1
|
Zhang YH, Zhao L, Zhang MY, Cao RD, Hou GM, Teng HJ, Zhang JX. Fatty acid metabolism decreased while sexual selection increased in brown rats spreading south. iScience 2023; 26:107742. [PMID: 37731619 PMCID: PMC10507208 DOI: 10.1016/j.isci.2023.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
For mammals that originate in the cold north, adapting to warmer environments is crucial for southwards invasion. The brown rat (Rattus norvegicus) originated in Northeast China and has become a global pest. R. n. humiliatus (RNH) spread from the northeast, where R. n. caraco (RNC) lives, to North China and diverged to form a subspecies. Genomic analyses revealed that subspecies differentiation was promoted by temperature but impeded by gene flow and that genes related to fatty acid metabolism were under the strongest selection. Transcriptome analyses revealed downregulated hepatic genes related to fatty acid metabolism and upregulated those related to pheromones in RNH vs. RNC. Similar patterns were observed in relation to cold/warm acclimation. RNH preferred mates with stronger pheromone signals intra-populationally and more genetic divergence inter-populationally. We concluded that RNH experienced reduced fat utilization and increased pheromone-mediated sexual selection during its invasion from the cold north to warm south.
Collapse
Affiliation(s)
- Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
| | - Lei Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Dong Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guan-Mei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Jing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1-5, Chaoyang District, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Qvarnström A, Veen T, Husby A, Ålund M, Weissing FJ. Assortative Mating in an Ecological Context: Effects of Mate Choice Errors and Relative Species Abundance on the Frequency and Asymmetry of Hybridization. Am Nat 2023; 201:125-137. [PMID: 36524936 DOI: 10.1086/722156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe frequency and asymmetry of mixed-species mating set the initial stage for the ecological and evolutionary implications of hybridization. How such patterns of mixed-species mating, in turn, are influenced by the combination of mate choice errors and relative species abundance remains largely unknown. We develop a mathematical model that generates predictions for how relative species abundances and mate choice errors affect hybridization patterns. When mate choice errors are small (<5%), the highest frequency of hybridization occurs when one of the hybridizing species is at low abundance, but when mate choice errors are high (>5%), the highest hybridization frequency occurs when species occur in equal proportions. Furthermore, females of the less abundant species are overrepresented in mixed-species matings. We compare our theoretical predictions with empirical data on naturally hybridizing Ficedula flycatchers and find that hybridization is highest when the two species occur in equal abundance, implying rather high mate choice errors. We discuss ecological and evolutionary implications of our findings and encourage future work on hybrid zone dynamics that take demographic aspects, such as relative species abundance, into account.
Collapse
|
3
|
Alvarado AH, Bossu CM, Harrigan RJ, Bay RA, Nelson ARP, Smith TB, Ruegg KC. Genotype-environment associations across spatial scales reveal the importance of putative adaptive genetic variation in divergence. Evol Appl 2022; 15:1390-1407. [PMID: 36187181 PMCID: PMC9488676 DOI: 10.1111/eva.13444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/04/2022] [Indexed: 12/01/2022] Open
Abstract
Identifying areas of high evolutionary potential is a judicious strategy for developing conservation priorities in the face of environmental change. For wide-ranging species occupying heterogeneous environments, the evolutionary forces that shape distinct populations can vary spatially. Here, we investigate patterns of genomic variation and genotype-environment associations in the hermit thrush (Catharus guttatus), a North American songbird, at broad (across the breeding range) and narrow spatial scales (at a hybrid zone). We begin by building a genoscape or map of genetic variation across the breeding range and find five distinct genetic clusters within the species, with the greatest variation occurring in the western portion of the range. Genotype-environment association analyses indicate higher allelic turnover in the west than in the east, with measures of temperature surfacing as key predictors of putative adaptive genomic variation rangewide. Since broad patterns detected across a species' range represent the aggregate of many locally adapted populations, we investigate whether our broadscale analysis is consistent with a finer scale analysis. We find that top rangewide temperature-associated loci vary in their clinal patterns (e.g., steep clines vs. fixed allele frequencies) across a hybrid zone in British Columbia, suggesting that the environmental predictors and the associated candidate loci identified in the rangewide analysis are of variable importance in this particular region. However, two candidate loci exhibit strong concordance with the temperature gradient in British Columbia, suggesting a potential role for temperature-related barriers to gene flow and/or temperature-driven ecological selection in maintaining putative local adaptation. This study demonstrates how patterns identified at the broad (macrogeographic) scale can be validated by investigating genotype-environment correlations at the local (microgeographic) scale. Furthermore, our results highlight the importance of considering the spatial distribution of putative adaptive variation when assessing population-level sensitivity to climate change and other stressors.
Collapse
Affiliation(s)
- Allison H. Alvarado
- Biology DepartmentCalifornia State University Channel IslandsCamarilloCaliforniaUSA
| | - Christen M. Bossu
- Center for Tropical Research, Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Ryan J. Harrigan
- Center for Tropical Research, Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Rachael A. Bay
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
| | | | - Thomas B. Smith
- Center for Tropical Research, Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Kristen C. Ruegg
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
4
|
Paula DP. Next-Generation Sequencing and Its Impacts on Entomological Research in Ecology and Evolution. NEOTROPICAL ENTOMOLOGY 2021; 50:679-696. [PMID: 34374956 DOI: 10.1007/s13744-021-00895-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The advent of NGS-based methods has been profoundly transforming entomological research. Through continual development and improvement of different methods and sequencing platforms, NGS has promoted mass elucidation of partial or whole genetic materials associated with beneficial insects, pests (of agriculture, forestry and animal, and human health), and species of conservation concern, helping to unravel ecological and evolutionary mechanisms and characterizing survival, trophic interactions, and dispersal. It is shifting the scale of biodiversity and environmental analyses from individuals and biodiversity indicator species to the large-scale study of communities and ecosystems using bulk samples of species or a mixed "soup" of environmental DNA. As the NGS-based methods have become more affordable, complexity demystified, and specificity and sensitivity proven, their use in entomological research has spread widely. This article presents several examples on how NGS-based methods have been used in entomology to provide incentives to apply them when appropriate and to open our minds to the expected advances in entomology that are yet to come.
Collapse
|
5
|
Matute DR, Cooper BS. Comparative studies on speciation: 30 years since Coyne and Orr. Evolution 2021; 75:764-778. [PMID: 33491225 PMCID: PMC8247902 DOI: 10.1111/evo.14181] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Understanding the processes of population divergence and speciation remains a core question in evolutionary biology. For nearly a hundred years evolutionary geneticists have characterized reproductive isolation (RI) mechanisms and specific barriers to gene flow required for species formation. The seminal work of Coyne and Orr provided the first comprehensive comparative analysis of speciation. By combining phylogenetic hypotheses and species range data with estimates of genetic divergence and multiple mechanisms of RI across Drosophila, Coyne and Orr's influential meta-analyses answered fundamental questions and motivated new analyses that continue to push the field forward today. Now 30 years later, we revisit the five questions addressed by Coyne and Orr, identifying results that remain well supported and others that seem less robust with new data. We then consider the future of speciation research, with emphasis on areas where novel methods and data motivate potential progress. While the literature remains biased towards Drosophila and other model systems, we are enthusiastic about the future of the field.
Collapse
Affiliation(s)
- Daniel R. Matute
- Biology DepartmentUniversity of North CarolinaChapel HillNorth Carolina27510
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontana59812
| |
Collapse
|
6
|
Aguirre-Liguori JA, Gaut BS, Jaramillo-Correa JP, Tenaillon MI, Montes-Hernández S, García-Oliva F, Hearne SJ, Eguiarte LE. Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). Mol Ecol 2019; 28:2814-2830. [PMID: 30980686 DOI: 10.1111/mec.15098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 01/03/2023]
Abstract
Patterns of genomic divergence between hybridizing taxa can be heterogeneous along the genome. Both differential introgression and local adaptation may contribute to this pattern. Here, we analysed two teosinte subspecies, Zea mays ssp. parviglumis and ssp. mexicana, to test whether their divergence has occurred in the face of gene flow and to infer which environmental variables have been important drivers of their ecological differentiation. We generated 9,780 DArTseqTM SNPs for 47 populations, and used an additional data set containing 33,454 MaizeSNP50 SNPs for 49 populations. With these data, we inferred features of demographic history and performed genome wide scans to determine the number of outlier SNPs associated with climate and soil variables. The two data sets indicate that divergence has occurred or been maintained despite continuous gene flow and/or secondary contact. Most of the significant SNP associations were to temperature and to phosphorus concentration in the soil. A large proportion of these candidate SNPs were located in regions of high differentiation that had been identified previously as putative inversions. We therefore propose that genomic differentiation in teosintes has occurred by a process of adaptive divergence, with putative inversions contributing to reduced gene flow between locally adapted populations.
Collapse
Affiliation(s)
- Jonás A Aguirre-Liguori
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California
| | - Juan Pablo Jaramillo-Correa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maud I Tenaillon
- Génétique Quantitative et Evolution- Le Moulon, INRA, Gif-sur-Yvette, France
| | - Salvador Montes-Hernández
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya, México
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, México
| | - Sarah J Hearne
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
7
|
Lavretsky P, DaCosta JM, Sorenson MD, McCracken KG, Peters JL. ddRAD‐seq data reveal significant genome‐wide population structure and divergent genomic regions that distinguish the mallard and close relatives in North America. Mol Ecol 2019; 28:2594-2609. [DOI: 10.1111/mec.15091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 03/05/2019] [Accepted: 03/29/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Philip Lavretsky
- Department of Biological Sciences University of Texas at El Paso El Paso Texas
- Department of Biological Sciences Wright State University Dayton Ohio
- Department of Biology University of Miami Miami Florida
| | - Jeffrey M. DaCosta
- Biology Department Boston College Chestnut Hill Massachusetts
- Biology Department Boston College Boston Massachusetts
| | | | - Kevin G. McCracken
- Department of Biology University of Miami Miami Florida
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences University of Miami Miami Florida
- Human Genetics and Genomics Hussman Institute for Human Genomics, University of Miami Miller School of Medicine Miami Florida
- Institute of Arctic Biology and University of Alaska Museum University of Alaska Fairbanks Fairbanks Alaska
| | - Jeffrey L. Peters
- Department of Biological Sciences Wright State University Dayton Ohio
| |
Collapse
|
8
|
Arntzen JW, de Vries W, Canestrelli D, Martínez-Solano I. Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads. Mol Ecol 2017; 26:5663-5675. [PMID: 28752635 DOI: 10.1111/mec.14273] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023]
Abstract
Much progress in speciation research stems from documenting patterns of morphological and genetic variation in hybrid zones. Contrasting patterns of marker introgression in different sections of the contact can provide valuable insights on the relative importance of various evolutionary mechanisms maintaining species differences in the face of hybridization and gene flow and on hybrid zone temporal and spatial dynamics. We studied species interactions in the common toads Bufo bufo and B. spinosus in France and northwestern Italy using morphological and molecular data from the mitochondrial and nuclear genomes in an extensive survey, including two independent transects west and east of the Alps. At both, we found sharp, coincident and concordant nuclear genetic transitions. However, morphological clines were wider or absent and mtDNA introgression was asymmetric. We discuss alternative, nonexclusive hypotheses about evolutionary processes generating these patterns, including drift, selection, long-distance dispersal and spatial shifts in hybrid zone location and structure. The distribution of intraspecific mtDNA lineages supports a scenario in which B. bufo held a local refugium during the last glacial maximum. Present-day genetic profiles are best explained by an advance of B. spinosus from a nearby Iberian refugium, largely superseding the local B. bufo population, followed by an advance of B. bufo from the Balkans, with prongs north and south of the Alps, driving B. spinosus southwards. A pendulum moving hybrid zone, first northwards and then southwards, explains the wide areas of introgression at either side of the current position of the contact zones.
Collapse
Affiliation(s)
- Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Daniele Canestrelli
- Department of Ecological and Biological Science, Largo dell'Università s.n.c., Viterbo, Italy
| | - Iñigo Martínez-Solano
- Naturalis Biodiversity Center, Leiden, The Netherlands.,Evolution and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, Seville, Spain
| |
Collapse
|
9
|
Arntzen JW, Trujillo T, Butôt R, Vrieling K, Schaap O, Gutiérrez-Rodríguez J, Martínez-Solano I. Concordant morphological and molecular clines in a contact zone of the Common and Spined toad ( Bufo bufo and B. spinosus) in the northwest of France. Front Zool 2016; 13:52. [PMID: 28018475 PMCID: PMC5168812 DOI: 10.1186/s12983-016-0184-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hybrid zones are regions where individuals of two species meet and produce hybrid progeny, and are often regarded as natural laboratories to understand the process of species formation. Two microevolutionary processes can take place in hybrid zones, with opposing effects on population differentiation. Hybridization tends to produce genetic homogenization, reducing species differences, whereas the presence of mechanisms of reproductive isolation result in barriers to gene flow, maintaining or increasing differences between taxa. RESULTS Here we study a contact zone between two hybridizing toad species, Bufo bufo and B. spinosus, through a combination of molecular (12 polymorphic microsatellites, four nuclear and two mitochondrial SNP markers) and morphological data in a transect in the northwest of France. The results show largely concordant clines across markers, defining a narrow hybrid zone of ca. 30 km wide. Most hybrids in the centre of the contact zone are classified as F2 or backcrossed individuals, with no individuals assigned to the F1 hybrid class. CONCLUSIONS We discuss the implications of these results for our understanding of the evolutionary history of these species. We anticipate that the toad contact zone here described will become an important asset in the study of hybrid zone dynamics and evolutionary biology because of its easy access and the abundance of the species involved.
Collapse
Affiliation(s)
- Jan W Arntzen
- Naturalis Biodiversity Center, P.O. Box 9517, Leiden, 2300 RA The Netherlands
| | - Tania Trujillo
- Museo Nacional de Ciencias Naturales, CSIC, c/José Gutiérrez Abascal, 2, Madrid, 28006 Spain
| | - Roland Butôt
- Naturalis Biodiversity Center, P.O. Box 9517, Leiden, 2300 RA The Netherlands
| | - Klaas Vrieling
- Plant Cluster, Institute of Biology, Sylvius Laboratory, Leiden University, P.O. BOX 9505, Leiden, 2300 RA The Netherlands
| | - Onno Schaap
- Plant Cluster, Institute of Biology, Sylvius Laboratory, Leiden University, P.O. BOX 9505, Leiden, 2300 RA The Netherlands
| | | | - Iñigo Martínez-Solano
- Naturalis Biodiversity Center, P.O. Box 9517, Leiden, 2300 RA The Netherlands ; Instituto de Investigación en Recursos Cinegéticos (IREC-UCLM-CSIC-JCCM), Ronda de Toledo, Ciudad Real, s/n, 13005 Spain ; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Vairão, 4485-661 Portugal ; Present address: Ecology, Evolution and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, c/Americo Vespucio, Seville, s/n, 41092 Spain
| |
Collapse
|
10
|
Marques DA, Lucek K, Haesler MP, Feller AF, Meier JI, Wagner CE, Excoffier L, Seehausen O. Genomic landscape of early ecological speciation initiated by selection on nuptial colour. Mol Ecol 2016; 26:7-24. [DOI: 10.1111/mec.13774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Affiliation(s)
- David Alexander Marques
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Kay Lucek
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
- University of Sheffield; Sheffield UK
| | - Marcel Philipp Haesler
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Anna Fiona Feller
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Joana Isabel Meier
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Catherine E. Wagner
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
- Department of Botany, Biodiversity Institute; University of Wyoming; Laramie WY USA
| | - Laurent Excoffier
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Swiss Institute of Bioinformatics; Lausanne Switzerland
| | - Ole Seehausen
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| |
Collapse
|
11
|
|
12
|
Qvarnström A, Ålund M, McFarlane SE, Sirkiä PM. Climate adaptation and speciation: particular focus on reproductive barriers in Ficedula flycatchers. Evol Appl 2015; 9:119-34. [PMID: 27087843 PMCID: PMC4780377 DOI: 10.1111/eva.12276] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/14/2015] [Indexed: 01/19/2023] Open
Abstract
Climate adaptation is surprisingly rarely reported as a cause for the build‐up of reproductive isolation between diverging populations. In this review, we summarize evidence for effects of climate adaptation on pre‐ and postzygotic isolation between emerging species with a particular focus on pied (Ficedula hypoleuca) and collared (Ficedula albicollis) flycatchers as a model for research on speciation. Effects of climate adaptation on prezygotic isolation or extrinsic selection against hybrids have been documented in several taxa, but the combined action of climate adaptation and sexual selection is particularly well explored in Ficedula flycatchers. There is a general lack of evidence for divergent climate adaptation causing intrinsic postzygotic isolation. However, we argue that the profound effects of divergence in climate adaptation on the whole biochemical machinery of organisms and hence many underlying genes should increase the likelihood of genetic incompatibilities arising as side effects. Fast temperature‐dependent co‐evolution between mitochondrial and nuclear genomes may be particularly likely to lead to hybrid sterility. Thus, how climate adaptation relates to reproductive isolation is best explored in relation to fast‐evolving barriers to gene flow, while more research on later stages of divergence is needed to achieve a complete understanding of climate‐driven speciation.
Collapse
Affiliation(s)
- Anna Qvarnström
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Murielle Ålund
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - S Eryn McFarlane
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Päivi M Sirkiä
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden; Finnish Museum of Natural History Zoology Unit University of Helsinki Helsinki Finland
| |
Collapse
|
13
|
Local adaptation of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau. Sci Rep 2015; 5:9780. [PMID: 25944748 PMCID: PMC4421831 DOI: 10.1038/srep09780] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/05/2015] [Indexed: 12/28/2022] Open
Abstract
Divergent selection among environments affects species distributions and can lead to speciation. In this article, we investigated the transcriptomes of two ecotypes of scaleless carp (Gymnocypris przewalskii przewalskii and G. p. ganzihonensis) from the Tibetan Plateau. We used a transcriptome sequencing approach to screen approximately 250,000 expressed sequence tags (ESTs) from the gill and kidney tissues of twelve individuals from the Ganzi River and Lake Qinghai to understand how this freshwater fish has adapted to an ecological niche shift from saline to freshwater. We identified 9,429 loci in the gill transcriptome and 12,034 loci in the kidney transcriptome with significant differences in their expression, of which 242 protein-coding genes exhibited strong positive selection (Ka/Ks > 1). Many of the genes are involved in ion channel functions (e.g., Ca2+-binding proteins), immune responses (e.g., nephrosin) or cellular water absorption functions (e.g., aquaporins). These results have potentially broad importance in understanding shifts from saline to freshwater habitats. Furthermore, this study provides the first transcriptome of G. przewalskii, which will facilitate future ecological genomics studies and aid in the identification of genes underlying adaptation and incipient ecological speciation.
Collapse
|
14
|
Kristensen TN, Hoffmann AA, Pertoldi C, Stronen AV. What can livestock breeders learn from conservation genetics and vice versa? Front Genet 2015; 6:38. [PMID: 25713584 PMCID: PMC4322732 DOI: 10.3389/fgene.2015.00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
The management of livestock breeds and threatened natural population share common challenges, including small effective population sizes, high risk of inbreeding, and the potential benefits and costs associated with mixing disparate gene pools. Here, we consider what has been learnt about these issues, the ways in which the knowledge gained from one area might be applied to the other, and the potential of genomics to provide new insights. Although there are key differences stemming from the importance of artificial versus natural selection and the decreased level of environmental heterogeneity experienced by many livestock populations, we suspect that information from genetic rescue in natural populations could be usefully applied to livestock. This includes an increased emphasis on maintaining substantial population sizes at the expense of genetic uniqueness in ensuring future adaptability, and on emphasizing the way that environmental changes can influence the relative fitness of deleterious alleles and genotypes in small populations. We also suspect that information gained from cross-breeding and the maintenance of unique breeds will be increasingly important for the preservation of genetic variation in small natural populations. In particular, selected genes identified in domestic populations provide genetic markers for exploring adaptive evolution in threatened natural populations. Genomic technologies in the two disciplines will be important in the future in realizing genetic gains in livestock and maximizing adaptive capacity in wildlife, and particularly in understanding how parts of the genome may respond differently when exposed to population processes and selection.
Collapse
Affiliation(s)
- Torsten N. Kristensen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Ary A. Hoffmann
- Department of Zoology and Department of Genetics, Bio21 Institute, The University of MelbourneMelbourne, VIC, Australia
| | - Cino Pertoldi
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
- Aalborg ZooAalborg, Denmark
| | - Astrid V. Stronen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
15
|
Vijayakumar P, Raut AA, Kumar P, Sharma D, Mishra A. De novo assembly and analysis of crow lungs transcriptome. Genome 2015; 57:499-506. [PMID: 25633965 DOI: 10.1139/gen-2014-0122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The jungle crow (Corvus macrorhynchos) belongs to the order Passeriformes of bird species and is important for avian ecological and evolutionary genetics studies. However, there is limited information on the transcriptome data of this species. In the present study, we report the characterization of the lung transcriptome of the jungle crow using GS FLX Titanium XLR70. Altogether, 1,510,303 high-quality sequence reads with 581,198,230 bases was de novo assembled into 22,169 isotigs (isotig represents an individual transcript) and 784,009 singletons. Using these isotigs and 581,681 length-filtered (greater than 300 bp) singletons, 20,010 unique protein-coding genes were identified by BLASTx comparison against a nonredundant (nr) protein sequence database. Comparative analysis revealed that 46,604 (70.29%) and 51,642 (72.48%) of the assembled transcripts have significant similarity to zebra finch and chicken RefSeq proteins, respectively. As determined by GO annotation and KEGG pathway mapping, functional annotation of the unigenes recovered diverse biological functions and processes. Transcripts putatively involved in the immune response were identified. Furthermore, 20,599 single nucleotide polymorphisms (SNPs) and 7525 simple sequence repeats (SSRs) were retrieved from the assembled transcript database. This resource should lay an important base for future ecological, evolutionary, and conservation genetic studies on this species and in other related species.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- a High Security Animal Disease Laboratory, Indian Veterinary Research Institute, Anand Nagar, Bhopal-462021, Madhya Pradesh, India
| | | | | | | | | |
Collapse
|
16
|
Li C, Gowan S, Anil A, Beck BH, Thongda W, Kucuktas H, Kaltenboeck L, Peatman E. Discovery and validation of gene-linked diagnostic SNP markers for assessing hybridization between Largemouth bass (Micropterus salmoides) and Florida bass (M. floridanus). Mol Ecol Resour 2014; 15:395-404. [DOI: 10.1111/1755-0998.12308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Li
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Spencer Gowan
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Ammu Anil
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Benjamin H. Beck
- United States Department of Agriculture; Agricultural Research Service; Stuttgart National Aquaculture Research Center; Stuttgart AR 72160 USA
| | - Wilawan Thongda
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Huseyin Kucuktas
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Ludmilla Kaltenboeck
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| | - Eric Peatman
- School of Fisheries; Aquaculture and Aquatic Sciences; Auburn University; Auburn AL 36849 USA
| |
Collapse
|
17
|
Plumel MI, Stier A, Thiersé D, van Dorsselaer A, Criscuolo F, Bertile F. Litter size manipulation in laboratory mice: an example of how proteomic analysis can uncover new mechanisms underlying the cost of reproduction. Front Zool 2014; 11:41. [PMID: 24891874 PMCID: PMC4041047 DOI: 10.1186/1742-9994-11-41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 12/11/2022] Open
Abstract
Background Life history theories predict that investment in current reproduction comes at a cost for future reproduction and survival. Oxidative stress is one of the best documented mechanisms underlying costs of reproduction to date. However, other, yet to be described molecular mechanisms that play a short term role during reproduction may explain the negative relationships underlying the cost of reproduction. To identify such new mechanisms, we used a global proteomic determination of liver protein profiles in laboratory adult female mice whose litter size had been either reduced or enlarged after birth. This litter size manipulation was expected to affect females by either raising or decreasing their current reproductive effort. At the same time, global parameters and levels of oxidative stress were also measured in all females. Results Based on plasma analyses, females with enlarged litters exhibited increased levels of oxidative stress at the date of weaning compared to females with reduced litters, while no significant difference was found between both the latter groups and control females. None of the liver proteins related to oxidative balance were significantly affected by the experimental treatment. In contrast, the liver protein profiles of females with enlarged and reduced litters suggested that calcium metabolism and cell growth regulation were negatively affected by changes in the number of pup reared. Conclusions Plasma oxidative stress levels in reproductive mice revealed that the degree of investment in reproduction can actually incur a cost in terms of plasmatic oxidative stress, their initial investment in reproduction being close to maximum and remaining at a same level when the energy demand of lactation is reduced. Liver proteomic profiles in reproductive females show that hepatic oxidative stress is unlikely to be involved in the cost of reproduction. Reproductive females rather exhibited liver protein profiles similar to those previously described in laboratory ageing mice, thus suggesting that hepatic cell pro-ageing processes may be involved in the cost of reproduction. Overall, our data illustrate how a proteomic approach can unravel new mechanisms sustaining life-history trade-offs, and reproduction costs in particular.
Collapse
Affiliation(s)
- Marine I Plumel
- Département Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.,University of Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg, Cedex, France
| | - Antoine Stier
- Département d'Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, 23 rue Becquerel, 67087 Strasbourg, Cedex 2, France.,University of Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg, Cedex, France
| | - Danièle Thiersé
- Département Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.,University of Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg, Cedex, France
| | - Alain van Dorsselaer
- Département Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.,University of Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg, Cedex, France
| | - François Criscuolo
- Département d'Ecologie, Physiologie et Ethologie, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, 23 rue Becquerel, 67087 Strasbourg, Cedex 2, France.,University of Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg, Cedex, France
| | - Fabrice Bertile
- Département Sciences Analytiques, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France.,University of Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg, Cedex, France
| |
Collapse
|
18
|
Van der Niet T, Peakall R, Johnson SD. Pollinator-driven ecological speciation in plants: new evidence and future perspectives. ANNALS OF BOTANY 2014; 113:199-211. [PMID: 24418954 PMCID: PMC3890394 DOI: 10.1093/aob/mct290] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/17/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. SCOPE This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of 'pollination ecotypes', (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies further illustrate innovative experimental approaches, and they employ modern tools in genetics and floral trait quantification. Future advances to the field require better quantification of selection through male fitness and pollinator isolation, for instance by exploiting next-generation sequencing technologies. By combining these new tools with strategically chosen study systems, and smart experimental design, we predict that examples of pollinator-driven speciation will be among the most widespread and compelling of all cases of ecological speciation.
Collapse
Affiliation(s)
- Timotheüs Van der Niet
- Naturalis Biodiversity Center, P.O. Box 9514, 2300 RA, Leiden, The Netherlands
- Leiden University, Section Botany, P.O. Box 9514, 2300 RA, Leiden, The Netherlands
- School of Life Sciences, University of KwaZulu Natal, P/Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
| | - Rod Peakall
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Steven D. Johnson
- School of Life Sciences, University of KwaZulu Natal, P/Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
| |
Collapse
|
19
|
Konczal M, Koteja P, Stuglik MT, Radwan J, Babik W. Accuracy of allele frequency estimation using pooled RNA-Seq. Mol Ecol Resour 2013; 14:381-92. [PMID: 24119300 DOI: 10.1111/1755-0998.12186] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/30/2013] [Accepted: 10/06/2013] [Indexed: 11/28/2022]
Abstract
For nonmodel organisms, genome-wide information that describes functionally relevant variation may be obtained by RNA-Seq following de novo transcriptome assembly. While sequencing has become relatively inexpensive, the preparation of a large number of sequencing libraries remains prohibitively expensive for population genetic analyses of nonmodel species. Pooling samples may be then an attractive alternative. To test whether pooled RNA-Seq accurately predicts true allele frequencies, we analysed the liver transcriptomes of 10 bank voles. Each sample was sequenced both as an individually barcoded library and as a part of a pool. Equal amounts of total RNA from each vole were pooled prior to mRNA selection and library construction. Reads were mapped onto the de novo assembled reference transcriptome. High-quality genotypes for individual voles, determined for 23,682 SNPs, provided information on 'true' allele frequencies; allele frequencies estimated from the pool were then compared with these values. 'True' frequencies and those estimated from the pool were highly correlated. Mean relative estimation error was 21% and did not depend on expression level. However, we also observed a minor effect of interindividual variation in gene expression and allele-specific gene expression influencing allele frequency estimation accuracy. Moreover, we observed strong negative relationship between minor allele frequency and relative estimation error. Our results indicate that pooled RNA-Seq exhibits accuracy comparable with pooled genome resequencing, but variation in expression level between individuals should be assessed and accounted for. This should help in taking account the difference in accuracy between conservatively expressed transcripts and these which are variable in expression level.
Collapse
Affiliation(s)
- M Konczal
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | | | | | | | | |
Collapse
|
20
|
Stronen AV, Jędrzejewska B, Pertoldi C, Demontis D, Randi E, Niedziałkowska M, Pilot M, Sidorovich VE, Dykyy I, Kusak J, Tsingarska E, Kojola I, Karamanlidis AA, Ornicans A, Lobkov VA, Dumenko V, Czarnomska SD. North-South differentiation and a region of high diversity in European wolves (Canis lupus). PLoS One 2013; 8:e76454. [PMID: 24146871 PMCID: PMC3795770 DOI: 10.1371/journal.pone.0076454] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
European wolves (Canis lupus) show population genetic structure in the absence of geographic barriers, and across relatively short distances for this highly mobile species. Additional information on the location of and divergence between population clusters is required, particularly because wolves are currently recolonizing parts of Europe. We evaluated genetic structure in 177 wolves from 11 countries using over 67K single nucleotide polymorphism (SNP) loci. The results supported previous findings of an isolated Italian population with lower genetic diversity than that observed across other areas of Europe. Wolves from the remaining countries were primarily structured in a north-south axis, with Croatia, Bulgaria, and Greece (Dinaric-Balkan) differentiated from northcentral wolves that included individuals from Finland, Latvia, Belarus, Poland and Russia. Carpathian Mountain wolves in central Europe had genotypes intermediate between those identified in northcentral Europe and the Dinaric-Balkan cluster. Overall, individual genotypes from northcentral Europe suggested high levels of admixture. We observed high diversity within Belarus, with wolves from western and northern Belarus representing the two most differentiated groups within northcentral Europe. Our results support the presence of at least three major clusters (Italy, Carpathians, Dinaric-Balkan) in southern and central Europe. Individuals from Croatia also appeared differentiated from wolves in Greece and Bulgaria. Expansion from glacial refugia, adaptation to local environments, and human-related factors such as landscape fragmentation and frequent killing of wolves in some areas may have contributed to the observed patterns. Our findings can help inform conservation management of these apex predators and the ecosystems of which they are part.
Collapse
Affiliation(s)
- Astrid V. Stronen
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
- * E-mail:
| | | | - Cino Pertoldi
- Department of Biosciences, Aarhus University, Aarhus, Denmark
- Aalborg University, Department 18/Section of Environmental Engineering, Aalborg, Denmark
- Aalborg Zoo, Aalborg, Denmark
| | - Ditte Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ettore Randi
- Aalborg University, Department 18/Section of Environmental Engineering, Aalborg, Denmark
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale, Ozzano Emilia (BO), Italy
| | | | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
| | - Vadim E. Sidorovich
- Institute of Zoology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Ihor Dykyy
- Department of Zoology, Biological Faculty, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Josip Kusak
- Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Ilpo Kojola
- Finnish Game and Fisheries Research Institute, Oulu, Finland
| | - Alexandros A. Karamanlidis
- ARCTUROS, Civil Society for the Protection and Management of Wildlife and the Natural Environment, Thessaloniki, Greece
- Department of Ecology and Natural Resources Management, Norwegian University of Life Sciences, Ås, Norway
| | - Aivars Ornicans
- Latvian State Forest Research Institute “Silava”, Salaspils, Latvia
| | - Vladimir A. Lobkov
- Zoological museum of Odessa, National I.I. Mechnikov University, Odessa, Ukraine
| | - Vitalii Dumenko
- Biosphere Reserve Askania Nova, Askania-Nova, Chaplynka District, Kherson Region, Ukraine
| | | |
Collapse
|
21
|
Pons JM, Sonsthagen S, Dove C, Crochet PA. Extensive mitochondrial introgression in North American Great Black-backed Gulls (Larus marinus) from the American Herring Gull (Larus smithsonianus) with little nuclear DNA impact. Heredity (Edinb) 2013; 112:226-39. [PMID: 24105440 DOI: 10.1038/hdy.2013.98] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 11/09/2022] Open
Abstract
Recent genetic studies have shown that introgression rates among loci may greatly vary according to their location in the genome. In particular, several cases of mito-nuclear discordances have been reported for a wide range of organisms. In the present study, we examine the causes of discordance between mitochondrial (mtDNA) and nuclear DNA introgression detected in North American populations of the Great Black-backed Gull (Larus marinus), a Holarctic species, from the Nearctic North American Herring Gull (Larus smithsonianus). Our results show that extensive unidirectional mtDNA introgression from Larus smithsonianus into Larus marinus in North America cannot be explained by ancestral polymorphism but most likely results from ancient hybridization events occurring when Larus marinus invaded the North America. Conversely, our nuclear DNA results based on 12 microsatellites detected very little introgression from Larus smithsonianus into North American Larus marinus. We discuss these results in the framework of demographic and selective mechanisms that have been postulated to explain mito-nuclear discrepancies. We were unable to demonstrate selection as the main cause of mito-nuclear introgression discordance but cannot dismiss the possible role of selection in the observed pattern. Among demographic explanations, only drift in small populations and bias in mate choice in an invasive context may explain our results. As it is often difficult to demonstrate that selection may be the main factor driving the introgression of mitochondrial DNA in natural populations, we advocate that evaluating alternative demographic neutral hypotheses may help to indirectly support or reject hypotheses invoking selective processes.
Collapse
Affiliation(s)
- J-M Pons
- 1] UMR7205 Origine, Structure et Evolution de la Biodiversité, Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France [2] Service de Systématique Moléculaire, UMS 2700, Muséum National d'Histoire Naturelle, Paris, France
| | - S Sonsthagen
- Department of Vertebrate Zoology, Division of Birds, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - C Dove
- Department of Vertebrate Zoology, Division of Birds, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - P-A Crochet
- CNRS-UMR5175 CEFE, Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier Cedex 5, France
| |
Collapse
|
22
|
Harris SE, Munshi-South J, Obergfell C, O’Neill R. Signatures of rapid evolution in urban and rural transcriptomes of white-footed mice (Peromyscus leucopus) in the New York metropolitan area. PLoS One 2013; 8:e74938. [PMID: 24015321 PMCID: PMC3756007 DOI: 10.1371/journal.pone.0074938] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/06/2013] [Indexed: 12/16/2022] Open
Abstract
Urbanization is a major cause of ecological degradation around the world, and human settlement in large cities is accelerating. New York City (NYC) is one of the oldest and most urbanized cities in North America, but still maintains 20% vegetation cover and substantial populations of some native wildlife. The white-footed mouse, Peromyscusleucopus, is a common resident of NYC's forest fragments and an emerging model system for examining the evolutionary consequences of urbanization. In this study, we developed transcriptomic resources for urban P. leucopus to examine evolutionary changes in protein-coding regions for an exemplar "urban adapter." We used Roche 454 GS FLX+ high throughput sequencing to derive transcriptomes from multiple tissues from individuals across both urban and rural populations. From these data, we identified 31,015 SNPs and several candidate genes potentially experiencing positive selection in urban populations of P. leucopus. These candidate genes are involved in xenobiotic metabolism, innate immune response, demethylation activity, and other important biological phenomena in novel urban environments. This study is one of the first to report candidate genes exhibiting signatures of directional selection in divergent urban ecosystems.
Collapse
Affiliation(s)
- Stephen E. Harris
- Program in Ecology, Evolutionary Biology, & Behavior, The Graduate Center, City University of New York (CUNY), New York, New York, United States of America
| | - Jason Munshi-South
- Louis Calder Center, Fordham University, Armonk, New York, United States of America
| | - Craig Obergfell
- Molecular & Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Rachel O’Neill
- Molecular & Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
23
|
Peijnenburg KTCA, Goetze E. High evolutionary potential of marine zooplankton. Ecol Evol 2013; 3:2765-81. [PMID: 24567838 PMCID: PMC3930040 DOI: 10.1002/ece3.644] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 11/17/2022] Open
Abstract
Open ocean zooplankton often have been viewed as slowly evolving species that have limited capacity to respond adaptively to changing ocean conditions. Hence, attention has focused on the ecological responses of zooplankton to current global change, including range shifts and changing phenology. Here, we argue that zooplankton also are well poised for evolutionary responses to global change. We present theoretical arguments that suggest plankton species may respond rapidly to selection on mildly beneficial mutations due to exceptionally large population size, and consider the circumstantial evidence that supports our inference that selection may be particularly important for these species. We also review all primary population genetic studies of open ocean zooplankton and show that genetic isolation can be achieved at the scale of gyre systems in open ocean habitats (100s to 1000s of km). Furthermore, population genetic structure often varies across planktonic taxa, and appears to be linked to the particular ecological requirements of the organism. In combination, these characteristics should facilitate adaptive evolution to distinct oceanographic habitats in the plankton. We conclude that marine zooplankton may be capable of rapid evolutionary as well as ecological responses to changing ocean conditions, and discuss the implications of this view. We further suggest two priority areas for future research to test our hypothesis of high evolutionary potential in open ocean zooplankton, which will require (1) assessing how pervasive selection is in driving population divergence and (2) rigorously quantifying the spatial and temporal scales of population differentiation in the open ocean. Recent attention has focused on the ecological responses of open ocean zooplankton to current global change, including range shifts and changing phenology. Here, we argue that marine zooplankton also are well poised for evolutionary responses to global change.
Collapse
Affiliation(s)
- Katja T C A Peijnenburg
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam P.O. Box 94248, 1090 GE, Amsterdam, The Netherlands ; Department Marine Zoology, Naturalis Biodiversity Center P.O. Box 9517, 2300 RA, Leiden, The Netherlands
| | - Erica Goetze
- Department of Oceanography School of Ocean and Earth Science and Technology, University of Hawaii at Manoa Honolulu, Hawaii, 96822
| |
Collapse
|
24
|
Scharnweber K, Watanabe K, Syväranta J, Wanke T, Monaghan MT, Mehner T. Effects of predation pressure and resource use on morphological divergence in omnivorous prey fish. BMC Evol Biol 2013; 13:132. [PMID: 23802571 PMCID: PMC3702407 DOI: 10.1186/1471-2148-13-132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/19/2013] [Indexed: 11/25/2022] Open
Abstract
Background Body shape is one of the most variable traits of organisms and responds to a broad array of local selective forces. In freshwater fish, divergent body shapes within single species have been repeatedly observed along the littoral-pelagic axes of lakes, where the structural complexity of near shore habitats provides a more diverse set of resources compared to the open-water zones. It remains poorly understood whether similar resource-driven polymorphism occurs among lakes that vary in structural complexity and predation pressure, and whether this variation is heritable. Here, we analyzed body shape in four populations of omnivorous roach (Rutilus rutilus) inhabiting shallow lakes. We tested the relationship between body shape, gradients of resources, predation pressure, and, in a subset of two lakes, diet composition. We used genome scans of 331 polymorphic AFLP markers to test whether there was a heritable component to the observed morphological diversification. Results Body shape differed among lakes and was significantly correlated to differences in predation pressure. Roach from the lake with highest predation pressure were most divergent from the average body shape of all populations, characterized by a more streamlined body and caudally inserted dorsal fins; features that facilitate predator escape. Surprisingly, diet composition was not associated with morphology. AFLP analysis revealed weak genetic differentiation among lakes and no isolation by distance (IBD). Outlier analysis detected three loci under positive selection with differing frequencies in the four populations. General linear models did not support an association of lake-specific genotypes with morphological variation. Conclusion Body shape was divergent among lakes, suggesting that processes previously reported from within single lakes may also be operating at the scale of whole lakes. We found no evidence for body shape being heritable, although sample size was small in these natural populations. Rather than habitat structure and diet, we conclude that predation had a stronger effect on the prevalence of local morphotypes. A variable morphotype facilitating the efficient uptake of a variety of spatially and temporarily scattered resources seems to be favored in these small aquatic systems.
Collapse
Affiliation(s)
- Kristin Scharnweber
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Shafer ABA, Wolf JBW. Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology. Ecol Lett 2013; 16:940-50. [PMID: 23627762 DOI: 10.1111/ele.12120] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/12/2013] [Accepted: 04/03/2013] [Indexed: 12/14/2022]
Abstract
Ecologically mediated selection has increasingly become recognised as an important driver of speciation. The correlation between neutral genetic differentiation and environmental or phenotypic divergence among populations, to which we collectively refer to as isolation-by-ecology (IBE), is an indicator of ecological speciation. In a meta-analysis framework, we determined the strength and commonality of IBE in nature. On the basis of 106 studies, we calculated a mean effect size of IBE with and without controlling for spatial autocorrelation among populations. Effect sizes were 0.34 (95% CI 0.24-0.42) and 0.26 (95% CI 0.13-0.37), respectively, indicating that an average of 5% of the neutral genetic differentiation among populations was explained purely by ecological contrast. Importantly, spatial autocorrelation reduced IBE correlations for environmental variables, but not for phenotypes. Through simulation, we showed how the influence of isolation-by-distance and spatial autocorrelation of ecological variables can result in false positives or underestimated correlations if not accounted for in the IBE model. Collectively, this meta-analysis showed that ecologically induced genetic divergence is pervasive across time-scales and taxa, and largely independent of the choice of molecular marker. We discuss the importance of these results in the context of adaptation and ecological speciation and suggest future research avenues.
Collapse
Affiliation(s)
- Aaron B A Shafer
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
26
|
McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 2013; 66:526-38. [DOI: 10.1016/j.ympev.2011.12.007] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/09/2023]
|
27
|
Lammers Y, Kremer D, Brakefield PM, Groenenberg DSJ, Pirovano W, Schilthuizen M. SNP genotyping for detecting the 'rare allele phenomenon' in hybrid zones. Mol Ecol Resour 2012; 13:237-42. [PMID: 23241161 DOI: 10.1111/1755-0998.12044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 11/27/2022]
Abstract
Hybrid zones are regions where genetically distinct populations meet, mate and produce offspring. In such zones, genetically less compatible gene combinations are usually generated, resulting in reduced fitness, and hybrid zones are often maintained because of continuous removal of unfit genotypes, balanced by gene flow into the zone from the parental populations (and are then referred to as 'tension zones'). Tension zones often display unexpectedly high frequencies of gene variants that are rare outside the zone. Previous work has shown that this 'rare allele phenomenon' is not the result of intragenic recombination or increased mutation rates. Further understanding of the population genetics of the phenomenon requires an approach in which both the numbers of individuals and the numbers of loci is increased. Here, we report an approach using a combination of Illumina next-generation sequencing and mass spectrophotometer genotyping to identify markers that may be used for genome-wide investigations of the rare allele phenomenon. We test this approach on a hybrid zone in the land snail Albinaria hippolyti from Greece.
Collapse
Affiliation(s)
- Y Lammers
- Naturalis Biodiversity Center, PO Box 9517, 2300, RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Gagnaire PA, Normandeau E, Pavey SA, Bernatchez L. Mapping phenotypic, expression and transmission ratio distortion QTL using RAD markers in the Lake Whitefish(Coregonus clupeaformis). Mol Ecol 2012. [DOI: 10.1111/mec.12127] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pierre-Alexandre Gagnaire
- Institut de Biologie Intégrative et des Systèmes (IBIS); Département de Biologie; Université Laval; Pavillon Charles-Eugène-Marchand Québec G1V 0A6 Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS); Département de Biologie; Université Laval; Pavillon Charles-Eugène-Marchand Québec G1V 0A6 Canada
| | - Scott A. Pavey
- Institut de Biologie Intégrative et des Systèmes (IBIS); Département de Biologie; Université Laval; Pavillon Charles-Eugène-Marchand Québec G1V 0A6 Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Département de Biologie; Université Laval; Pavillon Charles-Eugène-Marchand Québec G1V 0A6 Canada
| |
Collapse
|
29
|
Pavey SA, Bernatchez L, Aubin-Horth N, Landry CR. What is needed for next-generation ecological and evolutionary genomics? Trends Ecol Evol 2012; 27:673-8. [PMID: 22902072 DOI: 10.1016/j.tree.2012.07.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 11/27/2022]
Abstract
Ecological and evolutionary genomics (EEG) aims to link gene functions and genomic features to phenotypes and ecological factors. Although the rapid development of technologies allows central questions to be addressed at an unprecedented level of molecular detail, they do not alleviate one of the major challenges of EEG, which is that a large fraction of genes remains without any annotation. Here, we propose two solutions to this challenge. The first solution is in the form of a database that regroups associations between genes, organismal attributes and abiotic and biotic conditions. This database would result in an ecological annotation of genes by allowing cross-referencing across studies and taxa. Our second solution is to use new functional techniques to characterize genes implicated in the response to ecological challenges.
Collapse
Affiliation(s)
- Scott A Pavey
- Département de Biologie & Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, QC, Canada
| | | | | | | |
Collapse
|
30
|
Carstens B, Lemmon AR, Lemmon EM. The Promises and Pitfalls of Next-Generation Sequencing Data in Phylogeography. Syst Biol 2012; 61:713-5. [DOI: 10.1093/sysbio/sys050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Bryan Carstens
- Department of Biological Science, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70808, USA; 2Department of Scientific Computing, Dirac Science Library, Florida State University, Tallahassee, FL 32306-4120, USA; 3Department of Biological Science, 213 Biomedical Research Facility, Florida State University, Talahassee, FL 32306-4120, USA
| | - Alan R. Lemmon
- Department of Biological Science, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70808, USA; 2Department of Scientific Computing, Dirac Science Library, Florida State University, Tallahassee, FL 32306-4120, USA; 3Department of Biological Science, 213 Biomedical Research Facility, Florida State University, Talahassee, FL 32306-4120, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70808, USA; 2Department of Scientific Computing, Dirac Science Library, Florida State University, Tallahassee, FL 32306-4120, USA; 3Department of Biological Science, 213 Biomedical Research Facility, Florida State University, Talahassee, FL 32306-4120, USA
| |
Collapse
|
31
|
Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol Evol 2012; 27:489-96. [PMID: 22727017 DOI: 10.1016/j.tree.2012.05.012] [Citation(s) in RCA: 528] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023]
Abstract
Genomic data have the potential to revolutionize the delineation of conservation units (CUs) by allowing the detection of adaptive genetic variation, which is otherwise difficult for rare, endangered species. In contrast to previous recommendations, we propose that the use of neutral versus adaptive markers should not be viewed as alternatives. Rather, neutral and adaptive markers provide different types of information that should be combined to make optimal management decisions. Genetic patterns at neutral markers reflect the interaction of gene flow and genetic drift that affects genome-wide variation within and among populations. This population genetic structure is what natural selection operates on to cause adaptive divergence. Here, we provide a new framework to integrate data on neutral and adaptive markers to protect biodiversity.
Collapse
Affiliation(s)
- W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
32
|
LAMAZE FABIENC, SAUVAGE CHRISTOPHER, MARIE AMANDINE, GARANT DANY, BERNATCHEZ LOUIS. Dynamics of introgressive hybridization assessed by SNP population genomics of coding genes in stocked brook charr (Salvelinus fontinalis). Mol Ecol 2012; 21:2877-95. [DOI: 10.1111/j.1365-294x.2012.05579.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Chu JH, Lin RC, Yeh CF, Hsu YC, Li SH. Characterization of the transcriptome of an ecologically important avian species, the Vinous-throated Parrotbill Paradoxornis webbianus bulomachus (Paradoxornithidae; Aves). BMC Genomics 2012; 13:149. [PMID: 22530590 PMCID: PMC3577488 DOI: 10.1186/1471-2164-13-149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 04/24/2012] [Indexed: 12/01/2022] Open
Abstract
Background Adaptive divergence driven by environmental heterogeneity has long been a fascinating topic in ecology and evolutionary biology. The study of the genetic basis of adaptive divergence has, however, been greatly hampered by a lack of genomic information. The recent development of transcriptome sequencing provides an unprecedented opportunity to generate large amounts of genomic data for detailed investigations of the genetics of adaptive divergence in non-model organisms. Herein, we used the Illumina sequencing platform to sequence the transcriptome of brain and liver tissues from a single individual of the Vinous-throated Parrotbill, Paradoxornis webbianus bulomachus, an ecologically important avian species in Taiwan with a wide elevational range of sea level to 3100 m. Results Our 10.1 Gbp of sequences were first assembled based on Zebra Finch (Taeniopygia guttata) and chicken (Gallus gallus) RNA references. The remaining reads were then de novo assembled. After filtering out contigs with low coverage (<10X), we retained 67,791 of 487,336 contigs, which covered approximately 5.3% of the P. w. bulomachus genome. Of 7,779 contigs retained for a top-hit species distribution analysis, the majority (about 86%) were matched to known Zebra Finch and chicken transcripts. We also annotated 6,365 contigs to gene ontology (GO) terms: in total, 122 GO-slim terms were assigned, including biological process (41%), molecular function (32%), and cellular component (27%). Many potential genetic markers for future adaptive genomic studies were also identified: 8,589 single nucleotide polymorphisms, 1,344 simple sequence repeats and 109 candidate genes that might be involved in elevational or climate adaptation. Conclusions Our study shows that transcriptome data can serve as a rich genetic resource, even for a single run of short-read sequencing from a single individual of a non-model species. This is the first study providing transcriptomic information for species in the avian superfamily Sylvioidea, which comprises more than 1,000 species. Our data can be used to study adaptive divergence in heterogeneous environments and investigate other important ecological and evolutionary questions in parrotbills from different populations and even in other species in the Sylvioidea.
Collapse
Affiliation(s)
- Jui-Hua Chu
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Le Provost G, Sulmon C, Frigerio JM, Bodénès C, Kremer A, Plomion C. Role of waterlogging-responsive genes in shaping interspecific differentiation between two sympatric oak species. TREE PHYSIOLOGY 2012; 32:119-34. [PMID: 22170438 DOI: 10.1093/treephys/tpr123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pedunculate (Quercus robur L.) and sessile oak (Quercus petreae Matt. Liebl.) are closely related species with a widely sympatric distribution in Europe. These two oak species are also known to display different ecological features, particularly related to their adaptation to soil waterlogging. Pedunculate oak grows in humid areas and can withstand high moisture content of the soil, whereas sessile oak requires drier soil with better drainage. The main goal of this study was to explore the role of gene expression contributing to differences in terms of waterlogging tolerance between these two species. We implemented a series of experiments aimed at evaluating whether differentially expressed genes between species are associated with their ecological preferences and underlie adaptive genetic divergence. Rooted cuttings of both species were grown in hydroponic conditions and subjected to gradual root hypoxia. White roots were sampled after 6, 12, 24 and 48 h. Real-time polymerase chain reaction (qPCR) was first used to monitor the expression of 10 known waterlogging-responsive genes, to identify discriminating sampling time points along the kinetics of hypoxia. Secondly, four subtractive suppressive hybridization libraries (sessile vs. pedunculate, pedunculate vs. sessile for early and late responses) were generated to isolate differentially expressed genes between species. A total of 2160 high-quality expressed sequence tags were obtained and annotated, and a subset of 45 genes were selected for qPCR analysis in a second independent factorial experimental design applying two stress durations per two species. Significant differences of gene expression between pedunculate and sessile oaks were detected, suggesting species-specific molecular strategies to respond to hypoxia. This study revealed that the ability of pedunculate oak to maintain glycolysis and fermentation under hypoxic conditions may help explain its tolerance to waterlogging.
Collapse
|
35
|
Diz AP, Martínez-Fernández M, Rolán-Alvarez E. Proteomics in evolutionary ecology: linking the genotype with the phenotype. Mol Ecol 2012; 21:1060-80. [PMID: 22268916 DOI: 10.1111/j.1365-294x.2011.05426.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The study of the proteome (proteomics), which includes the dynamics of protein expression, regulation, interactions and its function, has played a less prominent role in evolutionary and ecological investigations in comparison with the study of the genome and transcriptome. There are, however, a number of arguments suggesting that this situation should change. First, the proteome is closer to the phenotype than the genome or the transcriptome, and as such may be more directly responsive to natural selection, and thus closely linked to adaptation. Second, there is evidence of a low correlation between protein and transcript expression levels across genes in many different organisms. Finally, there have been some recent important technological improvements in proteomics methods that make them feasible, practical and useful to address a wide range of evolutionary questions even in nonmodel organisms. The different proteomic methods, their limitations and problems when interpreting empirical data are described and discussed. In addition, the proteomic literature pertaining to evolutionary ecology is reviewed with examples, and potential applications of proteomics in a variety of evolutionary contexts are outlined. New proteomic research trends such as the study of posttranslational modifications and protein-protein interactions, as well as the combined use of the different -omics approaches, are discussed in relation to the development of a more functional and integrated perspective, needed for achieving a more comprehensive knowledge of evolutionary change.
Collapse
Affiliation(s)
- Angel P Diz
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidade de Vigo, Vigo, Spain
| | | | | |
Collapse
|
36
|
Carnicer J, Brotons L, Stefanescu C, Peñuelas J. Biogeography of species richness gradients: linking adaptive traits, demography and diversification. Biol Rev Camb Philos Soc 2011; 87:457-79. [PMID: 22129434 DOI: 10.1111/j.1469-185x.2011.00210.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we review how adaptive traits contribute to the emergence and maintenance of species richness gradients through their influence on demographic and diversification processes. We start by reviewing how demographic dynamics change along species richness gradients. Empirical studies show that geographical clines in population parameters and measures of demographic variability are frequent along latitudinal and altitudinal gradients. Demographic variability often increases at the extremes of regional species richness gradients and contributes to shape these gradients. Available studies suggest that adaptive traits significantly influence demographic dynamics, and set the limits of species distributions. Traits related to thermal tolerance, resource use, phenology and dispersal seem to play a significant role. For many traits affecting demography and/or diversification processes, complex mechanistic approaches linking genotype, phenotype and fitness are becoming progressively available. In several taxa, species can be distributed along adaptive trait continuums, i.e. a main axis accounting for the bulk of inter-specific variation in some correlated adaptive traits. It is shown that adaptive trait continuums can provide useful mechanistic frameworks to explain demographic dynamics and diversification in species richness gradients. Finally, we review the existence of sequences of adaptive traits in phylogenies, the interactions of adaptive traits and community context, the clinal variation of traits across geographical gradients, and the role of adaptive traits in determining the history of dispersal and diversification of clades. Overall, we show that the study of demographic and evolutionary mechanisms that shape species richness gradients clearly requires the explicit consideration of adaptive traits. To conclude, future research lines and trends in the field are briefly outlined.
Collapse
Affiliation(s)
- Jofre Carnicer
- Community and Conservation Ecology Group, Centre for Life Sciences, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
37
|
SMADJA CAROLEM, BUTLIN ROGERK. A framework for comparing processes of speciation in the presence of gene flow. Mol Ecol 2011; 20:5123-40. [DOI: 10.1111/j.1365-294x.2011.05350.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
|
39
|
Learning the Hard Way: Imprinting Can Enhance Enforced Shifts in Habitat Choice. INTERNATIONAL JOURNAL OF ECOLOGY 2011. [DOI: 10.1155/2011/287532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the potential importance of learning in habitat choice within a young hybrid zone of two closely related species of birds. Pied flycatchers (Ficedula hypoleuca) are being excluded from deciduous habitats into a mixed forest type by collared flycatchers (F. albicollis). We investigated whether this enforced habitat shift influenced reproductive isolation between the two species, and, by cross-fostering nestlings, we tested whether learning may lead to a corresponding shift in habitat choice in consecutive generations. Our results show that the majority of the recruits, even if translocated across different habitat types, return to breed in the area where they were fostered. As male pied flycatchers were more likely to hybridize in the originally preferred habitat, we argue that early imprinting on an alternate habitat can play an important role in increasing reproductive isolation and facilitate regional coexistence between species experiencing secondary contact.
Collapse
|