glycolytically produced ATP into the mitochondria. In the mitochondrial matrix, the F1F0-ATPase complex hydrolyzes the ATP, pumping out a proton into the intermembrane space. The reverse operations of ANT2 and F1F0-ATPase under glycolytic conditions contribute to maintaining the mitochondrial membrane potential, ensuring cell survival and proliferation. Unlike the ANT1 and ANT3 isoforms, ANT2 is not pro-apoptotic and may therefore contribute to carcinogenesis. Since the expression of ANT2 is closely linked to the mitochondrial bioenergetics of tumors, it should be taken into account for individualizing cancer treatments and for the development of anticancer strategies.
Collapse
|
17
|
Morita T, Ito E, Fukuoka T, Imura T, Kitamoto D. The role of PaAAC1 encoding a mitochondrial ADP/ATP carrier in the biosynthesis of extracellular glycolipids, mannosylerythritol lipids, in the basidiomycetous yeast Pseudozyma antarctica. Yeast 2010; 27:379-88. [DOI: 10.1002/yea.1761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
18
|
Laco J, Zeman I, Pevala V, Polcic P, Kolarov J. Adenine nucleotide transport via Sal1 carrier compensates for the essential function of the mitochondrial ADP/ATP carrier. FEMS Yeast Res 2010; 10:290-6. [PMID: 20141534 DOI: 10.1111/j.1567-1364.2010.00606.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The mitochondrial ADP/ATP carrier (Aac2p) of Saccharomyces cerevisiae links two biochemical pathways, glycolysis in the cytosol and oxidative phosphorylation in the mitochondria, by exchanging their common substrates and products across the inner mitochondrial membrane. Recently, the product of the SAL1 gene, which is essential in cells lacking Aac2p, has been implicated in a similar communication. However, the mechanism by which Sal1p rescues the growth of Deltaaac2 mutants is not clear and it was proposed that both Sal1p and Aac2p share a common vital function other than ADP/ATP exchange. Here, the impact of SAL1 deletion on mitochondrial reactions involving either synthesis or hydrolysis of ATP was investigated. We show that adenine nucleotide transport activity related to Sal1p can be demonstrated in isolated mitochondria as well as in intact cells under conditions when Aac2-mediated exchange is not functional. Our results indicate that the vital role of both Sal1p and Aac2p is to maintain the essential intramitochondrial ATP pool owing to their ability to transport adenine nucleotides.
Collapse
Affiliation(s)
- Juraj Laco
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
19
|
Merico A, Galafassi S, Piskur J, Compagno C. The oxygen level determines the fermentation pattern in Kluyveromyces lactis. FEMS Yeast Res 2009; 9:749-56. [PMID: 19500150 DOI: 10.1111/j.1567-1364.2009.00528.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Yeasts belonging to the lineage that underwent whole-genome duplication (WGD) possess a good fermentative potential and can proliferate in the absence of oxygen. In this study, we analyzed the pre-WGD yeast Kluyveromyces lactis and its ability to grow under oxygen-limited conditions. Under these conditions, K. lactis starts to increase the glucose metabolism and accumulates ethanol and glycerol. However, under more limited conditions, the fermentative metabolism decreases, causing a slow growth rate. In contrast, Saccharomyces cerevisiae and Saccharomyces kluyveri in anaerobiosis exhibit almost the same growth rate as in aerobiosis. In this work, we showed that in K. lactis, under oxygen-limited conditions, a decreased expression of RAG1 occurred. The activity of glucose-6-phosphate dehydrogenase also decreased, likely causing a reduced flux in the pentose phosphate pathway. Comparison of related and characterized yeasts suggests that the behavior observed in K. lactis could reflect the lack of an efficient mechanism to maintain a high glycolytic flux and to balance the redox homeostasis under hypoxic conditions. This could be a consequence of a recent specialization of K. lactis toward living in a niche where the ethanol accumulation at high oxygen concentrations and the ability to survive at a low oxygen concentration do not represent an advantage.
Collapse
Affiliation(s)
- Annamaria Merico
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, via Celoria 26, Milan, Italy
| | | | | | | |
Collapse
|
20
|
Traba J, Satrústegui J, del Arco A. Transport of adenine nucleotides in the mitochondria of Saccharomyces cerevisiae: interactions between the ADP/ATP carriers and the ATP-Mg/Pi carrier. Mitochondrion 2009; 9:79-85. [PMID: 19460304 DOI: 10.1016/j.mito.2009.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/09/2008] [Accepted: 01/05/2009] [Indexed: 01/09/2023]
Abstract
The ADP/ATP and ATP-Mg/Pi carriers are widespread among eukaryotes and constitute two systems to transport adenine nucleotides in mitochondria. ADP/ATP carriers carry out an electrogenic exchange of ADP for ATP essential for oxidative phosphorylation, whereas ATP-Mg/Pi carriers perform an electroneutral exchange of ATP-Mg for phosphate and are able to modulate the net content of adenine nucleotides in mitochondria. The functional interplay between both carriers has been shown to modulate viability in Saccharomyces cerevisiae. The simultaneous absence of both carriers is lethal. In the light of the new evidence we suggest that, in addition to exchange of cytosolic ADP for mitochondrial ATP, the specific function of the ADP/ATP carriers required for respiration, both transporters have a second function, which is the import of cytosolic ATP in mitochondria. The participation of these carriers in the generation of mitochondrial membrane potential is discussed. Both are necessary for the function of the mitochondrial protein import and assembly systems, which are the only essential mitochondrial functions in S. cerevisiae.
Collapse
Affiliation(s)
- Javier Traba
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma, CIBER de Enfermedades Raras, c/Nicolas Cabrera 1, 28049 Madrid, Spain.
| | | | | |
Collapse
|
21
|
Brower JV, Lim CH, Han C, Hankowski KE, Hamazaki T, Terada N. Differential CpG island methylation of murine adenine nucleotide translocase genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:198-203. [PMID: 19167530 DOI: 10.1016/j.bbagrm.2008.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Adenine nucleotide translocase (Ant) mediates the exchange of ADP and ATP across the inner mitochondrial membrane in eukaryotes. Mice possess three distinct but highly homologous Ant isoforms, encoded by independent genes, whose transcription depends upon tissue type. Ant1 is expressed selectively in heart and skeletal muscles, Ant2 is ubiquitously expressed in most tissues but lower in skeletal muscle and testis, while Ant4 is exclusively expressed in the testis. Of interest, each of these Ant genes contains CpG islands in their proximal promoter regions. We investigated the methylation status of the three Ant genes in various tissues with active and inactive transcription. In contrast to the Ant4 gene in which CpG island methylation is essential for gene repression, the CpG islands of Ant1 and Ant2 are hypomethylated regardless of the gene expression status throughout the tissues of male mice. Despite the tissue specific expression profile of Ant1, CpG methylation is unlikely involved in the regulation of the gene. Consistent with these findings, addition of a CpG-demethylating agent, 5-aza-2'-deoxycitidine, to fibroblasts increased the expression of Ant4 but not Ant1 or Ant2 genes. This study provides insight regarding the differential regulation of Ant isoforms in mammals, whereby both the Ant1 and Ant2 genes are capable of expression, but the Ant4 gene is completely repressed throughout somatic tissues. To the best of our knowledge, this is a first example to clearly demonstrate a differential usage of CpG island methylation within a family of genes.
Collapse
Affiliation(s)
- Jeffrey V Brower
- Department of Pathology, University of Florida College of Medicine, P. O. Box 100275, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
22
|
The molecular basis for relative physiological functionality of the ADP/ATP carrier isoforms in Saccharomyces cerevisiae. Genetics 2008; 179:1285-99. [PMID: 18562646 DOI: 10.1534/genetics.108.087700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AAC2 is one of three paralogs encoding mitochondrial ADP/ATP carriers in the yeast Saccharomyces cerevisiae, and because it is required for respiratory growth it has been the most extensively studied. To comparatively examine the relative functionality of Aac1, Aac2, and Aac3 in vivo, the gene encoding each isoform was expressed from the native AAC2 locus in aac1Delta aac3Delta yeast. Compared to Aac2, Aac1 exhibited reduced capacity to support growth of yeast lacking mitochondrial DNA or of yeast lacking the ATP/Mg-P(i) carrier, both conditions requiring ATP import into the mitochondrial matrix through the ADP/ATP carrier. Sixteen AAC1/AAC2 chimeric genes were constructed and analyzed to determine the key differences between residues or sections of Aac1 and Aac2. On the basis of the growth rate differences of yeast expressing different chimeras, the C1 and M2 loops of the ADP/ATP carriers contain divergent residues that are responsible for the difference(s) between Aac1 and Aac2. One chimeric gene construct supported growth on nonfermentable carbon sources but failed to support growth of yeast lacking mitochondrial DNA. We identified nine independent intragenic mutations in this chimeric gene that suppressed the growth phenotype of yeast lacking mitochondrial DNA, identifying regions of the carrier important for nucleotide exchange activities.
Collapse
|
23
|
Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1978-2021. [PMID: 18510943 DOI: 10.1016/j.bbamem.2008.04.011] [Citation(s) in RCA: 467] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 10/22/2022]
Abstract
Different from some more specialised short reviews, here a general although not encyclopaedic survey of the function, metabolic role, structure and mechanism of the ADP/ATP transport in mitochondria is presented. The obvious need for an "old fashioned" review comes from the gateway role in metabolism of the ATP transfer to the cytosol from mitochondria. Amidst the labours, 40 or more years ago, of unravelling the role of mitochondrial compartments and of the two membranes, the sequence of steps of how ATP arrives in the cytosol became a major issue. When the dust settled, a picture emerged where ATP is exported across the inner membrane in a 1:1 exchange against ADP and where the selection of ATP versus ADP is controlled by the high membrane potential at the inner membrane, thus uplifting the free energy of ATP in the cytosol over the mitochondrial matrix. Thus the disparate energy and redox states of the two major compartments are bridged by two membrane potential responsive carriers to enable their symbiosis in the eukaryotic cell. The advance to the molecular level by studying the binding of nucleotides and inhibitors was facilitated by the high level of carrier (AAC) binding sites in the mitochondrial membrane. A striking flexibility of nucleotide binding uncovered the reorientation of carrier sites between outer and inner face, assisted by the side specific high affinity inhibitors. The evidence of a single carrier site versus separate sites for substrate and inhibitors was expounded. In an ideal setting principles of transport catalysis were elucidated. The isolation of intact AAC as a first for any transporter enabled the reconstitution of transport for unravelling, independently of mitochondrial complications, the factors controlling the ADP/ATP exchange. Electrical currents measured with the reconstituted AAC demonstrated electrogenic translocation and charge shift of reorienting carrier sites. Aberrant or vital para-functions of AAC in basal uncoupling and in the mitochondrial pore transition were demonstrated in mitochondria and by patch clamp with reconstituted AAC. The first amino acid sequence of AAC and of any eukaryotic carrier furnished a 6-transmembrane helix folding model, and was the basis for mapping the structure by access studies with various probes, and for demonstrating the strong conformation changes demanded by the reorientation mechanism. Mutations served to elucidate the function of residues, including the particular sensitivity of ATP versus ADP transport to deletion of critical positive charge in AAC. After resisting for decades, at last the atomic crystal structure of the stabilised CAT-AAC complex emerged supporting the predicted principle fold of the AAC but showing unexpected features relevant to mechanism. Being a snapshot of an extreme abortive "c-state" the actual mechanism still remains a conjecture.
Collapse
|
24
|
Ferreira TC, Hertzberg L, Gassmann M, Campos ÉG. The yeast genome may harbor hypoxia response elements (HRE). Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:255-263. [PMID: 17035097 DOI: 10.1016/j.cbpc.2006.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/22/2006] [Accepted: 08/28/2006] [Indexed: 01/28/2023]
Abstract
The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.
Collapse
Affiliation(s)
- Túlio César Ferreira
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Libi Hertzberg
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Élida Geralda Campos
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
25
|
Merico A, Sulo P, Piskur J, Compagno C. Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 2007; 274:976-89. [PMID: 17239085 DOI: 10.1111/j.1742-4658.2007.05645.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The yeast Saccharomyces cerevisiae is characterized by its ability to: (a) degrade glucose or fructose to ethanol, even in the presence of oxygen (Crabtree effect); (b) grow in the absence of oxygen; and (c) generate respiratory-deficient mitochondrial mutants, so-called petites. How unique are these properties among yeasts in the Saccharomyces clade, and what is their origin? Recent progress in genome sequencing has elucidated the phylogenetic relationships among yeasts in the Saccharomyces complex, providing a framework for the understanding of the evolutionary history of several modern traits. In this study, we analyzed over 40 yeasts that reflect over 150 million years of evolutionary history for their ability to ferment, grow in the absence of oxygen, and generate petites. A great majority of isolates exhibited good fermentation ability, suggesting that this trait could already be an intrinsic property of the progenitor yeast. We found that lineages that underwent the whole-genome duplication, in general, exhibit a fermentative lifestyle, the Crabtree effect, and the ability to grow without oxygen, and can generate stable petite mutants. Some of the pre-genome duplication lineages also exhibit some of these traits, but a majority of the tested species are petite-negative, and show a reduced Crabtree effect and a reduced ability to grow in the absence of oxygen. It could be that the ability to accumulate ethanol in the presence of oxygen, a gradual independence from oxygen and/or the ability to generate petites were developed later in several lineages. However, these traits have been combined and developed to perfection only in the lineage that underwent the whole-genome duplication and led to the modern Saccharomyces cerevisiae yeast.
Collapse
Affiliation(s)
- Annamaria Merico
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | | | |
Collapse
|
26
|
Snoek ISI, Steensma HY. Why doesKluyveromyces lactisnot grow under anaerobic conditions? Comparison of essential anaerobic genes ofSaccharomyces cerevisiaewith theKluyveromyces lactisgenome. FEMS Yeast Res 2006; 6:393-403. [PMID: 16630279 DOI: 10.1111/j.1567-1364.2005.00007.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although some yeast species, e.g. Saccharomyces cerevisiae, can grow under anaerobic conditions, Kluyveromyces lactis cannot. In a systematic study, we have determined which S. cerevisiae genes are required for growth without oxygen. This has been done by using the yeast deletion library. Both aerobically essential and nonessential genes have been tested for their necessity for anaerobic growth. Upon comparison of the K. lactis genome with the genes found to be anaerobically important in S. cerevisiae, which yielded 20 genes that are missing in K. lactis, we hypothesize that lack of import of sterols might be one of the more important reasons that K. lactis cannot grow in the absence of oxygen.
Collapse
Affiliation(s)
- I S Ishtar Snoek
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
27
|
Fontanesi F, Viola AM, Ferrero I. Heterologous complementation of theKlaacnull mutation ofKluyveromyces lactisby theSaccharomyces cerevisiae AAC3gene encoding the ADP/ATP carrier. FEMS Yeast Res 2006; 6:414-20. [PMID: 16630281 DOI: 10.1111/j.1567-1364.2005.00011.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The KlAAC gene, encoding the ADP/ATP carrier, has been assumed to be a single gene in Kluyveromyces lactis, an aerobic, petite-negative yeast species. The Klaac null mutation, which causes a respiratory-deficient phenotype, was fully complemented by AAC2, the Saccharomyces cerevisiae major gene for the ADP/ATP carrier and also by AAC1, a gene that is poorly expressed in S. cerevisiae. In this study, we demonstrate that the Klaac null mutation is partially complemented by the ScAAC3 gene, encoding the hypoxic ADP/ATP carrier isoform, whose expression in S. cerevisiae is prevented by oxygen. Once introduced into K. lactis, the AAC3 gene was expressed both under aerobic and under partial anaerobic conditions but did not support the growth of K. lactis under strict anaerobic conditions.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Department of Genetics, Anthropology & Evolution, University of Parma, Parco Area delle Scienze, Parma, Italy
| | | | | |
Collapse
|
28
|
Mentel M, Piskur J, Neuvéglise C, Rycovská A, Cellengová G, Kolarov J. Triplicate genes for mitochondrial ADP/ATP carriers in the aerobic yeast Yarrowia lipolytica are regulated differentially in the absence of oxygen. Mol Genet Genomics 2005; 273:84-91. [PMID: 15688220 DOI: 10.1007/s00438-005-1107-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 01/07/2005] [Indexed: 11/24/2022]
Abstract
Yarrowia lipolytica is a strictly aerobic fungus, which differs from the extensively studied model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe with respect to its physiology, genetics and dimorphic growth habit. We isolated and sequenced cDNA and genomic clones (YlAAC1) from Y. lipolytica that encode a mitochondrial ADP/ATP carrier. The YlAAC1 gene can complement the S. cerevisiae Deltaaac2 deletion mutant. Southern hybridization, analysis of Yarrowia clones obtained in the course of the Genolevures project, and further sequencing revealed the existence of two paralogs of the YlAAC1 gene, which were named YlAAC2 and YlAAC3, respectively. Phylogenetic analysis showed that YlAAC1 and YlAAC2 were more closely related to each other than to YlAAC3, and are likely to represent the products of a recent gene duplication. All three Y. lipolytica YlAAC genes group together on the phylogenetic tree, suggesting that YlAAC3 is derived from a more ancient duplication within the Y. lipolytica lineage. A similar branching pattern for the three ScAAC paralogs in the facultative anaerobe S. cerevisiae demonstrates that two rounds of duplication of AAC genes occurred independently at least twice in the evolution of hemiascomycetous yeasts. Surprisingly, in both the aerobic Y. lipolytica and the facultative anaerobe S. cerevisiae, the three paralogs are differentially regulated in the absence of oxygen. Apparently, Y. lipolytica can sense hypoxia and down-regulate target genes in response.
Collapse
Affiliation(s)
- Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina CH-I, 842 15 Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
29
|
Chevrollier A, Loiseau D, Gautier F, Malthièry Y, Stepien G. ANT2 expression under hypoxic conditions produces opposite cell-cycle behavior in 143B and HepG2 cancer cells. Mol Carcinog 2005; 42:1-8. [PMID: 15486956 DOI: 10.1002/mc.20059] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Under hypoxic conditions, mitochondrial ATP production ceases, leaving cells entirely dependent on their glycolytic metabolism. The cytoplasmic and intramitochondrial ATP/ADP ratios, partly controlled by the adenine nucleotide translocator (ANT), are drastically modified. In dividing and growing cells that have a predominantly glycolytic metabolism, the ANT isoform 2, which has kinetic properties allowing ATP import into mitochondria, is over-expressed in comparison to control cells. We studied the cellular metabolic and proliferative response to hypoxia in two transformed human cell lines with different metabolic backgrounds: HepG2 and 143B, and in their rho(o) derivatives, i.e., cells with no mitochondrial DNA. Transformed 143B and rho(o) cells continued their proliferation whereas HepG2 cells, with a more differentiated phenotype, arrested their cell-cycle at the G(1)/S checkpoint. Hypoxia induced an increase in glycolytic activity, correlated to an induction of VEGF and hexokinase II (HK II) expression. Thus, according to their tumorigenicity, transformed cells may adopt one of two distinct behaviors to support hypoxic stress, i.e., proliferation or quiescence. Our study links the constitutive glycolytic activity and ANT2 expression levels of transformed cells with the loss of cell-cycle control after oxygen deprivation. ATP import by ANT2 allows cells to maintain their mitochondrial integrity while acquiring insensitivity to any alterations in the proteins involved in oxidative phosphorylation. This loss of cell dependence on oxidative metabolism is an important factor in the development of tumors.
Collapse
Affiliation(s)
- Arnaud Chevrollier
- INSERM E0018, Laboratoire de Biochimie et Biologie Moléculaire, CHU, Angers, France
| | | | | | | | | |
Collapse
|
30
|
De Marcos Lousa C, Trézéguet V, Dianoux AC, Brandolin G, Lauquin GJM. The human mitochondrial ADP/ATP carriers: kinetic properties and biogenesis of wild-type and mutant proteins in the yeast S. cerevisiae. Biochemistry 2002; 41:14412-20. [PMID: 12450408 DOI: 10.1021/bi0261490] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mitochondrial adenine nucleotide carrier, or Ancp, plays a key role in the maintenance of the energetic fluxes in eukaryotic cells. Human disorders have been found associated to unusual human ANC gene (HANC) expression but also to direct inactivation of the protein, either by autoantibody binding or by mutation. However, the individual biochemical properties of the three HAncp isoforms have not yet been deciphered. To do so, the three HANC ORF were expressed in yeast under the control of the regulatory sequences of ScANC2. Each of the three HANC was able to restore growth on a nonfermentable carbon source of a yeast mutant strain lacking its three endogenous ANC. Their ADP/ATP exchange properties could then be measured for the first time in isolated mitochondria. HANC3 was the most efficient to restore yeast growth, and HAnc3p presented the highest V(M) (80 nmol ADP min(-1) mg protein(-1)) and K(ADP)(M)(8.4 microM). HAnc1p and HAnc2p presented similar kinetic constants (V(M) approximately 30-40 nmol ADP min(-(1) mg protein(-1) and K(ADP)(M) approximately 2.5-3.7 microM), whose values were consistent with HANC1's and HANC2's lower capacity to restore yeast growth. However, the HANC genes restored growth at a lower level than ScANC2, indicating that HAncp amount may be limiting in vivo. To optimize the HAncp production, we investigated their biogenesis into mitochondria by mutagenesis of two charged amino acids in the N-terminus of HAnc1p. Severe effects were observed with the D3A and D3K mutations that precluded yeast growth. On the contrary, the K10A mutation increased yeast growth complementation and nucleotide exchange rate as compared to the wild type. These results point to the importance of the N-terminal region of HAnc1p for its biogenesis and transport activity in yeast mitochondria.
Collapse
Affiliation(s)
- Carine De Marcos Lousa
- Laboratoire de Physiologie Moléculaire et Cellulaire, Institut de Biochimie et Génétique Cellulaires, 1, rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Ter Linde JJM, Steensma HY. A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Yeast 2002; 19:825-40. [PMID: 12112237 DOI: 10.1002/yea.879] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Saccharomyces cerevisiae adapts to altered oxygen availability by differentially expressing a number of genes. Under aerobic conditions oxygen control of gene expression is exerted through the activator Hap1 and the repressor Rox1. The Hap1 transcription factor senses cellular heme status and increases expression of aerobic genes in response to oxygen. The repression of hypoxic genes under normoxic conditions results from Hap1-mediated activation of ROX1 transcription. To allow the identification of additional Hap1 and Rox1 target genes, genome-wide expression was analysed in aerobically, chemostat-cultivated hap1 and rox1 null mutants. The microarray results show that deletion of HAP1 causes a lower transcript level of 51 genes. Transcription of 40 genes was increased in rox1 mutant cells compared to wild-type cells. Combining these results with our previously described transcriptome data of aerobically and anaerobically grown cells and with computational analysis of the promoters identified 24 genes that are potentially regulated by Hap1, and 38 genes satisfied the criteria of being direct targets of Rox1. In addition, this work provides further evidence that Rox1 controls transcription of anaerobic genes through repression under normoxic conditions.
Collapse
Affiliation(s)
- José J M Ter Linde
- Institute of Molecular Plant Sciences, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | |
Collapse
|
32
|
Abstract
Saccharomyces cerevisiae expresses two distinct iron transport systems under aerobic and anaerobic conditions. The high affinity transporters, Ftr1p and Fet3p, are primarily expressed in oxygenated cultures, whereas anaerobic conditions induce the low affinity iron transporter, Fet4p. The oxygen regulation of FET4 was found to involve the Rox1p transcriptional repressor. The physiological significance of this control by Rox1p is twofold. First, FET4 repression by Rox1p under oxygenated conditions helps minimize metal toxicity. Sensitivity towards cadmium was high in either anaerobically grown wild-type yeast or in oxygenated rox1Delta strains, and in both cases cadmium toxicity was reversed by FET4 mutations. Secondly, the loss of Rox1p repression under anaerobic conditions serves to induce FET4 and facilitate continual accumulation of iron. We noted that fet4 mutants accumulate lower levels of iron under anaerobic conditions. Regulation of FET4 was examined using FET4-lacZ reporters. We found that FET4 contains a complex promoter regulated both by oxygen and iron status. The region surrounding approximately -960 to -490 contains two consensus Rox1p binding sites and mediates Rox1p, but not iron control of FET4. Sequences downstream of -490 harbor a consensus binding site for the iron regulatory factor Aft1p that is essential for iron regulation in wild-type strains. In addition, a secondary mode of iron regulation becomes evident in strains lacking AFT1. The induction by iron limitation in conjunction with low oxygen is more than additive, suggesting that these activities are synergistic. Fet4p is not the only metal transporter that is negatively regulated by oxygen; we find that Rox1p also represses S. cerevisiae SMF3, proposed to function in vacuolar iron transport. This oxygen control of iron transporter gene expression is part of an adaptation response to changes in the redox state of transition metals.
Collapse
Affiliation(s)
- Laran T Jensen
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
33
|
Becerra M, Lombardía-Ferreira LJ, Hauser NC, Hoheisel JD, Tizon B, Cerdán ME. The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Mol Microbiol 2002; 43:545-55. [PMID: 11929514 DOI: 10.1046/j.1365-2958.2002.02724.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptome of Saccharomyces cerevisiae was screened using the high-density membrane hybridization method, under aerobic and hypoxic conditions, in wild-type and mutant backgrounds obtained by the disruption of the genes encoding the regulatory proteins Hap1, Rox1 and the Srb10 and Rox3 subunits of RNA polymerase II holoenzyme. None of the mutations studied was able to fully overcome the wild-type hypoxic response. Deletion of the hap1 gene changed the expression profiles of individual open reading frames (ORFs) under both aerobic and hypoxic conditions. Major changes associated with rox3 deletion were related to the hypoxic activation. Rox3 also caused a repressor effect (oxygen-independent) on a subset of genes related to subtelomeric proteins. With regard to the effect brought about by the deletion of rox1 and srb10, correspondence cluster analysis revealed that the transcriptome profile in aerobic conditions is very similar in the wild-type and both deletion strains. In contrast, however, differences were found during hypoxia between the subgroup formed by wild-type and the Deltarox1 deletant compared with the Deltasrb10 deletant. An analysis of selected ORFs responding to hypoxia, in association with a dependence on the regulatory factors studied, made it possible to identify the clusters that are related to different regulatory circuits.
Collapse
Affiliation(s)
- Manuel Becerra
- Dpto. Biología Celular y Molecular, Universidad de La Coruña, F. Ciencias, Campus de La Zapateira s/n 15075, La Coruña, Spain
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Kwast KE, Lai LC, Menda N, James DT, Aref S, Burke PV. Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J Bacteriol 2002; 184:250-65. [PMID: 11741867 PMCID: PMC134782 DOI: 10.1128/jb.184.1.250-265.2002] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA arrays were used to investigate the functional role of Rox1 in mediating acclimatization to anaerobic conditions in Saccharomyces cerevisiae. Multiple growth conditions for wild-type and rox1 null strains were used to identify open reading frames with a statistically robust response to this repressor. These results were compared to those obtained for a wild-type strain in response to oxygen availability. Transcripts of nearly one-sixth of the genome were differentially expressed (P < 0.05) with respect to oxygen availability, the majority (>65%) being down-regulated under anoxia. Of the anaerobically induced genes, about one-third (106) contain putative Rox1-binding sites in their promoters and were significantly (P < 0.05) up-regulated in the rox1 null strains under aerobiosis. Additional promoter searches revealed that nearly one-third of the anaerobically induced genes contain an AR1 site(s) for the Upc2 transcription factor, suggesting that Upc2 and Rox1 regulate the majority of anaerobically induced genes in S. cerevisiae. Functional analyses indicate that a large fraction of the anaerobically induced genes are involved in cell stress (approximately 1/3), cell wall maintenance (approximately 1/8), carbohydrate metabolism (approximately 1/10), and lipid metabolism (approximately 1/12), with both Rox1 and Upc2 predominating in the regulation of this latter group and Upc2 predominating in cell wall maintenance. Mapping the changes in expression of functional regulons onto metabolic pathways has provided novel insight into the role of Rox1 and other trans-acting factors in mediating the physiological response of S. cerevisiae to anaerobic conditions.
Collapse
Affiliation(s)
- Kurt E Kwast
- Department of Molecular & Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Bourdineaud JP, De Sampaïo G, Lauquin GJ. A Rox1-independent hypoxic pathway in yeast. Antagonistic action of the repressor Ord1 and activator Yap1 for hypoxic expression of the SRP1/TIR1 gene. Mol Microbiol 2000; 38:879-90. [PMID: 11115121 DOI: 10.1046/j.1365-2958.2000.02188.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxic SRP1/TIR1 gene expression depends on the absence of haem but is independent of Rox1-mediated repression. We have found a new hypoxic pathway involving an antagonistic interaction between the Ixr1/Ord1 repressor and the Yap1 factor, a transcriptional activator involved in oxidative stress response. Here, we show that Ord1 repressed SRP1 gene expression under normoxia and hypoxia, whereas Yap1 activated it. Ord1 and Yap1 have been shown to bind the SRP1 promoter in a region extending from -299 to -156 bp upstream of the start codon. A typical AP-1 responsive element lying from -247 to -240 bp allows Yap1 binding. Internal deletion of sequences within the SRP1 promoter were introduced. Two regions were characterized at positions -299/-251 and -218/-156 that, once removed, resulted in a constitutive expression of SRP1 in a wild-type strain under normoxic conditions. Deletion of both these two sequences allowed the bypass of YAP1 requirement in a Deltayap1 strain, whereas these two internal deletions did not yield increased expression in a Deltaord1 strain compared with the full-length promoter. Both a single Deltaord1 mutant and a doubly disrupted Deltayap1 Deltaord1 strain yielded normoxic constitutive SRP1 expression and increased hypoxic SRP1 induction, thereby demonstrating that ord1 is epistatic to yap1. Thus, Yap1 is not directly involved in SRP1 induction by hypoxia, but is necessary to counteract the Ord1 effect.
Collapse
Affiliation(s)
- J P Bourdineaud
- Faculté d'Oenologie, Université de Bordeaux II, 351 cours de la Libération, 33405 Talence Cedex, France.
| | | | | |
Collapse
|
37
|
Geigenberger P, Fernie AR, Gibon Y, Christ M, Stitt M. Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biol Chem 2000; 381:723-40. [PMID: 11030430 DOI: 10.1515/bc.2000.093] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Plants lack specialised organs and circulatory systems, and oxygen can fall to low concentrations in metabolically active, dense or bulky tissues. In animals that tolerate hypoxia or anoxia, low oxygen triggers an adaptive inhibition of respiration and metabolic activity. Growing potato tubers were used to investigate whether an analogous response exists in plants. Oxygen concentrations fall below 5% in the centre of growing potato tubers. This is accompanied by a decrease of the adenylate energy status, and alterations of metabolites that are indicative of a decreased rate of glycolysis. The response to low oxygen was investigated in more detail by incubating tissue discs from growing tubers for 2 hours at a range of oxygen concentrations. When oxygen was decreased in the range between 21% and 4% there was a partial inhibition of sucrose breakdown, glycolysis and respiration. The energy status of the adenine, guanine and uridine nucleotides decreased, but pyrophosphate levels remained high. The inhibition of sucrose breakdown and glycolysis was accompanied by a small increase of sucrose, fructose, glycerate-3-phosphate, phosphenolpyruvate, and pyruvate, a decrease of the acetyl-coenzymeA:coenzymeA ratio, and a small increase of isocitrate and 2-oxoglutarate. These results indicate that carbon fluxes are inhibited at several sites, but the primary site of action of low oxygen is probably in mitochondrial electron transport. Decreasing the oxygen concentration from 21% to 4% also resulted in a partial inhibition of sucrose uptake, a strong inhibition of amino acid synthesis, a decrease of the levels of cofactors including the adenine, guanine and uridine nucleotides and coenzymeA, and attenuated the wounding-induced increase of respiration and invertase and phenylalanine lyase activity in tissue discs. Starch synthesis was maintained at high rates in low oxygen. Anoxia led to a diametrically opposed response, in which glycolysis rose 2-fold to support fermentation, starch synthesis was strongly inhibited, and the level of lactate and the lactate:pyruvate ratio and the triose-phosphate:glycerate-3-phosphate ratio increased dramatically. It is concluded that low oxygen triggers (i) a partial inhibition of respiration leading to a decrease of the cellular energy status and (ii) a parallel inhibition of a wide range of energy-consuming metabolic processes. These results have general implications for understanding the regulation of glycolysis, starch synthesis and other biosynthetic pathways in plants, and reveal a potential role for pyrophosphate in conserving energy and decreasing oxygen consumption.
Collapse
|
38
|
Rachidi N, Martinez MJ, Barre P, Blondin B. Saccharomyces cerevisiae PAU genes are induced by anaerobiosis. Mol Microbiol 2000; 35:1421-30. [PMID: 10760143 DOI: 10.1046/j.1365-2958.2000.01807.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae PAU genes constitute the largest multigene family in yeast, with 23 members located mainly in subtelomeric regions. The role and regulation of these genes were previously unknown. We detected PAU gene expression during alcoholic fermentation. An analysis of PAU gene regulation using PAU-lacZ fusions and Northern analyses revealed that they were regulated by anaerobiosis. PAU genes display, however, different abilities to be induced by anaerobiosis and this appears to be related to their chromosomal localization; two subtelomeric copies are more weakly inducible than an interstitial one. We show that PAU genes are negatively regulated by oxygen and repressed by haem. Examination of PAU gene expression in rox1Delta and tup1Delta strains indicates that PAU repression by oxygen is mediated by an unknown, haem-dependent pathway, which does not involve the Rox1p anaerobic repressor but requires Tup1p. Given the size of the gene family, PAU genes could be expected to be important during yeast life and some of them probably help the yeast to cope with anaerobiosis.
Collapse
Affiliation(s)
- N Rachidi
- Laboratoire de Microbiologie et Technologie des Fermentations, IPV, INRA-ENSA.M, 2 place Viala, 34060 Montpellier Cedex, France
| | | | | | | |
Collapse
|
39
|
Jeffries TW, Shi NQ. Genetic engineering for improved xylose fermentation by yeasts. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 65:117-61. [PMID: 10533434 DOI: 10.1007/3-540-49194-5_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Xylose utilization is essential for the efficient conversion of lignocellulosic materials to fuels and chemicals. A few yeasts are known to ferment xylose directly to ethanol. However, the rates and yields need to be improved for commercialization. Xylose utilization is repressed by glucose which is usually present in lignocellulosic hydrolysates, so glucose regulation should be altered in order to maximize xylose conversion. Xylose utilization also requires low amounts of oxygen for optimal production. Respiration can reduce ethanol yields, so the role of oxygen must be better understood and respiration must be reduced in order to improve ethanol production. This paper reviews the central pathways for glucose and xylose metabolism, the principal respiratory pathways, the factors determining partitioning of pyruvate between respiration and fermentation, the known genetic mechanisms for glucose and oxygen regulation, and progress to date in improving xylose fermentations by yeasts.
Collapse
Affiliation(s)
- T W Jeffries
- USDA, Forest Service, Institute for Microbial and Biochemical Technology, Madison, WI 53705, USA
| | | |
Collapse
|
40
|
Nebohácová M, Mentel M, Nosek J, Kolarov J. Isolation and expression of the gene encoding mitochondrial ADP/ATP carrier (AAC) from the pathogenic yeast Candida parapsilosis. Yeast 1999; 15:1237-42. [PMID: 10487926 DOI: 10.1002/(sici)1097-0061(19990915)15:12<1237::aid-yea446>3.0.co;2-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A gene homologous to Saccharomyces cerevisiae AAC genes coding for mitochondrial ADP/ATP carriers has been cloned from the pathogenic yeast Candida parapsilosis. A probe obtained by PCR amplification from C. parapsilosis DNA, using primers derived from the conserved transmembrane region of yeast ADP/ATP carriers, was used for screening of the C. parapsilosis genomic library. The cloned gene was sequenced and found to encode a polypeptide of 303 amino acids that shows homology with other yeast and fungal mitochondrial ADP/ATP carriers. The gene was designated CpAAC1 and was able to complement the growth phenotypes of S. cerevisiae double deletion mutant (Deltaaac2; Deltaaac3). The expression of the CpAAC1 gene was reduced under semi-anaerobic conditions and it was affected at normal aerobic conditions by the nature of carbon sources used for growth. Hybridization experiments indicate that C. parapsilosis possesses a single gene encoding a mitochondrial ADP/ATP carrier.
Collapse
Affiliation(s)
- M Nebohácová
- Department of Biochemistry, Faculty of Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | |
Collapse
|
41
|
Trézéguet V, Zeman I, David C, Lauquin GJ, Kolarov J. Expression of the ADP/ATP carrier encoding genes in aerobic yeasts; phenotype of an ADP/ATP carrier deletion mutant of Schizosaccharomyces pombe. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:229-36. [PMID: 10082789 DOI: 10.1016/s0005-2728(98)00180-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of a key mitochondrial membrane component, the ADP/ATP carrier, was investigated in two aerobic yeast species, Kluyveromyces lactis and Schizosaccharomyces pombe. Although the two species differ very much in their respiratory capacity, the expression of the carrier in both yeast species was decreased under partially anaerobic conditions and was induced by nonfermentable carbon sources. The single ADP/ATP carrier encoding gene was deleted in S. pombe. The null mutant exhibits impaired growth properties, especially when cultivated at reduced oxygen tension, and is unable to grow on a nonfermentable carbon source. Our results suggest that the inability of K. lactis and S. pombe to grow under anaerobic conditions can be related in part to the absence of a functional ADP/ATP carrier due to repression of the corresponding gene expression.
Collapse
Affiliation(s)
- V Trézéguet
- Institut de Biochimie et Génétique Cellulaires, Laboratoire de Physiologie Moléculaire et Cellulaire, IBGC-CNRS, 1, rue Camille Saint-Saëns, 33077, Bordeaux Cedex, France.
| | | | | | | | | |
Collapse
|
42
|
Dörner A, Olesch M, Giessen S, Pauschinger M, Schultheiss HP. Transcription of the adenine nucleotide translocase isoforms in various types of tissues in the rat. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1417:16-24. [PMID: 10076031 DOI: 10.1016/s0005-2736(98)00245-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two different isoforms of the adenine nucleotide translocase (ANT1 and ANT2) have been identified in the rat. In order to obtain enhanced knowledge of the ANT isoform expression, we analyzed the transcription pattern of both isoforms and their mRNA levels in various tissues of the rat using the PCR technique. A predominant ANT1 mRNA percentage was recorded in the skeletal muscle, heart and brain, ranging from 81 to 58%. In contrast to these tissues, the percentages of ANT2 were dominant with a range from 59 to 75% in the kidney, lung, spleen and liver. The level of total ANT mRNA varied markedly in the various organs. Tissues with a dominant ANT1 percentage simultaneously showed a high level of total ANT transcription (24-41 attomol/ng total RNA). In comparison to the latter, tissues with a prevalent ANT2 transcription were shown to have an even lower ANT transcription level (2-5 attomol/ng total RNA). The predominance of the ANT1 expression appeared to be restricted to tissues with an inability to regenerate by means of mitotic division, whereas a prevalent ANT2 transcription is found in cell types able to proliferate. The level of total ANT transcription but not the individual ANT isoform expression depends to a great extent on the energy requirements of the tissue.
Collapse
Affiliation(s)
- A Dörner
- Department of Cardiology, Benjamin Franklin Klinik, Free University Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | | | | | | | | |
Collapse
|
43
|
Deckert J, Torres AM, Hwang SM, Kastaniotis AJ, Zitomer RS. The anatomy of a hypoxic operator in Saccharomyces cerevisiae. Genetics 1998; 150:1429-41. [PMID: 9832521 PMCID: PMC1460422 DOI: 10.1093/genetics/150.4.1429] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aerobic repression of the hypoxic genes of Saccharomyces cerevisiae is mediated by the DNA-binding protein Rox1 and the Tup1/Ssn6 general repression complex. To determine the DNA sequence requirements for repression, we carried out a mutational analysis of the consensus Rox1-binding site and an analysis of the arrangement of the Rox1 sites into operators in the hypoxic ANB1 gene. We found that single base pair substitutions in the consensus sequence resulted in lower affinities for Rox1, and the decreased affinity of Rox1 for mutant sites correlated with the ability of these sites to repress expression of the hypoxic ANB1 gene. In addition, there was a general but not complete correlation between the strength of repression of a given hypoxic gene and the compliance of the Rox1 sites in that gene to the consensus sequence. An analysis of the ANB1 operators revealed that the two Rox1 sites within an operator acted synergistically in vivo, but that Rox1 did not bind cooperatively in vitro, suggesting the presence of a higher order repression complex in the cell. In addition, the spacing or helical phasing of the Rox1 sites was not important in repression. The differential repression by the two operators of the ANB1 gene was found to be due partly to the location of the operators and partly to the sequences between the two Rox1-binding sites in each. Finally, while Rox1 repression requires the Tup1/Ssn6 general repression complex and this complex has been proposed to require the aminoterminal regions of histones H3 and H4 for full repression of a number of genes, we found that these regions were dispensable for ANB1 repression and the repression of two other hypoxic genes.
Collapse
Affiliation(s)
- J Deckert
- Department of Biological Sciences, University at Albany/State University of New York, Albany, New York 12222, USA
| | | | | | | | | |
Collapse
|
44
|
Giraud S, Bonod-Bidaud C, Wesolowski-Louvel M, Stepien G. Expression of human ANT2 gene in highly proliferative cells: GRBOX, a new transcriptional element, is involved in the regulation of glycolytic ATP import into mitochondria. J Mol Biol 1998; 281:409-18. [PMID: 9698557 DOI: 10.1006/jmbi.1998.1955] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adenine nucleotide translocator (ANT) is the most abundant mitochondrial inner membrane protein which catalyses the exchange of ADP and ATP between cytosol and mitochondria. The human ANT protein has three isoforms encoded by three differentially regulated nuclear genes. The ANT gene expression was examined in several human cells. The gene encoding the ANT2 isoform was found specifically induced in Simian virus 40 (SV40)-transformed, tumoral and mtDNA lacking rho degrees cell lines. Moreover, the ANT2 gene was preferentially expressed under a glycolytic metabolism. Functional complementation of a Saccharomyces cerevisiae mutant revealed that the human ANT2 protein specifically restores yeast cell growth under anaerobic conditions. Sequence analysis of the ANT2 proximal promoter in comparison to that of the third yeast adenine nucleotide translocator (AAC3) led us to identify a new motif termed GRBOX. Promoter-deletion transfection and mobility gel-shift assays revealed that this motif is recognized by a negative transcriptional regulator. This transcription factor might be involved in a molecular mechanism which selects the import of the glycolytic ATP in the mitochondrial matrix. This ATP import is required in highly proliferative cells, such as tumour cells, which depend strongly on glycolysis for ATP synthesis.
Collapse
Affiliation(s)
- S Giraud
- CNRS UMR-5534, Université Claude Bernard Lyon1, 43 Bd du 11 Novembre 1918, Villeurbanne, Cedex, 69622, France.
| | | | | | | |
Collapse
|
45
|
Zeman I, Kolarov J. Expression of genes coding for ADP/ATP translocator in various yeasts. Folia Microbiol (Praha) 1998; 42:256-7. [PMID: 9378428 DOI: 10.1007/bf02819001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I Zeman
- Department of Biochemistry, Faculty of Science, Comenius University, Bratislava, Slovakia
| | | |
Collapse
|
46
|
Sertil O, Cohen BD, Davies KJ, Lowry CV. The DAN1 gene of S. cerevisiae is regulated in parallel with the hypoxic genes, but by a different mechanism. Gene 1997; 192:199-205. [PMID: 9224891 DOI: 10.1016/s0378-1119(97)00028-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The DAN1 gene is expressed under anaerobic conditions in yeast and completely repressed during aerobic growth. The function of the gene is unknown, and genetic disruption had no effect on fitness which could be detected, even upon prolonged anaerobic growth. Expression of DAN1 was constitutive in a heme-deficient strain, indicating that heme participates in repression. Expression was blocked by heme in anaerobic medium, suggesting that heme acts as a negative co-effector rather than through its metabolic functions, i.e., in the production of a co-effector. Expression of DAN1 was regulated in parallel with the hypoxic gene ANB1, showing identical kinetics of induction and dose response to heme. However, unlike ANB1, DAN1 is not regulated by the repressor of the hypoxic regulon, ROX1, as shown by observation of normal aerobic repression of DAN1 in a strain carrying a deletion of ROX1. These results indicate the existence of a parallel regulatory system which produces an identical response to oxygen by a different mechanism than that controlling the hypoxic regulon.
Collapse
Affiliation(s)
- O Sertil
- Department of Biochemistry and Molecular Biology, Albany Medical College, NY 12208, USA
| | | | | | | |
Collapse
|
47
|
Drew MC. OXYGEN DEFICIENCY AND ROOT METABOLISM: Injury and Acclimation Under Hypoxia and Anoxia. ACTA ACUST UNITED AC 1997; 48:223-250. [PMID: 15012263 DOI: 10.1146/annurev.arplant.48.1.223] [Citation(s) in RCA: 396] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygen deficiency in the rooting zone occurs with poor drainage after rain or irrigation, causing depressed growth and yield of dryland species, in contrast with native wetland vegetation that tolerates such conditions. This review examines how roots are injured by O2 deficiency and how metabolism changes during acclimation to low concentrations of O2. In the root apical meristem, cell survival is important for the future development; metabolic changes under anoxia help maintain cell survival by generating ATP anaerobically and minimizing the cytoplasmic acidosis associated with cell death. Behind the apex, where cells are fully expanded, ethylene-dependent death and lysis occurs under hypoxia to form continuous, gas-filled channels (aerenchyma) conveying O2 from the leaves. This selective sacrifice of cells may resemble programmed cell death and is distinct from cell death caused by anoxia. Evidence concerning alternative possible mechanisms of anoxia tolerance and avoidance is presented.
Collapse
Affiliation(s)
- Malcolm C. Drew
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843-2133
| |
Collapse
|
48
|
Zitomer RS, Limbach MP, Rodriguez-Torres AM, Balasubramanian B, Deckert J, Snow PM. Approaches to the study of Rox1 repression of the hypoxic genes in the yeast Saccharomyces cerevisiae. Methods 1997; 11:279-88. [PMID: 9073571 DOI: 10.1006/meth.1996.0422] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a facultative aerobe that responds to changes in oxygen tension by changing patterns of gene expression. One set of genes that responds to this environmental cue is the hypoxic genes. Oxygen levels are sensed by changes in heme biosynthesis, which controls the transcription of the ROX1 gene, encoding a protein that binds to the regulatory region of each hypoxic gene to repress transcription. Several experimental molecular and genetic approaches are described here to study Rox1 repression. Derepression of the hypoxic genes is rapid, and one model for such a response requires that Rox1 have a short half-life. This was demonstrated to be the case by immunoblotting using a c-myc epitope-tagged protein. Rox1 repression is mediated through the general repressors Ssn6 and Tup1. To explore possible interactions among these proteins, all three were expressed and partially purified using a baculovirus expression system and histidine-tagged proteins. The effect of Ssn6 and Tup1 on the formation of Rox1-DNA complexes was explored using these purified proteins by both electrophoretic mobility shift and DNase I protection assays. We found that Rox1 DNA-binding activity decayed rapidly and that Ssn6 could stabilize and restore lost activity. Finally, genetic selections are described for the isolation of loss-of-function mutations in Rox1. Also, schemes are proposed for the reversion of such mutations. These selections have been extended to genetic analyses of the TUP1 and SSN6 genes.
Collapse
Affiliation(s)
- R S Zitomer
- Department of Biological Sciences, University at Albany/State University of New York 12222, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Baker's yeast, Saccharomyces cerevisiae, can adapt to growth under severe oxygen limitation. Two regulatory systems are described here that control this adaptation. The first involves a heme-dependent repression mechanism. Cells sense hypoxia through the inability to maintain oxygen-dependent heme biosynthesis. Under aerobic conditions, heme accumulates and serves as an effector for the transcriptional activator Hap1. The heme-Hap1 complex activates transcription of the ROX1 gene that encodes a repressor of one set of hypoxic genes. Under hypoxic conditions, heme levels fall, and a heme-deficient Hap1 complex represses ROX1 expression. As a consequence, the hypoxic genes are derepressed. The second regulatory system activates gene expression in response to a variety of stress conditions, including oxygen limitation. Oxygen sensing in this system is heme-independent. The same DNA sequence mediates transcriptional activation of each stress signal.
Collapse
Affiliation(s)
- R S Zitomer
- Department of Biological Sciences, University at Albany/SUNY, USA.
| | | | | |
Collapse
|
50
|
Zhu Z, Thiele DJ. A specialized nucleosome modulates transcription factor access to a C. glabrata metal responsive promoter. Cell 1996; 87:459-70. [PMID: 8898199 DOI: 10.1016/s0092-8674(00)81366-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ability of DNA binding transcription factors to access cis-acting promoter elements is critical for transcriptional responses. We demonstrate that rapid transcriptional autoactivation by the Amt1 Cu metalloregulatory transcription factor from the opportunistic pathogenic yeast Candida glabrata is dependent on rapid metal-induced DNA binding to a single metal response element (MRE). In vivo footprinting and chromatin-mapping experiments demonstrate that the MRE and a homopolymeric (dA x dT) element adjacent to the MRE are packaged into a positioned nucleosome that exhibits homopolymeric (dA x dT)-dependent localized distortion. This distortion is critical for rapid Amt1 binding to the MRE, for Cu-dependent AMT1 gene transcription, and for C. glabrata cells to mount a rapid transcriptional response to Cu for normal metal detoxification. The AMT1 promoter represents a novel class of specialized nucleosomal structures that links rapid transcriptional responses to the biology of metal homeostasis.
Collapse
Affiliation(s)
- Z Zhu
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | |
Collapse
|