1
|
Dedman CJ, Chauhan N, González-Lanchas A, Baldreki C, Dowle AA, Larson TR, Lee RBY, Rickaby REM. Exploring proteins within the coccolith matrix. Sci Rep 2024; 14:31821. [PMID: 39738514 PMCID: PMC11685980 DOI: 10.1038/s41598-024-83052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Coccolithophores comprise a major component of the oceanic carbon cycle. These unicellular algae produce ornate structures made of calcium carbonate, termed coccoliths, representing ~ 50% of calcite production in the open ocean. The exact molecular mechanisms which direct and control coccolith formation are unknown. In this study, we report on the presence and functional features of proteins within the coccoliths produced by a range of model coccolithophore species including: the globally abundant and well-studied Gephyrocapsa huxleyi (formerly Emiliania huxleyi) and related Gephyrocapsa oceanica, as well as the larger and more heavily calcified Coccolithus braarudii. Protein features were compared between species and against biomineralisation proteins previously identified in other marine calcifying organisms. Notably, several protein features were consistently seen across the examined coccolithophore species, including the cell signalling 14-3-3 domain, chromosome segregation SMC ATPase domain, as well as proteins involved in protein processing and protease inhibition. The copper-binding cupredoxin domain was observed in both Gephyrocapsa species, as well as other marine calcifiers, suggestive of a requirement of Cu in biomineralisation. Building consensus with existing work, we highlight the pentapeptide repeat as a feature which is associated with the coccolith matrix, being identified in all three examined species, and propose that this structural motif may play a role in controlling coccolith growth. This preliminary study provides insight towards the functional diversity of calcification machinery in coccolithophores and presents a number of candidates for future research towards understanding the biochemical controls which direct coccolithogenesis.
Collapse
Affiliation(s)
- Craig J Dedman
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK.
- School of Geography, Earth and Environmental Sciences, Portland Square, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Nishant Chauhan
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Alba González-Lanchas
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| | - Chloë Baldreki
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Adam A Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Tony R Larson
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Renee B Y Lee
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6UB, UK
| | - Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| |
Collapse
|
2
|
Fuertes-Rabanal M, Rebaque D, Largo-Gosens A, Encina A, Mélida H. Cell walls, a comparative view of the composition of cell surfaces of plants, algae and microorganisms. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae512. [PMID: 39705009 DOI: 10.1093/jxb/erae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 12/21/2024]
Abstract
While evolutionary studies indicate that the most ancient groups of organisms on Earth likely descended from a common wall-less ancestor, contemporary organisms lacking a carbohydrate-rich cell surface are exceedingly rare. By developing a cell wall to cover the plasma membrane, cells were able to withstand higher osmotic pressures, colonise new habitats and develop complex multicellular structures. This way, the cells of plants, algae and microorganisms are covered by a cell wall, which can generally be defined as a highly complex structure whose main framework is usually composed of carbohydrates. Rather than static structures, they are highly dynamic and serve a multitude of functions that modulate vital cellular processes, such as growth and interactions with neighbouring cells or the surrounding environment. Thus, despite its vital importance for many groups of life, it is striking that there are few comprehensive documents comparing the cell wall composition of these groups. Thus, the aim of this review was to compare the cell walls of plants with those of algae and microorganisms, paying particular attention to their polysaccharide components. It should be highlighted that, despite the important differences in composition, we have also found numerous common aspects and functionalities.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Diego Rebaque
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
3
|
Wheeler GL, Sturm D, Langer G. Gephyrocapsa huxleyi (Emiliania huxleyi) as a model system for coccolithophore biology. JOURNAL OF PHYCOLOGY 2023; 59:1123-1129. [PMID: 37983837 DOI: 10.1111/jpy.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Coccolithophores are the most abundant calcifying organisms in modern oceans and are important primary producers in many marine ecosystems. Their ability to generate a cellular covering of calcium carbonate plates (coccoliths) plays a major role in marine biogeochemistry and the global carbon cycle. Coccolithophores also play an important role in sulfur cycling through the production of the climate-active gas dimethyl sulfide. The primary model organism for coccolithophore research is Emiliania huxleyi, now named Gephyrocapsa huxleyi. G. huxleyi has a cosmopolitan distribution, occupying coastal and oceanic environments across the globe, and is the most abundant coccolithophore in modern oceans. Research in G. huxleyi has identified many aspects of coccolithophore biology, from cell biology to ecological interactions. In this perspective, we summarize the key advances made using G. huxleyi and examine the emerging tools for research in this model organism. We discuss the key steps that need to be taken by the research community to advance G. huxleyi as a model organism and the suitability of other species as models for specific aspects of coccolithophore biology.
Collapse
Affiliation(s)
- Glen L Wheeler
- The Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
| | - Daniela Sturm
- The Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Gerald Langer
- Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Xu H, Liu H, Chen F, Zhang X, Zhang Z, Ma J, Pan K, Liu H. Ocean acidification affects physiology of coccolithophore Emiliania huxleyi and weakens its mechanical resistance to copepods. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106232. [PMID: 37866975 DOI: 10.1016/j.marenvres.2023.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The effects of ocean acidification (OA) on coccolithophore's photosynthesis, calcification rates, and growth have been extensively studied. However, how the intracellular Ca2+, mechanical properties and chemical composition of the coccoliths are affected by OA have not yet been investigated. This study tries to fill these gaps using Emiliania huxleyi as a model coccolithophore. When the seawater pCO2 increased from 400 μatm to 1200 μatm, the intracellular Ca2+ and coccolith area were reduced by 66% and 36%, respectively. Single-cell mapping by atomic force microscopy revealed that the modulus and hardness of coccolith decreased from 23.6 ± 0.2 GPa to 12.0 ± 5.5 GPa and from 0.53 ± 0.15 GPa to 0.20 ± 0.06 GPa, respectively. Additionally, the proportional organic matter and silicon in the coccolith surfaces increased with pCO2. The copepods Acartia pacifica fed on more E. huxleyi grown at higher pCO2. Our study implies that OA could change coccolithophore's competitive interactions with other phytoplankton and ultimately influence carbon export to the deep ocean.
Collapse
Affiliation(s)
- Huo Xu
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Fengyuan Chen
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaodong Zhang
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhen Zhang
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ke Pan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
5
|
Wu F, Guo J, Duan H, Li T, Wang Y, Wang Y, Wang S, Feng Y. Ocean Acidification Affects the Response of the Coastal Coccolithophore Pleurochrysis carterae to Irradiance. BIOLOGY 2023; 12:1249. [PMID: 37759648 PMCID: PMC10525560 DOI: 10.3390/biology12091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
The ecologically important marine phytoplankton group coccolithophores have a global distribution. The impacts of ocean acidification on the cosmopolitan species Emiliania huxleyi have received much attention and have been intensively studied. However, the species-specific responses of coccolithophores and how these responses will be regulated by other environmental drivers are still largely unknown. To examine the interactive effects of irradiance and ocean acidification on the physiology of the coastal coccolithophore species Pleurochrysis carterae, we carried out a semi-continuous incubation experiment under a range of irradiances (50, 200, 500, 800 μmol photons m-2 s-1) at two CO2 concentration conditions of 400 and 800 ppm. The results suggest that the saturation irradiance for the growth rate was higher at an elevated CO2 concentration. Ocean acidification weakened the particulate organic carbon (POC) production of Pleurochrysis carterae and the inhibition rate was decreased with increasing irradiance, indicating that ocean acidification may affect the tolerating capacity of photosynthesis to higher irradiance. Our results further provide new insight into the species-specific responses of coccolithophores to the projected ocean acidification under different irradiance scenarios in the changing marine environment.
Collapse
Affiliation(s)
- Fengxia Wu
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Jia Guo
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
| | - Haozhen Duan
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
| | - Tongtong Li
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
| | - Yanan Wang
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Shiqiang Wang
- College of Marine and Environment, Tianjin University of Science and Technology, Tianjin 300453, China
| | - Yuanyuan Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200040, China
- Shanghai Frontiers Science Center of Polar Science (SCOPS), Shanghai 200030, China
| |
Collapse
|
6
|
Skeffington A, Fischer A, Sviben S, Brzezinka M, Górka M, Bertinetti L, Woehle C, Huettel B, Graf A, Scheffel A. A joint proteomic and genomic investigation provides insights into the mechanism of calcification in coccolithophores. Nat Commun 2023; 14:3749. [PMID: 37353496 PMCID: PMC10290126 DOI: 10.1038/s41467-023-39336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Coccolithophores are globally abundant, calcifying microalgae that have profound effects on marine biogeochemical cycles, the climate, and life in the oceans. They are characterized by a cell wall of CaCO3 scales called coccoliths, which may contribute to their ecological success. The intricate morphologies of coccoliths are of interest for biomimetic materials synthesis. Despite the global impact of coccolithophore calcification, we know little about the molecular machinery underpinning coccolithophore biology. Working on the model Emiliania huxleyi, a globally distributed bloom-former, we deploy a range of proteomic strategies to identify coccolithogenesis-related proteins. These analyses are supported by a new genome, with gene models derived from long-read transcriptome sequencing, which revealed many novel proteins specific to the calcifying haptophytes. Our experiments provide insights into proteins involved in various aspects of coccolithogenesis. Our improved genome, complemented with transcriptomic and proteomic data, constitutes a new resource for investigating fundamental aspects of coccolithophore biology.
Collapse
Affiliation(s)
- Alastair Skeffington
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Axel Fischer
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Sanja Sviben
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Magdalena Brzezinka
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Michał Górka
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Luca Bertinetti
- Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, 14476, Germany
| | - Christian Woehle
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-Centre Cologne, Cologne, 50829, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-Centre Cologne, Cologne, 50829, Germany
| | - Alexander Graf
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - André Scheffel
- Technische Universität Dresden, Faculty of Biology, 01307, Dresden, Germany.
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany.
| |
Collapse
|
7
|
Bendif EM, Probert I, Archontikis OA, Young JR, Beaufort L, Rickaby RE, Filatov D. Rapid diversification underlying the global dominance of a cosmopolitan phytoplankton. THE ISME JOURNAL 2023; 17:630-640. [PMID: 36747097 PMCID: PMC10030636 DOI: 10.1038/s41396-023-01365-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/08/2023]
Abstract
Marine phytoplankton play important roles in the global ecosystem, with a limited number of cosmopolitan keystone species driving their biomass. Recent studies have revealed that many of these phytoplankton are complexes composed of sibling species, but little is known about the evolutionary processes underlying their formation. Gephyrocapsa huxleyi, a widely distributed and abundant unicellular marine planktonic algae, produces calcified scales (coccoliths), thereby significantly affects global biogeochemical cycles via sequestration of inorganic carbon. This species is composed of morphotypes defined by differing degrees of coccolith calcification, the evolutionary ecology of which remains unclear. Here, we report an integrated morphological, ecological and genomic survey across globally distributed G. huxleyi strains to reconstruct evolutionary relationships between morphotypes in relation to their habitats. While G. huxleyi has been considered a single cosmopolitan species, our analyses demonstrate that it has evolved to comprise at least three distinct species, which led us to formally revise the taxonomy of the G. huxleyi complex. Moreover, the first speciation event occurred before the onset of the last interglacial period (~140 ka), while the second followed during this interglacial. Then, further rapid diversifications occurred during the most recent ice-sheet expansion of the last glacial period and established morphotypes as dominant populations across environmental clines. These results suggest that glacial-cycle dynamics contributed to the isolation of ocean basins and the segregations of oceans fronts as extrinsic drivers of micro-evolutionary radiations in extant marine phytoplankton.
Collapse
Affiliation(s)
- El Mahdi Bendif
- Department of Earth Sciences, University of Oxford, Oxford, UK.
- Department of Plant Sciences, University of Oxford, Oxford, UK.
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski, Rimouski, Canada.
| | - Ian Probert
- Sorbonne Université - CNRS, Roscoff Culture Collection, FR2424 Station Biologique de Roscoff, Roscoff, France
| | - Odysseas A Archontikis
- Department of Earth Sciences, University of Oxford, Oxford, UK
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Jeremy R Young
- Department of Earth Sciences, University College London, London, UK
| | - Luc Beaufort
- Aix Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
| | | | - Dmitry Filatov
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
9
|
Chakdar H, Thapa S, Srivastava A, Shukla P. Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127609. [PMID: 34772552 DOI: 10.1016/j.jhazmat.2021.127609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals (HMs) pose a global ecological threat due to their toxic effects on aquatic and terrestrial life. Effective remediation of HMs from the environment can help to restore soil's fertility and ecological vigor, one of the key Sustainable Development Goals (SDG) set by the United Nations. The cyanobacteria have emerged as a potential option for bioremediation of HMs due to their unique adaptations and robust metabolic machineries. Generally, cyanobacteria deploy multifarious mechanisms such as biosorption, bioaccumulation, activation of metal transporters, biotransformation and induction of detoxifying enzymes to sequester and minimize the toxic effects of heavy metals. Therefore, understanding the physiological responses and regulation of adaptation mechanisms at molecular level is necessary to unravel the candidate genes and proteins which can be manipulated to improve the bioremediation efficiency of cyanobacteria. Chaperons, cellular metabolites (extracellular polymers, biosurfactants), transcriptional regulators, metal transporters, phytochelatins and metallothioneins are some of the potential targets for strain engineering. In the present review, we have discussed the potential of cyanobacteria for HM bioremediation and provided a deeper insight into their genomic and proteomic regulation of various tolerance mechanisms. These approaches might pave new possibilities of implementing genetic engineering strategies for improving bioremediation efficiency with a future perspective.
Collapse
Affiliation(s)
- Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Shobit Thapa
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Amit Srivastava
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, ID 47907-2048, United States
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
10
|
Jiang X, Zhang Y, Hutchins DA, Gao K. Nitrogen-limitation exacerbates the impact of ultraviolet radiation on the coccolithophore Gephyrocapsa oceanica. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112368. [PMID: 34864530 DOI: 10.1016/j.jphotobiol.2021.112368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
To investigate effects of UV radiation (UVR, 280-400 nm) on coccolithophorids under nutrient-limited conditions, we grew Gephyrocapsa oceanica to determine its resilience to consecutive daily short-term exposures to +UVR (irradiances >295 nm) under a range of nitrate availabilities (100, 24, 12, 6 and 3 μM). +UVR alone significantly hampered the growth of G. oceanica, with the synergistic negative effects of +UVR and N-limitation being about 58% and 22% greater than under UVR or N-limitation alone, respectively. Most 3 μM nitrate cultures died, but those exposed to UVR succumbed sooner. This was due to a failure of photoprotection and repair mechanisms under low N-availability with exposures to UVR. Additionally, the UVR-induced inhibition of the effective quantum yield of photosystem II (PSII) was significantly higher and was further aggravated by N limitation. The algal cells increased photoprotective pigments and UV-absorbing compounds as a priority rather than using calcification for defense against UVR, indicating a trade-off in energy and resource allocation. Our results indicate the negative effects of UVR on coccolithophorid growth and photosynthesis, and highlight the important role of N availability in defense against UVR as well as high PAR. We predict that enhanced N-limitation in future surface oceans due to warming-induced stratification will exacerbate the sensitivity of G. oceanica to UVR, while coccolithophores can be potentially more susceptible to other environmental stresses due to increased levels of nutrient limitation.
Collapse
Affiliation(s)
- Xiaowen Jiang
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; College of Environmental Science and Engineering and Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - David A Hutchins
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
11
|
Langer G, Taylor AR, Walker CE, Meyer EM, Ben Joseph O, Gal A, Harper GM, Probert I, Brownlee C, Wheeler GL. Role of silicon in the development of complex crystal shapes in coccolithophores. THE NEW PHYTOLOGIST 2021; 231:1845-1857. [PMID: 33483994 DOI: 10.1111/nph.17230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/23/2020] [Indexed: 05/24/2023]
Abstract
The development of calcification by the coccolithophores had a profound impact on ocean carbon cycling, but the evolutionary steps leading to the formation of these complex biomineralized structures are not clear. Heterococcoliths consisting of intricately shaped calcite crystals are formed intracellularly by the diploid life cycle phase. Holococcoliths consisting of simple rhombic crystals can be produced by the haploid life cycle stage but are thought to be formed extracellularly, representing an independent evolutionary origin of calcification. We use advanced microscopy techniques to determine the nature of coccolith formation and complex crystal formation in coccolithophore life cycle stages. We find that holococcoliths are formed in intracellular compartments in a similar manner to heterococcoliths. However, we show that silicon is not required for holococcolith formation and that the requirement for silicon in certain coccolithophore species relates specifically to the process of crystal morphogenesis in heterococcoliths. We therefore propose an evolutionary scheme in which the lower complexity holococcoliths represent an ancestral form of calcification in coccolithophores. The subsequent recruitment of a silicon-dependent mechanism for crystal morphogenesis in the diploid life cycle stage led to the emergence of the intricately shaped heterococcoliths, enabling the formation of the elaborate coccospheres that underpin the ecological success of coccolithophores.
Collapse
Affiliation(s)
- Gerald Langer
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403-591, USA
| | - Charlotte E Walker
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Erin M Meyer
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, 28403-591, USA
| | - Oz Ben Joseph
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Glenn M Harper
- Plymouth Electron Microscopy Centre, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Ian Probert
- FR2424 Sorbonne University / CNRS, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, SO14 3ZH, UK
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
12
|
Villiot N, Poulton AJ, Butcher ET, Daniels LR, Coggins A. Allometry of carbon and nitrogen content and growth rate in a diverse range of coccolithophores. JOURNAL OF PLANKTON RESEARCH 2021; 43:511-526. [PMID: 34326702 PMCID: PMC8315238 DOI: 10.1093/plankt/fbab038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 05/26/2023]
Abstract
As both photoautotrophs and calcifiers, coccolithophores play important roles in ecosystems and biogeochemical cycles. Though some species form blooms in high-latitude waters, low-latitude communities exhibit high diversity and niche diversification. Despite such diversity, our understanding of the clade relies on knowledge of Emiliana huxleyi. To address this, we examine carbon (C) and nitrogen (N) content of strains (n = 9) from the main families of the calcifying Haptophyceae, as well as allometry and cell size frequency across extant species. Coccolithophore cell size is constrained, with ~71% of 159 species smaller than 10 μm in diameter. Growth rates scale with cell biovolume (μ = 1.83 × cell volume-0.19), with an exponent close to metabolic theory. Organic carbon (C) per cell is lower than for other phytoplankton, providing a coccolithophore-specific relationship between cell organic C content and biovolume (pg C cell-1 = 0.30 × cell volume0.70). Organic C to N ratios (~8.3 mol:mol) are similar to other phytoplankton, implying little additional N cost for calcification and efficient retention and recycling of cell N. Our results support observations that coccolithophores are efficient competitors in low-nutrient conditions, able to photosynthesize, calcify and run the routine metabolic machinery necessary without any additional need for N relative to noncalcifying algae.
Collapse
Affiliation(s)
- Naomi Villiot
- The Lyell Centre for Earth and Marine Science and Technology, Heriot-Watt University, Research Avenue South, Edinburgh, EH14 4AS, UK
| | - Alex J Poulton
- The Lyell Centre for Earth and Marine Science and Technology, Heriot-Watt University, Research Avenue South, Edinburgh, EH14 4AS, UK
| | - Elizabeth T Butcher
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, Southampton, SO18 3ZH, UK
| | - Lucie R Daniels
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, Southampton, SO18 3ZH, UK
| | - Aimee Coggins
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, Southampton, SO18 3ZH, UK
- Atmospheric and Ocean Sciences, College of Life and Environmental Sciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| |
Collapse
|
13
|
Abehsera S, Bentov S, Li X, Weil S, Manor R, Sagi S, Li S, Li F, Khalaila I, Aflalo ED, Sagi A. Genes encoding putative bicarbonate transporters as a missing molecular link between molt and mineralization in crustaceans. Sci Rep 2021; 11:11722. [PMID: 34083647 PMCID: PMC8175698 DOI: 10.1038/s41598-021-91155-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
During their life, crustaceans undergo several molts, which if theoretically compared to the human body would be equivalent to replacing all bones at a single event. Such a dramatic repetitive event is coupled to unique molecular mechanisms of mineralization so far mostly unknown. Unlike human bone mineralized with calcium phosphate, the crustacean exoskeleton is mineralized mainly by calcium carbonate. Crustacean growth thus necessitates well-timed mobilization of bicarbonate to specific extracellular sites of biomineralization at distinct molt cycle stages. Here, by looking at the crayfish Cherax quadricarinatus at different molting stages, we suggest that the mechanisms of bicarbonate ion transport for mineralization in crustaceans involve the SLC4 family of transporters and that these proteins play a key role in the tight coupling between molt cycle events and mineral deposition. This discovery of putative bicarbonate transporters in a pancrustacean with functional genomic evidence from genes encoding the SLC4 family-mostly known for their role in pH control-is discussed in the context of the evolution of calcium carbonate biomineralization.
Collapse
Affiliation(s)
- Shai Abehsera
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shmuel Bentov
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, People's Republic of China
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shahar Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer Sheva, Israel
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Isam Khalaila
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer Sheva, Israel
- Department of Life Sciences, Achva Academic College, Arugot, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
14
|
Brownlee C, Langer G, Wheeler GL. Coccolithophore calcification: Changing paradigms in changing oceans. Acta Biomater 2021; 120:4-11. [PMID: 32763469 DOI: 10.1016/j.actbio.2020.07.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/13/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022]
Abstract
Coccolithophores represent a major component of the marine phytoplankton and contribute to the bulk of biogenic calcite formation on Earth. These unicellular protists produce minute calcite scales (coccoliths) within the cell, which are secreted to the cell surface. Individual coccoliths and their arrangements on the cell surface display a wide range of morphological variations. This review explores some of the recent evidence that points to similarities and differences in the mechanisms of calcification, focussing on the transport mechanisms that bring substrates to, and remove products from the site of calcification, together with new findings on factors that regulate coccolith morphology. We argue that better knowledge of these mechanisms and their variations is needed to inform more generally how different species of coccolithophore are likely to respond to changes in ocean chemistry. STATEMENT OF SIGNIFICANCE: Coccolithophores, minute single celled phytoplankton are the major producers of biogenic carbonate on Earth. They also represent an important component of the ocean's biota and contribute significantly to global carbon fluxes. Coccolithophores produce intricate calcite scales (coccoliths) internally that they secrete onto their external surface. This review presents some recent key findings on the mechanisms underlying the production of coccoliths. It also considers the factors that regulate the rate of production as well as the variety of shapes of individual coccoliths and their arrangements at the cell surface. Understanding these processes is needed to allow better predictions of how coccolithophores may respond to changing ocean chemistry associated with climate change.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton SO14 3ZH, UK.
| | - Gerald Langer
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
15
|
Feng Y, Roleda MY, Armstrong E, Summerfield TC, Law CS, Hurd CL, Boyd PW. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi. GLOBAL CHANGE BIOLOGY 2020; 26:5630-5645. [PMID: 32597547 DOI: 10.1111/gcb.15259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/04/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Ongoing ocean global change due to anthropogenic activities is causing multiple chemical and physical seawater properties to change simultaneously, which may affect the physiology of marine phytoplankton. The coccolithophore Emiliania huxleyi is a model species often employed in the study of the marine carbon cycle. The effect of ocean acidification (OA) on coccolithophore calcification has been extensively studied; however, physiological responses to multiple environmental drivers are still largely unknown. Here we examined two-way and multiple driver effects of OA and other key environmental drivers-nitrate, phosphate, irradiance, and temperature-on the growth, photosynthetic, and calcification rates, and the elemental composition of E. huxleyi. In addition, changes in functional gene expression were examined to understand the molecular mechanisms underpinning the physiological responses. The single driver manipulation experiments suggest decreased nitrate supply being the most important driver regulating E. huxleyi physiology, by significantly reducing the growth, photosynthetic, and calcification rates. In addition, the interaction of OA and decreased nitrate supply (projected for year 2100) had more negative synergistic effects on E. huxleyi physiology than all other two-way factorial manipulations, suggesting a linkage between the single dominant driver (nitrate) effects and interactive effects with other drivers. Simultaneous manipulation of all five environmental drivers to the conditions of the projected year 2100 had the largest negative effects on most of the physiological metrics. Furthermore, functional genes associated with inorganic carbon acquisition (RubisCO, AEL1, and δCA) and calcification (CAX3, AEL1, PATP, and NhaA2) were most downregulated by the multiple driver manipulation, revealing linkages between responses of functional gene expression and associated physiological metrics. These findings together indicate that for more holistic projections of coccolithophore responses to future ocean global change, it is necessary to understand the relative importance of environmental drivers both individually (i.e., mechanistic understanding) and interactively (i.e., cumulative effect) on coccolithophore physiology.
Collapse
Affiliation(s)
- Yuanyuan Feng
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Michael Y Roleda
- Department of Botany, University of Otago, Dunedin, New Zealand
- The Marine Science Institute, University of the Philippines, Quezon City, Philippines
| | - Evelyn Armstrong
- NIWA/University of Otago Research Centre for Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Cliff S Law
- NIWA/University of Otago Research Centre for Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tas., Australia
| |
Collapse
|
16
|
Nam O, Suzuki I, Shiraiwa Y, Jin E. Association of Phosphatidylinositol-Specific Phospholipase C with Calcium-Induced Biomineralization in the Coccolithophore Emiliania huxleyi. Microorganisms 2020; 8:E1389. [PMID: 32927844 PMCID: PMC7563939 DOI: 10.3390/microorganisms8091389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022] Open
Abstract
Biomineralization by calcifying microalgae is a precisely controlled intracellular calcification process that produces delicate calcite scales (or coccoliths) in the coccolithophore Emiliania huxleyi (Haptophycea). Despite its importance in biogeochemical cycles and the marine environment globally, the underlying molecular mechanism of intracellular coccolith formation, which requires calcium, bicarbonate, and coccolith-polysaccharides, remains unclear. In E. huxleyi CCMP 371, we demonstrated that reducing the calcium concentration from 10 (ambient seawater) to 0.1 mM strongly restricted coccolith production, which was then recovered by adding 10 mM calcium, irrespective of inorganic phosphate conditions, indicating that coccolith production could be finely controlled by the calcium supply. Using this strain, we investigated the expression of differentially expressed genes (DEGs) to observe the cellular events induced by changes in calcium concentrations. Intriguingly, DEG analysis revealed that the phosphatidylinositol-specific phospholipase C (PI-PLC) gene was upregulated and coccolith production by cells was blocked by the PI-PLC inhibitor U73122 under conditions closely associated with calcium-induced calcification. These findings imply that PI-PLC plays an important role in the biomineralization process of the coccolithophore E. huxleyi.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea;
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (I.S.); (Y.S.)
| | - Yoshihiro Shiraiwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (I.S.); (Y.S.)
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea;
| |
Collapse
|
17
|
Hu MY, Petersen I, Chang WW, Blurton C, Stumpp M. Cellular bicarbonate accumulation and vesicular proton transport promote calcification in the sea urchin larva. Proc Biol Sci 2020; 287:20201506. [PMID: 32900308 PMCID: PMC7542784 DOI: 10.1098/rspb.2020.1506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The sea urchin embryo develops a calcitic endoskeleton through intracellular formation of amorphous calcium carbonate (ACC). Intracellular precipitation of ACC, requires [Formula: see text] concentrating as well as proton export mechanisms to promote calcification. These processes are of fundamental importance in biological mineralization, but remain largely unexplored. Here, we demonstrate that the calcifying primary mesenchyme cells (PMCs) use Na+/H+-exchange (NHE) mechanisms to control cellular pH homeostasis during maintenance of the skeleton. During skeleton re-calcification, pHi of PMCs is increased accompanied by substantial elevation in intracellular [Formula: see text] mediated by the [Formula: see text] cotransporter Sp_Slc4a10. However, PMCs lower their pHi regulatory capacities associated with a reduction in NHE activity. Live-cell imaging using green fluorescent protein reporter constructs in combination with intravesicular pH measurements demonstrated alkaline and acidic populations of vesicles in PMCs and extensive trafficking of large V-type H+-ATPase (VHA)-rich acidic vesicles in blastocoelar filopodial cells. Pharmacological and gene expression analyses underline a central role of the VHA isoforms Sp_ATP6V0a1, Sp_ATP6V01_1 and Sp_ATPa1-4 for the process of skeleton re-calcification. These results highlight novel pH regulatory strategies in calcifying cells of a marine species with important implications for our understanding of the mineralization process in times of rapid changes in oceanic pH.
Collapse
Affiliation(s)
- Marian Y. Hu
- Institute of Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| | - Inga Petersen
- Institute of Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| | - William Weijen Chang
- Institute of Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewaldstraße 5, 24118 Kiel, Germany
| | - Christine Blurton
- Institute of Immunobiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Meike Stumpp
- Institute of Immunobiology, Christian-Albrechts-University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
18
|
Tresguerres M, Clifford AM, Harter TS, Roa JN, Thies AB, Yee DP, Brauner CJ. Evolutionary links between intra- and extracellular acid-base regulation in fish and other aquatic animals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:449-465. [PMID: 32458594 DOI: 10.1002/jez.2367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
The acid-base relevant molecules carbon dioxide (CO2 ), protons (H+ ), and bicarbonate (HCO3 - ) are substrates and end products of some of the most essential physiological functions including aerobic and anaerobic respiration, ATP hydrolysis, photosynthesis, and calcification. The structure and function of many enzymes and other macromolecules are highly sensitive to changes in pH, and thus maintaining acid-base homeostasis in the face of metabolic and environmental disturbances is essential for proper cellular function. On the other hand, CO2 , H+ , and HCO3 - have regulatory effects on various proteins and processes, both directly through allosteric modulation and indirectly through signal transduction pathways. Life in aquatic environments presents organisms with distinct acid-base challenges that are not found in terrestrial environments. These include a relatively high CO2 relative to O2 solubility that prevents internal CO2 /HCO3 - accumulation to buffer pH, a lower O2 content that may favor anaerobic metabolism, and variable environmental CO2 , pH and O2 levels that require dynamic adjustments in acid-base homeostatic mechanisms. Additionally, some aquatic animals purposely create acidic or alkaline microenvironments that drive specialized physiological functions. For example, acidifying mechanisms can enhance O2 delivery by red blood cells, lead to ammonia trapping for excretion or buoyancy purposes, or lead to CO2 accumulation to promote photosynthesis by endosymbiotic algae. On the other hand, alkalinizing mechanisms can serve to promote calcium carbonate skeletal formation. This nonexhaustive review summarizes some of the distinct acid-base homeostatic mechanisms that have evolved in aquatic organisms to meet the particular challenges of this environment.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Alexander M Clifford
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Till S Harter
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Angus B Thies
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Daniel P Yee
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Alexander H, Rouco M, Haley ST, Dyhrman ST. Transcriptional response of
Emiliania huxleyi
under changing nutrient environments in the North Pacific Subtropical Gyre. Environ Microbiol 2020; 22:1847-1860. [DOI: 10.1111/1462-2920.14942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Harriet Alexander
- Biology Department Woods Hole Oceanographic Institution Woods Hole MA 02543 USA
| | - Mónica Rouco
- Biology and Paleo Environment Division, Lamont‐Doherty Earth Observatory Columbia University Palisades NY 10964 USA
- Department of Earth and Environmental Sciences Columbia University Palisades NY 10964 USA
| | - Sheean T. Haley
- Biology and Paleo Environment Division, Lamont‐Doherty Earth Observatory Columbia University Palisades NY 10964 USA
| | - Sonya T. Dyhrman
- Biology and Paleo Environment Division, Lamont‐Doherty Earth Observatory Columbia University Palisades NY 10964 USA
- Department of Earth and Environmental Sciences Columbia University Palisades NY 10964 USA
| |
Collapse
|
20
|
Schäffer DE, Iyer LM, Burroughs AM, Aravind L. Functional Innovation in the Evolution of the Calcium-Dependent System of the Eukaryotic Endoplasmic Reticulum. Front Genet 2020; 11:34. [PMID: 32117448 PMCID: PMC7016017 DOI: 10.3389/fgene.2020.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/10/2020] [Indexed: 01/30/2023] Open
Abstract
The origin of eukaryotes was marked by the emergence of several novel subcellular systems. One such is the calcium (Ca2+)-stores system of the endoplasmic reticulum, which profoundly influences diverse aspects of cellular function including signal transduction, motility, division, and biomineralization. We use comparative genomics and sensitive sequence and structure analyses to investigate the evolution of this system. Our findings reconstruct the core form of the Ca2+-stores system in the last eukaryotic common ancestor as having at least 15 proteins that constituted a basic system for facilitating both Ca2+ flux across endomembranes and Ca2+-dependent signaling. We present evidence that the key EF-hand Ca2+-binding components had their origins in a likely bacterial symbiont other than the mitochondrial progenitor, whereas the protein phosphatase subunit of the ancestral calcineurin complex was likely inherited from the asgard archaeal progenitor of the stem eukaryote. This further points to the potential origin of the eukaryotes in a Ca2+-rich biomineralized environment such as stromatolites. We further show that throughout eukaryotic evolution there were several acquisitions from bacteria of key components of the Ca2+-stores system, even though no prokaryotic lineage possesses a comparable system. Further, using quantitative measures derived from comparative genomics we show that there were several rounds of lineage-specific gene expansions, innovations of novel gene families, and gene losses correlated with biological innovation such as the biomineralized molluscan shells, coccolithophores, and animal motility. The burst of innovation of new genes in animals included the wolframin protein associated with Wolfram syndrome in humans. We show for the first time that it contains previously unidentified Sel1, EF-hand, and OB-fold domains, which might have key roles in its biochemistry.
Collapse
Affiliation(s)
- Daniel E Schäffer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States.,Science, Mathematics, and Computer Science Magnet Program, Montgomery Blair High School, Silver Spring, MD, United States
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Nam O, Park JM, Lee H, Jin E. De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis. PLoS One 2019; 14:e0221938. [PMID: 31465514 PMCID: PMC6715215 DOI: 10.1371/journal.pone.0221938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
The haptophyte alga Emiliania huxleyi is the most abundant coccolithophore in the modern ocean and produces elaborate calcite crystals, called coccolith, in a separate intracellular compartment known as the coccolith vesicle. Despite the importance of biomineralization in coccolithophores, the molecular mechanism underlying it remains unclear. Understanding this precise machinery at the molecular level will provide the knowledge needed to enable further manipulation of biomineralization. In our previous study, altering the calcium concentration modified the calcifying ability of E. huxleyi CCMP371. Therefore in this study, we tested E. huxleyi cells acclimated to three different calcium concentrations (0, 0.1, and 10 mM). To understand the whole transcript profile at different calcium concentrations, RNA-sequencing was performed and used for de novo assembly and annotation. The differentially expressed genes (DEGs) among the three different calcium concentrations were analyzed. The functional classification by gene ontology (GO) revealed that 'intrinsic component of membrane' was the most enriched of the GO terms at the ambient calcium concentration (10 mM) compared with the limited calcium concentrations (0 and 0.1 mM). Moreover, the DEGs in those comparisons were enriched mainly in 'secondary metabolites biosynthesis, transport and catabolism' and 'signal transduction mechanisms' in the KOG clusters and 'processing in endoplasmic reticulum', and 'ABC transporters' in the KEGG pathways. Furthermore, metabolic pathways involved in protein synthesis were enriched among the differentially expressed proteins. The results of this study provide a molecular profile for understanding the expression of transcripts and proteins in E. huxleyi at different calcium concentrations, which will help to identify the detailed mechanism of its calcification.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Jong-Moon Park
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Native-state imaging of calcifying and noncalcifying microalgae reveals similarities in their calcium storage organelles. Proc Natl Acad Sci U S A 2018; 115:11000-11005. [PMID: 30287487 PMCID: PMC6205483 DOI: 10.1073/pnas.1804139115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coccolithophores are abundant unicellular marine algae that produce calcified scales via a controlled intracellular process. Understanding the cellular controls over the calcification process is a pressing need to predict the influence of changing oceanic conditions on these major contributors to global marine calcification and carbon fluxes. Using several microalgae, and a combination of state-of-the-art cryoelectron and cryo soft X-ray microscopy, we demonstrate that the recently discovered calcium stores of coccolithophores are similar to the common calcium storage organelles of noncalcifying organisms. These results relate questions of environmental and evolutionary significance to a large body of physiological and molecular genetic findings of better-characterized organisms, and therefore provide fresh entry points for understanding calcification in coccolithophores. Calcium storage organelles are common to all eukaryotic organisms and play a pivotal role in calcium signaling and cellular calcium homeostasis. In most organelles, the intraorganellar calcium concentrations rarely exceed micromolar levels. Acidic organelles called acidocalcisomes, which concentrate calcium into dense phases together with polyphosphates, are an exception. These organelles have been identified in diverse organisms, but, to date, only in cells that do not form calcium biominerals. Recently, a compartment storing molar levels of calcium together with phosphorous was discovered in an intracellularly calcifying alga, the coccolithophore Emiliania huxleyi, raising a possible connection between calcium storage organelles and calcite biomineralization. Here we used cryoimaging and cryospectroscopy techniques to investigate the anatomy and chemical composition of calcium storage organelles in their native state and at nanometer-scale resolution. We show that the dense calcium phase inside the calcium storage compartment of the calcifying coccolithophore Pleurochrysis carterae and the calcium phase stored in acidocalcisomes of the noncalcifying alga Chlamydomonas reinhardtii have common features. Our observations suggest that this strategy for concentrating calcium is a widespread trait and has been adapted for coccolith formation. The link we describe between acidocalcisomal calcium storage and calcium storage in coccolithophores implies that our physiological and molecular genetic understanding of acidocalcisomes could have relevance to the calcium pathway underlying coccolithophore calcification, offering a fresh entry point for mechanistic investigations on the adaptability of this process to changing oceanic conditions.
Collapse
|
23
|
Walker CE, Taylor AR, Langer G, Durak GM, Heath S, Probert I, Tyrrell T, Brownlee C, Wheeler GL. The requirement for calcification differs between ecologically important coccolithophore species. THE NEW PHYTOLOGIST 2018; 220:147-162. [PMID: 29916209 PMCID: PMC6175242 DOI: 10.1111/nph.15272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/07/2018] [Indexed: 05/24/2023]
Abstract
Coccolithophores are globally distributed unicellular marine algae that are characterized by their covering of calcite coccoliths. Calcification by coccolithophores contributes significantly to global biogeochemical cycles. However, the physiological requirement for calcification remains poorly understood as non-calcifying strains of some commonly used model species, such as Emiliania huxleyi, grow normally in laboratory culture. To determine whether the requirement for calcification differs between coccolithophore species, we utilized multiple independent methodologies to disrupt calcification in two important species of coccolithophore: E. huxleyi and Coccolithus braarudii. We investigated their physiological response and used time-lapse imaging to visualize the processes of calcification and cell division in individual cells. Disruption of calcification resulted in major growth defects in C. braarudii, but not in E. huxleyi. We found no evidence that calcification supports photosynthesis in C. braarudii, but showed that an inability to maintain an intact coccosphere results in cell cycle arrest. We found that C. braarudii is very different from E. huxleyi as it exhibits an obligate requirement for calcification. The identification of a growth defect in C. braarudii resulting from disruption of the coccosphere may be important in considering their response to future changes in ocean carbonate chemistry.
Collapse
Affiliation(s)
- Charlotte E. Walker
- Marine Biological AssociationPlymouthPL1 2PBUK
- School of Ocean and Earth ScienceUniversity of SouthamptonSouthamptonSO14 3ZHUK
| | - Alison R. Taylor
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNC28403‐591USA
| | | | | | - Sarah Heath
- Marine Biological AssociationPlymouthPL1 2PBUK
| | - Ian Probert
- Station Biologique de RoscoffPlace Georges Teisser29680RoscoffFrance
| | - Toby Tyrrell
- School of Ocean and Earth ScienceUniversity of SouthamptonSouthamptonSO14 3ZHUK
| | - Colin Brownlee
- Marine Biological AssociationPlymouthPL1 2PBUK
- School of Ocean and Earth ScienceUniversity of SouthamptonSouthamptonSO14 3ZHUK
| | | |
Collapse
|
24
|
Yin X, Ziegler A, Kelm K, Hoffmann R, Watermeyer P, Alexa P, Villinger C, Rupp U, Schlüter L, Reusch TBH, Griesshaber E, Walther P, Schmahl WW. Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi. JOURNAL OF PHYCOLOGY 2018; 54:85-104. [PMID: 29092105 DOI: 10.1111/jpy.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the "nuclear envelope junction". The narrow gap of this junction likely facilitates transport of Ca2+ ions from the nuclear envelope to the coccolith vesicle. On the basis of our observations, we propose that formation of the coccolith utilizes the nuclear envelope-endoplasmic reticulum Ca2+ -store of the cell for the transport of Ca2+ ions from the external medium to the coccolith vesicle and that E. huxleyi calcite forms by ion-by-ion growth rather than by a nanoparticle accretion mechanism.
Collapse
Affiliation(s)
- Xiaofei Yin
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Andreas Ziegler
- Central Facility for Electron Microscopy, University of Ulm, Ulm, 89081, Germany
| | - Klemens Kelm
- Institute of Materials Research, German Aerospace Center (DLR), Cologne, 51147, Germany
| | - Ramona Hoffmann
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Philipp Watermeyer
- Institute of Materials Research, German Aerospace Center (DLR), Cologne, 51147, Germany
| | - Patrick Alexa
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Clarissa Villinger
- Central Facility for Electron Microscopy, University of Ulm, Ulm, 89081, Germany
- Institute of Virology, University Medical Center Ulm, Ulm, 89081, Germany
| | - Ulrich Rupp
- Central Facility for Electron Microscopy, University of Ulm, Ulm, 89081, Germany
| | - Lothar Schlüter
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Ecology - Evolutionary Ecology, Kiel, 24105, Germany
| | - Thorsten B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Ecology - Evolutionary Ecology, Kiel, 24105, Germany
| | - Erika Griesshaber
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, Ulm, 89081, Germany
| | - Wolfgang W Schmahl
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, 80333, Germany
| |
Collapse
|
25
|
McClelland HLO, Bruggeman J, Hermoso M, Rickaby REM. The origin of carbon isotope vital effects in coccolith calcite. Nat Commun 2017; 8:14511. [PMID: 28262764 PMCID: PMC5343501 DOI: 10.1038/ncomms14511] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022] Open
Abstract
Calcite microfossils are widely used to study climate and oceanography in Earth's geological past. Coccoliths, readily preserved calcite plates produced by a group of single-celled surface-ocean dwelling algae called coccolithophores, have formed a significant fraction of marine sediments since the Late Triassic. However, unlike the shells of foraminifera, their zooplankton counterparts, coccoliths remain underused in palaeo-reconstructions. Precipitated in an intracellular chemical and isotopic microenvironment, coccolith calcite exhibits large and enigmatic departures from the isotopic composition of abiogenic calcite, known as vital effects. Here we show that the calcification to carbon fixation ratio determines whether coccolith calcite is isotopically heavier or lighter than abiogenic calcite, and that the size of the deviation is determined by the degree of carbon utilization. We discuss the theoretical potential for, and current limitations of, coccolith-based CO2 paleobarometry, that may eventually facilitate use of the ubiquitous and geologically extensive sedimentary archive.
Collapse
Affiliation(s)
- H. L. O. McClelland
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
- Department of Earth and Planetary Science, Washington University in St Louis, Campus box 1169, 1 Brookings Dr, St Louis, Missouri 63130, USA
| | - J. Bruggeman
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | - M. Hermoso
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
- Équipe de Géochimie des Isotopes Stables, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, UMR 7154 CNRS, F-75005 Paris, France
| | - R. E. M. Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| |
Collapse
|
26
|
Taylor AR, Brownlee C, Wheeler G. Coccolithophore Cell Biology: Chalking Up Progress. ANNUAL REVIEW OF MARINE SCIENCE 2017; 9:283-310. [PMID: 27814031 DOI: 10.1146/annurev-marine-122414-034032] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coccolithophores occupy a special position within the marine phytoplankton because of their production of intricate calcite scales, or coccoliths. Coccolithophores are major contributors to global ocean calcification and long-term carbon fluxes. The intracellular production of coccoliths requires modifications to cellular ultrastructure and metabolism that are surveyed here. In addition to calcification, which appears to have evolved with a diverse range of functions, several other remarkable features that likely underpin the ecological and evolutionary success of coccolithophores have recently been uncovered. These include complex and varied life cycle strategies related to abiotic and biotic interactions as well as a range of novel metabolic pathways and nutritional strategies. Together with knowledge of coccolithophore genetic and physiological variability, these findings are beginning to shed new light on species diversity, distribution, and ecological adaptation. Further advances in genetics and functional characterization at the cellular level will likely to lead to a rapid increase in this understanding.
Collapse
Affiliation(s)
- Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina 28403;
| | - Colin Brownlee
- Marine Biological Association, Plymouth PL1 2PB, United Kingdom; ,
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, United Kingdom
| | - Glen Wheeler
- Marine Biological Association, Plymouth PL1 2PB, United Kingdom; ,
| |
Collapse
|
27
|
Rao A, Cölfen H. Mineralization and non-ideality: on nature's foundry. Biophys Rev 2016; 8:309-329. [PMID: 28510024 DOI: 10.1007/s12551-016-0228-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022] Open
Abstract
Understanding how ions, ion-clusters and particles behave in non-ideal environments is a fundamental question concerning planetary to atomic scales. For biomineralization phenomena wherein diverse inorganic and organic ingredients are present in biological media, attributing biomaterial composition and structure to the chemistry of singular additives may not provide a holistic view of the underlying mechanisms. Therefore, in this review, we specifically address the consequences of physico-chemical non-ideality on mineral formation. Influences of different forms of non-ideality such as macromolecular crowding, confinement and liquid-like organic phases on mineral nucleation and crystallization in biological environments are presented. Novel prospects for the additive-controlled nucleation and crystallization are accessible from this biophysical view. In this manner, we show that non-ideal conditions significantly affect the form, structure and composition of biogenic and biomimetic minerals.
Collapse
Affiliation(s)
- Ashit Rao
- Freiburg Institute for Advanced Studies, Albert Ludwigs University of Freiburg, 79104, Freiburg im Breisgau, Germany.
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, D-78457, Konstanz, Germany.
| |
Collapse
|
28
|
Schlüter L, Lohbeck KT, Gröger JP, Riebesell U, Reusch TBH. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. SCIENCE ADVANCES 2016; 2:e1501660. [PMID: 27419227 PMCID: PMC4942326 DOI: 10.1126/sciadv.1501660] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/15/2016] [Indexed: 05/12/2023]
Abstract
Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2-adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses.
Collapse
Affiliation(s)
- Lothar Schlüter
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Kai T. Lohbeck
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Joachim P. Gröger
- Living Marine Resources Research Unit, Thünen-Institute of Sea Fisheries, Palmaille 9, 22767 Hamburg, Germany
| | - Ulf Riebesell
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Thorsten B. H. Reusch
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
- Corresponding author.
| |
Collapse
|
29
|
Kottmeier DM, Rokitta SD, Rost B. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi. THE NEW PHYTOLOGIST 2016; 211:126-37. [PMID: 26918275 PMCID: PMC5069628 DOI: 10.1111/nph.13885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/06/2016] [Indexed: 05/11/2023]
Abstract
A combined increase in seawater [CO2 ] and [H(+) ] was recently shown to induce a shift from photosynthetic HCO3 (-) to CO2 uptake in Emiliania huxleyi. This shift occurred within minutes, whereas acclimation to ocean acidification (OA) did not affect the carbon source. To identify the driver of this shift, we exposed low- and high-light acclimated E. huxleyi to a matrix of two levels of dissolved inorganic carbon (1400, 2800 μmol kg(-1) ) and pH (8.15, 7.85) and directly measured cellular O2 , CO2 and HCO3 (-) fluxes under these conditions. Exposure to increased [CO2 ] had little effect on the photosynthetic fluxes, whereas increased [H(+) ] led to a significant decline in HCO3 (-) uptake. Low-light acclimated cells overcompensated for the inhibition of HCO3 (-) uptake by increasing CO2 uptake. High-light acclimated cells, relying on higher proportions of HCO3 (-) uptake, could not increase CO2 uptake and photosynthetic O2 evolution consequently became carbon-limited. These regulations indicate that OA responses in photosynthesis are caused by [H(+) ] rather than by [CO2 ]. The impaired HCO3 (-) uptake also provides a mechanistic explanation for lowered calcification under OA. Moreover, it explains the OA-dependent decrease in photosynthesis observed in high-light grown phytoplankton.
Collapse
Affiliation(s)
- Dorothee M. Kottmeier
- Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchAm Handelshafen 1227570BremerhavenGermany
| | - Sebastian D. Rokitta
- Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchAm Handelshafen 1227570BremerhavenGermany
| | - Björn Rost
- Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchAm Handelshafen 1227570BremerhavenGermany
| |
Collapse
|
30
|
Monteiro FM, Bach LT, Brownlee C, Bown P, Rickaby REM, Poulton AJ, Tyrrell T, Beaufort L, Dutkiewicz S, Gibbs S, Gutowska MA, Lee R, Riebesell U, Young J, Ridgwell A. Why marine phytoplankton calcify. SCIENCE ADVANCES 2016; 2:e1501822. [PMID: 27453937 PMCID: PMC4956192 DOI: 10.1126/sciadv.1501822] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/16/2016] [Indexed: 05/23/2023]
Abstract
Calcifying marine phytoplankton-coccolithophores- are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know "why" coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming.
Collapse
Affiliation(s)
- Fanny M. Monteiro
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
| | - Lennart T. Bach
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Paul Bown
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Rosalind E. M. Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Alex J. Poulton
- Ocean Biogeochemistry and Ecosystems, National Oceanography Centre, Southampton SO14 3ZH, UK
| | - Toby Tyrrell
- Ocean and Earth Science, University of Southampton, Southampton SO17 1BJ, UK
| | - Luc Beaufort
- Aix-Marseille University/CNRS, Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (CEREGE), 13545 Aix-en-Provence, France
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samantha Gibbs
- Ocean and Earth Science, University of Southampton, Southampton SO17 1BJ, UK
| | - Magdalena A. Gutowska
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Renee Lee
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Jeremy Young
- Museum of Natural History, Cromwell Road, London SW7 5BD, UK
| | - Andy Ridgwell
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
- Department of Earth Sciences, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
31
|
Suchéras-Marx B, Giraud F, Simionovici A, Daniel I, Tucoulou R. Perspectives on heterococcolith geochemical proxies based on high-resolution X-ray fluorescence mapping. GEOBIOLOGY 2016; 14:390-403. [PMID: 26864732 DOI: 10.1111/gbi.12177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 12/26/2015] [Indexed: 05/24/2023]
Abstract
Heterococcoliths are micron-scale calcite platelets produced by coccolithophores. They have been the most abundant and continuous fossil record over the last 215 million years (Myr), offering great potential for geochemical studies, although the heterococcolith fossil record remains underutilised in this domain. We have mapped heterococcoliths' composition using X-ray fluorescence (XRF) with a 100-nm resolution beam to decipher element distributions in heterococcoliths and to investigate the potential development of geochemical proxies for palaeoceanography. The study presents two Middle Jurassic Watznaueria britannica heterococcoliths from Cabo Mondego, Portugal. XRF analysis was performed with a 17 keV incident energy beam at the European Synchrotron Radiation Facility ID22NI beamline to study elements from Sr down to S. Ca, Sr and Mn are distributed following the heterococcolith crystalline arrangement. Cl, Br and S display an homogeneous distribution, whereas K, Fe, Cu, Zn and Rb are concentrated at the edges and in the central area of the heterococcoliths. Distributions of K, Fe, Ti, Fe, Cu, Zn, Rb and to a lesser extent V and Cr are highly influenced by clay contamination and peripheral diagenetic overgrowth. Mn is related to diagenetic Mn-rich CaCO3 overgrowth on top of or between heterococcoliths shields. Cl and Br are likely to be present in heterococcoliths inside interstitial nano-domains. We assume that the cytoplasm [Cl(-) ] and [Br(-) ] are mediated and constant during heterococcolithogenesis. Assuming a linear correlation between cytoplasm [Cl(-) ] and sea water [Cl(-) ], heterococcolith Cl may have potential as a salinity proxy. As S is incorporated into heterococcoliths by sulphated polysaccharides, our study suggests a role for such polysaccharides in heterococcolithogenesis for at least 170 Myr. The low Sr/Ca in the W. britannica specimens studied here may either highlight an unusual cellular physiology of Mesozoic coccolithophores or result from low growth rates in oligotrophic environments.
Collapse
Affiliation(s)
- B Suchéras-Marx
- UMR CNRS 5276 LGL, Université Claude Bernard Lyon 1, Ecole Normale Supérieure Lyon, Villeurbanne Cedex, France
- Université de Lyon, Université Jean Monnet and UMR-CNRS 6524, Laboratoire Magmas et Volcans, Saint Etienne, France
- CEREGE UM34, Aix-Marseille Université, CNRS, IRD, Aix-en-Provence, France
| | - F Giraud
- Université Grenoble Alpes, ISTerre, Grenoble, France
- CNRS, ISTerre, Grenoble, France
| | - A Simionovici
- Université Grenoble Alpes, ISTerre, Grenoble, France
- CNRS, ISTerre, Grenoble, France
| | - I Daniel
- UMR CNRS 5276 LGL, Université Claude Bernard Lyon 1, Ecole Normale Supérieure Lyon, Villeurbanne Cedex, France
| | - R Tucoulou
- ESRF - The European Synchrotron, Grenoble Cedex 9, France
| |
Collapse
|
32
|
Zhang X, Gamarra J, Castro S, Carrasco E, Hernandez A, Mock T, Hadaegh AR, Read BA. Characterization of the Small RNA Transcriptome of the Marine Coccolithophorid, Emiliania huxleyi. PLoS One 2016; 11:e0154279. [PMID: 27101007 PMCID: PMC4839659 DOI: 10.1371/journal.pone.0154279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Small RNAs (smRNAs) control a variety of cellular processes by silencing target genes at the transcriptional or post-transcription level. While extensively studied in plants, relatively little is known about smRNAs and their targets in marine phytoplankton, such as Emiliania huxleyi (E. huxleyi). Deep sequencing was performed of smRNAs extracted at different time points as E. huxleyi cells transition from logarithmic to stationary phase growth in batch culture. Computational analyses predicted 18 E. huxleyi specific miRNAs. The 18 miRNA candidates and their precursors vary in length (18–24 nt and 71–252 nt, respectively), genome copy number (3–1,459), and the number of genes targeted (2–107). Stem-loop real time reverse transcriptase (RT) PCR was used to validate miRNA expression which varied by nearly three orders of magnitude when growth slows and cells enter stationary phase. Stem-loop RT PCR was also used to examine the expression profiles of miRNA in calcifying and non-calcifying cultures, and a small subset was found to be differentially expressed when nutrients become limiting and calcification is enhanced. In addition to miRNAs, endogenous small RNAs such as ra-siRNAs, ta-siRNAs, nat-siRNAs, and piwiRNAs were predicted along with the machinery for the biogenesis and processing of si-RNAs. This study is the first genome-wide investigation smRNAs pathways in E. huxleyi. Results provide new insights into the importance of smRNAs in regulating aspects of physiological growth and adaptation in marine phytoplankton and further challenge the notion that smRNAs evolved with multicellularity, expanding our perspective of these ancient regulatory pathways.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Computer Science and Information Systems, California State University, San Marcos, CA, 92096, United States of America
| | - Jaime Gamarra
- Department of Computer Science and Information Systems, California State University, San Marcos, CA, 92096, United States of America
| | - Steven Castro
- Department of Biological Sciences, California State University, San Marcos, CA, 92096, United States of America
| | - Estela Carrasco
- Department of Biological Sciences, California State University, San Marcos, CA, 92096, United States of America
| | - Aaron Hernandez
- Department of Biological Sciences, California State University, San Marcos, CA, 92096, United States of America
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, United Kingdom
| | - Ahmad R. Hadaegh
- Department of Computer Science and Information Systems, California State University, San Marcos, CA, 92096, United States of America
| | - Betsy A. Read
- Department of Biological Sciences, California State University, San Marcos, CA, 92096, United States of America
- * E-mail:
| |
Collapse
|
33
|
Knies D, Wittmüß P, Appel S, Sawodny O, Ederer M, Feuer R. Modeling and Simulation of Optimal Resource Management during the Diurnal Cycle in Emiliania huxleyi by Genome-Scale Reconstruction and an Extended Flux Balance Analysis Approach. Metabolites 2015; 5:659-76. [PMID: 26516924 PMCID: PMC4693189 DOI: 10.3390/metabo5040659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 10/14/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022] Open
Abstract
The coccolithophorid unicellular alga Emiliania huxleyi is known to form large blooms, which have a strong effect on the marine carbon cycle. As a photosynthetic organism, it is subjected to a circadian rhythm due to the changing light conditions throughout the day. For a better understanding of the metabolic processes under these periodically-changing environmental conditions, a genome-scale model based on a genome reconstruction of the E. huxleyi strain CCMP 1516 was created. It comprises 410 reactions and 363 metabolites. Biomass composition is variable based on the differentiation into functional biomass components and storage metabolites. The model is analyzed with a flux balance analysis approach called diurnal flux balance analysis (diuFBA) that was designed for organisms with a circadian rhythm. It allows storage metabolites to accumulate or be consumed over the diurnal cycle, while keeping the structure of a classical FBA problem. A feature of this approach is that the production and consumption of storage metabolites is not defined externally via the biomass composition, but the result of optimal resource management adapted to the diurnally-changing environmental conditions. The model in combination with this approach is able to simulate the variable biomass composition during the diurnal cycle in proximity to literature data.
Collapse
Affiliation(s)
- David Knies
- Institute for System Dynamics, University of Stuttgart, Waldburgstrasse 17/19, Stuttgart 70563, Germany.
| | - Philipp Wittmüß
- Institute for System Dynamics, University of Stuttgart, Waldburgstrasse 17/19, Stuttgart 70563, Germany.
| | - Sebastian Appel
- Institute for System Dynamics, University of Stuttgart, Waldburgstrasse 17/19, Stuttgart 70563, Germany.
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Waldburgstrasse 17/19, Stuttgart 70563, Germany.
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Waldburgstrasse 17/19, Stuttgart 70563, Germany.
| | - Ronny Feuer
- Institute for System Dynamics, University of Stuttgart, Waldburgstrasse 17/19, Stuttgart 70563, Germany.
| |
Collapse
|
34
|
Brownlee C, Wheeler GL, Taylor AR. Coccolithophore biomineralization: New questions, new answers. Semin Cell Dev Biol 2015; 46:11-6. [DOI: 10.1016/j.semcdb.2015.10.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022]
|
35
|
Lohbeck KT, Riebesell U, Reusch TBH. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification. Proc Biol Sci 2015; 281:rspb.2014.0003. [PMID: 24827439 DOI: 10.1098/rspb.2014.0003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification.
Collapse
Affiliation(s)
- Kai T Lohbeck
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Ulf Riebesell
- Biological Oceanography, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Thorsten B H Reusch
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
36
|
Holtz LM, Wolf-Gladrow D, Thoms S. Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi. J Theor Biol 2015; 364:305-15. [DOI: 10.1016/j.jtbi.2014.08.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
37
|
von Dassow P, John U, Ogata H, Probert I, Bendif EM, Kegel JU, Audic S, Wincker P, Da Silva C, Claverie JM, Doney S, Glover DM, Flores DM, Herrera Y, Lescot M, Garet-Delmas MJ, de Vargas C. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton. ISME JOURNAL 2014; 9:1365-77. [PMID: 25461969 PMCID: PMC4438323 DOI: 10.1038/ismej.2014.221] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/08/2014] [Accepted: 10/17/2014] [Indexed: 11/30/2022]
Abstract
Emiliania huxleyi is the most abundant calcifying plankton in modern oceans with substantial intraspecific genome variability and a biphasic life cycle involving sexual alternation between calcified 2N and flagellated 1N cells. We show that high genome content variability in Emiliania relates to erosion of 1N-specific genes and loss of the ability to form flagellated cells. Analysis of 185 E. huxleyi strains isolated from world oceans suggests that loss of flagella occurred independently in lineages inhabiting oligotrophic open oceans over short evolutionary timescales. This environmentally linked physiogenomic change suggests life cycling is not advantageous in very large/diluted populations experiencing low biotic pressure and low ecological variability. Gene loss did not appear to reflect pressure for genome streamlining in oligotrophic oceans as previously observed in picoplankton. Life-cycle modifications might be common in plankton and cause major functional variability to be hidden from traditional taxonomic or molecular markers.
Collapse
Affiliation(s)
- Peter von Dassow
- 1] Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile [2] UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS, UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France [3] Instituto Milenio de Oceanografía, Concepción, Chile [4] CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| | - Uwe John
- Alfred Wegener Institute Helmhotz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hiroyuki Ogata
- 1] Institute for Chemical Research, Kyoto University, Kyoto, Japan [2] CNRS, Aix-Marseille Université, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), Marseille, France
| | - Ian Probert
- CNRS-UMPC, FR2424, Roscoff Culture Collection, Station Biologique de Roscoff, Roscoff, France
| | - El Mahdi Bendif
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, UK
| | - Jessica U Kegel
- Alfred Wegener Institute Helmhotz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Stéphane Audic
- CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| | | | | | - Jean-Michel Claverie
- CNRS, Aix-Marseille Université, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), Marseille, France
| | - Scott Doney
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - David M Glover
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Daniella Mella Flores
- 1] Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile [2] UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS, UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France
| | - Yeritza Herrera
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magali Lescot
- CNRS, Aix-Marseille Université, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), Marseille, France
| | - Marie-José Garet-Delmas
- CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| | - Colomban de Vargas
- CNRS UMR 7144 and UMPC, Evolution of Pelagic Ecosystems and Protists (EPEP), CNRS, UPMC, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
38
|
Benner I, Diner RE, Lefebvre SC, Li D, Komada T, Carpenter EJ, Stillman JH. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130049. [PMID: 23980248 DOI: 10.1098/rstb.2013.0049] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming.
Collapse
Affiliation(s)
- Ina Benner
- Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, CA 94920, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Stojkovic S, Beardall J, Matear R. CO2 -concentrating mechanisms in three southern hemisphere strains of Emiliania huxleyi. JOURNAL OF PHYCOLOGY 2013; 49:670-9. [PMID: 27007199 DOI: 10.1111/jpy.12074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 03/19/2013] [Indexed: 05/23/2023]
Abstract
Rising global CO2 is changing the carbonate chemistry of seawater, which is expected to influence the way phytoplankton acquire inorganic carbon. All phytoplankton rely on ribulose-bisphosphate carboxylase oxygenase (RUBISCO) for assimilation of inorganic carbon in photosynthesis, but this enzyme is inefficient at present day CO2 levels. Many algae have developed a range of energy demanding mechanisms, referred to as carbon concentrating mechanisms (CCMs), which increase the efficiency of carbon acquisition. We investigated CCM activity in three southern hemisphere strains of the coccolithophorid Emiliania huxleyi W. W. Hay & H. P. Mohler. Both calcifying and non-calcifying strains showed strong CCM activity, with HCO3 (-) as a preferred source of photosynthetic carbon in the non-calcifying strain, but a higher preference for CO2 in the calcifying strains. All three strains were characterized by the presence of pyrenoids, external carbonic anhydrase (CA) and high affinity for CO2 in photosynthesis, indicative of active CCMs. We postulate that under higher CO2 levels cocco-lithophorids will be able to down-regulate their CCMs, and re-direct some of the metabolic energy to processes such as calcification. Due to the expected rise in CO2 levels, photosynthesis in calcifying strains is expected to benefit most, due to their use of CO2 for carbon uptake. The non-calcifying strain, on the other hand, will experience only a 10% increase in HCO3 (-) , thus making it less responsive to changes in carbonate chemistry of water.
Collapse
Affiliation(s)
- Slobodanka Stojkovic
- CMAR--CSIRO, Hobart, Tas, 7001, Australia
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | | |
Collapse
|
40
|
Bach LT, Mackinder LCM, Schulz KG, Wheeler G, Schroeder DC, Brownlee C, Riebesell U. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. THE NEW PHYTOLOGIST 2013; 199:121-134. [PMID: 23496417 DOI: 10.1111/nph.12225] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/08/2013] [Indexed: 05/15/2023]
Abstract
Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2 . However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2 , bicarbonate, carbonate and protons) on the physiological responses to elevated CO2 . Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2 . Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level.
Collapse
Affiliation(s)
- Lennart T Bach
- Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), D-24105, Kiel, Germany
| | - Luke C M Mackinder
- Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), D-24105, Kiel, Germany
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Kai G Schulz
- Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), D-24105, Kiel, Germany
| | - Glen Wheeler
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | - Declan C Schroeder
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Ulf Riebesell
- Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), D-24105, Kiel, Germany
| |
Collapse
|
41
|
Holtz LM, Thoms S, Langer G, Wolf-Gladrow DA. Substrate supply for calcite precipitation in Emiliania huxleyi: assessment of different model approaches. JOURNAL OF PHYCOLOGY 2013; 49:417-426. [PMID: 27008527 DOI: 10.1111/jpy.12052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 11/19/2012] [Indexed: 06/05/2023]
Abstract
Over the last four decades, different hypotheses of Ca(2+) and dissolved inorganic carbon transport to the intracellular site of calcite precipitation have been put forth for Emiliania huxleyi (Lohmann) Hay & Mohler. The objective of this study was to assess these hypotheses by means of mathematical models. It is shown that a vesicle-based Ca(2+) transport would require very high intravesicular Ca(2+) concentrations, high vesicle fusion frequencies as well as a fast membrane recycling inside the cell. Furthermore, a kinetic model for the calcification compartment is presented that describes the internal chemical environment in terms of carbonate chemistry including calcite precipitation. Substrates for calcite precipitation are transported with different stoichiometries across the compartment membrane. As a result, the carbonate chemistry inside the compartment changes and hence influences the calcification rate. Moreover, the effect of carbonic anhydrase (CA) activity within the compartment is analyzed. One very promising model version is based on a Ca(2+) /H(+) antiport, CO2 diffusion, and a CA inside the calcification compartment. Another promising model version is based on an import of Ca(2+) and HCO3 (-) and an export of H(+) .
Collapse
Affiliation(s)
- Lena-Maria Holtz
- Alfred Wegener Institute for Polar and Marine Research, Biogeosciences, Am Handelshafen 12, Bremerhaven, 27570, Germany
| | - Silke Thoms
- Alfred Wegener Institute for Polar and Marine Research, Biogeosciences, Am Handelshafen 12, Bremerhaven, 27570, Germany
| | - Gerald Langer
- Department of Earth Sciences, Cambridge University, Downing St., Cambridge, CB2 3EQ, UK
| | - Dieter A Wolf-Gladrow
- Alfred Wegener Institute for Polar and Marine Research, Biogeosciences, Am Handelshafen 12, Bremerhaven, 27570, Germany
| |
Collapse
|
42
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
43
|
Rokitta SD, John U, Rost B. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi. PLoS One 2012; 7:e52212. [PMID: 23300616 PMCID: PMC3530605 DOI: 10.1371/journal.pone.0052212] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/09/2012] [Indexed: 12/25/2022] Open
Abstract
Ocean Acidification (OA) has been shown to affect photosynthesis and calcification in the coccolithophore Emiliania huxleyi, a cosmopolitan calcifier that significantly contributes to the regulation of the biological carbon pumps. Its non-calcifying, haploid life-cycle stage was found to be relatively unaffected by OA with respect to biomass production. Deeper insights into physiological key processes and their dependence on environmental factors are lacking, but are required to understand and possibly estimate the dynamics of carbon cycling in present and future oceans. Therefore, calcifying diploid and non-calcifying haploid cells were acclimated to present and future CO(2) partial pressures (pCO(2); 38.5 Pa vs. 101.3 Pa CO(2)) under low and high light (50 vs. 300 µmol photons m(-2) s(-1)). Comparative microarray-based transcriptome profiling was used to screen for the underlying cellular processes and allowed to follow up interpretations derived from physiological data. In the diplont, the observed increases in biomass production under OA are likely caused by stimulated production of glycoconjugates and lipids. The observed lowered calcification under OA can be attributed to impaired signal-transduction and ion-transport. The haplont utilizes distinct genes and metabolic pathways, reflecting the stage-specific usage of certain portions of the genome. With respect to functionality and energy-dependence, however, the transcriptomic OA-responses resemble those of the diplont. In both life-cycle stages, OA affects the cellular redox-state as a master regulator and thereby causes a metabolic shift from oxidative towards reductive pathways, which involves a reconstellation of carbon flux networks within and across compartments. Whereas signal transduction and ion-homeostasis appear equally OA-sensitive under both light intensities, the effects on carbon metabolism and light physiology are clearly modulated by light availability. These interactive effects can be attributed to the influence of OA and light on the redox equilibria of NAD and NADP, which function as major sensors for energization and stress. This generic mode of action of OA may therefore provoke similar cell-physiological responses in other protists.
Collapse
Affiliation(s)
- Sebastian D Rokitta
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | | | |
Collapse
|
44
|
Taylor AR, Brownlee C, Wheeler GL. Proton channels in algae: reasons to be excited. TRENDS IN PLANT SCIENCE 2012; 17:675-84. [PMID: 22819465 DOI: 10.1016/j.tplants.2012.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 05/08/2023]
Abstract
A fundamental requirement of all eukaryotes is the ability to translocate protons across membranes. This is critical in bioenergetics, for compartmentalized metabolism, and to regulate intracellular pH (pH(i)) within a range that is compatible with cellular metabolism. Plants, animals, and algae utilize specialized transport machinery for membrane energization and pH homeostasis that reflects the prevailing ionic conditions in which they evolved. The recent characterization of H(+)-permeable channels in marine and freshwater algae has led to the discovery of novel functions for these transport proteins in both cellular pH homeostasis and sensory biology. Here we review the potential implications for understanding the origins and evolution of membrane excitability and the phytoplankton-based marine ecosystem responses to ocean acidification.
Collapse
Affiliation(s)
- Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28409, USA.
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Morgan W. Kelly
- Department of Ecology, Evolution and Marine Biology; University of California Santa Barbara; Santa Barbara; California; 93106-9620; USA
| | - Gretchen E. Hofmann
- Department of Ecology, Evolution and Marine Biology; University of California Santa Barbara; Santa Barbara; California; 93106-9620; USA
| |
Collapse
|
46
|
Xu K, Gao K. Reduced calcification decreases photoprotective capability in the coccolithophorid Emiliania huxleyi. PLANT & CELL PHYSIOLOGY 2012; 53:1267-1274. [PMID: 22555817 DOI: 10.1093/pcp/pcs066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Intracellular calcification of coccolithophores generates CO₂ and consumes additional energy for acquisition of calcium and bicarbonate ions; therefore, it may correlate with photoprotective processes by influencing the energetics. To address this hypothesis, a calcifying Emiliania huxleyi strain (CS-369) was grown semi-continuously at reduced (0.1 mM, LCa) and ambient Ca²⁺ concentrations (10 mM, HCa) for 150 d (>200 generations). The HCa-grown cells had higher photosynthetic and calcification rates and higher contents of Chl a and carotenoids compared with the naked (bearing no coccoliths) LCa-grown cells. When exposed to stressfull levels of photosynthetically active radiation (PAR), LCa-grown cells displayed lower photochemical yield and less efficient non-photochemical quenching (NPQ). When the LCa- or HCa-grown cells were inversely shifted to their counterpart medium, LCa to HCa transfer increased photosynthetic carbon fixation (P), calcification rate (C), the C/P ratio, NPQ and pigment contents, whereas those shifted from HCa to LCa exhibited the opposite effects. Increased NPQ, carotenoids and quantum yield were clearly linked with increased or sustained calcification in E. huxleyi. The calcification must have played a role in dissipating excessive energy or as an additional drainage of electrons absorbed by the photosynthetic antennae. This phenomenon was further supported by testing two non-calcifying strains, which showed insignificant changes in photosynthetic carbon fixation and NPQ when transferred to LCa conditions.
Collapse
Affiliation(s)
- Kai Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | | |
Collapse
|