1
|
Eriksen E, Graff P, Eiler A, Straumfors A, Komlavi Afanou A. DNA metabarcoding and its potential in microbial risk assessment in waste sorting plants. Sci Rep 2025; 15:8941. [PMID: 40089527 PMCID: PMC11910513 DOI: 10.1038/s41598-025-93697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/10/2025] [Indexed: 03/17/2025] Open
Abstract
Exposure to hazardous microorganisms during waste handling is a potential health concern. Molecular biological techniques provide means of profiling the microbial community at high taxonomic resolution, allow the identification of critical human pathogens on the species level and thereby aid the risk assessment of work tasks. The present study used high-throughput sequencing to characterise the microbiome in personal full-shift air samples collected at contemporary waste sorting plants (WSPs) and identified large variations in community composition within (alpha diversity) and between (beta diversity) WSPs. Seasonality did not contribute to differences in the community composition. Cladosporium sp. was dominant among fungi, whereas Aerococcus sp. was dominant among bacteria. The personal air-samples contained potential human pathogens, such as Aspergillus sp., Fusarium sp. and Enterobacteriaceae, that encompass strains with the potential to develop drug-resistance. This study provided characterization of the microbial community composition of personal bioaerosol samples and provided evidence for the occurrence of potential human pathogens in contemporary waste sorting plants. Furthermore, this study highlighted the potential of microbial metabarcoding to detect critical human pathogens that may be encountered in working environments.
Collapse
Affiliation(s)
- Elke Eriksen
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway.
| | - Pål Graff
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Alexander Eiler
- Section for Aquatic Biology and Toxicology, Department of Biosciences, Centre for Biogeochemistry in the Anthropocene, University of Oslo, 0316, Oslo, Norway
| | - Anne Straumfors
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Anani Komlavi Afanou
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| |
Collapse
|
2
|
Belu A, Țarcă V, Filip N, Țarcă E, Trandafir LM, Heredea RE, Chifan S, Parteni DE, Bernic J, Cojocaru E. Lactate Levels in a Replanted Limb as an Early Biomarker for Assessing Post-Surgical Evolution: A Case Report. Diagnostics (Basel) 2025; 15:688. [PMID: 40150032 PMCID: PMC11941603 DOI: 10.3390/diagnostics15060688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background and Clinical Significance: In the clinical management of major pediatric traumatic injuries and other hypoxic conditions, lactate is widely recognized as a key indicator of tissue hypoxia and potential necrosis. However, its prognostic value remains uncertain. Several factors influence post-surgical outcomes, including the time between amputation and replantation, transport conditions, asepsis, the extent of tissue necrosis, hemorrhagic shock, coagulation disorders, and the heightened risk of contamination. Case presentation: We present this case to emphasize the utility of systemic lactate versus lactate levels in the replanted limb for monitoring post-transplantation outcomes in a pediatric patient with traumatic limb amputation. Significant fluctuations in lactate levels within the replanted limb were observed at the onset of unfavorable evolution, specifically on the seventh postoperative day, coinciding with the identification of Aspergillus spp. infection. This necessitated the use of synthetic saphenous vein grafts and Amphotericin B administration. Despite these interventions, disease progression ultimately led to limb amputation. Conclusions: Lactate levels in the replanted limb may serve as an early biomarker for assessing post-surgical evolution. However, further case reports are required to confirm its predictive value.
Collapse
Affiliation(s)
- Alina Belu
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.B.); (D.E.P.); (E.C.)
| | - Viorel Țarcă
- Department of Preclinical Disciplines, Faculty of Medicine, Apollonia University, Strada Păcurari nr. 11, 700511 Iași, Romania;
| | - Nina Filip
- Department of Morphofunctional Sciences II—Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Mother and Child—Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Rodica Elena Heredea
- Department I Nursing, Discipline of Clinical Practical Skills, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timişoara, Romania;
| | - Silviana Chifan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Diana Elena Parteni
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.B.); (D.E.P.); (E.C.)
| | - Jana Bernic
- Discipline of Pediatric Surgery, “Nicolae Testemițanu” State University of Medicine and Pharmacy, MD-2001 Chisinau, Moldova;
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I—Pathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.B.); (D.E.P.); (E.C.)
| |
Collapse
|
3
|
Al-Shaarani AAQA, Pecoraro L. A review of pathogenic airborne fungi and bacteria: unveiling occurrence, sources, and profound human health implication. Front Microbiol 2024; 15:1428415. [PMID: 39364169 PMCID: PMC11446796 DOI: 10.3389/fmicb.2024.1428415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Airborne fungi and bacteria have been extensively studied by researchers due to their significant effects on human health. We provided an overview of the distribution and sources of airborne pathogenic microbes, and a detailed description of the detrimental effects that these microorganisms cause to human health in both outdoor and indoor environments. By analyzing the large body of literature published in this field, we offered valuable insights into how airborne microbes influence our well-being. The findings highlight the harmful consequences associated with the exposure to airborne fungi and bacteria in a variety of natural and human-mediated environments. Certain demographic groups, including children and the elderly, immunocompromised individuals, and various categories of workers are particularly exposed and vulnerable to the detrimental effect on health of air microbial pollution. A number of studies performed up to date consistently identified Alternaria, Cladosporium, Penicillium, Aspergillus, and Fusarium as the predominant fungal genera in various indoor and outdoor environments. Among bacteria, Bacillus, Streptococcus, Micrococcus, Enterococcus, and Pseudomonas emerged as the dominant genera in air samples collected from numerous environments. All these findings contributed to expanding our knowledge on airborne microbe distribution, emphasizing the crucial need for further research and increased public awareness. Collectively, these efforts may play a vital role in safeguarding human health in the face of risks posed by airborne microbial contaminants.
Collapse
Affiliation(s)
- Amran A. Q. A. Al-Shaarani
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Shen Y, Yang X, Zhu M, Duan S, Liu Q, Yang J. The Cryptochrome CryA Regulates Lipid Droplet Accumulation, Conidiation, and Trap Formation via Responses to Light in Arthrobotrys oligospora. J Fungi (Basel) 2024; 10:626. [PMID: 39330386 PMCID: PMC11432822 DOI: 10.3390/jof10090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Light is a key environmental factor affecting conidiation in filamentous fungi. The cryptochrome/photolyase CryA, a blue-light receptor, is involved in fungal development. In the present study, a homologous CryA (AoCryA) was identified from the widely occurring nematode-trapping (NT) fungus Arthrobotrys oligospora, and its roles in the mycelial growth and development of A. oligospora were characterized using gene knockout, phenotypic comparison, staining technique, and metabolome analysis. The inactivation of AocryA caused a substantial decrease in spore yields in dark conditions but did not affect spore yields in the wild-type (WT) and ∆AocryA mutant strains in light conditions. Corresponding to the decrease in spore production, the transcription of sporulation-related genes was also significantly downregulated in dark conditions. Contrarily, the ∆AocryA mutants showed a substantial increase in trap formation in dark conditions, while the trap production and nematode-trapping abilities of the WT and mutant strains significantly decreased in light conditions. In addition, lipid droplet accumulation increased in the ∆AocryA mutant in dark conditions, and the mutants showed an increased tolerance to sorbitol, while light contributed to the synthesis of carotenoids. Finally, AoCryA was found to affect secondary metabolic processes. These results reveal, for the first time, the function of a homologous cryptochrome in NT fungi.
Collapse
Affiliation(s)
- Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
5
|
Portaels J, Van Crombrugge E, Van Den Broeck W, Lagrou K, Laval K, Nauwynck H. Aspergillus Fumigatus Spore Proteases Alter the Respiratory Mucosa Architecture and Facilitate Equine Herpesvirus 1 Infection. Viruses 2024; 16:1208. [PMID: 39205182 PMCID: PMC11358968 DOI: 10.3390/v16081208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Numerous Aspergillus fumigatus (Af) airborne spores are inhaled daily by humans and animals due to their ubiquitous presence. The interaction between the spores and the respiratory epithelium, as well as its impact on the epithelial barrier function, remains largely unknown. The epithelial barrier protects the respiratory epithelium against viral infections. However, it can be compromised by environmental contaminants such as pollen, thereby increasing susceptibility to respiratory viral infections, including alphaherpesvirus equine herpesvirus type 1 (EHV-1). To determine whether Af spores disrupt the epithelial integrity and enhance susceptibility to viral infections, equine respiratory mucosal ex vivo explants were pretreated with Af spore diffusate, followed by EHV-1 inoculation. Spore proteases were characterized by zymography and identified using mass spectrometry-based proteomics. Proteases of the serine protease, metalloprotease, and aspartic protease groups were identified. Morphological analysis of hematoxylin-eosin (HE)-stained sections of the explants revealed that Af spores induced the desquamation of epithelial cells and a significant increase in intercellular space at high and low concentrations, respectively. The increase in intercellular space in the epithelium caused by Af spore proteases correlated with an increase in EHV-1 infection. Together, our findings demonstrate that Af spore proteases disrupt epithelial integrity, potentially leading to increased viral infection of the respiratory epithelium.
Collapse
Affiliation(s)
- Joren Portaels
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (J.P.); (E.V.C.)
| | - Eline Van Crombrugge
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (J.P.); (E.V.C.)
| | - Wim Van Den Broeck
- Department of Morphology, Medical Imaging, Orthopedics and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, 3000 Leuven, Belgium;
| | - Kathlyn Laval
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (J.P.); (E.V.C.)
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (J.P.); (E.V.C.)
| |
Collapse
|
6
|
Sorrentino PJ, MacArthur SL. Use of intranasal povidone-iodine packing in the management of infectious rhinosinusitis in three cats. JFMS Open Rep 2024; 10:20551169241275303. [PMID: 39502682 PMCID: PMC11536372 DOI: 10.1177/20551169241275303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Case series summary Described are three cats diagnosed with rhinosinusitis secondary to Mycobacterium bouchedurhonense, Aspergillus species and Alternaria species, respectively. Medical records were retrospectively reviewed to identify cats with decreased nasal airflow and mucopurulent discharge that failed to improve on antibiotic therapy of 3 months or longer duration. Surgical debridement was followed by nasal packing using 5% povidone-iodine saturated umbilical tape, which was replaced at 24 h postoperatively. At 48 h postoperatively, the rhinotomy site was closed. Systemic therapy continued in the postoperative period. All cases were minimally responsive to previous medical management. History, signalment, clinical signs, diagnostic findings, treatment, and short- and long-term outcomes were retrieved. All cats were middle-aged with outdoor access and had clinical signs that commenced during the summer months. CT revealed turbinate destruction and soft tissue densities within the nasal passages. The otic apparatuses and calvaria were intact in all cats before surgery. A repeat CT examination revealed an improvement of the proliferative tissue identified in preoperative imaging in all cases. All cats achieved successful interruption of nasal discharge and restoration of nasal airflow with follow-up times of up to 16 months postoperatively. Relevance and novel information To the authors' knowledge, this is the first report of the use of intranasal povidone-iodine packing in cats for the management of infectious rhinosinusitis. Surgical debridement and intranasal packing in addition to systemic therapy were successful in restoring nasal airflow and resolving nasal discharge in all cats with long-term follow-up.
Collapse
|
7
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
8
|
Garstka K, Potoczniak G, Kozłowski H, Rowińska-Żyrek M. Aspergillus fumigatus ZrfC Zn(II) transporter scavengers zincophore-bound Zn(II). Dalton Trans 2024; 53:2848-2858. [PMID: 38231010 DOI: 10.1039/d3dt04083f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Aspergillus fumigatus is an opportunistic pathogen that is able to invade and grow in the lungs of immunosuppressed patients and cause invasive pulmonary aspergillosis. The concentration of free Zn(II) in living tissues is much lower than that required for optimal fungal growth; thus, to obtain Zn(II) from the host, Aspergillus fumigatus uses highly specified Zn(II) transporters: ZrfA, ZrfB and ZrfC. The ZrfC transporter plays the main role in Zn(II) acquisition from the host in neutral and mildly alkaline environment via interacting with the secreted Aspf2 zincophore. Understanding the Aspf2-ZrfC interactions is therefore necessary for explaining the process of Zn(II) acquisition by Aspergillus fumigatus, and identifying Zn(II) binding sites in its transporter and describing the thermodynamics of such binding are the fundamental steps to achieve this goal. We focus on two probable ZrfC Zn(II) binding sites and show that the Ac-MNCHFHAGVEHCIGAGESESGSSQ-NH2 region binds Zn(II) with higher affinity than the Ac-TGCHSHGS-NH2 one and that this binding is much stronger than the binding of Zn(II) to the Aspf2 zincophore, allowing efficient Zn(II) transport from the Aspf2 zincophore to the ZrfC transporter. The same ZrfC fragments also able to bind Ni(II), another metal ion essential for fungi that could also compete with Zn(II) binding, with comparable affinity.
Collapse
Affiliation(s)
- Kinga Garstka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Gabriela Potoczniak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
- Institute of Health Sciences, University of Opole, Katowicka 68 St., 45-060 Opole, Poland
| | | |
Collapse
|
9
|
Dai M, Du W, Lu L, Zhang S. Transcription factors SltA and CrzA reversely regulate calcium homeostasis under calcium-limited conditions. Appl Environ Microbiol 2023; 89:e0117023. [PMID: 37874299 PMCID: PMC10686095 DOI: 10.1128/aem.01170-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Calcium ions are ubiquitous intracellular signaling molecules for many signaling pathways regulating the fungal response to stress and antifungal drugs. The concentration of intracellular calcium is tightly regulated in its storage, release, and distribution. CrzA is the best-studied transcription factor that regulates this process under sufficient calcium or other external signals. However, CrzA was excluded from nuclei and then lost transcriptional activation under calcium-limited conditions. The regulators in the Ca2+ signaling pathway under calcium-limited conditions remain unclear. Here, we identified SltA as a key regulator in the Ca2+ signaling pathway under calcium-limited conditions, and the underlying mechanisms were further explored in Aspergillus fumigatus. These findings reveal a transcriptional control pathway that precisely regulates calcium homeostasis under calcium-limited conditions.
Collapse
Affiliation(s)
- Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wenlong Du
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Gołofit-Szymczak M, Wójcik-Fatla A, Stobnicka-Kupiec A, Górny RL. Filters of automobile air conditioning systems as in-car source of exposure to infections and toxic moulds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108188-108200. [PMID: 37749467 PMCID: PMC10611836 DOI: 10.1007/s11356-023-29947-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
The main component of an air conditioning system is air filters. Over time, the filters of an air conditioning system in cars can turn into sources of emission of microbiological hazards. The aim of this study was to quantitatively and qualitatively assess the presence of infectious and toxic fungi in the AC filters in passenger cars. The studied non-woven filters were removed from passenger cars during the "winter"/"summer" seasons. The taxonomic identification of the fungi isolated from the filters was performed using both the culture-based and molecular methods. RT-PCR was applied to assess the presence of gene fragments regulating aflatoxin biosynthesis in the isolates obtained from fungal cultures. The average fungal concentrations in the filter samples collected during the summer/winter season were 5.4 × 104 cfu/m2 and 2.4 × 104 cfu/m2, respectively. Most of the filter samples, collected in both the studied seasons, revealed the presence of Aspergillus species including A. fumigatus, A. niger, A. terreus and/or A. flavus. The recorded levels of fungal contamination of AC filters in passenger cars indicate the necessity for more frequent filter replacement in this type of vehicle. Occupational exposure to moulds and the resulting health problems that may be experienced by professional drivers should be properly recognised in order to undertake effective preventive measures.
Collapse
Affiliation(s)
- Małgorzata Gołofit-Szymczak
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection-National Research Institute, Warsaw, Poland.
| | - Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Lublin, Poland
| | - Agata Stobnicka-Kupiec
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection-National Research Institute, Warsaw, Poland
| | - Rafał L Górny
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection-National Research Institute, Warsaw, Poland
| |
Collapse
|
11
|
Freitas MS, Bitencourt TA, Rezende CP, Martins NS, Dourado TDMH, Tirapelli CR, Almeida F. Aspergillus fumigatus Extracellular Vesicles Display Increased Galleria mellonella Survival but Partial Pro-Inflammatory Response by Macrophages. J Fungi (Basel) 2023; 9:jof9050541. [PMID: 37233252 DOI: 10.3390/jof9050541] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Fungal extracellular vesicles (EVs) mediate intra- and interspecies communication and are critical in host-fungus interaction, modulating inflammation and immune responses. In this study, we evaluated the in vitro pro- and anti-inflammatory properties of Aspergillus fumigatus EVs over innate leukocytes. A. fumigatus EVs induced a partial proinflammatory response by macrophages, characterized by increased tumor necrosis factor-alpha production, and increased gene expression of induced nitric oxide synthase and adhesion molecules. EVs induce neither NETosis in human neutrophils nor cytokine secretion by peripheral mononuclear cells. However, prior inoculation of A. fumigatus EVs in Galleria mellonella larvae resulted in increased survival after the fungal challenge. Taken together, these findings show that A. fumigatus EVs play a role in protection against fungal infection, although they induce a partial pro-inflammatory response.
Collapse
Affiliation(s)
- Mateus Silveira Freitas
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Tamires Aparecida Bitencourt
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Caroline Patini Rezende
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Nubia Sabrina Martins
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | | | - Carlos R Tirapelli
- Laboratory of Pharmacology, Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-902, SP, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| |
Collapse
|
12
|
Fungal Zinc Homeostasis and Its Potential as an Antifungal Target: A Focus on the Human Pathogen Aspergillus fumigatus. Microorganisms 2022; 10:microorganisms10122469. [PMID: 36557722 PMCID: PMC9785309 DOI: 10.3390/microorganisms10122469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic airborne fungus that causes severe invasive aspergillosis in immunocompromised patients. Zinc is an essential micronutrient for the growth of A. fumigatus and even for all microorganisms. An increasing number of studies have reported that fungal zinc acquisition ability plays a key role in fungal survival in hosts with an extremely zinc-limited microenvironment. The ability to fight scarcity and excess of zinc are tightly related to fungal virulence and may be used as new potential targets. Because the regulation of zinc homeostasis is important, a thorough understanding of the functional genes involved in the regulatory network for zinc homeostasis is required for fungal pathogens. The current mini-review summarized potential zinc homeostasis regulators in A. fumigatus and classified these regulators according to localization and function, which were identified or predicted based on A. fumigatus or deduced from homologs in model yeasts. Future perspectives for zinc homeostasis regulators as potential antifungal targets to treat invasive aspergillosis are also discussed.
Collapse
|
13
|
Castro-Fuentes CA, Reyes-Montes MDR, Frías-De-León MG, Valencia-Ledezma OE, Acosta-Altamirano G, Duarte-Escalante E. Aspergillus-SARS-CoV-2 Coinfection: What Is Known? Pathogens 2022; 11:1227. [PMID: 36364979 PMCID: PMC9694759 DOI: 10.3390/pathogens11111227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) has had a high incidence. In addition, it has been associated with prolonged hospital stays, as well as several predisposing risk factors, such as fungal factors (nosocomial organism, the size of the conidia, and the ability of the Aspergillus spp. of colonizing the respiratory tract), environmental factors (remodeling in hospitals, use of air conditioning and negative pressure in intensive care units), comorbidities, and immunosuppressive therapies. In addition to these factors, SARS-CoV-2 per se is associated with significant dysfunction of the patient's immune system, involving both innate and acquired immunity, with reduced CD4+ and CD8+ T cell counts and cytokine storm. Therefore, this review aims to identify the factors influencing the fungus so that coinfection with SARS-CoV-2 can occur. In addition, we analyze the predisposing factors in the fungus, host, and the immune response alteration due to the pathogenicity of SARS-CoV-2 that causes the development of CAPA.
Collapse
Affiliation(s)
- Carlos Alberto Castro-Fuentes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - María del Rocío Reyes-Montes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - María Guadalupe Frías-De-León
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Omar E. Valencia-Ledezma
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Gustavo Acosta-Altamirano
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Esperanza Duarte-Escalante
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
14
|
Challenges in Serologic Diagnostics of Neglected Human Systemic Mycoses: An Overview on Characterization of New Targets. Pathogens 2022; 11:pathogens11050569. [PMID: 35631090 PMCID: PMC9143782 DOI: 10.3390/pathogens11050569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic mycoses have been viewed as neglected diseases and they are responsible for deaths and disabilities around the world. Rapid, low-cost, simple, highly-specific and sensitive diagnostic tests are critical components of patient care, disease control and active surveillance. However, the diagnosis of fungal infections represents a great challenge because of the decline in the expertise needed for identifying fungi, and a reduced number of instruments and assays specific to fungal identification. Unfortunately, time of diagnosis is one of the most important risk factors for mortality rates from many of the systemic mycoses. In addition, phenotypic and biochemical identification methods are often time-consuming, which has created an increasing demand for new methods of fungal identification. In this review, we discuss the current context of the diagnosis of the main systemic mycoses and propose alternative approaches for the identification of new targets for fungal pathogens, which can help in the development of new diagnostic tests.
Collapse
|
15
|
Ability of Essential Oil Vapours to Reduce Numbers of Culturable Aerosolised Coronavirus, Bacteria and Fungi. Antibiotics (Basel) 2022; 11:antibiotics11030393. [PMID: 35326856 PMCID: PMC8944824 DOI: 10.3390/antibiotics11030393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Transmission of pathogens present in the indoor air can occur through aerosols. This study evaluated the efficacy of an evaporated mix of essential oils to reduce the numbers of culturable aerosolized coronavirus, bacterium and fungus. The essential oil-containing gel was allowed to vaporize inside a glass chamber for 10 or 20 min. Aerosols of a surrogate of SARS-CoV-2, murine hepatitis coronavirus MHV-1, Escherichia coli or Aspergillus flavus spores were produced using a collision nebuliser and passed through the essential oil vapours, then collected on a six-stage Andersen sampler. The six-stages of the impact sampler capture aerosols in sizes ranging from 7 to 0.65 µm. The number of culturable microbes present in the aerosols collected in the different stages were enumerated and compared to the number of culturable microbes in control microbial aerosols that were not exposed to the evaporated essential oils. After 10 and 20 min evaporation, the essential oils reduced the numbers of culturable aerosolized coronavirus by 48% (log10 reduction = 0.3; p = 0.002 vs. control) and 53% (log10 reduction = 0.3; p = 0.001 vs. control), respectively. The essential oils vaporised for 10 min, reduced the number of viable E. coli by 51% (log10 reduction = 0.3; p = 0.032 vs. control). The Aspergillus flavus spores were mostly observed in the larger aerosols (7.00 µm to 2.10 µm) and the essential oils vaporised for 10 min reduced the number of viable spores by 72% (log10 reduction = 0.6; p = 0.008 vs. control). The vapours produced by a gel containing naturally occurring essential oils were able to significantly reduce the viable numbers of aerosolized coronavirus, bacteria and fungal spores. The antimicrobial gel containing the essential oils may be able to reduce aerosol transmission of microbes when used in domestic and workplace settings.
Collapse
|
16
|
Ortiz SC, Pennington K, Thomson DD, Bertuzzi M. Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host-Pathogen Interactions during Infection. J Fungi (Basel) 2022; 8:264. [PMID: 35330266 PMCID: PMC8954776 DOI: 10.3390/jof8030264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate overall; however, this mortality rate increases substantially if the infection is caused by azole-resistant strains or diagnosis is delayed or missed. Increasing resistance to existing antifungal treatments is becoming a major concern; for example, resistance to azoles (the first-line available oral drug against Aspergillus species) has risen by 40% since 2006. Despite high morbidity and mortality, the lack of an in-depth understanding of A. fumigatus pathogenesis and host response has hampered the development of novel therapeutic strategies for the clinical management of fungal infections. Recent advances in sample preparation, infection models and imaging techniques applied in vivo have addressed important gaps in fungal research, whilst questioning existing paradigms. This review highlights the successes and further potential of these recent technologies in understanding the host-pathogen interactions that lead to aspergillosis.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Katie Pennington
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Darren D. Thomson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK;
| | - Margherita Bertuzzi
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| |
Collapse
|
17
|
Ouyang H, Zhang Y, Zhou H, Ma Y, Li R, Yang J, Wang X, Jin C. Deficiency of GPI Glycan Modification by Ethanolamine Phosphate Results in Increased Adhesion and Immune Resistance of Aspergillus fumigatus. Front Cell Infect Microbiol 2021; 11:780959. [PMID: 34956933 PMCID: PMC8695850 DOI: 10.3389/fcimb.2021.780959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins play important roles in maintaining the function of the cell wall and participating in pathogenic processes. The addition and removal of phosphoethanolamine (EtN-P) on the second mannose residue in the GPI anchor are vital for maturation and sorting of GPI-anchored proteins. Previously, we have shown that deletion of the gpi7, the gene that encodes an EtN-P transferase responsible for the addition of EtN-P to the second mannose residue of the GPI anchor, leads to the mislocalization of GPI-anchored proteins, abnormal polarity, reduced conidiation, and fast germination in Aspergillus fumigatus. In this report, the adherence and virulence of the A. fumigatus gpi7 deletion mutant were further investigated. The germinating conidia of the mutant exhibited an increased adhesion and a higher exposure of cell wall polysaccharides. Although the virulence was not affected, an increased adherence and a stronger inflammation response of the mutant were documented in an immunocompromised mouse model. An in vitro assay confirmed that the Δgpi7 mutant induced a stronger immune response and was more resistant to killing. Our findings, for the first time, demonstrate that in A. fumigatus, GPI anchoring is required for proper organization of the conidial cell wall. The lack of Gpi7 leads to fast germination, stronger immune response, and resistance to macrophage killing.
Collapse
Affiliation(s)
- Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yi Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yubo Ma
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University First Hospital, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Lian X, Chambers S, Lewis JG, Scott-Thomas A, Bhatia M. Two Monoclonal Antibodies That Specifically Recognize Aspergillus Cell Wall Antigens and Can Detect Circulating Antigens in Infected Mice. Int J Mol Sci 2021; 23:252. [PMID: 35008678 PMCID: PMC8745570 DOI: 10.3390/ijms23010252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/25/2023] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening disease mainly caused by Aspergillus fumigatus and Aspergillus flavus. Early diagnosis of this condition is crucial for patient treatment and survival. As current diagnostic techniques for IA lack sufficient accuracy, we have raised two monoclonal antibodies (1D2 and 4E4) against A. fumigatus cell wall fragments that may provide a platform for a new diagnostic approach. The immunoreactivity of these antibodies was tested by immunofluorescence and ELISA against various Aspergillus and Candida species in vitro and by immunohistochemistry in A. fumigatus infected mouse tissues. Both monoclonal antibodies (mAbs) showed intensive fluorescence with the hyphae wall of A. fumigatus and A. flavus, but there was no staining with other Aspergillus species or Candida species. Both mAbs also showed strong immunoreactivity to the cell wall of A. fumigatus hyphae in the infected liver, spleen and kidney of mice with IA. The antigens identified by 1D2 and 4E4 might be glycoproteins and the epitopes are most likely a protein or peptide rather than a carbohydrate. An antibody-based antigen capture ELISA detected the extracellular antigens released by A. fumigatus, A. flavus, A. niger and A. terreus, but not in Candida species. The antigen could be detected in the plasma of mice after 48 h of infection by double-sandwich ELISA. In conclusion, both 1D2 and 4E4 mAbs are potentially promising diagnostic tools to investigate invasive aspergillosis.
Collapse
Affiliation(s)
- Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (X.L.); (S.C.); (J.G.L.); (A.S.-T.)
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (X.L.); (S.C.); (J.G.L.); (A.S.-T.)
| | - John G. Lewis
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (X.L.); (S.C.); (J.G.L.); (A.S.-T.)
- Canterbury Health Laboratories, Christchurch 8011, New Zealand
| | - Amy Scott-Thomas
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (X.L.); (S.C.); (J.G.L.); (A.S.-T.)
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (X.L.); (S.C.); (J.G.L.); (A.S.-T.)
| |
Collapse
|
19
|
Aspergillus sp. A31 and Curvularia geniculata P1 mitigate mercury toxicity to Oryza sativa L. Arch Microbiol 2021; 203:5345-5361. [PMID: 34387704 DOI: 10.1007/s00203-021-02481-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Aspergillus sp. A31 and Curvularia geniculata P1 are endophytes that colonize the roots of Aeschynomene fluminensis Vell. and Polygonum acuminatum Kunth. in humid environments contaminated with mercury. The two strains mitigated mercury toxicity and promoted Oryza sativa L growth. C. geniculata P1 stood out for increasing the host biomass by fourfold and reducing the negative effects of the metal on photosynthesis. Assembling and annotation of Aspergillus sp. A31 and C. geniculata P1 genomes resulted in 28.60 Mb (CG% 53.1; 10,312 coding DNA sequences) and 32.92 Mb (CG% 50.72; 8,692 coding DNA sequences), respectively. Twelve and 27 genomes of Curvularia/Bipolaris and Aspergillus were selected for phylogenomic analyzes, respectively. Phylogenetic analysis inferred the separation of species from the genus Curvularia and Bipolaris into different clades, and the separation of species from the genus Aspergillus into three clades; the species were distinguished by occupied niche. The genomes had essential gene clusters for the adaptation of microorganisms to high metal concentrations, such as proteins of the phytoquelatin-metal complex (GO: 0090423), metal ion binders (GO: 0046872), ABC transporters (GO: 0042626), ATPase transporters (GO: 0016887), and genes related to response to reactive oxygen species (GO: 0000302) and oxidative stress (GO: 0006979). The results reported here help to understand the unique regulatory mechanisms of mercury tolerance and plant development.
Collapse
|
20
|
Schruefer S, Spadinger A, Kleinemeier C, Schmid L, Ebel F. Ypd1 Is an Essential Protein of the Major Fungal Pathogen Aspergillus fumigatus and a Key Element in the Phosphorelay That Is Targeted by the Antifungal Drug Fludioxonil. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:756990. [PMID: 37744118 PMCID: PMC10512271 DOI: 10.3389/ffunb.2021.756990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 09/26/2023]
Abstract
Aspergillus fumigatus is a major fungal pathogen causing life threatening infections in immunocompromised humans and certain animals. The HOG pathway is for two reasons interesting in this context: firstly, it is a stress signaling pathway that contributes to the ability of this pathogen to adapt to various stress conditions and secondly, it is the target of antifungal agents, such as fludioxonil or pyrrolnitrin. In this study, we demonstrate that Ypd1 is an essential protein in A. fumigatus. As the central component of the multistep phosphorelay it represents the functional link between the sensor histidine kinases and the downstream response regulators SskA and Skn7. A GFP-Ypd1 fusion was found to reside in both, the cytoplasm and the nucleus and this pattern was only slightly affected by fludioxonil. A strain in which the ypd1 gene is expressed from a tet-on promoter construct is unable to grow under non-inducing conditions and shows the characteristic features of A. fumigatus wild type hyphae treated with fludioxonil. Expression of wild type Ypd1 prevents this lethal phenotype, but expression of an Ypd1 mutant protein lacking the conserved histidine at position 89 was unable to do so, which confirms that A. fumigatus Ypd1 is a phosphotransfer protein. Generation of ypd1tet-on variants of several mutant strains revealed that the lethal phenotype associated with low amounts of Ypd1 depends on SskA, but not on TcsC or Skn7. The ΔsskA ypd1tet-on, but not the ΔsskAΔskn7 ypd1tet-on mutant, was sensitive to fludioxonil, which underlines the importance of Skn7 in this context. We finally succeeded to delete ypd1, but only if sskA and skn7 were both inactivated, not in a ΔsskA single mutant. Hence, a deletion of ypd1 and an inactivation of Ypd1 by fludioxonil result in similar phenotypes and the two response regulators SskA and Skn7 are involved in both processes albeit with a different relative importance.
Collapse
Affiliation(s)
| | | | | | | | - Frank Ebel
- Department of Veterinary Sciences, Institute for Infectious Diseases and Zoonoses, Chair for Bacteriology and Mycology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
21
|
Yasir M, Zeshan B, Daud NHA, Shahid I, Khalid H. Characterization of bacteriocin and chitinase producing bacterial isolates with broad-spectrum antimicrobial activities. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Abstract
There is a need for more efficient and eco-friendly approaches to overcome increasing microbial infections. Bacteriocins and chitinases from Bacillus spp. can be powerful alternatives to conventional antibiotics and antifungal drugs, respectively. The purpose of this study was to assess the inhibitory potential of bacteriocins and chitinase enzymes against multiple resistant bacterial and fungal pathogens. Bacterial isolates were selected by growth on minimal salts medium and after that were morphologically and biochemically characterized. The physiochemical characterization of bacteriocins was carried out. The inhibitory potential of bacteriocins towards six pathogenic bacteria was determined by the well diffusion assay while chitinase activity towards three fungal strains was determined by the dual plate culture assay. Two bacterial strains (WW2P1 and WRE4P2), out of nine showed inhibition of K. pneumonia, P. aeruginosa, E. coli and MRSA while WW4P2 was positive against S. typhimurium and E. coli and WRE10P2 against P. aeruginosa, S. pneumoniae. Two bacterial isolates (WW3P1 and WRE10P2) were chosen for further study on the basis of their antifungal activities. Of these, WW3P1 isolate was more effective against A. fumigatus as well as A. niger. The proteinaceous nature of the bacteriocins was confirmed by treatment of the crude extract with proteinase K. It was found that the inhibitory activity of strain WW3P1 against E. coli was highest at 20 °C, and against S. pneumoniae it was at 20 °C and pH 10 after treatment with EDTA. Inhibition by strain the WRE10P2 against P. aeruginosa was highest at 20 °C and pH 14. It was found that EDTA increased the inhibitory activity of strain WW2P1 against P. aeruginosa, K. pneumoniae and E. coli by 2 ± 0.235, 3.5 ± 0.288, 2.5 ± 1.040 times, respectively, of strain WRE4P2 against P. aeruginosa and E. coli by 2.5 ± 0.763, 2.7 ± 0.5 times, respectively, and of strain WRE10P2 against S. pneumoniae by 3 ± 0.6236 times. The isolates have promising inhibitory activity, which should be further analyzed for the commercial production of antimicrobials.
Article highlights
The current study aimed to isolate the microbiome from wheat plant (Triticum aestivum L.), to screen for bacteriocin production and to assess its antimicrobial activity against human pathogens.
Forty-one phenotypically different bacterial colonies were subjected to bacteriocin purification from which 25 colonies showed positive reactions.
These 25 bacterial isolates were screened against six different human bacterial pathogens using the well diffusion method to check the antimicrobial activity.
Out of nine bacterial isolates, WW3P1 and WRE10P2 were able to degrade the chitin and utilize it as their sole energy source. Strain WRE4P2 exhibited partial inactivation in its activity against MRSA after treatment with proteinase K.
Collapse
|
22
|
Jaggi TK, Ter SK, Mac Aogáin M, Chotirmall SH. Aspergillus-Associated Endophenotypes in Bronchiectasis. Semin Respir Crit Care Med 2021; 42:556-566. [PMID: 34261180 DOI: 10.1055/s-0041-1730947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bronchiectasis is a chronic condition of global relevance resulting in permanent and irreversible structural airway damage. Bacterial infection in bronchiectasis is well studied; however, recent molecular studies identify fungi as important pathogens, either independently or in association with bacteria. Aspergillus species are established fungal pathogens in cystic fibrosis and their role is now increasingly being recognized in noncystic fibrosis bronchiectasis. While the healthy airway is constantly exposed to ubiquitously present Aspergillus conidia in the environment, anatomically damaged airways appear more prone to colonization and subsequent infection by this fungal group. Aspergilli possess diverse immunopathological mechanistic capabilities and when coupled with innate immune defects in a susceptible host, such as that observed in bronchiectasis, it may promote a range of clinical manifestations including sensitization, allergic bronchopulmonary aspergillosis, Aspergillus bronchitis, and/or invasive aspergillosis. How such clinical states influence "endophenotypes" in bronchiectasis is therefore of importance, as each Aspergillus-associated disease state has overlapping features with bronchiectasis itself, and can evolve, depending on underlying host immunity from one type into another. Concurrent Aspergillus infection complicates the clinical course and exacerbations in bronchiectasis and therefore dedicated research to better understand the Aspergillus-host interaction in the bronchiectasis airway is now warranted.
Collapse
Affiliation(s)
- Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Soo Kai Ter
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland.,Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
23
|
Nitrogen, Iron and Zinc Acquisition: Key Nutrients to Aspergillus fumigatus Virulence. J Fungi (Basel) 2021; 7:jof7070518. [PMID: 34203370 PMCID: PMC8303583 DOI: 10.3390/jof7070518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/31/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous soil decomposer and an opportunistic pathogen that is characterized by its large metabolic machinery for acquiring nutrients from media. Lately, an ever-increasing number of genes involved in fungal nutrition has been associated with its virulence. Of these, nitrogen, iron, and zinc metabolism-related genes are particularly noteworthy, since 78% of them have a direct implication in virulence. In this review, we describe the sensing, uptake and regulation process of the acquisition of these nutrients, the connections between pathways and the virulence-implicated genes. Nevertheless, only 40% of the genes mentioned in this review have been assayed for roles in virulence, leaving a wide field of knowledge that remains uncertain and might offer new therapeutic and diagnostic targets.
Collapse
|
24
|
Tits J, Cammue BPA, Thevissen K. Combination Therapy to Treat Fungal Biofilm-Based Infections. Int J Mol Sci 2020; 21:ijms21228873. [PMID: 33238622 PMCID: PMC7700406 DOI: 10.3390/ijms21228873] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people is affected by fungal biofilm-based infections, which are resistant to the majority of currently-used antifungal drugs. Such infections are often caused by species from the genera Candida, Aspergillus or Cryptococcus. Only a few antifungal drugs, including echinocandins and liposomal formulations of amphotericin B, are available to treat such biofilm-based fungal infections. This review discusses combination therapy as a novel antibiofilm strategy. More specifically, in vitro methods to discover new antibiofilm combinations will be discussed. Furthermore, an overview of the main modes of action of promising antibiofilm combination treatments will be provided as this knowledge may facilitate the optimization of existing antibiofilm combinations or the development of new ones with a similar mode of action.
Collapse
|
25
|
Cai F, Gao R, Zhao Z, Ding M, Jiang S, Yagtu C, Zhu H, Zhang J, Ebner T, Mayrhofer-Reinhartshuber M, Kainz P, Chenthamara K, Akcapinar GB, Shen Q, Druzhinina IS. Evolutionary compromises in fungal fitness: hydrophobins can hinder the adverse dispersal of conidiospores and challenge their survival. THE ISME JOURNAL 2020; 14:2610-2624. [PMID: 32632264 PMCID: PMC7490268 DOI: 10.1038/s41396-020-0709-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Fungal evolutionary biology is impeded by the scarcity of fossils, irregular life cycles, immortality, and frequent asexual reproduction. Simple and diminutive bodies of fungi develop inside a substrate and have exceptional metabolic and ecological plasticity, which hinders species delimitation. However, the unique fungal traits can shed light on evolutionary forces that shape the environmental adaptations of these taxa. Higher filamentous fungi that disperse through aerial spores produce amphiphilic and highly surface-active proteins called hydrophobins (HFBs), which coat spores and mediate environmental interactions. We exploited a library of HFB-deficient mutants for two cryptic species of mycoparasitic and saprotrophic fungi from the genus Trichoderma (Hypocreales) and estimated fungal development, reproductive potential, and stress resistance. HFB4 and HFB10 were found to be relevant for Trichoderma fitness because they could impact the spore-mediated dispersal processes and control other fitness traits. An analysis in silico revealed purifying selection for all cases except for HFB4 from T. harzianum, which evolved under strong positive selection pressure. Interestingly, the deletion of the hfb4 gene in T. harzianum considerably increased its fitness-related traits. Conversely, the deletion of hfb4 in T. guizhouense led to the characteristic phenotypes associated with relatively low fitness. The net contribution of the hfb4 gene to fitness was found to result from evolutionary tradeoffs between individual traits. Our analysis of HFB-dependent fitness traits has provided an evolutionary snapshot of the selective pressures and speciation process in closely related fungal species.
Collapse
Affiliation(s)
- Feng Cai
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Renwei Gao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zheng Zhao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Mingyue Ding
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Siqi Jiang
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Civan Yagtu
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Hong Zhu
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Jian Zhang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | | | | | | | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Günseli Bayram Akcapinar
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Irina S Druzhinina
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China.
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China.
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria.
| |
Collapse
|
26
|
Frawley D, Bayram Ö. The pheromone response module, a mitogen-activated protein kinase pathway implicated in the regulation of fungal development, secondary metabolism and pathogenicity. Fungal Genet Biol 2020; 144:103469. [PMID: 32950720 DOI: 10.1016/j.fgb.2020.103469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are highly conserved from yeast to human and are required for the regulation of a multitude of biological processes in eukaryotes. A pentameric MAPK pathway known as the Fus3 pheromone module was initially characterised in Saccharomyces cerevisiae and was shown to regulate cell fusion and sexual development. Individual orthologous pheromone module genes have since been found to be highly conserved in fungal genomes and have been shown to regulate a diverse array of cellular responses, such as cell growth, asexual and sexual development, secondary metabolite production and pathogenicity. However, information regarding the assembly and structure of orthologous pheromone modules, as well as the mechanisms of signalling and their biological significance is limited, specifically in filamentous fungal species. Recent studies have provided insight on the utilization of the pheromone module as a central signalling hub for the co-ordinated regulation of fungal development and secondary metabolite production. Various proteins of this pathway are also known to regulate reproduction and virulence in a range of plant pathogenic fungi. In this review, we discuss recent findings that help elucidate the structure of the pheromone module pathway in a myriad of fungal species and its implications in the control of fungal growth, development, secondary metabolism and pathogenicity.
Collapse
Affiliation(s)
- Dean Frawley
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Özgür Bayram
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
27
|
Gayathri L, Akbarsha MA, Ruckmani K. In vitro study on aspects of molecular mechanisms underlying invasive aspergillosis caused by gliotoxin and fumagillin, alone and in combination. Sci Rep 2020; 10:14473. [PMID: 32879392 PMCID: PMC7467938 DOI: 10.1038/s41598-020-71367-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Gliotoxin (GT) and fumagillin (FUM) are mycotoxins most abundantly produced by Aspergillus fumigatus during the early stages of infection to cause invasive aspergillosis (IA). Therefore, we hypothesized that GT and FUM could be the possible source of virulence factors, which we put to test adopting in vitro monoculture and the novel integrated multiple organ co-culture (IdMOC) of A549 and L132 cell. We found that (i) GT is more cytotoxic to lung epithelial cells than FUM, and (ii) GT and FUM act synergistically to inflict pathology to the lung epithelial cell. Reactive oxygen species (ROS) is the master regulator of the cytotoxicity of GT, FUM and GT + FUM. ROS may be produced as a sequel to mitochondrial damage and, thus, mitochondria are both the source of ROS and the target to ROS. GT-, FUM- and GT + FUM-induced DNA damage is mediated either by ROS-dependent mechanism or directly by the fungal toxins. In addition, GT, FUM and GT + FUM may induce protein accumulation. Further, it is speculated that GT and FUM inflict epithelial damage by neutrophil-mediated inflammation. With respect to multiple organ cytotoxicity, GT was found to be cytotoxic at IC50 concentration in the following order: renal epithelial cells < type II epithelial cells < hepatocytes < normal lung epithelial cells. Taken together, GT and FUM alone and in combination contribute to exacerbate the damage of lung epithelial cells and, thus, are involved in the progression of IA.
Collapse
Affiliation(s)
- Loganathan Gayathri
- Department of Pharmaceutical Technology, University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India
- Centre for Excellence in Nanobio Translational Research (Autonomous), University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchchirappalli, Tamil Nadu, 620002, India
| | - Mohammad A Akbarsha
- National College (Autonomous), Tiruchchirappalli, Tamil Nadu, 620001, India
- Mahatma Gandhi-Doerenkamp Centre for Alternatives, Bharathidasan University, Tiruchchirappalli, Tamil Nadu, 620 024, India
| | - Kandasamy Ruckmani
- Department of Pharmaceutical Technology, University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India.
- Centre for Excellence in Nanobio Translational Research (Autonomous), University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
28
|
Seidel C, Moreno-Velásquez SD, Ben-Ghazzi N, Gago S, Read ND, Bowyer P. Phagolysosomal Survival Enables Non-lytic Hyphal Escape and Ramification Through Lung Epithelium During Aspergillus fumigatus Infection. Front Microbiol 2020; 11:1955. [PMID: 32973709 PMCID: PMC7468521 DOI: 10.3389/fmicb.2020.01955] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Aspergillus fumigatus is the most important mould pathogen in immunosuppressed patients. Suboptimal clearance of inhaled spores results in the colonisation of the lung airways by invasive hyphae. The first point of contact between A. fumigatus and the host is the lung epithelium. In vitro and ex vivo studies have characterised critical aspects of the interaction of invasive hyphae on the surface of epithelial cells. However, the cellular interplay between internalised A. fumigatus and the lung epithelium remains largely unexplored. Here, we use high-resolution live-cell confocal microscopy, 3D rendered imaging and transmission electron microscopy to define the development of A. fumigatus after lung epithelium internalisation in vitro. Germination, morphology and growth of A. fumigatus were significantly impaired upon internalisation by alveolar (A549) and bronchial (16HBE) lung epithelial cells compared to those growing on the host surface. Internalised spores and germlings were surrounded by the host phagolysosome membrane. Sixty per cent of the phagosomes containing germlings were not acidified at 24 h post infection allowing hyphal development. During escape, the phagolysosomal membrane was not ruptured but likely fused to host plasma membrane allowing hyphal exit from the intact host cell in an non-lytic Manner. Subsequently, escaping hyphae elongated between or through adjacent epithelial lung cells without penetration of the host cytoplasm. Hyphal tips penetrating new epithelial cells were surrounded by the recipient cell plasma membrane. Altogether, our results suggest cells of lung epithelium survive fungal penetration because the phagolysosomal and plasma membranes are never breached and that conversely, fungal spores survive due to phagosome maturation failure. Consequently, fungal hyphae can grow through the epithelial cell layer without directly damaging the host. These processes likely prevent the activation of downstream immune responses alongside limiting the access of professional phagocytes to the invading fungal hypha. Further research is needed to investigate if these events also occur during penetration of fungi in endothelial cells, fibroblasts and other cell types.
Collapse
Affiliation(s)
- Constanze Seidel
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Sergio D Moreno-Velásquez
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Nagwa Ben-Ghazzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Nick D Read
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Manchester, United Kingdom
| |
Collapse
|
29
|
Bulpa P, Duplaquet F, Dimopoulos G, Vogelaers D, Blot S. Invasive Pulmonary Aspergillosis in Chronic Obstructive Pulmonary Disease Exacerbations. Semin Respir Crit Care Med 2020; 41:851-861. [PMID: 32599634 DOI: 10.1055/s-0040-1702210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nowadays, reports in the literature support that patients with severe chronic obstructive pulmonary disease (COPD) are at higher risk to develop invasive pulmonary aspergillosis (IPA). However, the interpretation of Aspergillus-positive cultures from the airways in critically ill COPD is still a challenge. Indeed, as the patient could be merely colonized, tissue samples are required to ascertain IPA diagnosis but they are rarely obtained before death. Consequently, diagnosis is often only suspected on the basis of a combination of three elements: clinical characteristics, radiological images (mostly thoracic CT scan), and microbiological, and occasionally serological, results. To facilitate the analysis of these data, several algorithms have been developed, and the best effectiveness has been demonstrated by the Clinical algorithm. This is of importance as IPA prognosis in these patients remains presently very poor and using such an algorithm could promote prompter diagnosis, early initiation of treatment, and subsequently improved outcome.While the most classical presentation of IPA in critically ill COPD patients features a combination of obstructive respiratory failure, antibiotic-resistant pneumonia, recent or chronic corticosteroid therapy, and positive Aspergillus cultures from the lower respiratory tract, the present article will also address less typical presentations and discuss the most appropriate treatments which could alter prognosis.
Collapse
Affiliation(s)
- Pierre Bulpa
- Department of Intensive Care Unit, Mont-Godinne University Hospital, CHU UCL Namur, Namur, Belgium
| | - Fabrice Duplaquet
- Department of Pneumology, Mont-Godinne University Hospital, CHU UCL Namur, Namur, Belgium
| | - George Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, Haidari, Greece
| | - Dirk Vogelaers
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Frawley D, Stroe MC, Oakley BR, Heinekamp T, Straßburger M, Fleming AB, Brakhage AA, Bayram Ö. The Pheromone Module SteC-MkkB-MpkB-SteD-HamE Regulates Development, Stress Responses and Secondary Metabolism in Aspergillus fumigatus. Front Microbiol 2020; 11:811. [PMID: 32457716 PMCID: PMC7223695 DOI: 10.3389/fmicb.2020.00811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
In order for eukaryotes to efficiently detect and respond to environmental stimuli, a myriad of protein signaling pathways are utilized. An example of highly conserved signaling pathways in eukaryotes are the mitogen-activated protein kinase (MAPK) pathways. In fungi, MAPK pathways have been shown to regulate a diverse array of biological processes, such as asexual and sexual development, stress responses and the production of secondary metabolites (SMs). In the model fungus Aspergillus nidulans, a MAPK pathway known as the pheromone module is utilized to regulate both development and SM production. This signaling cascade consists of the three kinases SteC, MkkB, and MpkB, as well as the SteD adaptor protein and the HamE scaffold. In this study, homologs of each of these proteins have been identified in the opportunistic human pathogen A. fumigatus. By performing epitope tagging and mass spectrometry experiments, we have shown that these proteins form a pentameric complex, similar to what is observed in A. nidulans. This complex has been shown to assemble in the cytoplasm and MpkB enters the nucleus, where it would presumably interact with various transcription factors. Pheromone module mutant strains exhibit drastic reductions in asexual sporulation, vegetative growth rate and production of SMs, such as gliotoxin. Mutants also display increased sensitivity to cell wall and oxidative stress agents. Overall, these data provide evidence of the existence of a conserved MAP kinase signaling pathway in Aspergillus species and suggest that this pathway is critical for the regulation of fungal development and secondary metabolism.
Collapse
Affiliation(s)
- Dean Frawley
- Department of Biology, Fungal Genetics and Secondary Metabolism Laboratory, Maynooth University, Maynooth, Ireland
| | - Maria C Stroe
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Maria Straßburger
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Alastair B Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Özgür Bayram
- Department of Biology, Fungal Genetics and Secondary Metabolism Laboratory, Maynooth University, Maynooth, Ireland
| |
Collapse
|
31
|
Kang Y, Yu Y, Lu L. The Role of Pentraxin 3 in Aspergillosis: Reality and Prospects. MYCOBIOLOGY 2020; 48:1-8. [PMID: 32158600 PMCID: PMC7048186 DOI: 10.1080/12298093.2020.1722576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Pentraxin 3 (PTX3) is a soluble pattern recognition receptor (PRR), which is produced by several kinds of cells, such as neutrophils, dendritic cells, macrophages, and epithelial cells. PTX3 is known to play an important protective effect against Aspergillus. Genetic linkage in gene-targeted mice and human PTX3 plays a non-redundant role in the immune protection against specific pathogens, especially Aspergillus. Recent studies have shown that the polymorphism of PTX3 is associated with increased susceptibility to invasive aspergillosis (IA). In this review, we provide an overview of these studies that underline the potential of PTX3 in diagnosis and therapy of IA.
Collapse
Affiliation(s)
- Yuening Kang
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuetian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Deshmukh H, Rambach G, Sheppard DC, Lee M, Hagleitner M, Hermann M, Würzner R, Lass-Flörl C, Speth C. Galactosaminogalactan secreted from Aspergillus fumigatus and Aspergillus flavus induces platelet activation. Microbes Infect 2020; 22:331-339. [PMID: 31962135 DOI: 10.1016/j.micinf.2019.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/09/2023]
Abstract
Platelets are meanwhile recognized as versatile elements within the immune system and appear to play a key role in the innate immune response to pathogens including fungi. Previous experiments revealed platelet activation by direct contact with the hyphal-associated polysaccharide galactosaminogalactan (GAG). Since secreted fungal products may also be relevant and trigger immune reactions or thrombosis, we screened culture supernatants (SN) of human-pathogenic fungi for their capacity to activate platelets. For that purpose, platelets were incubated with SN from various fungal species; platelet activation and GAG deposition on the surface of platelets were detected by flow cytometry and electron and confocal microscopy, Culture supernatants of Aspergillus fumigatus and flavus isolates were potent platelet stimulators in a dose- and time-dependent manner, while SN of other Aspergillus species and all tested mucormycete species did not significantly induce platelet activation. The capacity of culture SN to activate platelets was dependent on fungal production of GAG and deposition of secreted GAG on the platelet surface; supernatants from mucormycetes or mutants of A. fumigatus lacking GAG secretion did not affect platelet activity. These results suggest that invading fungi can stimulate platelets not only locally through direct interactions with fungal hyphae, but can also act over a certain distance through secreted GAG.
Collapse
Affiliation(s)
- Hemalata Deshmukh
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University, Montréal, H3A 0G4, Canada
| | - Mark Lee
- Department of Microbiology and Immunology, McGill University, Montréal, H3A 0G4, Canada
| | - Magdalena Hagleitner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, 6020, Innsbruck, Austria
| | - Reinhard Würzner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
33
|
Viegas C, Fleming GTA, Kadir A, Almeida B, Caetano LA, Quintal Gomes A, Twarużek M, Kosicki R, Viegas S, Coggins AM. Occupational Exposures to Organic Dust in Irish Bakeries and a Pizzeria Restaurant. Microorganisms 2020; 8:E118. [PMID: 31952269 PMCID: PMC7022993 DOI: 10.3390/microorganisms8010118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 11/16/2022] Open
Abstract
For decades, occupational exposure to flour dust has been linked to a range of respiratory diseases, including occupational asthma, thought to result from exposure to fungi present in the flour. Antifungal resistance is of increasing prevalence in clinical settings, and the role of occupational and environmental exposures, particularly for specific fungal species, is of concern. Occupational exposure to flour dust can occur in a range of occupational settings, however, few studies have focused on restaurant workers. The objective of this study was to measure occupational exposure to flour and microbial contamination, including azole resistance screening, in two small commercial bakeries and in a pizzeria. Personal full shift inhalable dust measurements were collected from workers, and were analyzed for inhalable dust and fungi, bacteria, azole resistance, and mycotoxins. Samples of settled dust were collected, and electrostatic dust cloths (EDC) were deployed and analyzed for microbial contamination, including azole resistance screening, and mycotoxins. Geometric mean exposures of 6.5 mg m-³ were calculated for inhalable dust, however, exposures of up to 18.30 mg m-³ were measured-70% of personal exposure measurements exceeded the occupational exposure limit for flour dust of 1.0 mg m-³. The air and EDC fungal counts were similar to those reported in previous studies for similar occupational environments. The fungi were dominated by Penicillium genera, however Aspergillus genera, including Fumigati and Flavi sections, were observed using culture-based methods, and the Fumigati section was also observed by molecular tools. Both Aspergillus sections were identified on the azole resistance screening. Mycotoxins were also detected in the settled dust samples, dominated by deoxynivalenol (DON). The role of environmental exposure in both the development of antimicrobial resistance and the total mycotoxin body burden is a growing concern; therefore, the presence of azole-resistant fungi and mycotoxin contamination, although low in magnitude, is of concern and warrants further investigation.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.A.); (L.A.C.); (A.Q.G.)
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1150-090 Lisbon, Portugal
| | - Gerard T. A. Fleming
- School of Natural Sciences and Ryan Institute, National University of Ireland, H91 CF50 Galway, Ireland;
| | - Abdul Kadir
- School of Physics and Ryan Institute, National University of Ireland, H91 CF50 Galway, Ireland;
| | - Beatriz Almeida
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.A.); (L.A.C.); (A.Q.G.)
| | - Liliana Aranha Caetano
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.A.); (L.A.C.); (A.Q.G.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Anita Quintal Gomes
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.A.); (L.A.C.); (A.Q.G.)
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85–064 Bydgoszcz, Poland; (M.T.); (R.K.)
| | - Robert Kosicki
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85–064 Bydgoszcz, Poland; (M.T.); (R.K.)
| | - Susana Viegas
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (B.A.); (L.A.C.); (A.Q.G.)
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1150-090 Lisbon, Portugal
| | - Ann Marie Coggins
- School of Physics and Ryan Institute, National University of Ireland, H91 CF50 Galway, Ireland;
| |
Collapse
|
34
|
Campo J, Bass D, Keeling PJ. The eukaryome: Diversity and role of microeukaryotic organisms associated with animal hosts. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Javier Campo
- Marine Biology and Ecology Department Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| | - David Bass
- Department of Life Sciences The Natural History Museum London UK
- CEFAS Weymouth UK
| | | |
Collapse
|
35
|
Saini S, Poelmans J, Korf H, Dooley JL, Liang S, Manshian BB, Verbeke R, Soenen SJ, Vande Velde G, Lentacker I, Lagrou K, Liston A, Gysemans C, De Smedt SC, Himmelreich U. Longitudinal In Vivo Assessment of Host-Microbe Interactions in a Murine Model of Pulmonary Aspergillosis. iScience 2019; 20:184-194. [PMID: 31581067 PMCID: PMC6817634 DOI: 10.1016/j.isci.2019.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/24/2019] [Accepted: 09/13/2019] [Indexed: 01/01/2023] Open
Abstract
The fungus Aspergillus fumigatus is ubiquitous in nature and the most common cause of invasive pulmonary aspergillosis (IPA) in patients with a compromised immune system. The development of IPA in patients under immunosuppressive treatment or in patients with primary immunodeficiency demonstrates the importance of the host immune response in controlling aspergillosis. However, study of the host-microbe interaction has been hampered by the lack of tools for their non-invasive assessment. We developed a methodology to study the response of the host's immune system against IPA longitudinally in vivo by using fluorine-19 magnetic resonance imaging (19F MRI). We showed the advantage of a perfluorocarbon-based contrast agent for the in vivo labeling of macrophages and dendritic cells, permitting quantification of pulmonary inflammation in different murine IPA models. Our findings reveal the potential of 19F MRI for the assessment of rapid kinetics of innate immune response against IPA and the permissive niche generated through immunosuppression.
Collapse
Affiliation(s)
- Shweta Saini
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Jennifer Poelmans
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - James L Dooley
- Laboratory of Genetics of Autoimmunity (VIB-KU Leuven Center for Brain & Disease Research), Leuven, Belgium
| | - Sayuan Liang
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium; Philips Research China, Shanghai, China
| | - Bella B Manshian
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Ghent University, Belgium
| | - Stefaan J Soenen
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Ghent University, Belgium
| | - Katrien Lagrou
- Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Laboratory of Genetics of Autoimmunity (VIB-KU Leuven Center for Brain & Disease Research), Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | - Uwe Himmelreich
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium.
| |
Collapse
|
36
|
Puértolas-Balint F, Rossen JWA, Oliveira Dos Santos C, Chlebowicz MMA, Raangs EC, van Putten ML, Sola-Campoy PJ, Han L, Schmidt M, García-Cobos S. Revealing the Virulence Potential of Clinical and Environmental Aspergillus fumigatus Isolates Using Whole-Genome Sequencing. Front Microbiol 2019; 10:1970. [PMID: 31551947 PMCID: PMC6737835 DOI: 10.3389/fmicb.2019.01970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023] Open
Abstract
Aspergillus fumigatus is considered a common causative agent of human fungal infections. A restricted number of virulence factors have been described, and none of them lead to a differentiation in the virulence level among different strains. Variations in the virulence phenotype depending on the isolate origin, measured as survival percentage in animal infection models, have been previously reported. In this study, we analyzed the whole-genome sequence of A. fumigatus isolates from clinical and environmental origins to determine their virulence genetic content. The sample included four isolates sequenced at the University Medical Center Groningen (UMCG), three clinical (two of them isolated from the same patient) and the experimental strain B5233, and the draft genomes of one reference strain, two environmental and two clinical isolates obtained from a public database. The fungal genomes were screened for the presence of virulence-related genes (VRGs) using an in-house database of 244 genes related to thermotolerance, resistance to immune responses, cell wall formation, nutrient uptake, signaling and regulation, and production of toxins and secondary metabolites and allergens. In addition, we performed a variant calling analysis to compare the isolates sequenced at the UMCG and investigated their genetic relatedness using the TRESP (Tandem Repeats located within Exons of Surface Protein coding genes) genotyping method. We neither observed a difference in the virulence genetic content between the clinical isolates causing an invasive infection and a colonizing clinical isolate nor between isolates from the clinical and environmental origin. The four novel A. fumigatus sequences had a different TRESP genotype and a total number of genetic variants ranging from 48,590 to 68,352. In addition, a comparative genomics analysis showed the presence of single nucleotide polymorphisms in VRGs and repetitive genetic elements located next to VRG groups, which could influence the regulation of these genes. In conclusion, our genomic analysis revealed a high genetic diversity between environmental and clinical A. fumigatus isolates, as well as between clinical isolates from the same patient, indicating an infection with a mixed-population in the latter case. However, all isolates had a similar virulence genetic content, demonstrating their pathogenic potential at least at the genomic level.
Collapse
Affiliation(s)
- Fabiola Puértolas-Balint
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, Netherlands.,University of Groningen, Department of Molecular Pharmacology, Groningen, Netherlands
| | - John W A Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, Netherlands
| | - Claudy Oliveira Dos Santos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, Netherlands
| | - Monika M A Chlebowicz
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, Netherlands
| | - Erwin C Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, Netherlands
| | - Maarten L van Putten
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, Netherlands
| | - Pedro J Sola-Campoy
- Reference and Research Laboratory on Antimicrobial Resistance and Healthcare Infections, National Microbiology Centre, Institute of Health Carlos III, Madrid, Spain
| | - Li Han
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Martina Schmidt
- University of Groningen, Department of Molecular Pharmacology, Groningen, Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, Netherlands
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, Netherlands
| |
Collapse
|
37
|
Viegas C, Almeida B, Gomes AQ, Carolino E, Caetano LA. Aspergillus spp. prevalence in Primary Health Care Centres: Assessment by a novel multi-approach sampling protocol. ENVIRONMENTAL RESEARCH 2019; 175:133-141. [PMID: 31121528 DOI: 10.1016/j.envres.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Exposure to Aspergillus conidia may cause adverse effects on human health; however, no specific recommendations for routine assessments of Aspergillus in the clinical environment have been suggested so far. This study intended to determine the prevalence of Aspergillus in the clinical environment, focusing on ten Primary Health Care Centres (PHCC) through a novel multi-approach sampling protocol. Air and passive sampling, culture-based methods and a probe-based real-time assay for the detection of four clinically relevant Aspergillus sections were performed. Aspergillus spp. was observed in all PHCC, with highest prevalence on floor surface swabs (n=81) (18% on MEA; 6.94% on DG18). Regarding air samples (n=81), highest Aspergillus counts were found in the waiting room (94% MEA; 18% DG18), where Nigri was the most prevalent Aspergillus section. The use of a multi-approach sampling protocol to assess Aspergillus burden in the analysed PHCC has greatly contributed to risk characterization, highlighting the need to implement corrective measures in order to avoid fungal presence in those settings.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Portugal.
| | - Beatriz Almeida
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Anita Quintal Gomes
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; University of PortugalLisbon - Institute of Molecular Medicine, Faculty of Medicine, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
38
|
Sakai K, Hiemori K, Tateno H, Hirabayashi J, Gonoi T. Fucose-specific lectin of Aspergillus fumigatus: binding properties and effects on immune response stimulation. Med Mycol 2019; 57:71-83. [PMID: 29370403 DOI: 10.1093/mmy/myx163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus is the major causative fungus of aspergillosis, and many studies have explored the relationship between A. fumigatus and pathogenicity. In the current study, we focused on a fucose-specific lectin, FleA, as a novel molecule which related to the pathogenicity of A. fumigatus. The disruption of the fleA gene did not lead to clear morphological changes compared to parental strain under several stress conditions in culture, but germination become earlier. In comparison with parental strain, the pathogenicity of disruptant was enhanced in a mouse infection model. The pattern of conidial phagocytosis and adhesion to cultured cells did not explain this enhanced pathogenicity. FleA was reported to contain six conserved fucose-binding sites; the analysis of constructed FleA point mutants revealed nonequivalent contribution of the fucose-binding sites to fucose binding. Based on the immune response induced in the cultured cells upon exposure to wild-type and mutant FleA, we propose a model of the FleA molecule in A. fumigatus infection.
Collapse
Affiliation(s)
- Kanae Sakai
- Medical Mycology Research Center, Chiba University, Japan
| | - Keiko Hiemori
- Department of Life Science and Biotechnology, Biotechnology Research Institute for Drug Discovery, AIST, Japan
| | - Hiroaki Tateno
- Department of Life Science and Biotechnology, Biotechnology Research Institute for Drug Discovery, AIST, Japan
| | - Jun Hirabayashi
- Department of Life Science and Biotechnology, Biotechnology Research Institute for Drug Discovery, AIST, Japan
| | - Tohru Gonoi
- Medical Mycology Research Center, Chiba University, Japan
| |
Collapse
|
39
|
Comparative Pathomorphological, Mycological and Molecular Examination of Turkey Poults with Different Immunological Status Experimentally Infected with Aspergillus fumigatus. ACTA VET-BEOGRAD 2019. [DOI: 10.2478/acve-2019-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of this study was to determine the pathological, mycological and molecular findings in turkey poults with different immunological status experimentally infected with Aspergillus fumigatus. The investigation was carried out 1, 3, 7, 14 and 21 days after intratracheal inoculation of 5.056×107 spores of A. fumigatus to 14-day-old turkey poults in group G-1, as well as to turkey poults in group G-2 which were treated prior to infection with dexamethasone. A. fumigatus was isolated on day 1 p.i. in both groups, but the number of positive samples was bigger in group G-1. A. fumigatus was isolated from the respiratory organs of group G-1as early as on day 1 and 3 p.i. in 4 out of 12 examined specimens (33%). On day 7 p.i. A. fumigatus was possible to isolate from the respiratory organs of 50% of infected birds, on day 14 in 83.33% and on day 21 p.i. A. fumigatus was isolated in 6 out of 6 sacrificed turkey poults (100%). In dexamethasone-treated group A. fumigatus isolates from the respiratory organs on day 1 and 3 p.i. were same as in group G-1, whereas on days 7 and 14 p.i. the number of turkey poults positive to A. fumigatus increased in comparison with the untreated G-1 group. The histopathological lesions in turkey poults treated with dexamethasone developed earlier, were more intensive and extensive. The mycological and nested PCR results revealed a higher number of samples positive for the presence of A. fumigatus DNA in the group G-2, pretreated with dexamethasone.
Collapse
|
40
|
Maurer E, Hörtnagl C, Lackner M, Grässle D, Naschberger V, Moser P, Segal E, Semis M, Lass-Flörl C, Binder U. Galleria mellonella as a model system to study virulence potential of mucormycetes and evaluation of antifungal treatment. Med Mycol 2019; 57:351-362. [PMID: 29924357 PMCID: PMC6398984 DOI: 10.1093/mmy/myy042] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/04/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Mucorales can cause cutaneous to deep-seated infections, mainly in the immunocompromised host, resulting in high mortality rates due to late and inefficient treatment. In this study, Galleria mellonella larvae were evaluated as a heterologous invertebrate host to study pathogenicity of clinically relevant mucormycetes (Rhizopus spp., Rhizomucor spp., Lichtheimia spp., Mucor spp.). All tested species were able to infect G. mellonella larvae. Virulence potential was species-specific and correlated to clinical relevance. Survival of infected larvae was dependent on (a) the species (growth speed and spore size), (b) the infection dose, (c) the incubation temperature, (d) oxidative stress tolerance, and (e) iron availability in the growth medium. Moreover, we exploited the G. mellonella system to determine antifungal efficacy of liposomal amphotericin B, posaconazole, isavuconazole, and nystatin-intralipid. Outcome of in vivo treatment was strongly dependent upon the drug applied and the species tested. Nystatin-intralipid exhibited best activity against Mucorales, followed by posaconazole, while limited efficacy was seen for liposomal amphotericin B and isavuconazole. Pharmacokinetic properties of the tested antifungals within this alternative host system partly explain the limited treatment efficacy. In conclusion, G. mellonella represents a useful invertebrate infection model for studying virulence of mucormycetes, while evaluation of treatment response was limited.
Collapse
Affiliation(s)
- Elisabeth Maurer
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Caroline Hörtnagl
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Michaela Lackner
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Denise Grässle
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Verena Naschberger
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Patrizia Moser
- Department of Pathology, Medical University Innsbruck, Austria
| | - Esther Segal
- Department of Clinical Microbiology and Immunology, Tel-Aviv University, Israel
| | - Margarita Semis
- City of Hope, Beckman research Institute, Department of Molecular Immunology, Duarte, CA, USA
| | - Cornelia Lass-Flörl
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| | - Ulrike Binder
- Department of Hygiene, Microbiology and Public Health, Division of Hygiene and Medical Microbiology, Medical University Innsbruck, Austria
| |
Collapse
|
41
|
Blickensdorf M, Timme S, Figge MT. Comparative Assessment of Aspergillosis by Virtual Infection Modeling in Murine and Human Lung. Front Immunol 2019; 10:142. [PMID: 30804941 PMCID: PMC6370618 DOI: 10.3389/fimmu.2019.00142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/17/2019] [Indexed: 01/01/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous opportunistic fungal pathogen that can cause severe infections in immunocompromised patients. Conidia that reach the lower respiratory tract are confronted with alveolar macrophages, which are the resident phagocytic cells, constituting the first line of defense. If not efficiently removed in time, A. fumigatus conidia can germinate causing severe infections associated with high mortality rates. Mice are the most extensively used model organism in research on A. fumigatus infections. However, in addition to structural differences in the lung physiology of mice and the human host, applied infection doses in animal experiments are typically orders of magnitude larger compared to the daily inhalation doses of humans. The influence of these factors, which must be taken into account in a quantitative comparison and knowledge transfer from mice to humans, is difficult to measure since in vivo live cell imaging of the infection dynamics under physiological conditions is currently not possible. In the present study, we compare A. fumigatus infection in mice and humans by virtual infection modeling using a hybrid agent-based model that accounts for the respective lung physiology and the impact of a wide range of infection doses on the spatial infection dynamics. Our computer simulations enable comparative quantification of A. fumigatus infection clearance in the two hosts to elucidate (i) the complex interplay between alveolar morphometry and the fungal burden and (ii) the dynamics of infection clearance, which for realistic fungal burdens is found to be more efficiently realized in mice compared to humans.
Collapse
Affiliation(s)
- Marco Blickensdorf
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Sandra Timme
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University of Jena, Jena, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
42
|
Yu Y, Blachowicz A, Will C, Szewczyk E, Glenn S, Gensberger-Reigl S, Nowrousian M, Wang CCC, Krappmann S. Mating-type factor-specific regulation of the fumagillin/pseurotin secondary metabolite supercluster in Aspergillus fumigatus. Mol Microbiol 2018; 110:1045-1065. [PMID: 30240513 DOI: 10.1111/mmi.14136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
In the human pathogenic mold Aspergillus fumigatus, sexual identity is determined by the mating-type idiomorphs MAT1-1 and MAT1-2 residing at the MAT locus. Upon crossing of compatible partners, a heterothallic mating is executed to eventually form cleistothecia that contain recombinant ascospores. Given that the MAT1 gene products are DNA binding master regulators that govern this complex developmental process, we monitored the MAT1-driven transcriptomes of A. fumigatus by conditional overexpression of either MAT1 gene followed by RNA-seq analyses. Numerous genes related to the process of mating were found to be under transcriptional control, such as pheromone production and recognition. Substantial differences between the MAT1-1- and MAT1-2-driven transcriptomes could be detected by functional categorization of differentially expressed genes. Moreover, a significant and distinct impact on expression of genetic clusters of secondary metabolism became apparent, which could be verified on the product level. Unexpectedly, specific cross-regulation of the fumagillin/pseurotin supercluster was evident, thereby uncoupling its co-regulatory characteristic. These insights imply a tight interconnection of sexual development accompanied by ascosporogenesis with secondary metabolite production of a pathogenic fungus and impose evolutionary constraints that link these two fundamental aspects of the fungal lifestyle.
Collapse
Affiliation(s)
- Yidong Yu
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Adriana Blachowicz
- School of Pharmacy, John Staffer Pharmaceutical Sciences Center, University of Southern California, Los Angeles, CA, USA
| | - Cornelia Will
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Edyta Szewczyk
- Research Center for Infectious Diseases, Julius-Maximilians-Universität Würzburg, Germany
| | - Steven Glenn
- School of Pharmacy, John Staffer Pharmaceutical Sciences Center, University of Southern California, Los Angeles, CA, USA
| | - Sabrina Gensberger-Reigl
- Henriette Schmidt-Burkhardt Chair of Food Chemistry, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Minou Nowrousian
- Department of General and Molecular Botany, Ruhr University Bochum, Germany
| | - Clay C C Wang
- School of Pharmacy, John Staffer Pharmaceutical Sciences Center, University of Southern California, Los Angeles, CA, USA
| | - Sven Krappmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
43
|
Proteome Analysis Reveals the Conidial Surface Protein CcpA Essential for Virulence of the Pathogenic Fungus Aspergillus fumigatus. mBio 2018; 9:mBio.01557-18. [PMID: 30279286 PMCID: PMC6168859 DOI: 10.1128/mbio.01557-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mammalian immune system relies on recognition of pathogen surface antigens for targeting and clearance. In the absence of immune evasion strategies, pathogen clearance is rapid. In the case of Aspergillus fumigatus, the successful fungus must avoid phagocytosis in the lung to establish invasive infection. In healthy individuals, fungal spores are cleared by immune cells; however, in immunocompromised patients, clearance mechanisms are impaired. Here, using proteome analyses, we identified CcpA as an important fungal spore protein involved in pathogenesis. A. fumigatus lacking CcpA was more susceptible to immune recognition and prompt eradication and, consequently, exhibited drastically attenuated virulence. In infection studies, CcpA was required for virulence in infected immunocompromised mice, suggesting that it could be used as a possible immunotherapeutic or diagnostic target in the future. In summary, our report adds a protein to the list of those known to be critical to the complex fungal spore surface environment and, more importantly, identifies a protein important for conidial immunogenicity during infection. Aspergillus fumigatus is a common airborne fungal pathogen of humans and a significant source of mortality in immunocompromised individuals. Here, we provide the most extensive cell wall proteome profiling to date of A. fumigatus resting conidia, the fungal morphotype pertinent to first contact with the host. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified proteins within the conidial cell wall by hydrogen-fluoride (HF)–pyridine extraction and proteins exposed on the surface using a trypsin-shaving approach. One protein, designated conidial cell wall protein A (CcpA), was identified by both methods and was found to be nearly as abundant as hydrophobic rodlet layer-forming protein RodA. CcpA, an amphiphilic protein, like RodA, peaks in expression during sporulation on resting conidia. Despite high cell wall abundance, the cell surface structure of ΔccpA resting conidia appeared normal. However, trypsin shaving of ΔccpA conidia revealed novel surface-exposed proteins not detected on conidia of the wild-type strain. Interestingly, the presence of swollen ΔccpA conidia led to higher activation of neutrophils and dendritic cells than was seen with wild-type conidia and caused significantly less damage to epithelial cells in vitro. In addition, virulence was highly attenuated when cortisone-treated, immunosuppressed mice were infected with ΔccpA conidia. CcpA-specific memory T cell responses were detectable in healthy human donors naturally exposed to A. fumigatus conidia, suggesting a role for CcpA as a structural protein impacting conidial immunogenicity rather than possessing a protein-intrinsic immunosuppressive effect. Together, these data suggest that CcpA serves as a conidial stealth protein by altering the conidial surface structure to minimize innate immune recognition.
Collapse
|
44
|
Invasive pulmonary aspergillosis: current diagnostic methodologies and a new molecular approach. Eur J Clin Microbiol Infect Dis 2018; 37:1393-1403. [DOI: 10.1007/s10096-018-3251-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
|
45
|
Viegas C, Coggins AM, Faria T, Caetano LA, Gomes AQ, Sabino R, Verissimo C, Roberts N, Watterson D, MacGilchrist C, Fleming GTA. Fungal burden exposure assessment in podiatry clinics from Ireland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:167-177. [PMID: 29577752 DOI: 10.1080/09603123.2018.1453053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED Fungi are amongst the bioaerosols of most importance, as indicated by the growing interest in this field of research. The aim was to characterize the exposure to fungal burden in podiatry clinics using culture-based and molecular methods. METHODS Airborne fungi were collected using an impaction air sampler and surface samples were also performed. Fourteen air samples were collected for direct detection of fungal DNA from filamentous fungi and dermatophytes. Overall, 63.6 % of the evening samples and 46 % of the morning samples surpassed the threshold values (150 CFU/m3). Molecular detection, by real time PCR, of the target fungal species/strains (Aspergillus and Stachybotrys species) was negative for all samples collected. Trichophyton rubrum was detected by PCR analysis in one DNA sample collected on day six. Results suggest the use of both culture-based and molecular methodologies are desirable for a complete evaluation of fungal burden in this particular health care setting.
Collapse
Affiliation(s)
- Carla Viegas
- a GIAS, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
- b Centro de Investigação em Saúde Pública Escola Nacional de Saúde Pública , Universidade Nova de Lisboa , Lisbon , Portugal
| | - Ann Marie Coggins
- c School of Physics , National University of Ireland , Galway , Ireland
| | - Tiago Faria
- a GIAS, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
- d Centro de Ciências e Tecnologias Nucleares , Instituto Superior Técnico, Universidade de Lisboa , Lisbon , Portugal
| | - Liliana Aranha Caetano
- a GIAS, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
- e Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa) , University of Lisbon , Lisbon , Portugal
| | - Anita Quintal Gomes
- a GIAS, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
- f Faculdade de Medicina de Lisboa , Instituto de Medicina Molecular , Lisboa , Portugal
| | - Raquel Sabino
- a GIAS, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
- g Departamento de Doenças Infeciosas , Instituto Nacional de Saúde Dr. Ricardo Jorge , Lisboa , Portugal
| | - Cristina Verissimo
- g Departamento de Doenças Infeciosas , Instituto Nacional de Saúde Dr. Ricardo Jorge , Lisboa , Portugal
| | - Nigel Roberts
- h Discipline of Podiatric Medicine, School of Health Sciences , National University of Ireland , Galway , Ireland
| | - David Watterson
- h Discipline of Podiatric Medicine, School of Health Sciences , National University of Ireland , Galway , Ireland
- i CHO Area 2 , Galway , Ireland
| | - Claire MacGilchrist
- h Discipline of Podiatric Medicine, School of Health Sciences , National University of Ireland , Galway , Ireland
| | - Gerard T A Fleming
- j School of Natural Sciences , National University of Ireland , Galway , Ireland
| |
Collapse
|
46
|
Czurda S, Lion T. Broad-Spectrum Molecular Detection of Fungal Nucleic Acids by PCR-Based Amplification Techniques. Methods Mol Biol 2018; 1508:257-266. [PMID: 27837509 DOI: 10.1007/978-1-4939-6515-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Over the past decade, the incidence of life-threatening invasive fungal infections has dramatically increased. Infections caused by hitherto rare and emerging fungal pathogens are associated with significant morbidity and mortality among immunocompromised patients. These observations render the coverage of a broad range of clinically relevant fungal pathogens highly important. The so-called panfungal or, perhaps more correctly, broad-range nucleic acid amplification techniques do not only facilitate sensitive detection of all clinically relevant fungal species but are also rapid and can be applied to analyses of any patient specimens. They have therefore become valuable diagnostic tools for sensitive screening of patients at risk of invasive fungal infections. This chapter summarizes the currently available molecular technologies employed in testing of a wide range of fungal pathogens, and provides a detailed workflow for patient screening by broad-spectrum nucleic acid amplification techniques.
Collapse
Affiliation(s)
- Stefan Czurda
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria.,LabDia Labordiagnostik GmbH, Vienna, Austria
| | - Thomas Lion
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria. .,LabDia Labordiagnostik GmbH, Vienna, Austria. .,Department of Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
47
|
de Faucal S, Wirth G, Dutronc H, Gabriel F, Accoceberry I, Dupon M. [Aspergillus fumigatus prosthetic bone and joint infections]. Med Mal Infect 2018; 48:148-150. [PMID: 29292067 DOI: 10.1016/j.medmal.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/04/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Affiliation(s)
- S de Faucal
- Service de maladies infectieuses et tropicales, CHU Pellegrin, place Amélie-Raba-Léon, 33000 Bordeaux, France.
| | - G Wirth
- Service de maladies infectieuses et tropicales, CHU Pellegrin, place Amélie-Raba-Léon, 33000 Bordeaux, France
| | - H Dutronc
- Service de maladies infectieuses et tropicales, CHU Pellegrin, place Amélie-Raba-Léon, 33000 Bordeaux, France
| | - F Gabriel
- Laboratoire de parasitologie et mycologie, CHU Pellegrin, place Amélie-Raba-Léon, 33000 Bordeaux, France
| | - I Accoceberry
- Laboratoire de parasitologie et mycologie, CHU Pellegrin, place Amélie-Raba-Léon, 33000 Bordeaux, France
| | - M Dupon
- Service de maladies infectieuses et tropicales, CHU Pellegrin, place Amélie-Raba-Léon, 33000 Bordeaux, France
| |
Collapse
|
48
|
Viegas C, Faria T, Monteiro A, Caetano LA, Carolino E, Quintal Gomes A, Viegas S. A Novel Multi-Approach Protocol for the Characterization of Occupational Exposure to Organic Dust-Swine Production Case Study. TOXICS 2017; 6:toxics6010005. [PMID: 29280976 PMCID: PMC5874778 DOI: 10.3390/toxics6010005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/25/2017] [Accepted: 12/25/2017] [Indexed: 11/22/2022]
Abstract
Swine production has been associated with health risks and workers’ symptoms. In Portugal, as in other countries, large-scale swine production involves several activities in the swine environment that require direct intervention, increasing workers’ exposure to organic dust. This study describes an updated protocol for the assessment of occupational exposure to organic dust, to unveil an accurate scenario regarding occupational and environmental risks for workers’ health. The particle size distribution was characterized regarding mass concentration in five different size ranges (PM0.5, PM1, PM2.5, PM5, PM10). Bioburden was assessed, by both active and passive sampling methods, in air, on surfaces, floor covering and feed samples, and analyzed through culture based-methods and qPCR. Smaller size range particles exhibited the highest counts, with indoor particles showing higher particle counts and mass concentration than outdoor particles. The limit values suggested for total bacteria load were surpassed in 35.7% (10 out of 28) of samples and for fungi in 65.5% (19 out of 29) of samples. Among Aspergillus genera, section Circumdati was the most prevalent (55%) on malt extract agar (MEA) and Versicolores the most identified (50%) on dichloran glycerol (DG18). The results document a wide characterization of occupational exposure to organic dust on swine farms, being useful for policies and stakeholders to act to improve workers’ safety. The methods of sampling and analysis employed were the most suitable considering the purpose of the study and should be adopted as a protocol to be followed in future exposure assessments in this occupational environment.
Collapse
Affiliation(s)
- Carla Viegas
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| | - Tiago Faria
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS, Portugal.
| | - Ana Monteiro
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
| | - Liliana Aranha Caetano
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal.
| | - Elisabete Carolino
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
| | - Anita Quintal Gomes
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
- Faculty of Medicine, University of Lisbon Institute of Molecular Medicine, 1649-028 Lisbon, Portugal.
| | - Susana Viegas
- GIAS, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal.
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| |
Collapse
|
49
|
Takahashi-Nakaguchi A, Sakai K, Takahashi H, Hagiwara D, Toyotome T, Chibana H, Watanabe A, Yaguchi T, Yamaguchi M, Kamei K, Gonoi T. Aspergillus fumigatus adhesion factors in dormant conidia revealed through comparative phenotypic and transcriptomic analyses. Cell Microbiol 2017; 20. [PMID: 29113011 PMCID: PMC5838799 DOI: 10.1111/cmi.12802] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/11/2017] [Accepted: 10/30/2017] [Indexed: 01/29/2023]
Abstract
Aspergillus fumigatus is an important fungal pathogen of humans. Inhaled conidia of A. fumigatus adhere to pulmonary epithelial cells, causing opportunistic infection. However, little is known about the molecular mechanism of the adherence of resting conidia. Fungal molecules adhesive to host cells are presumed to be displayed on the conidial surface during conidial formation as a result of changes in gene expression. Therefore, we exhaustively searched for adhesion molecules by comparing the phenotypes and the gene expression profiles of A. fumigatus strains that have conidia showing either high or low adherence to human pulmonary A549 cells. Morphological observation suggested that strains that produce conidia of reduced size, hydrophobicity, or number show decreased adherence to A549 cells. K-means cluster analyses of gene expression revealed 31 genes that were differentially expressed in the high-adherence strains during conidial formation. We knocked out three of these genes and showed that the conidia of AFUA_4G01030 (encoding a hypothetical protein) and AFUA_4G08805 (encoding a haemolysin-like protein) knockout strains had significantly reduced adherence to host cells. Furthermore, the conidia of these knockout strains had lower hydrophobicity and fewer surface spikes compared to the control strain. We suggest that the selectively expressed gene products, including those we identified experimentally, have composite synergistic roles in the adhesion of conidia to pulmonary epithelial cells.
Collapse
Affiliation(s)
| | - Kanae Sakai
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Tohru Gonoi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
50
|
Löffler J, Ebel F. Size matters - how the immune system deals with fungal hyphae. Microbes Infect 2017; 20:521-525. [PMID: 29248637 DOI: 10.1016/j.micinf.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
Fungal hyphae constitute a special challenge for the immune system, since they are too large to be phagocytosed. This review summarizes our current knowledge on those immune cells that are able to attack and eliminate hyphae and we discuss the different means that are employed by these cells in order to kill hyphae.
Collapse
Affiliation(s)
- Jürgen Löffler
- Medical Hospital II, WÜ4i, University Hospital Wuerzburg, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|