1
|
Anastasiou IΑ, Argyrakopoulou G, Dalamaga M, Kokkinos A. Dual and Triple Gut Peptide Agonists on the Horizon for the Treatment of Type 2 Diabetes and Obesity. An Overview of Preclinical and Clinical Data. Curr Obes Rep 2025; 14:34. [PMID: 40210807 PMCID: PMC11985575 DOI: 10.1007/s13679-025-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE OF REVIEW The development of long-acting incretin receptor agonists represents a significant advance in the fight against the concurrent epidemics of type 2 diabetes mellitus (T2DM) and obesity. The aim of the present review is to examine the cellular processes underlying the actions of these new, highly significant classes of peptide receptor agonists. We further explore the potential actions of multi-agonist drugs as well as the mechanisms through which gut-brain communication can be used to achieve long-term weight loss without negative side effects. RECENT FINDINGS Several unimolecular dual-receptor agonists have shown promising clinical efficacy studies when used alone or in conjunction with approved glucose-lowering medications. We also describe the development of incretin-based pharmacotherapy, starting with exendin- 4 and ending with the identification of multi-incretin hormone receptor agonists, which appear to be the next major step in the fight against T2DM and obesity. We discuss the multi-agonists currently in clinical trials and how each new generation of these drugs improves their effectiveness. Since most glucose-dependent insulinotropic polypeptide (GIP) receptor: glucagon-like peptide- 1 receptor (GLP- 1) receptor: glucagon receptor triagonists compete in efficacy with bariatric surgery, the success of these agents in preclinical models and clinical trials suggests a bright future for multi-agonists in the treatment of metabolic diseases. To fully understand how these treatments affect body weight, further research is needed.
Collapse
Affiliation(s)
- Ioanna Α Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | | | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Alexander Kokkinos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
2
|
Dao GM, Kowalski GM, Bruce CR, O'Neal DN, Smart CE, Zaharieva DP, Hennessy DT, Zhao S, Morrison DJ. The Glycemic Impact of Protein Ingestion in People With Type 1 Diabetes. Diabetes Care 2025; 48:509-518. [PMID: 39951019 DOI: 10.2337/dci24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 03/23/2025]
Abstract
In individuals with type 1 diabetes, carbohydrate is commonly recognized as the primary macronutrient influencing postprandial glucose levels. Accumulating evidence indicates that protein ingestion also contributes to the increment in postprandial glucose levels, despite endocrine and metabolic responses different from those with carbohydrate ingestion. However, findings regarding protein ingestion's glycemic effect in people with type 1 diabetes are equivocal, with the magnitude of glycemic response seemingly dependent on the rate of absorption and composition of protein ingested. Therefore, the aim of this article is to outline the physiological mechanisms by which ingested protein influences blood glucose regulation in individuals with type 1 diabetes and provide clinical implications on use of dietary protein in the context of glycemic management. Specifically, protein ingestion raises plasma amino acid levels, which directly or indirectly (via gut hormones) stimulates glucagon secretion. Together with the increase in gluconeogenic precursors and an absent endogenous insulin response in individuals with type 1 diabetes, this provides a synergistic physiological environment for increased endogenous glucose production and subsequently increasing circulating glucose levels for several hours. While there is a dearth of well-controlled studies in this area, we provide clinical implications and directions for future research regarding the potential for using ingestion of fast-absorbing protein (such as whey protein) as a tool to prevent and mitigate overnight- and exercise-induced hypoglycemia in people with type 1 diabetes.
Collapse
Affiliation(s)
- Giang M Dao
- Institute for Physical Activity and Nutrition, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - David N O'Neal
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Carmel E Smart
- Department of Pediatrics Diabetes and Endocrinology, John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| | - Dessi P Zaharieva
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA
| | - Declan T Hennessy
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sam Zhao
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dale J Morrison
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Waterman HL, Moore MC, Smith MS, Farmer B, Yankey K, Scott M, Edgerton DS, Cherrington AD. Improved Afternoon Hepatic Glucose Disposal and Storage Requires Morning Engagement of Hepatic Insulin Receptors. Diabetes 2025; 74:270-281. [PMID: 39602425 PMCID: PMC11842597 DOI: 10.2337/db24-0786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Glucose tolerance improves significantly upon consuming a second, identical meal later in the day (second-meal phenomenon). We previously established that morning hyperinsulinemia primes the liver for increased afternoon hepatic glucose uptake (HGU). Although the route of insulin delivery is an important determinant of the mechanisms by which insulin regulates liver glucose metabolism (direct hepatic vs. indirect insulin action), it is not known whether insulin's delivery route affects the second-meal response. To determine whether morning peripheral insulin delivery (as occurs clinically, i.e., subcutaneously) can enhance afternoon HGU, conscious dogs were treated in the morning with insulin delivered either via the portal vein or peripherally (leg vein), while glucose was infused to maintain euglycemia. Consequently, arterial insulin levels increased similarly in both groups, but relative hepatic insulin deficiency occurred with peripheral insulin delivery. In the afternoon, all animals were challenged with the same hyperinsulinemic-hyperglycemic clamp to simulate identical postprandial-like conditions. The substantial enhancement of HGU in the afternoon caused by morning portal vein insulin delivery was lost when insulin was delivered peripherally. This indicates that morning insulin does not cause the second-meal phenomenon via its indirect actions on the liver but, rather, through direct activation of hepatic insulin signaling. ARTICLE HIGHLIGHTS Morning insulin delivery primes the liver for increased hepatic glucose uptake (HGU) later in the day, but until now, the mechanism (direct hepatic and/or indirect insulin action) remained unclear. This study compared insulin infusion via endogenous (hepatic portal vein) and clinical (peripheral) routes to assess their impact on afternoon hepatic glucose disposal. Arterial hyperinsulinemia in the morning, without a concomitant increase in insulin at the liver, failed to induce a significant enhancing effect on afternoon HGU and glycogen storage, unlike morning hepatic portal vein insulin delivery, which did. These findings highlight the importance of achieving appropriate hepatic insulin exposure in the morning to effectively prime the liver for enhanced glucose disposal later in the day.
Collapse
Affiliation(s)
- Hannah L. Waterman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Mary Courtney Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Marta S. Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Kalisha Yankey
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Melanie Scott
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Dale S. Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan D. Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
4
|
Waterman HL, Smith MS, Farmer B, Yankey K, Howard T, Kraft G, Edgerton DS, Cherrington AD. Hepatic Metabolic Memory Triggered by AM Exposure to Glucagon Alters Afternoon Glucose Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.639957. [PMID: 40060516 PMCID: PMC11888283 DOI: 10.1101/2025.02.25.639957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The second meal effect describes an improved glycemic response observed after consuming a second identical meal. We previously showed that morning (AM) exposure to hyperinsulinemia primes the liver for enhanced hepatic glucose uptake and glycogen storage in the afternoon (PM), with no significant effect on PM non-hepatic glucose uptake. Given that meals often trigger both insulin and glucagon secretion, we aimed to determine if AM hyperglucagonemia alters the priming effect of AM hyperinsulinemia on PM hepatic glucose metabolism. To test this, dogs were exposed to a 4h AM hyperinsulinemic-euglycemic clamp, with insulin delivered in a pattern mimicking the insulin profile observed earlier during a 4h AM duodenal glucose infusion. This period of hyperinsulinemia was paired with either basal (Prime, n=8) or elevated (Prime + ↑GGN, n=8) glucagon, maintaining a consistent insulin-to-glucagon molar ratio throughout the AM clamp. After a 1.5h rest period, the dogs underwent a 2.5h PM hyperinsulinemic-hyperglycemic clamp, during which glucose, insulin, and glucagon levels, along with the artery-to-portal vein glucose gradient, were carefully controlled to replicate postprandial conditions. During the PM clamp, the mean net hepatic glucose uptake (NHGU) in the Prime + ↑GGN group was only 59% of that in the Prime group (3.6±0.4 vs. 6.1±0.6 mg/kg/min, P<0.0027, respectively). Additionally, PM direct glycogen synthesis was two-fold greater in the Prime group compared to the Prime + ↑GGN group (3.2±0.7 vs. 1.5±0.2 mg/kg/min, P<0.0014, respectively). The observed difference in PM NHGU between the groups was not due to enhanced PM hepatic glucose uptake (HGU), which was similar in both groups (5.7±0.5 mg/kg/min in the Prime group vs. 5.2±0.3 mg/kg/min in the Prime + ↑GGN group), but rather a prolonged effect of AM hyperglucagonemia on PM hepatic glucose production (HGP) (-0.3±0.3 mg/kg/min in the Prime group vs. 1.7±0.4 mg/kg/min in the Prime + ↑GGN group, P<0.0072). This increase in PM HGP in the Prime + ↑GGN group was not driven by differences in PM gluconeogenic flux but by futile glucose cycling between glucose and glucose-6-phosphate, as well as hepatic glycogen storage and breakdown. In summary, these findings suggest that morning exposure to elevated glucagon shifts the insulin-driven priming effect on afternoon hepatic glucose metabolism by promoting sustained glucose cycling at the expense of glycogen synthesis and glycolysis, leading to persistent HGP despite identical PM insulin, glucose, and glucagon levels.
Collapse
Affiliation(s)
- Hannah L Waterman
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Marta S Smith
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Ben Farmer
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Kalisha Yankey
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Tristan Howard
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Guillaume Kraft
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Dale S Edgerton
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Alan D Cherrington
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| |
Collapse
|
5
|
Hu C, Chen Y, Yin X, Xu R, Yin C, Wang C, Zhao Y. Pancreatic endocrine and exocrine signaling and crosstalk in physiological and pathological status. Signal Transduct Target Ther 2025; 10:39. [PMID: 39948335 PMCID: PMC11825823 DOI: 10.1038/s41392-024-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/16/2025] Open
Abstract
The pancreas, an organ with dual functions, regulates blood glucose levels through the endocrine system by secreting hormones such as insulin and glucagon. It also aids digestion through the exocrine system by secreting digestive enzymes. Complex interactions and signaling mechanisms between the endocrine and exocrine functions of the pancreas play a crucial role in maintaining metabolic homeostasis and overall health. Compelling evidence indicates direct and indirect crosstalk between the endocrine and exocrine parts, influencing the development of diseases affecting both. From a developmental perspective, the exocrine and endocrine parts share the same origin-the "tip-trunk" domain. In certain circumstances, pancreatic exocrine cells may transdifferentiate into endocrine-like cells, such as insulin-secreting cells. Additionally, several pancreatic diseases, including pancreatic cancer, pancreatitis, and diabetes, exhibit potential relevance to both endocrine and exocrine functions. Endocrine cells may communicate with exocrine cells directly through cytokines or indirectly by regulating the immune microenvironment. This crosstalk affects the onset and progression of these diseases. This review summarizes the history and milestones of findings related to the exocrine and endocrine pancreas, their embryonic development, phenotypic transformations, signaling roles in health and disease, the endocrine-exocrine crosstalk from the perspective of diseases, and potential therapeutic targets. Elucidating the regulatory mechanisms of pancreatic endocrine and exocrine signaling and provide novel insights for the understanding and treatment of diseases.
Collapse
Grants
- National High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
- cNational High Level Hospital Clinical Research Funding (2022, 2022-PUMCH-D-001, to YZ), CAMS Innovation Fund for Medical Sciences (2021, 2021-I2M-1-002, to YZ), National Nature Science Foundation of China (2021, 82102810, to CW, the Fundamental Research Funds for the Central Universities(3332023123)
Collapse
Affiliation(s)
- Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
- Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
- National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
6
|
Galsgaard KD, Elmelund E, Hunt JE, Smits MM, Grevengoed TJ, Christoffersen C, Færgeman NJ, Havelund J, Wewer Albrechtsen NJ, Holst JJ. Female glucagon receptor knockout mice are prone to steatosis but resistant to weight gain when fed a MASH-promoting GAN diet and a high-fat diet. Physiol Rep 2025; 13:e70235. [PMID: 39985139 PMCID: PMC11845321 DOI: 10.14814/phy2.70235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/24/2025] Open
Abstract
Glucagon is secreted from the pancreatic alpha cells and regulates not only hepatic glucose production, but also hepatic lipid and amino acid metabolism. Thus, glucagon provides a switch from hepatic glucose and lipid storage towards lipid and amino acid breakdown fueling glucose production during fasting. However, the effects of genetic deletion of the glucagon receptor on lipid metabolism are unclear. We therefore assessed parameters of lipid metabolism in fasted and non-fasted male and female mice with permanent whole-body deletion of the glucagon receptor (Gcgr-/- mice). To investigate whether Gcgr-/- mice tolerated a diet promoting metabolic dysfunction-associated steatohepatitis (MASH) and steatosis, we fed female Gcgr-/- mice the Gubra Amylin Nonalcoholic steatohepatitis (GAN) diet and high-fat diet (HFD), respectively. We found that non-fasted Gcgr-/- mice fed standard chow showed hypercholesterolemia and increased liver fat (borderline significant in non-fasted male Gcgr-/- mice, but significant in the remaining groups). In the fasted state these changes were insignificant due to fasting-induced steatosis. When challenged with a GAN diet and HFD, female Gcgr-/- mice were prone to steatosis and dyslipidemia but resistant to weight gain. Taken together, our data highlight glucagon as an important physiological regulator of not just glucose, but also hepatic lipid metabolism.
Collapse
Affiliation(s)
- Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mark M. Smits
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Trisha J. Grevengoed
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christina Christoffersen
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Jesper Havelund
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Clinical BiochemistryCopenhagen University Hospital – BispebjergCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Komza M, Chipuk JE. Mitochondrial metabolism: A moving target in hepatocellular carcinoma therapy. J Cell Physiol 2025; 240:e31441. [PMID: 39324415 PMCID: PMC11732733 DOI: 10.1002/jcp.31441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Mitochondria are pivotal contributors to cancer mechanisms due to their homeostatic and pathological roles in cellular bioenergetics, biosynthesis, metabolism, signaling, and survival. During transformation and tumor initiation, mitochondrial function is often disrupted by oncogenic mutations, leading to a metabolic profile distinct from precursor cells. In this review, we focus on hepatocellular carcinoma, a cancer arising from metabolically robust and nutrient rich hepatocytes, and discuss the mechanistic impact of altered metabolism in this setting. We provide distinctions between normal mitochondrial activity versus disease-related function which yielded therapeutic opportunities, along with highlighting recent preclinical and clinical efforts focused on targeting mitochondrial metabolism. Finally, several novel strategies for exploiting mitochondrial programs to eliminate hepatocellular carcinoma cells in metabolism-specific contexts are presented to integrate these concepts and gain foresight into the future of mitochondria-focused therapeutics.
Collapse
Affiliation(s)
- Monika Komza
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, New York, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, The Diabetes, Obesity, and Metabolism Institute, New York, New York, USA
| |
Collapse
|
8
|
Deguchi K, Ushiroda C, Kamei Y, Kondo K, Tsuchida H, Seino Y, Yabe D, Suzuki A, Nagao S, Iizuka K. Glucose and Insulin Differently Regulate Gluconeogenic and Ureagenic Gene Expression. J Nutr Sci Vitaminol (Tokyo) 2025; 71:46-54. [PMID: 40024748 DOI: 10.3177/jnsv.71.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Glucose and insulin positively regulate glycolysis and lipogenesis through the activation of carbohydrate response element-binding protein (ChREBP) and sterol regulatory element-binding protein 1c (SREBP1c), but their respective roles in the regulation of gluconeogenic and ureagenic genes remain unclear. We compared the effects of the insulin antagonist S961 and Chrebp deletion on hepatic glycolytic, lipogenic, gluconeogenic, and ureagenic gene expression in mice. S961 markedly increased the plasma glucose, insulin, and 3-OH-butyrate concentrations and reduced the hepatic triglyceride content, but Chrebp deletion had no additive effect. We subsequently estimated the expression of genes involved in the pathways of glycolysis, gluconeogenesis, and lipogenesis. S961 potently decreased both Chrebp and Srebf1c, but Chrebp deletion weakly decreased Srebf1c mRNA expression. Both the S961 and Chrebp deletion caused decreases in glycolytic (Gck and Pklr) and lipogenic (Fasn, Scd1, Me1, Spot14, Elovl6) gene expression. S961 increased the expression of many gluconeogenic genes (G6pc, Fbp1, Aldob, Slc37a4, Pck), whereas Chrebp deletion reduced the expression of gluconeogenic genes other than Pck1. Finally, we checked the metabolites and gene expression in the ureagenesis pathway. S961 increased ureagenic gene (Arg1, Asl, Ass1, Cps1, Otc) expression, which was consistent with the metabolite data: there were reductions in the concentrations of glutamate and aspartate and increases in those of citrulline, ornithine, urea, and proline. However, Chrebp deletion had no additive effect on ureagenesis. In conclusion, insulin rather than glucose regulate ureagenic gene expression, whereas glucose and insulin regulate gluconegenic gene expression in opposite directions.
Collapse
Affiliation(s)
- Kanako Deguchi
- Department of Clinical Nutrition, Fujita Health University
| | | | - Yuka Kamei
- Advanced Medical Research Center for Animal Models of Human Diseases, Fujita Health University
| | | | - Hiromi Tsuchida
- Department of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism, Gifu University Graduate School of Medicine
- Center for One Medicine Innovative Translational Research, Gifu University
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University
| | - Shizuko Nagao
- Advanced Medical Research Center for Animal Models of Human Diseases, Fujita Health University
| | - Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University
- Food and Nutrition Service Department, Fujita Health University Hospital
| |
Collapse
|
9
|
Alver CG, Dominguez-Bendala J, Agarwal A. Engineered tools to study endocrine dysfunction of pancreas. BIOPHYSICS REVIEWS 2024; 5:041303. [PMID: 39449867 PMCID: PMC11498943 DOI: 10.1063/5.0220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Pancreas, a vital organ with intricate endocrine and exocrine functions, is central to the regulation of the body's glucose levels and digestive processes. Disruptions in its endocrine functions, primarily regulated by islets of Langerhans, can lead to debilitating diseases such as diabetes mellitus. Murine models of pancreatic dysfunction have contributed significantly to the understanding of insulitis, islet-relevant immunological responses, and the optimization of cell therapies. However, genetic differences between mice and humans have severely limited their clinical translational relevance. Recent advancements in tissue engineering and microfabrication have ushered in a new era of in vitro models that offer a promising solution. This paper reviews the state-of-the-art engineered tools designed to study endocrine dysfunction of the pancreas. Islet on a chip devices that allow precise control of various culture conditions and noninvasive readouts of functional outcomes have led to the generation of physiomimetic niches for primary and stem cell derived islets. Live pancreatic slices are a new experimental tool that could more comprehensively recapitulate the complex cellular interplay between the endocrine and exocrine parts of the pancreas. Although a powerful tool, live pancreatic slices require more complex control over their culture parameters such as local oxygenation and continuous removal of digestive enzymes and cellular waste products for maintaining experimental functionality over long term. The combination of islet-immune and slice on chip strategies can guide the path toward the next generation of pancreatic tissue modeling for better understanding and treatment of endocrine pancreatic dysfunctions.
Collapse
Affiliation(s)
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Ashutosh Agarwal
- Author to whom correspondence should be addressed:. Tel.: +1 305 243-8925
| |
Collapse
|
10
|
Tanvir A, Jo J, Park SM. Targeting Glucose Metabolism: A Novel Therapeutic Approach for Parkinson's Disease. Cells 2024; 13:1876. [PMID: 39594624 PMCID: PMC11592965 DOI: 10.3390/cells13221876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Glucose metabolism is essential for the maintenance and function of the central nervous system. Although the brain constitutes only 2% of the body weight, it consumes approximately 20% of the body's total energy, predominantly derived from glucose. This high energy demand of the brain underscores its reliance on glucose to fuel various functions, including neuronal activity, synaptic transmission, and the maintenance of ion gradients necessary for nerve impulse transmission. Increasing evidence shows that many neurodegenerative diseases, including Parkinson's disease (PD), are associated with abnormalities in glucose metabolism. PD is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, accompanied by the accumulation of α-synuclein protein aggregates. These pathological features are exacerbated by mitochondrial dysfunction, oxidative stress, and neuroinflammation, all of which are influenced by glucose metabolism disruptions. Emerging evidence suggests that targeting glucose metabolism could offer therapeutic benefits for PD. Several antidiabetic drugs have shown promise in animal models and clinical trials for mitigating the symptoms and progression of PD. This review explores the current understanding of the association between PD and glucose metabolism, emphasizing the potential of antidiabetic medications as a novel therapeutic approach. By improving glucose uptake and utilization, enhancing mitochondrial function, and reducing neuroinflammation, these drugs could address key pathophysiological mechanisms in PD, offering hope for more effective management of this debilitating disease.
Collapse
Affiliation(s)
- Ahmed Tanvir
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Junghyun Jo
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (A.T.); (J.J.)
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
11
|
Waterman HL, Moore MC, Smith MS, Farmer B, Yankey K, Scott M, Edgerton DS, Cherrington AD. Morning Engagement of Hepatic Insulin Receptors Improves Afternoon Hepatic Glucose Disposal and Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614969. [PMID: 39386695 PMCID: PMC11463395 DOI: 10.1101/2024.09.25.614969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Glucose tolerance improves significantly upon consuming a second, identical meal later in the day (second meal phenomenon). We previously established that morning hyperinsulinemia primes the liver for increased afternoon hepatic glucose uptake (HGU). Although the route of insulin delivery is an important determinant of the mechanisms by which insulin regulates liver glucose metabolism (direct hepatic vs indirect insulin action), it is not known if insulin's delivery route affects the second meal response. To determine whether morning peripheral insulin delivery (as occurs clinically (subcutaneous)) can enhance afternoon HGU, conscious dogs were treated in the morning with insulin delivered via the portal vein, or peripherally (leg vein), while glucose was infused to maintain euglycemia. Consequently, arterial insulin levels increased similarly in both groups, but relative hepatic insulin deficiency occurred when insulin was delivered peripherally. In the afternoon, all animals were challenged with the same hyperinsulinemic-hyperglycemic clamp to simulate identical postprandial-like conditions. The substantial enhancement of HGU in the afternoon caused by morning portal vein insulin delivery was lost when insulin was delivered peripherally. This indicates that morning insulin does not cause the second meal phenomenon via its indirect actions on the liver, but rather through direct activation of hepatic insulin signaling.
Collapse
Affiliation(s)
- Hannah L Waterman
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Mary Courtney Moore
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Marta S Smith
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Ben Farmer
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Kalisha Yankey
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Melanie Scott
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Dale S Edgerton
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| | - Alan D Cherrington
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine
| |
Collapse
|
12
|
Wu Y, Foollee A, Chan AY, Hille S, Hauke J, Challis MP, Johnson JL, Yaron TM, Mynard V, Aung OH, Cleofe MAS, Huang C, Lim Kam Sian TCC, Rahbari M, Gallage S, Heikenwalder M, Cantley LC, Schittenhelm RB, Formosa LE, Smith GC, Okun JG, Müller OJ, Rusu PM, Rose AJ. Phosphoproteomics-directed manipulation reveals SEC22B as a hepatocellular signaling node governing metabolic actions of glucagon. Nat Commun 2024; 15:8390. [PMID: 39333498 PMCID: PMC11436942 DOI: 10.1038/s41467-024-52703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
The peptide hormone glucagon is a fundamental metabolic regulator that is also being considered as a pharmacotherapeutic option for obesity and type 2 diabetes. Despite this, we know very little regarding how glucagon exerts its pleiotropic metabolic actions. Given that the liver is a chief site of action, we performed in situ time-resolved liver phosphoproteomics to reveal glucagon signaling nodes. Through pathway analysis of the thousands of phosphopeptides identified, we reveal "membrane trafficking" as a dominant signature with the vesicle trafficking protein SEC22 Homolog B (SEC22B) S137 phosphorylation being a top hit. Hepatocyte-specific loss- and gain-of-function experiments reveal that SEC22B was a key regulator of glycogen, lipid and amino acid metabolism, with SEC22B-S137 phosphorylation playing a major role in glucagon action. Mechanistically, we identify several protein binding partners of SEC22B affected by glucagon, some of which were differentially enriched with SEC22B-S137 phosphorylation. In summary, we demonstrate that phosphorylation of SEC22B is a hepatocellular signaling node mediating the metabolic actions of glucagon and provide a rich resource for future investigations on the biology of glucagon action.
Collapse
Affiliation(s)
- Yuqin Wu
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Ashish Foollee
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Andrea Y Chan
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Susanne Hille
- Department of Internal Medicine V, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Jana Hauke
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Matthew P Challis
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Victoria Mynard
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Okka H Aung
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Maria Almira S Cleofe
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, Victoria, Australia
| | | | - Mohammad Rahbari
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Department of Surgery, Theodor-Kutzer-Ufer 1-3, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
| | - Suchira Gallage
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard-Karls University, Tübingen, Germany
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Greg C Smith
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Jürgen G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Oliver J Müller
- Department of Internal Medicine V, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Patricia M Rusu
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Adam J Rose
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
13
|
Chen L, Wang N, Zhang T, Zhang F, Zhang W, Meng H, Chen J, Liao Z, Xu X, Ma Z, Xu T, Liu H. Directed differentiation of pancreatic δ cells from human pluripotent stem cells. Nat Commun 2024; 15:6344. [PMID: 39068220 PMCID: PMC11283558 DOI: 10.1038/s41467-024-50611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Dysfunction of pancreatic δ cells contributes to the etiology of diabetes. Despite their important role, human δ cells are scarce, limiting physiological studies and drug discovery targeting δ cells. To date, no directed δ-cell differentiation method has been established. Here, we demonstrate that fibroblast growth factor (FGF) 7 promotes pancreatic endoderm/progenitor differentiation, whereas FGF2 biases cells towards the pancreatic δ-cell lineage via FGF receptor 1. We develop a differentiation method to generate δ cells from human stem cells by combining FGF2 with FGF7, which synergistically directs pancreatic lineage differentiation and modulates the expression of transcription factors and SST activators during endoderm/endocrine precursor induction. These δ cells display mature RNA profiles and fine secretory granules, secrete somatostatin in response to various stimuli, and suppress insulin secretion from in vitro co-cultured β cells and mouse β cells upon transplantation. The generation of human pancreatic δ cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation studies in diabetes.
Collapse
Affiliation(s)
- Lihua Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Nannan Wang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongran Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Wei Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Hao Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Jingyi Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Zhiying Liao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Xiaopeng Xu
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
15
|
McGlone ER, Bloom SR, Tan TMM. Glucagon resistance and metabolic-associated steatotic liver disease: a review of the evidence. J Endocrinol 2024; 261:e230365. [PMID: 38579751 PMCID: PMC11067060 DOI: 10.1530/joe-23-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) is closely associated with obesity. MASLD affects over 1 billion adults globally but there are few treatment options available. Glucagon is a key metabolic regulator, and its actions include the reduction of liver fat through direct and indirect means. Chronic glucagon signalling deficiency is associated with hyperaminoacidaemia, hyperglucagonaemia and increased circulating levels of glucagon-like peptide 1 (GLP-1) and fibroblast growth factor 21 (FGF-21). Reduction in glucagon activity decreases hepatic amino acid and triglyceride catabolism; metabolic effects include improved glucose tolerance, increased plasma cholesterol and increased liver fat. Conversely, glucagon infusion in healthy volunteers leads to increased hepatic glucose output, decreased levels of plasma amino acids and increased urea production, decreased plasma cholesterol and increased energy expenditure. Patients with MASLD share many hormonal and metabolic characteristics with models of glucagon signalling deficiency, suggesting that they could be resistant to glucagon. Although there are few studies of the effects of glucagon infusion in patients with obesity and/or MASLD, there is some evidence that the expected effect of glucagon on amino acid catabolism may be attenuated. Taken together, this evidence supports the notion that glucagon resistance exists in patients with MASLD and may contribute to the pathogenesis of MASLD. Further studies are warranted to investigate the direct effects of glucagon on metabolism in patients with MASLD.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
16
|
Stangerup I, Kjeldsen SAS, Richter MM, Jensen NJ, Rungby J, Haugaard SB, Georg B, Hannibal J, Møllgård K, Wewer Albrechtsen NJ, Bjørnbak Holst C. Glucagon does not directly stimulate pituitary secretion of ACTH, GH or copeptin. Peptides 2024; 176:171213. [PMID: 38604379 DOI: 10.1016/j.peptides.2024.171213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Glucagon is best known for its contribution to glucose regulation through activation of the glucagon receptor (GCGR), primarily located in the liver. However, glucagon's impact on other organs may also contribute to its potent effects in health and disease. Given that glucagon-based medicine is entering the arena of anti-obesity drugs, elucidating extrahepatic actions of glucagon are of increased importance. It has been reported that glucagon may stimulate secretion of arginine-vasopressin (AVP)/copeptin, growth hormone (GH) and adrenocorticotrophic hormone (ACTH) from the pituitary gland. Nevertheless, the mechanisms and whether GCGR is present in human pituitary are unknown. In this study we found that intravenous administration of 0.2 mg glucagon to 14 healthy subjects was not associated with increases in plasma concentrations of copeptin, GH, ACTH or cortisol over a 120-min period. GCGR immunoreactivity was present in the anterior pituitary but not in cells containing GH or ACTH. Collectively, glucagon may not directly stimulate secretion of GH, ACTH or AVP/copeptin in humans but may instead be involved in yet unidentified pituitary functions.
Collapse
Affiliation(s)
- Ida Stangerup
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital - Nordsjælland, Hillerød, Denmark.
| | - Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole J Jensen
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jørgen Rungby
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Bendix Haugaard
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Bjørnbak Holst
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Coate KC, Ramnanan CJ, Smith M, Winnick JJ, Kraft G, Irimia-Dominguez J, Farmer B, Donahue EP, Roach PJ, Cherrington AD, Edgerton DS. Integration of metabolic flux with hepatic glucagon signaling and gene expression profiles in the conscious dog. Am J Physiol Endocrinol Metab 2024; 326:E428-E442. [PMID: 38324258 PMCID: PMC11193521 DOI: 10.1152/ajpendo.00316.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Glucagon rapidly and profoundly stimulates hepatic glucose production (HGP), but for reasons that are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course of glucagon-mediated molecular events and their relevance to metabolic flux in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a sixfold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group, glucose remained at basal, whereas in the other, glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) and largely sustained increase in hepatic cAMP over 4 h, a continued elevation in glucose-6-phosphate (G6P), and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis increased rapidly, peaking at 15 min due to activation of the cAMP/PKA pathway, then slowly returned to baseline over the next 3 h in line with allosteric inhibition by glucose and G6P. Glucagon's stimulatory effect on HGP was sustained relative to the hyperglycemic control group due to continued PKA activation. Hepatic gluconeogenic flux did not increase due to the lack of glucagon's effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, as well as downregulation of genes involved in extracellular matrix assembly and development.NEW & NOTEWORTHY Glucagon rapidly stimulates hepatic glucose production, but these effects are transient. This study links the molecular and metabolic flux changes that occur in the liver over time in response to a rise in glucagon, demonstrating the strength of the dog as a translational model to couple findings in small animals and humans. In addition, this study clarifies why the rapid effects of glucagon on liver glycogen metabolism are not sustained.
Collapse
Affiliation(s)
- Katie C Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher J Ramnanan
- Department of Innovation in Medical Education, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jason J Winnick
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jose Irimia-Dominguez
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute, Duarte, California, United States
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - E Patrick Donahue
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
19
|
D’Souza NC, Aiken JA, Hoffman EG, Atherley SC, Champsi S, Aleali N, Shakeri D, El-Zahed M, Akbarian N, Nejad-Mansouri M, Bavani PZ, Liggins RL, Chan O, Riddell MC. Evaluating the effectiveness of a novel somatostatin receptor 2 antagonist, ZT-01, for hypoglycemia prevention in a rodent model of type 2 diabetes. Front Pharmacol 2024; 15:1302015. [PMID: 38510652 PMCID: PMC10951717 DOI: 10.3389/fphar.2024.1302015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Elevated levels of somatostatin blunt glucagon counterregulation during hypoglycemia in type 1 diabetes (T1D) and this can be improved using somatostatin receptor 2 (SSTR2) antagonists. Hypoglycemia also occurs in late-stage type 2 diabetes (T2D), particularly when insulin therapy is initiated, but the utility of SSTR2 antagonists in ameliorating hypoglycemia in this disease state is unknown. We examined the efficacy of a single-dose of SSTR2 antagonists in a rodent model of T2D. Methods: High-fat fed (HFF), low dose streptozotocin (STZ, 35 mg/kg)-induced T2D and HFF only, nondiabetic (controls-no STZ) rats were treated with the SSTR2 antagonists ZT-01/PRL-2903 or vehicle (n = 9-11/group) 60 min before an insulin tolerance test (ITT; 2-12 U/kg insulin aspart) or an oral glucose tolerance test (OGTT; 2 g/kg glucose via oral gavage) on separate days. Results: This rodent model of T2D is characterized by higher baseline glucose and HbA1c levels relative to HFF controls. T2D rats also had lower c-peptide levels at baseline and a blunted glucagon counterregulatory response to hypoglycemia when subjected to the ITT. SSTR2 antagonists increased the glucagon response and reduced incidence of hypoglycemia, which was more pronounced with ZT-01 than PRL-2903. ZT-01 treatment in the T2D rats increased glucagon levels above the control response within 60 min of dosing, and values remained elevated during the ITT (glucagon Cmax: 156 ± 50 vs. 77 ± 46 pg/mL, p < 0.01). Hypoglycemia incidence was attenuated with ZT-01 vs. controls (63% vs. 100%) and average time to hypoglycemia onset was also delayed (103.1 ± 24.6 vs. 66.1 ± 23.6 min, p < 0.05). ZT-01 administration at the OGTT onset increased the glucagon response without exacerbating hyperglycemia (2877 ± 806 vs. 2982 ± 781), potentially due to the corresponding increase in c-peptide levels (6251 ± 5463 vs. 14008 ± 5495, p = 0.013). Conclusion: Treatment with SSTR2 antagonists increases glucagon responses in a rat model of T2D and results in less hypoglycemia exposure. Future studies are required to determine the best dosing periods for chronic SSTR2 antagonism treatment in T2D.
Collapse
Affiliation(s)
| | - Julian A. Aiken
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Emily G. Hoffman
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Sara C. Atherley
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Sabrina Champsi
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Nadia Aleali
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Dorsa Shakeri
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Maya El-Zahed
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Nicky Akbarian
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | | | - Parinaz Z. Bavani
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | | | - Owen Chan
- Department of Internal Medicine, Division of Endocrinology, University of Utah, Salt LakeCity, UT, United States
| | - Michael C. Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
20
|
Pan S, A.C. Souza L, Worker CJ, Reyes Mendez ME, Gayban AJB, Cooper SG, Sanchez Solano A, Bergman RN, Stefanovski D, Morton GJ, Schwartz MW, Feng Earley Y. (Pro)renin receptor signaling in hypothalamic tyrosine hydroxylase neurons is required for obesity-associated glucose metabolic impairment. JCI Insight 2024; 9:e174294. [PMID: 38349753 PMCID: PMC11063935 DOI: 10.1172/jci.insight.174294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
Glucose homeostasis is achieved via complex interactions between the endocrine pancreas and other peripheral tissues and glucoregulatory neurocircuits in the brain that remain incompletely defined. Within the brain, neurons in the hypothalamus appear to play a particularly important role. Consistent with this notion, we report evidence that (pro)renin receptor (PRR) signaling within a subset of tyrosine hydroxylase (TH) neurons located in the hypothalamic paraventricular nucleus (PVNTH neurons) is a physiological determinant of the defended blood glucose level. Specifically, we demonstrate that PRR deletion from PVNTH neurons restores normal glucose homeostasis in mice with diet-induced obesity (DIO). Conversely, chemogenetic inhibition of PVNTH neurons mimics the deleterious effect of DIO on glucose. Combined with our finding that PRR activation inhibits PVNTH neurons, these findings suggest that, in mice, (a) PVNTH neurons play a physiological role in glucose homeostasis, (b) PRR activation impairs glucose homeostasis by inhibiting these neurons, and (c) this mechanism plays a causal role in obesity-associated metabolic impairment.
Collapse
Affiliation(s)
- Shiyue Pan
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Lucas A.C. Souza
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Caleb J. Worker
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Miriam E. Reyes Mendez
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Ariana Julia B. Gayban
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Silvana G. Cooper
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Alfredo Sanchez Solano
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| | - Richard N. Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Darko Stefanovski
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Gregory J. Morton
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Michael W. Schwartz
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Yumei Feng Earley
- Departments of Pharmacology and Physiology & Cell Biology and
- Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, Reno, Nevada, USA
| |
Collapse
|
21
|
Shin MK, Tang WY, Amorim MR, Sham JSK, Polotsky VY. Carotid body denervation improves hyperglycemia in obese mice. J Appl Physiol (1985) 2024; 136:233-243. [PMID: 38126089 PMCID: PMC11219014 DOI: 10.1152/japplphysiol.00215.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The carotid bodies (CBs) have been implicated in glucose abnormalities in obesity via elevation of activity of the sympathetic nervous system. Obesity-induced hypertension is mediated by insulin receptor (INSR) signaling and by leptin, which binds to the leptin receptor (LEPRb) in CB and activates transient receptor potential channel subfamily M member 7 (TRPM7). We hypothesize that in mice with diet-induced obesity, hyperglycemia, glucose intolerance, and insulin resistance will be attenuated by the CB denervation (carotid sinus nerve dissection, CSND) and by knockdown of Leprb, Trpm7, and Insr gene expression in CB. In series of experiments in 75 male diet-induced obese (DIO) mice, we performed either CSND (vs. sham) surgeries or shRNA-induced suppression of Leprb, Trpm7, or Insr gene expression in CB, followed by blood pressure telemetry, intraperitoneal glucose tolerance and insulin tolerance tests, and measurements of fasting plasma insulin, leptin, corticosterone, glucagon and free fatty acids (FFAs) levels, hepatic expression of gluconeogenesis enzymes phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G-6-Pase) mRNA and liver glycogen levels. CSND decreased blood pressure, fasting blood glucose levels and improved glucose tolerance without any effect on insulin resistance. CSND did not affect any hormone levels and gluconeogenesis enzymes, but increased liver glycogen level. Genetic knockdown of CB Leprb, Trpm7, and Insr had no effect on glucose metabolism. We conclude that CB contributes to hyperglycemia of obesity, probably by modulation of the glycogen-glucose equilibrium. Diabetogenic effects of obesity on CB in mice do not occur via activation of CB Leprb, Trpm7, and Insr.NEW & NOTEWORTHY This paper provides first evidence that carotid body denervation abolishes hypertension and improves fasting blood glucose levels and glucose tolerance in mice with diet-induced obesity. Furthermore, we have shown that this phenomenon is associated with increased liver glycogen content, whereas insulin sensitivity and enzymes of gluconeogenesis were not affected.
Collapse
Affiliation(s)
- Mi-Kyung Shin
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Wan-Yee Tang
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States
| | - Mateus R Amorim
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - James S-K Sham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Vsevolod Y Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
22
|
Kajisa T, Kuroi T, Hara H, Sakai T. Correlation analysis of heart rate variations and glucose fluctuations during sleep. Sleep Med 2024; 113:180-187. [PMID: 38042028 DOI: 10.1016/j.sleep.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE The body's glucose concentration is influenced by carbohydrate intake, insulin-induced carbohydrate reduction, and hepatic glycogen breakdown induced by stress hormones. This study investigated the potential of employing glucose fluctuations as a measure of stress by examining the relationship between heart rate variability (HRV) data and glucose levels during sleep in healthy subjects. METHODS In this cross-sectional study, a chest-worn electrocardiogram (ECG) and continuous glucose monitoring device (CGM) were respectively used to monitor the heart rate intervals and glucose fluctuations of five subjects (two males, three females) during sleep. A time-series correlation analysis was performed on the HRV data extracted from heart rate intervals and the corresponding glucose fluctuation data. RESULTS The time-series analysis of ECG and CGM data collected from subjects during sleep (n = 25 nights) revealed a moderate negative correlation between glucose levels and HRV, with a cross-correlation coefficient of r = -0.453. CONCLUSION Similar to HRV, changes in stress levels can be detected by observing glucose fluctuations, particularly during sleep when the impact of food intake can be eliminated. Our findings highlight a significant correlation between glucose levels and HRV, indicating that glucose fluctuations can be used as an indicator of autonomic nervous system activity in an exploratory study.
Collapse
Affiliation(s)
- Taira Kajisa
- Course of Bio-Nano Science Fusion, Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan.
| | - Toshiya Kuroi
- Hakuju Institute for Health Science Co., Ltd, 1-37-5 Tomigaya, Shibuya, Tokyo, Japan
| | - Hiroyuki Hara
- Hakuju Institute for Health Science Co., Ltd, 1-37-5 Tomigaya, Shibuya, Tokyo, Japan
| | - Toshiyuki Sakai
- Department of Student, Student Support Division, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan
| |
Collapse
|
23
|
Bian C, He X, Wang Q, Zheng Z, Zhang Y, Xiong H, Li Y, Zhao M, Li J. Biochemical Toxicological Study of Insulin Overdose in Rats: A Forensic Perspective. TOXICS 2023; 12:17. [PMID: 38250973 PMCID: PMC10819875 DOI: 10.3390/toxics12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Due to nonspecific pathological changes and the rapid degradation of insulin in postmortem blood samples, the identification of the cause of death during insulin overdose has always been a difficulty in forensic medicine. At present, there is a lack of studies on the toxicological changes and related mechanisms of an insulin overdose, and the specific molecular markers of insulin overdose are still unclear. In this study, an animal model of insulin overdose was established, and 24 SD rats were randomly divided into a control group, insulin overdose group, and a recovery group (n = 8). We detected the biochemical changes and analyzed the toxicological mechanism of an insulin overdose. The results showed that after insulin overdose, the rats developed irregular convulsions, Eclampsia, Opisthotonos, and other symptoms. The levels of glucose, glycogen, and C-peptide in the body decreased significantly, while the levels of lactate, insulin, and glucagon increased significantly. The decrease in plasma K+ was accompanied by the increase in skeletal muscle K+. The PI3K-AKT signaling pathway was significantly activated in skeletal muscle, and the translocation of GLUT4/Na+-K+-ATPase to sarcolemma was significantly increased. Rare glycogenic hepatopathy occurred in the recovery group after insulin overdose. Our study showed that insulin overdose also plays a role in skeletal muscle cells, mainly through the PI3K-Akt signaling pathway. Therefore, the detection of signaling pathway proteins of the skeletal muscle cell membrane GLUT4 and Na+-K+-ATPase has a certain auxiliary diagnostic value for forensic insulin overdose identification. Glycogen detection in the liver and skeletal muscle is important for the diagnosis of insulin overdose, but it still needs to be differentiated from other causes of death. Skeletal muscle has great potential for insulin detection, and the ratio of insulin to the C-peptide (I:C) can determine whether an exogenous insulin overdose is present.
Collapse
Affiliation(s)
- Cunhao Bian
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (C.B.); (X.H.); (Q.W.); (Z.Z.); (Y.Z.); (H.X.); (Y.L.); (M.Z.)
- Chongqing Engineering Research Center of Criminal Investigation Technology, Chongqing 400016, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing 400016, China
| | - Xin He
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (C.B.); (X.H.); (Q.W.); (Z.Z.); (Y.Z.); (H.X.); (Y.L.); (M.Z.)
- Chongqing Engineering Research Center of Criminal Investigation Technology, Chongqing 400016, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing 400016, China
| | - Qi Wang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (C.B.); (X.H.); (Q.W.); (Z.Z.); (Y.Z.); (H.X.); (Y.L.); (M.Z.)
- Chongqing Engineering Research Center of Criminal Investigation Technology, Chongqing 400016, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing 400016, China
| | - Zhe Zheng
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (C.B.); (X.H.); (Q.W.); (Z.Z.); (Y.Z.); (H.X.); (Y.L.); (M.Z.)
- Chongqing Engineering Research Center of Criminal Investigation Technology, Chongqing 400016, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing 400016, China
| | - Yongtai Zhang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (C.B.); (X.H.); (Q.W.); (Z.Z.); (Y.Z.); (H.X.); (Y.L.); (M.Z.)
- Chongqing Engineering Research Center of Criminal Investigation Technology, Chongqing 400016, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing 400016, China
| | - Hongli Xiong
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (C.B.); (X.H.); (Q.W.); (Z.Z.); (Y.Z.); (H.X.); (Y.L.); (M.Z.)
- Chongqing Engineering Research Center of Criminal Investigation Technology, Chongqing 400016, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing 400016, China
| | - Yongguo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (C.B.); (X.H.); (Q.W.); (Z.Z.); (Y.Z.); (H.X.); (Y.L.); (M.Z.)
- Chongqing Engineering Research Center of Criminal Investigation Technology, Chongqing 400016, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing 400016, China
| | - Mingzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (C.B.); (X.H.); (Q.W.); (Z.Z.); (Y.Z.); (H.X.); (Y.L.); (M.Z.)
- Chongqing Engineering Research Center of Criminal Investigation Technology, Chongqing 400016, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing 400016, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; (C.B.); (X.H.); (Q.W.); (Z.Z.); (Y.Z.); (H.X.); (Y.L.); (M.Z.)
- Chongqing Engineering Research Center of Criminal Investigation Technology, Chongqing 400016, China
- Chongqing Key Laboratory of Forensic Medicine, Chongqing 400016, China
| |
Collapse
|
24
|
Fisker FA, Voss TS, Svart MV, Kampmann U, Vendelbo MH, Bengtsen MB, Lauritzen ES, Møller N, Jessen N. Insulin Signaling Is Preserved in Skeletal Muscle During Early Diabetic Ketoacidosis. J Clin Endocrinol Metab 2023; 109:e155-e162. [PMID: 37554078 DOI: 10.1210/clinem/dgad464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND AND AIMS During diabetic ketoacidosis (DKA), muscle tissue develops a profound insulin resistance that complicates reversal of this potentially lethal condition. We have investigated mediators of insulin action in human skeletal muscle during total insulin withdrawal in patients with type 1 diabetes, under the hypothesis that initial phases of DKA are associated with impaired postreceptor signaling. MATERIALS AND METHODS Muscle biopsies were obtained during a randomized, controlled, crossover trial involving 9 patients with type 1 diabetes. The subjects were investigated during a high-dose insulin clamp preceded by either: (1) insulin-controlled euglycemia (control) or (2) total insulin withdrawal for 14 hours. Insulin action in skeletal muscle and whole-body substrate metabolism were investigated using western blot analysis and indirect calorimetry respectively. RESULTS During insulin withdrawal, insulin-stimulated dephosphorylation of glycogen synthase decreased by ∼30% (P < .05) compared with the control situation. This was associated with a decrease in glucose oxidation by ∼30% (P < .05). Despite alterations in glucose metabolism, insulin transduction to glucose transport and protein synthesis (Akt, AS160, mammalian target of rapamycin, and eukaryotic translation initiation factor 4E binding protein) was intact, and glucose transporter (GLUT4) and mitochondrial proteins (succinate dehydrogenase complex, subunit A and prohibitin 1) protein expression were unaffected by the intervention. CONCLUSION DKA impairs insulin-stimulated activation of glycogen synthase, whereas insulin signal transduction to glucose transport and protein synthesis remains intact. Reversal of insulin resistance during treatment of DKA should target postreceptor mediators of glucose uptake. CLINICAL TRIAL REGISTRATION NUMBER NCT02077348.
Collapse
Affiliation(s)
- Frederikke A Fisker
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Thomas S Voss
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mads V Svart
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mikkel H Vendelbo
- Department of Nuclear Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mads B Bengtsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Esben S Lauritzen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Niels Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
25
|
Peng J, Yu L, Huang L, Paschoal VA, Chu H, de Souza CO, Varre JV, Oh DY, Kohler JJ, Xiao X, Xu L, Holland WL, Shaul PW, Mineo C. Hepatic sialic acid synthesis modulates glucose homeostasis in both liver and skeletal muscle. Mol Metab 2023; 78:101812. [PMID: 37777009 PMCID: PMC10583174 DOI: 10.1016/j.molmet.2023.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
OBJECTIVE Sialic acid is a terminal monosaccharide of glycans in glycoproteins and glycolipids, and its derivation from glucose is regulated by the rate-limiting enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Although the glycans on key endogenous hepatic proteins governing glucose metabolism are sialylated, how sialic acid synthesis and sialylation in the liver influence glucose homeostasis is unknown. Studies were designed to fill this knowledge gap. METHODS To decrease the production of sialic acid and sialylation in hepatocytes, a hepatocyte-specific GNE knockdown mouse model was generated, and systemic glucose metabolism, hepatic insulin signaling and glucagon signaling were evaluated in vivo or in primary hepatocytes. Peripheral insulin sensitivity was also assessed. Furthermore, the mechanisms by which sialylation in the liver influences hepatic insulin signaling and glucagon signaling and peripheral insulin sensitivity were identified. RESULTS Liver GNE deletion in mice caused an impairment of insulin suppression of hepatic glucose production. This was due to a decrease in the sialylation of hepatic insulin receptors (IR) and a decline in IR abundance due to exaggerated degradation through the Eph receptor B4. Hepatic GNE deficiency also caused a blunting of hepatic glucagon receptor (GCGR) function which was related to a decline in its sialylation and affinity for glucagon. An accompanying upregulation of hepatic FGF21 production caused an enhancement of skeletal muscle glucose disposal that led to an overall increase in glucose tolerance and insulin sensitivity. CONCLUSION These collective observations reveal that hepatic sialic acid synthesis and sialylation modulate glucose homeostasis in both the liver and skeletal muscle. By interrogating how hepatic sialic acid synthesis influences glucose control mechanisms in the liver, a new metabolic cycle has been identified in which a key constituent of glycans generated from glucose modulates the systemic control of its precursor.
Collapse
Affiliation(s)
- Jun Peng
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Liming Yu
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Linzhang Huang
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Vivian A Paschoal
- Dept. of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Haiyan Chu
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Camila O de Souza
- Dept. of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Joseph V Varre
- Dept. of Nutrition & Integrative Physiology, University of Utah College of Health, 250 1850 E, Salt Lake City, UT, 84112, USA
| | - Da Young Oh
- Dept. of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jennifer J Kohler
- Dept. of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Xue Xiao
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Lin Xu
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - William L Holland
- Dept. of Nutrition & Integrative Physiology, University of Utah College of Health, 250 1850 E, Salt Lake City, UT, 84112, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA; Dept. of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
26
|
Ang T, Mason SA, Dao GM, Bruce CR, Kowalski GM. The impact of a single dose of whey protein on glucose flux and metabolite profiles in normoglycemic males: insights into glucagon and insulin biology. Am J Physiol Endocrinol Metab 2023; 325:E688-E699. [PMID: 37877796 DOI: 10.1152/ajpendo.00182.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Protein ingestion concurrently stimulates euglycemic glucagon and insulin secretion, a response that is particularly robust with rapidly absorbing proteins. Previously, we have shown that ingestion of repeated doses of rapidly absorbing whey protein equally stimulated endogenous glucose production (EGP) and glucose disposal (Rd), thus explaining the preservation of euglycemia. Here, we aimed to determine if a smaller single dose of whey could elicit a large enough glucagon and insulin response to stimulate glucose flux. Therefore, in normoglycemic young adult males (n = 10; age ∼26; BMI ∼25), using [6,6-2H2] glucose tracing and quantitative targeted metabolite profiling, we determined the metabolic response to a single 25 g "standard" dose of whey protein. Whey protein ingestion did not alter glycemia, but increased circulating glucagon (peak 4-fold basal), insulin (peak 6-fold basal), amino acids, and urea while also reducing free fatty acid (FFA) and glycerol concentrations. Interestingly, the postprandial insulin response was driven by both a stimulation of insulin secretion and marked reduction in hepatic insulin clearance. Whey protein ingestion resulted in a modest stimulation of EGP and Rd, both peaking at ∼20% above baseline 1 h after protein ingestion. These findings demonstrate that the ingestion of a single standard serving of whey protein can induce a euglycemic glucagon and insulin response that stimulates glucose flux. We speculate on a theory that could potentially explain how glucagon and insulin synergistically provide hardwired control of nitrogen and glucose homeostasis.NEW & NOTEWORTHY Protein ingestion concurrently stimulates glucagon and insulin secretion. Here we show that in normoglycemic males, ingestion of a single "standard" 25 g serving of rapidly absorbing whey protein drives a sufficiently large glucagon and insulin response, such that it simultaneously increases endogenous glucose production and glucose disposal. We speculate on a novel theory that could potentially explain how the antagonistic/synergistic actions of glucagon and insulin simultaneously provide tight control of glucose and nitrogen homeostasis.
Collapse
Affiliation(s)
- Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| | - Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| | - Giang M Dao
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Victoria, Australia
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
27
|
Hedin KA, Zhang H, Kruse V, Rees VE, Bäckhed F, Greiner TU, Vazquez-Uribe R, Sommer MOA. Cold Exposure and Oral Delivery of GLP-1R Agonists by an Engineered Probiotic Yeast Strain Have Antiobesity Effects in Mice. ACS Synth Biol 2023; 12:3433-3442. [PMID: 37827516 PMCID: PMC10661039 DOI: 10.1021/acssynbio.3c00455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 10/14/2023]
Abstract
Advanced microbiome therapeutics (AMTs) holds promise in utilizing engineered microbes such as bacteria or yeasts for innovative therapeutic applications, including the in situ delivery of therapeutic peptides. Glucagon-like peptide-1 receptor agonists, such as Exendin-4, have emerged as potential treatments for type 2 diabetes and obesity. However, current administration methods face challenges with patient adherence and low oral bioavailability. To address these limitations, researchers are exploring improved oral delivery methods for Exendin-4, including utilizing AMTs. This study engineered the probiotic yeast Saccharomyces boulardii to produce Exendin-4 (Sb-Exe4) in the gastrointestinal tract of male C57BL/6 mice to combat diet-induced obesity. The biological efficiency of Exendin-4 secreted by S. boulardii was analyzed ex vivo on isolated pancreatic islets, demonstrating induced insulin secretion. The in vivo characterization of Sb-Exe4 revealed that when combined with cold exposure (8 °C), the Sb-Exe4 yeast strain successfully suppressed appetite by 25% and promoted a 4-fold higher weight loss. This proof of concept highlights the potential of AMTs to genetically modify S. boulardii for delivering active therapeutic peptides in a precise and targeted manner. Although challenges in efficacy and regulatory approval persist, AMTs may provide a transformative platform for personalized medicine. Further research in AMTs, particularly focusing on probiotic yeasts such as S. boulardii, holds great potential for novel therapeutic possibilities and enhancing treatment outcomes in diverse metabolic disorders.
Collapse
Affiliation(s)
- Karl Alex Hedin
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Hongbin Zhang
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vibeke Kruse
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vanessa Emily Rees
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Fredrik Bäckhed
- The
Wallenberg Laboratory, Department of Molecular and Clinical Medicine,
Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department
of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Basic Metabolic Research, Faculty of
Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas U. Greiner
- The
Wallenberg Laboratory, Department of Molecular and Clinical Medicine,
Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Ruben Vazquez-Uribe
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten Otto Alexander Sommer
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
28
|
Folli F, Finzi G, Manfrini R, Galli A, Casiraghi F, Centofanti L, Berra C, Fiorina P, Davalli A, La Rosa S, Perego C, Higgins PB. Mechanisms of action of incretin receptor based dual- and tri-agonists in pancreatic islets. Am J Physiol Endocrinol Metab 2023; 325:E595-E609. [PMID: 37729025 PMCID: PMC10874655 DOI: 10.1152/ajpendo.00236.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Simultaneous activation of the incretin G-protein-coupled receptors (GPCRs) via unimolecular dual-receptor agonists (UDRA) has emerged as a new therapeutic approach for type 2 diabetes. Recent studies also advocate triple agonism with molecules also capable of binding the glucagon receptor. In this scoping review, we discuss the cellular mechanisms of action (MOA) underlying the actions of these novel and therapeutically important classes of peptide receptor agonists. Clinical efficacy studies of several UDRAs have demonstrated favorable results both as monotherapies and when combined with approved hypoglycemics. Although the additive insulinotropic effects of dual glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic peptide receptor (GIPR) agonism were anticipated based on the known actions of either glucagon-like peptide-1 (GLP-1) or glucose-dependent insulinotropic peptide (GIP) alone, the additional benefits from GCGR were largely unexpected. Whether additional synergistic or antagonistic interactions among these G-protein receptor signaling pathways arise from simultaneous stimulation is not known. The signaling pathways affected by dual- and tri-agonism require more trenchant investigation before a comprehensive understanding of the cellular MOA. This knowledge will be essential for understanding the chronic efficacy and safety of these treatments.
Collapse
Affiliation(s)
- Franco Folli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- Unit of Diabetes, Endocrinology and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Giovanna Finzi
- Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy
| | - Roberto Manfrini
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- Unit of Diabetes, Endocrinology and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Alessandra Galli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesca Casiraghi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Lucia Centofanti
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Cesare Berra
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Alberto Davalli
- Diabetes and Endocrinology Unit, Department of Internal Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Carla Perego
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paul B Higgins
- Department of Life & Physical Sciences, Atlantic Technological University, Letterkenny, Ireland
| |
Collapse
|
29
|
Huang W, Xie C, Wewer Albrechtsen NJ, Sang M, Sun Z, Jones KL, Horowitz M, Rayner CK, Wu T. Serum alanine transaminase is predictive of fasting and postprandial insulin and glucagon concentrations in type 2 diabetes. Peptides 2023; 169:171092. [PMID: 37673303 DOI: 10.1016/j.peptides.2023.171092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
The liver plays a key role in glucose homeostasis. Serum liver enzyme levels, including alanine transaminase (ALT), aspartate transaminase (AST) and gamma-glutamyl transferase (GGT), are reportedly predictive of the risk of type 2 diabetes (T2D). However, the link between the liver enzyme profile and metabolic derangements in T2D, particularly the secretion of both insulin and glucagon, is not clear. This study evaluated its relationships with glycemia, insulin and glucagon both during fasting and after an oral glucose load or a mixed meal in T2D. 15 healthy and 43 T2D subjects ingested a 75 g glucose drink. 86 T2D subjects consumed a mixed meal. Venous blood was sampled for measurements of blood glucose and plasma insulin, C-peptide and glucagon. Blood glucose, plasma insulin, C-peptide and glucagon concentrations, both fasting and after oral glucose, correlated directly with ALT, while fewer and weaker correlations were observed with GGT or AST. Subgroup analysis in T2D subjects ascertained that plasma insulin, C-peptide and glucagon concentrations after oral glucose were higher with increasing ALT. Similar findings were observed in the T2D subjects who received a mixed meal. In conclusion, serum liver enzyme profile, particularly ALT, reflects dysregulated fasting and nutrient-stimulated plasma insulin and glucagon concentrations in T2D.
Collapse
Affiliation(s)
- Weikun Huang
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| | - Cong Xie
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| | | | - Miaomiao Sang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| | - Karen L Jones
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Michael Horowitz
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Christopher K Rayner
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia; Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Tongzhi Wu
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia.
| |
Collapse
|
30
|
Kitamoto T, Accili D. Unraveling the mysteries of hepatic insulin signaling: deconvoluting the nuclear targets of insulin. Endocr J 2023; 70:851-866. [PMID: 37245960 DOI: 10.1507/endocrj.ej23-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Over 100 years have passed since insulin was first administered to a diabetic patient. Since then great strides have been made in diabetes research. It has determined where insulin is secreted from, which organs it acts on, how it is transferred into the cell and is delivered to the nucleus, how it orchestrates the expression pattern of the genes, and how it works with each organ to maintain systemic metabolism. Any breakdown in this system leads to diabetes. Thanks to the numerous researchers who have dedicated their lives to cure diabetes, we now know that there are three major organs where insulin acts to maintain glucose/lipid metabolism: the liver, muscles, and fat. The failure of insulin action on these organs, such as insulin resistance, result in hyperglycemia and/or dyslipidemia. The primary trigger of this condition and its association among these tissues still remain to be uncovered. Among the major organs, the liver finely tunes the glucose/lipid metabolism to maintain metabolic flexibility, and plays a crucial role in glucose/lipid abnormality due to insulin resistance. Insulin resistance disrupts this tuning, and selective insulin resistance arises. The glucose metabolism loses its sensitivity to insulin, while the lipid metabolism maintains it. The clarification of its mechanism is warranted to reverse the metabolic abnormalities due to insulin resistance. This review will provide a brief historical review for the progress of the pathophysiology of diabetes since the discovery of insulin, followed by a review of the current research clarifying our understanding of selective insulin resistance.
Collapse
Affiliation(s)
- Takumi Kitamoto
- Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032 USA
| |
Collapse
|
31
|
Zhang J, Zheng Y, Martens L, Pfeiffer AFH. The Regulation and Secretion of Glucagon in Response to Nutrient Composition: Unraveling Their Intricate Mechanisms. Nutrients 2023; 15:3913. [PMID: 37764697 PMCID: PMC10536047 DOI: 10.3390/nu15183913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Glucagon was initially regarded as a hyperglycemic substance; however, recent research has revealed its broader role in metabolism, encompassing effects on glucose, amino acids (AAs), and lipid metabolism. Notably, the interplay of glucagon with nutrient intake, particularly of AAs, and non-nutrient components is central to its secretion. Fasting and postprandial hyperglucagonemia have long been linked to the development and progression of type 2 diabetes (T2DM). However, recent studies have brought to light the positive impact of glucagon agonists on lipid metabolism and energy homeostasis. This review explores the multifaceted actions of glucagon, focusing on its regulation, signaling pathways, and effects on glucose, AAs, and lipid metabolism. The interplay between glucagon and other hormones, including insulin and incretins, is examined to provide a mechanistic understanding of its functions. Notably, the liver-α-cell axis, which involves glucagon and amino acids, emerges as a critical aspect of metabolic regulation. The dysregulation of glucagon secretion and its impact on conditions such as T2DM are discussed. The review highlights the potential therapeutic applications of targeting the glucagon pathway in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jiudan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| | - Yang Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Lisa Martens
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
- Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (L.M.); (A.F.H.P.)
| |
Collapse
|
32
|
Gaspari S, Labouèbe G, Picard A, Berney X, Rodriguez Sanchez‐Archidona A, Thorens B. Tmem117 in AVP neurons regulates the counterregulatory response to hypoglycemia. EMBO Rep 2023; 24:e57344. [PMID: 37314252 PMCID: PMC10398655 DOI: 10.15252/embr.202357344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
The counterregulatory response to hypoglycemia (CRR), which ensures a sufficient glucose supply to the brain, is an essential survival function. It is orchestrated by incompletely characterized glucose-sensing neurons, which trigger a coordinated autonomous and hormonal response that restores normoglycemia. Here, we investigate the role of hypothalamic Tmem117, identified in a genetic screen as a regulator of CRR. We show that Tmem117 is expressed in vasopressin magnocellular neurons of the hypothalamus. Tmem117 inactivation in these neurons increases hypoglycemia-induced vasopressin secretion leading to higher glucagon secretion in male mice, and this effect is estrus cycle phase dependent in female mice. Ex vivo electrophysiological analysis, in situ hybridization, and in vivo calcium imaging reveal that Tmem117 inactivation does not affect the glucose-sensing properties of vasopressin neurons but increases ER stress, ROS production, and intracellular calcium levels accompanied by increased vasopressin production and secretion. Thus, Tmem117 in vasopressin neurons is a physiological regulator of glucagon secretion, which highlights the role of these neurons in the coordinated response to hypoglycemia.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Gwenaël Labouèbe
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Alexandre Picard
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Xavier Berney
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | | | - Bernard Thorens
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
33
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
34
|
Lee SR, Jeong SH, Mukae M, Kim SY, Ko JW, Kwun HJ, Hong EJ. Dietary supplementation with nicotinamide riboside improves fetal growth under hypoglycemia. J Nutr Biochem 2023; 116:109310. [PMID: 36871839 DOI: 10.1016/j.jnutbio.2023.109310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/18/2022] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Nicotinamide riboside (NR) is considered a super-supplement that prevents obesity and diabetes. While NR has been investigated for various effects depending on nutritional conditions, metabolic research on women and pregnant women has rarely been discussed. In this study, we focused on the glycemic control of NR in females and found the protective role of NR in pregnant animals under hypoglycemic conditions. Metabolic-tolerance tests were performed in vivo under progesterone (P4) exposure after ovariectomy (OVX). NR enhanced resistance to energy deprivation and showed a slight increase in gluconeogenesis in naïve control mice. However, NR reduced hyperglycemia and significantly induced gluconeogenesis in OVX mice. While NR reduced hyperglycemia in the P4-treated OVX mice, it reduced insulin response and substantially increased gluconeogenesis. Similar to animal experiments, NR increased gluconeogenesis and mitochondrial respiration in Hep3B cells. The gluconeogenic function of NR is mediated by tricarboxylic acid cycle (TCA) cycle enrichment, as residual pyruvate could induce gluconeogenesis. NR recovered fetal growth by increasing blood glucose levels when hypoglycemia was induced by diet-restriction during pregnancy. Our study revealed the glucose-metabolic function of NR in hypoglycemic pregnant animals, suggesting NR as a dietary supplement to improve fetal growth. Because diabetic women suffer from hypoglycemia due to insulin therapy, NR has therapeutic potential for use as a glycemic control pill.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon Republic of Korea
| | - Su Hee Jeong
- College of Veterinary Medicine, Chungnam National University, Daejeon Republic of Korea
| | - Moeka Mukae
- College of Veterinary Medicine, Chungnam National University, Daejeon Republic of Korea
| | - Sang-Yun Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon Republic of Korea; Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine, Chungnam National University, Daejeon Republic of Korea
| | - Hyo-Jung Kwun
- College of Veterinary Medicine, Chungnam National University, Daejeon Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon Republic of Korea.
| |
Collapse
|
35
|
Moyns EJ, Ferner RE. Treatment of insulin poisoning: A 100-year review. Diabet Med 2023; 40:e15076. [PMID: 36861356 DOI: 10.1111/dme.15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Insulin poisoning, as opposed to hypoglycaemia induced by therapeutic doses of insulin, is rare, and guidelines on management differ. We have reviewed the evidence on treatment of insulin poisoning. METHODS We searched PubMed, EMBASE and J-Stage with no restrictions of date or language for controlled studies on treatment of insulin poisoning, collected published cases of insulin poisoning from 1923, and used data from the UK National Poisons Information Service. RESULTS We identified no controlled trials of treatment in insulin poisoning and few relevant experimental studies. Case reports described 315 admissions (301 patients) with insulin poisoning between 1923 and 2022. The insulin with the longest duration of action was long-acting in 83 cases, medium-acting in 116, short-acting in 36 and a rapid-acting analogue in 16. Decontamination by surgical excision of the injection site was reported in six cases. To restore and maintain euglycaemia, almost all cases were treated with glucose, infused for a median 51 hours, interquartile range 16-96 h in 179 cases; 14 patients received glucagon and nine octreotide; adrenaline was tried occasionally. Both corticosteroids and mannitol were occasionally given to mitigate hypoglycaemic brain damage. There were 29 deaths reported, 22/156 (86% survival) up to 1999 and 7/159 (96% survival) between 2000 and 2022 (p = 0.003). CONCLUSIONS There is no randomized controlled trial to guide treatment of insulin poisoning. Treatment with glucose infusion, sometimes supplemented with glucagon, is almost always effective in restoring euglycaemia, but optimum treatments to maintain euglycaemia and restore cerebral function remain uncertain.
Collapse
Affiliation(s)
- Emma J Moyns
- National Poisons Information Service (Birmingham Unit), City Hospital, Birmingham, UK
| | - Robin E Ferner
- National Poisons Information Service (Birmingham Unit), City Hospital, Birmingham, UK
- Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
36
|
Pedersen K, Andersen H, Fledelius C, Holst JJ, Hjuler ST, Kuhre RE. Standard procedures for blood withdrawal in conscious male rats induce stress and profoundly affect glucose tolerance and secretion of glucoregulatory hormones. Mol Metab 2023; 69:101689. [PMID: 36739969 PMCID: PMC9950954 DOI: 10.1016/j.molmet.2023.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE A fundamental difference between physiological and pharmacological studies in rats and humans is that withdrawal of blood from conscious rats necessitates restraint which inevitably inflicts a higher level of stress. We investigated the impact of handling on acute glucose regulation and secretion of glucoregulatory hormones in rats. METHODS Fasted male Sprague Dawley rats (375-400 g, n = 11) were given an oral glucose tolerance test (OGTT) by gavage (2 g/kg). Blood was sampled frequently until 90 min after challenge by handheld sampling (HS) or by automated sampling (AS). In the HS experiment, blood was withdrawn by restraint and sublingual vein puncture; two weeks later, samples were obtained by AS through an implanted catheter in a carotid artery, allowing sampling without disturbing the animals. RESULTS On the day of HS, post challenge glucose AUCs were ∼17% higher (P < 0.0001), despite gastric emptying (AUC) being reduced by ∼30% (P < 0.0001). Plasma insulin AUC was 3.5-fold lower (P < 0.001), and glucose-dependent insulinotropic peptide (GIP) AUC was reduced by ∼36% but glucagon-like peptide-1 concentrations were not affected. Glucagon concentrations were higher both before and after challenge (fold difference in AUCs = 3.3). Adrenocorticotropin (ACTH) and corticosterone AUCs were 2.4-fold and 3.6-fold higher (P < 0.001), respectively. DISCUSSION AND CONCLUSION Our study highlights that sampling of blood from conscious rats by sublingual vein puncture inflicts stress which reduces glucose absorption and glucose tolerance and blunts secretion of insulin and GIP. As blood sampling in humans are less stressful, standard procedures of conducting OGTT's in rats by HS presumably introduce an interspecies difference that may have negative consequences for translatability of test results.
Collapse
Affiliation(s)
- Kent Pedersen
- Integrated Physiology Research, Department of Obesity and NASH Pharmacology, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Helle Andersen
- Integrated Physiology Research, Department of Obesity and NASH Pharmacology, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Christian Fledelius
- Integrated Physiology Research, Department of Diabetes Pharmacology, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Toftegaard Hjuler
- Integrated Physiology Research, Department of Obesity and NASH Pharmacology, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Rune Ehrenreich Kuhre
- Integrated Physiology Research, Department of Obesity and NASH Pharmacology, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Gulati S, Misra A, Tiwari R, Sharma M, Pandey RM, Upadhyay AD, Sati HC. Beneficial effects of premeal almond load on glucose profile on oral glucose tolerance and continuous glucose monitoring: randomized crossover trials in Asian Indians with prediabetes. Eur J Clin Nutr 2023; 77:586-595. [PMID: 36732571 PMCID: PMC10169634 DOI: 10.1038/s41430-023-01263-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Rapid conversion from prediabetes to diabetes and frequent postprandial hyperglycemia (PPHG) is seen in Asian Indians. These should be the target of dietary strategies. OBJECTIVES We hypothesized that dietary intervention of preloading major meals with almonds in participants with prediabetes will decrease overall glycemia and PPHG. DESIGN The study included two phases: (1) an oral glucose tolerance test (OGTT)-based crossover randomized control study, the effect of a single premeal almond load (20 g) given before OGTT was evaluated (n = 60, 30 each period). (2) The continuous glucose monitoring system (CGMS)-based study for 3 days including premeal almond load before three major meals was a free-living, open-labeled, crossover randomized control trial, where control and premeal almond load diets were compared for glycaemic control (n = 60, 30 in each period). The study was registered at clinicaltrials.gov (registration no. NCT04769726). RESULTS In the OGTT-based study phase, the overall AUC for blood glucose, serum insulin, C-peptide, and plasma glucagon post-75 g oral glucose load was significantly lower for treatment vs. control diet (p < 0.001). Specifically, with the former diet, PPHG was significantly lower (18.05% in AUC on OGTT, 24.8% at 1-h, 28.9% at 2-h post OGTT, and 10.07% during CGMS). The CGMS data showed that premeal almond load significantly improved 24-glucose variability; SD of mean glucose concentration and mean of daily differences. Daily glycaemic control improved significantly as per the following: mean 24-h blood glucose concentration (M), time spent above 7.8 mmol/L of blood glucose, together with the corresponding AUC values. Premeal almond load significantly decreased following: overall hyperglycemia (glucose AUC), PPHG, peak 24-h glycaemia, and minimum glucose level during night. CONCLUSION Incorporation of 20 g of almonds, 30 min before each major meal led to a significant decrease in PPHG (as revealed in OGTT-based study phase) and also improved insulin, C-peptide, glucagon levels, and improved glucose variability and glycemic parameters on CGMS in participants with prediabetes. CLINICAL TRIAL REGISTRY The study was registered at clinicaltrials.gov (registration no. NCT04769726).
Collapse
Affiliation(s)
- Seema Gulati
- Diabetes Foundation (India), New Delhi, India.,National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India.,Center of Nutrition & Metabolic Research (C-NET), New Delhi, India
| | - Anoop Misra
- Diabetes Foundation (India), New Delhi, India. .,National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India. .,Center of Nutrition & Metabolic Research (C-NET), New Delhi, India. .,Fortis C-DOC Centre for Excellence for Diabetes, Metabolic Disease, and Endocrinology, New Delhi, India.
| | - Rajneesh Tiwari
- National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India
| | - Meenu Sharma
- National Diabetes, Obesity and Cholesterol Foundation (N-DOC), New Delhi, India
| | | | | | | |
Collapse
|
38
|
Abstract
Plasma glucose is tightly regulated via the secretion of the two glucose-regulating hormones insulin and glucagon. Situated next to the insulin-secreting β-cells, the α-cells produce and secrete glucagon-one of the body's few blood glucose-increasing hormones. Diabetes is a bihormonal disorder, resulting from both inadequate insulin secretion and dysregulation of glucagon. The year 2023 marks the 100th anniversary of the discovery of glucagon, making it particularly timely to highlight the roles of this systemic metabolic messenger in health and disease.
Collapse
Affiliation(s)
- Patrick E MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Metabolic Physiology, Institute of Neuroscience and Physiology, University of Göteborg, Gothenburg, Sweden.
| |
Collapse
|
39
|
Edgerton DS, Kraft G, Smith M, Farmer B, Williams P, Cherrington AD. A physiologic increase in brain glucagon action alters the hepatic gluconeogenic/glycogenolytic ratio but not glucagon's overall effect on glucose production. Am J Physiol Endocrinol Metab 2023; 324:E199-E208. [PMID: 36652399 PMCID: PMC9925168 DOI: 10.1152/ajpendo.00304.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
It has been proposed that brain glucagon action inhibits glucagon-stimulated hepatic glucose production (HGP), which may explain, at least in part, why glucagon's effect on HGP is transient. However, the pharmacologic off-target effects of glucagon in the brain may have been responsible for previously observed effects. Therefore, the aim of this study was to determine if central glucagon action plays a physiologic role in the regulation of HGP. Insulin was maintained at baseline while glucagon was either infused into the carotid and vertebral arteries or into a peripheral (leg) vein at rates designed to increase glucagon in the head in one group, while keeping glucagon at the liver matched between groups. The extraction rate of glucagon across the head was high (double that of the liver), and hypothalamic cAMP increased twofold, in proportion to the exposure of the brain to increased glucagon, but HGP was not reduced by the increase in brain glucagon signaling, as had been suggested previously (the areas under the curve for HGP were 840 ± 14 vs. 871 ± 36 mg/kg/240 min in head vs. peripheral infusion groups, respectively). Central nervous system glucagon action reduced circulating free fatty acids and glycerol, and this was associated with a modest reduction in net hepatic gluconeogenic flux. However, offsetting autoregulation by the liver (i.e., a reciprocal increase in net hepatic glycogenolysis) prevented a change in HGP. Thus, while physiologic engagement of the brain by glucagon can alter hepatic carbon flux, it does not appear to be responsible for the transient fall in HGP that occurs following the stimulation of HGP during a square wave rise in glucagon.NEW & NOTEWORTHY Glucagon stimulates hepatic glucose production through its direct effects on the liver but may indirectly inhibit this process by acting on the brain. This was tested by delivering glucagon via the cerebral circulatory system. Central nervous system glucagon action reduced liver gluconeogenic flux, but glycogenolysis increased, resulting in no net change in hepatic glucose production. Surprisingly, brain glucagon also appeared to suppress lipolysis (plasma free fatty acid and glycerol levels were reduced).
Collapse
Affiliation(s)
- Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Phillip Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
40
|
Scheen AJ, Lefèbvre PJ. Glucagon, from past to present: a century of intensive research and controversies. Lancet Diabetes Endocrinol 2023; 11:129-138. [PMID: 36566754 DOI: 10.1016/s2213-8587(22)00349-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
2022 corresponds to the 100th anniversary of the discovery of glucagon. This TimeCapsule aims to recall the main steps leading to the discovery, characterisation, and clinical importance of the so-called second pancreatic hormone. We describe the early historical findings in basic research (ie, discovery, purification, structure, α-cell origin, radioimmunoassay, glucagon gene [GCG], and glucagon receptor [GLR]), in which three future Nobel Prize laureates were actively involved. Considered as an anti-insulin hormone, glucagon was rapidly used to treat insulin-induced hypoglycaemic coma episodes in people with type 1 diabetes. A key step in the story of glucagon was the discovery of its role and the role of α cells in the physiology and pathophysiology (ie, paracrinopathy) of type 2 diabetes. This concept led to the design of different strategies targeting glucagon, among which GLP-1 receptor (GLP1R) agonists were a major breakthrough, and combination of inhibition of glucagon secretion with stimulation of insulin secretion (both in a glucose-dependent manner). Taking advantage of the glucagon-induced increase in energy metabolism, biased coagonists were developed. Besides the GLP-1 receptor, these coagonists also target the glucagon receptor to further promote weight loss. Thus, the 100-year story of glucagon has most probably not come to an end.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of medicine, CHU Liège, Liège University, Liège, Belgium.
| | - Pierre J Lefèbvre
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of medicine, CHU Liège, Liège University, Liège, Belgium
| |
Collapse
|
41
|
Shkembi B, Huppertz T. Glycemic Responses of Milk and Plant-Based Drinks: Food Matrix Effects. Foods 2023; 12:foods12030453. [PMID: 36765982 PMCID: PMC9914410 DOI: 10.3390/foods12030453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The consumption of food items containing digestible carbohydrates in food products leads to postprandial increases in blood glucose levels and glycemic responses. The extent to which these occur depends on many factors, including concentration and type of carbohydrate, but also other physicochemical properties of the food matrix, which determine the rate of uptake of monosaccharides into the bloodstream, including product structure and factors affecting gastric emptying. For milk, control of postprandial glycemic responses appears to be multifaceted, including a controlled rate of gastric emptying, a rate of glucose and galactose uptake into the bloodstream controlled by enzymatic hydrolysis, as well as stimulated insulin secretion to enhance uptake of blood glucose from the bloodstream. Altogether, this allows milk to deliver comparatively high levels of carbohydrate with limited glycemic responses. For plant-based drinks positioned as milk alternatives, however, compositional differences (including carbohydrate type and concentration) as well as matrix factors limiting control over gastric emptying and insulin secretion can, in some cases, lead to much stronger glycemic responses, which are undesirable in relation to non-communicable diseases, such as type-2 diabetes. This review discusses glycemic responses to milk and plant-based drinks from this perspective, focusing on mechanistic insights and food matrix effects.
Collapse
Affiliation(s)
- Blerina Shkembi
- Food Quality & Design Group, Wageningen University & Research, 6708WG Wageningen, The Netherlands
| | - Thom Huppertz
- Food Quality & Design Group, Wageningen University & Research, 6708WG Wageningen, The Netherlands
- FrieslandCampina, 3800LE Amersfoort, The Netherlands
- Correspondence:
| |
Collapse
|
42
|
Pixner T, Stummer N, Schneider AM, Lukas A, Gramlinger K, Julian V, Thivel D, Mörwald K, Mangge H, Dalus C, Aigner E, Furthner D, Weghuber D, Maruszczak K. The relationship between glucose and the liver-alpha cell axis - A systematic review. Front Endocrinol (Lausanne) 2023; 13:1061682. [PMID: 36686477 PMCID: PMC9849557 DOI: 10.3389/fendo.2022.1061682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Until recently, glucagon was considered a mere antagonist to insulin, protecting the body from hypoglycemia. This notion changed with the discovery of the liver-alpha cell axis (LACA) as a feedback loop. The LACA describes how glucagon secretion and pancreatic alpha cell proliferation are stimulated by circulating amino acids. Glucagon in turn leads to an upregulation of amino acid metabolism and ureagenesis in the liver. Several increasingly common diseases (e.g., non-alcoholic fatty liver disease, type 2 diabetes, obesity) disrupt this feedback loop. It is important for clinicians and researchers alike to understand the liver-alpha cell axis and the metabolic sequelae of these diseases. While most of previous studies have focused on fasting concentrations of glucagon and amino acids, there is limited knowledge of their dynamics after glucose administration. The authors of this systematic review applied PRISMA guidelines and conducted PubMed searches to provide results of 8078 articles (screened and if relevant, studied in full). This systematic review aims to provide better insight into the LACA and its mediators (amino acids and glucagon), focusing on the relationship between glucose and the LACA in adult and pediatric subjects.
Collapse
Affiliation(s)
- Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Anna Maria Schneider
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Lukas
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Karin Gramlinger
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
| | - Valérie Julian
- Department of Sport Medicine and Functional Explorations, Diet and Musculoskeletal Health Team, Human Nutrition Research Center (CRNH), INRA, University Hospital of Clermont-Ferrand, University of Clermont Auvergne, Clermont-Ferrand, France
| | - David Thivel
- Laboratory of Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), University of Clermont Auvergne, Clermont-Ferrand, France
| | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Christopher Dalus
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Elmar Aigner
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
43
|
Xu H, Wang Y, Kwon H, Shah A, Kalemba K, Su X, He L, Wondisford FE. Glucagon changes substrate preference in gluconeogenesis. J Biol Chem 2022; 298:102708. [PMID: 36402444 PMCID: PMC9747632 DOI: 10.1016/j.jbc.2022.102708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Fasting hyperglycemia in diabetes mellitus is caused by unregulated glucagon secretion that activates gluconeogenesis (GNG) and increases the use of pyruvate, lactate, amino acids, and glycerol. Studies of GNG in hepatocytes, however, tend to test a limited number of substrates at nonphysiologic concentrations. Therefore, we treated cultured primary hepatocytes with three identical substrate mixtures of pyruvate/lactate, glutamine, and glycerol at serum fasting concentrations, where a different U-13C- or 2-13C-labeled substrate was substituted in each mix. In the absence of glucagon stimulation, 80% of the glucose produced in primary hepatocytes incorporated either one or two 13C-labeled glycerol molecules in a 1:1 ratio, reflecting the high overall activity of this pathway. In contrast, glucose produced from 13C-labeled pyruvate/lactate or glutamine rarely incorporated two labeled molecules. While glucagon increased the glycerol and pyruvate/lactate contributions to glucose carbon by 1.6- and 1.8-fold, respectively, the glutamine contribution to glucose carbon was increased 6.4-fold in primary hepatocytes. To account for substrate 13C carbon loss during metabolism, we also performed a metabolic flux analysis, which confirmed that the majority of glucose carbon produced by primary hepatocytes was from glycerol. In vivo studies using a PKA-activation mouse model that represents elevated glucagon activity confirmed that most circulating lactate carbons originated from glycerol, but very little glycerol was derived from lactate carbons, reflecting glycerol's importance as a carbon donor to GNG. Given the diverse entry points for GNG substrates, hepatic glucagon action is unlikely to be due to a single mechanism.
Collapse
Affiliation(s)
- Huiting Xu
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Hyokjoon Kwon
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Ankit Shah
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Katarzyna Kalemba
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Ling He
- Departments of Pediatrics and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
44
|
Capozzi ME, D'Alessio DA, Campbell JE. The past, present, and future physiology and pharmacology of glucagon. Cell Metab 2022; 34:1654-1674. [PMID: 36323234 PMCID: PMC9641554 DOI: 10.1016/j.cmet.2022.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The evolution of glucagon has seen the transition from an impurity in the preparation of insulin to the development of glucagon receptor agonists for use in type 1 diabetes. In type 2 diabetes, glucagon receptor antagonists have been explored to reduce glycemia thought to be induced by hyperglucagonemia. However, the catabolic actions of glucagon are currently being leveraged to target the rise in obesity that paralleled that of diabetes, bringing the pharmacology of glucagon full circle. During this evolution, the physiological importance of glucagon advanced beyond the control of hepatic glucose production, incorporating critical roles for glucagon to regulate both lipid and amino acid metabolism. Thus, it is unsurprising that the study of glucagon has left several paradoxes that make it difficult to distill this hormone down to a simplified action. Here, we describe the history of glucagon from the past to the present and suggest some direction to the future of this field.
Collapse
Affiliation(s)
- Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Endocrinology Division, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
45
|
Sui X, Wang H, Wu F, Yang C, Zhang H, Xu Z, Guo Y, Guo Z, Xin B, Ma T, Li Y, Dai Z. Hepatic metabolite responses to 4-day complete fasting and subsequent refeeding in rats. PeerJ 2022; 10:e14009. [PMID: 36157064 PMCID: PMC9504452 DOI: 10.7717/peerj.14009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/15/2022] [Indexed: 01/19/2023] Open
Abstract
Background Fasting has been widely used to improve various metabolic diseases in humans. Adaptive fasting is necessary for metabolic adaptation during prolonged fasting, which could overcome the great advantages of short-term fasting. The liver is the main organ responsible for energy metabolism and metabolic homeostasis. To date, we lack literature that describes the physiologically relevant adaptations of the liver during prolonged fasting and refeeding. For that reason, this study aims to evaluate the response of the liver of Sprague-Dawley (SD) rats to prolonged fasting and refeeding. Methods Sixty-six male SD rats were divided into the fasting groups, which were fasted for 0, 4, 8, 12, 24, 48, 72, or 96 h, and the refeeding groups, which were refed for 1, 3, or 6 days after 96 h of fasting. Serum glucose, TG, FFA, β-hydroxybutyrate, insulin, glucagon, leptin, adiponectin and FGF21 levels were assessed. The glucose content, PEPCK activity, TG concentration and FFA content were measured in liver tissue, and the expression of genes involved in gluconeogenesis (PEPCK and G6Pase), ketogenesis (PPARα, CPT-1a and HMGCS2) and the protein expression of nutrient-sensing signaling molecules (AMPK, mTOR and SIRT1) were determined by RT-qPCR and western blotting, respectively. Results Fasting significantly decreased the body weight, which was totally recovered to baseline after 3 days of refeeding. A 4-day fast triggered an energy metabolic substrate shift from glucose to ketones and caused serum hormone changes and changes in the protein expression levels of nutrient-sensing signaling molecules. Glycogenolysis served as the primary fuel source during the first 24 h of fasting, while gluconeogenesis supplied the most glucose thereafter. Serum FFA concentrations increased significantly with 48 h of fasting. Serum FFAs partly caused high serum β-hydroxybutyrate levels, which became an important energy source with the prolongation of the fasting duration. One day of refeeding quickly reversed the energy substrate switch. Nutrient-sensing signaling molecules (AMPK and SIRT1 but not mTOR signaling) were highly expressed at the beginning of fasting (in the first 4 h). Serum insulin and leptin decreased with fasting initiation, and serum glucagon increased, but adiponectin and FGF21 showed no significant changes. Herein, we depicted in detail the timing of the metabolic response and adaptation of the liver to a 4-day water-only fast and subsequent refeeding in rats, which provides helpful support for the design of safe prolonged and intermittent fasting regimens.
Collapse
Affiliation(s)
- Xiukun Sui
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China,Space Science and Technology Institute, Shenzhen, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zihan Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - ZhiFeng Guo
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bingmu Xin
- Space Science and Technology Institute, Shenzhen, China
| | - Ting Ma
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
46
|
Frampton J, Izzi-Engbeaya C, Salem V, Murphy KG, Tan TM, Chambers ES. The acute effect of glucagon on components of energy balance and glucose homoeostasis in adults without diabetes: a systematic review and meta-analysis. Int J Obes (Lond) 2022; 46:1948-1959. [PMID: 36123404 PMCID: PMC9584822 DOI: 10.1038/s41366-022-01223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/05/2022]
Abstract
Objective Using a systematic review and meta-analysis, we aimed to estimate the mean effect of acute glucagon administration on components of energy balance and glucose homoeostasis in adults without diabetes. Methods CENTRAL, CINAHL, Embase, MEDLINE, PubMed, and Scopus databases were searched from inception to May 2021. To be included, papers had to be a randomised, crossover, single- or double-blind study, measuring ad libitum meal energy intake, energy expenditure, subjective appetite, glucose, and/or insulin following acute administration of glucagon and an appropriate comparator in adults without diabetes. Risk of bias was assessed using the Revised Cochrane Risk of Bias Tool for Randomized trials with additional considerations for cross-over trials. Certainty of evidence was assessed using the GRADE approach. Random-effect meta-analyses were performed for outcomes with at least five studies. This study is registered on PROSPERO (CRD42021269623). Results In total, 13 papers (15 studies) were considered eligible: energy intake (5 studies, 77 participants); energy expenditure (5 studies, 59 participants); subjective appetite (3 studies, 39 participants); glucose (13 studies, 159 participants); insulin (12 studies, 147 participants). All studies had some concerns with regards to risk of bias. Mean intervention effect of acute glucagon administration on energy intake was small (standardised mean difference [SMD]: –0.19; 95% CI, –0.59 to 0.21; P = 0.345). Mean intervention effect of acute glucagon administration on energy expenditure (SMD: 0.72; 95% CI, 0.37–1.08; P < 0.001), glucose (SMD: 1.11; 95% CI, 0.60–1.62; P < 0.001), and insulin (SMD: 1.33; 95% CI, 0.88–1.77; P < 0.001) was moderate to large. Conclusions Acute glucagon administration produces substantial increases in energy expenditure, and in circulating insulin and glucose concentrations. However, the effect of acute glucagon administration on energy intake is unclear. Insufficient evidence was available to evaluate the acute effect of glucagon on subjective appetite.
Collapse
Affiliation(s)
- James Frampton
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK. .,Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Victoria Salem
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, SW7 2BX, UK
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
47
|
Oh JH, Han YE, Bao YR, Kang CW, Koo J, Ku CR, Cho YH, Lee EJ. Olfactory marker protein regulation of glucagon secretion in hyperglycemia. Exp Mol Med 2022; 54:1502-1510. [PMID: 36104518 PMCID: PMC9534918 DOI: 10.1038/s12276-022-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
The olfactory marker protein (OMP), which is also expressed in nonolfactory tissues, plays a role in regulating the kinetics and termination of olfactory transduction. Thus, we hypothesized that OMP may play a similar role in modulating the secretion of hormones involved in Ca2+ and cAMP signaling, such as glucagon. In the present study, we confirmed nonolfactory α-cell-specific OMP expression in human and mouse pancreatic islets as well as in the murine α-cell line αTC1.9. Glucagon and OMP expression increased under hyperglycemic conditions. Omp knockdown in hyperglycemic αTC1.9 cells using small-interfering RNA (siRNA) reduced the responses to glucagon release and the related signaling pathways compared with the si-negative control. The OMPlox/lox;GCGcre/w mice expressed basal glucagon levels similar to those in the wild-type OMPlox/lox mice but showed resistance against streptozotocin-induced hyperglycemia. The ectopic olfactory signaling events in pancreatic α-cells suggest that olfactory receptor pathways could be therapeutic targets for reducing excessive glucagon levels.
Collapse
Affiliation(s)
- Ju Hun Oh
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Ye Eon Han
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Ya Ru Bao
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - Chan Woo Kang
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea
| | - JaeHyung Koo
- Department of New Biology, DGIST, Daegu, 42988, South Korea
| | - Cheol Ryong Ku
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Hee Cho
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| | - Eun Jig Lee
- Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, South Korea.
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
48
|
Wang Y, Spolitu S, Zadroga JA, Sarecha AK, Ozcan L. Hepatocyte Rap1a contributes to obesity- and statin-associated hyperglycemia. Cell Rep 2022; 40:111259. [PMID: 36001955 PMCID: PMC9446800 DOI: 10.1016/j.celrep.2022.111259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/28/2022] Open
Abstract
Excessive hepatic glucose production contributes to the development of hyperglycemia and is a key feature of type 2 diabetes. Here, we report that activation of hepatocyte Rap1a suppresses gluconeogenic gene expression and glucose production, whereas Rap1a silencing stimulates them. Rap1a activation is suppressed in obese mouse liver, and restoring its activity improves glucose intolerance. As Rap1a′s membrane localization and activation depends on its geranylgeranylation, which is inhibited by statins, we show that statin-treated hepatocytes and the human liver have lower active-Rap1a levels. Similar to Rap1a inhibition, statins stimulate hepatic gluconeogenesis and increase fasting blood glucose in obese mice. Geranylgeraniol treatment, which acts as the precursor for geranylgeranyl isoprenoids, restores Rap1a activity and improves statin-mediated glucose intolerance. Mechanistically, Rap1a activation induces actin polymerization, which suppresses gluconeogenesis by Akt-mediated FoxO1 inhibition. Thus, Rap1a regulates hepatic glucose homeostasis, and blocking its activity, via lowering geranylgeranyl isoprenoids, contributes to statin-induced glucose intolerance. Wang et al. show that activation of hepatic Rap1a suppresses gluconeogenic gene expression and improves glucose intolerance via Akt-mediated FoxO1 inhibition. Statins lower intracellular isoprenoid levels and inhibit Rap1a activation, which contributes to their hyperglycemic effect. These findings identify a role of hepatic Rap1a in obesity- and statin-associated glucose homeostasis.
Collapse
Affiliation(s)
- Yating Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Stefano Spolitu
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - John A Zadroga
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Amesh K Sarecha
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lale Ozcan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
49
|
Čater M, Bombek LK. Protective Role of Mitochondrial Uncoupling Proteins against Age-Related Oxidative Stress in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:antiox11081473. [PMID: 36009191 PMCID: PMC9404801 DOI: 10.3390/antiox11081473] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The accumulation of oxidative damage to DNA and other biomolecules plays an important role in the etiology of aging and age-related diseases such as type 2 diabetes mellitus (T2D), atherosclerosis, and neurodegenerative disorders. Mitochondrial DNA (mtDNA) is especially sensitive to oxidative stress. Mitochondrial dysfunction resulting from the accumulation of mtDNA damage impairs normal cellular function and leads to a bioenergetic crisis that accelerates aging and associated diseases. Age-related mitochondrial dysfunction decreases ATP production, which directly affects insulin secretion by pancreatic beta cells and triggers the gradual development of the chronic metabolic dysfunction that characterizes T2D. At the same time, decreased glucose oxidation in skeletal muscle due to mitochondrial damage leads to prolonged postprandial blood glucose rise, which further worsens glucose homeostasis. ROS are not only highly reactive by-products of mitochondrial respiration capable of oxidizing DNA, proteins, and lipids but can also function as signaling and effector molecules in cell membranes mediating signal transduction and inflammation. Mitochondrial uncoupling proteins (UCPs) located in the inner mitochondrial membrane of various tissues can be activated by ROS to protect cells from mitochondrial damage. Mitochondrial UCPs facilitate the reflux of protons from the mitochondrial intermembrane space into the matrix, thereby dissipating the proton gradient required for oxidative phosphorylation. There are five known isoforms (UCP1-UCP5) of mitochondrial UCPs. UCP1 can indirectly reduce ROS formation by increasing glutathione levels, thermogenesis, and energy expenditure. In contrast, UCP2 and UCP3 regulate fatty acid metabolism and insulin secretion by beta cells and modulate insulin sensitivity. Understanding the functions of UCPs may play a critical role in developing pharmacological strategies to combat T2D. This review summarizes the current knowledge on the protective role of various UCP homologs against age-related oxidative stress in T2D.
Collapse
Affiliation(s)
- Maša Čater
- Correspondence: (M.Č.); (L.K.B.); Tel.: +386-2-2345-847 (L.K.B.)
| | | |
Collapse
|
50
|
Khan D, Moffett RC, Flatt PR, Tarasov AI. Classical and non-classical islet peptides in the control of β-cell function. Peptides 2022; 150:170715. [PMID: 34958851 DOI: 10.1016/j.peptides.2021.170715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022]
Abstract
The dual role of the pancreas as both an endocrine and exocrine gland is vital for food digestion and control of nutrient metabolism. The exocrine pancreas secretes enzymes into the small intestine aiding digestion of sugars and fats, whereas the endocrine pancreas secretes a cocktail of hormones into the blood, which is responsible for blood glucose control and regulation of carbohydrate, protein and fat metabolism. Classical islet hormones, insulin, glucagon, pancreatic polypeptide and somatostatin, interact in an autocrine and paracrine manner, to fine-tube the islet function and insulin secretion to the needs of the body. Recently pancreatic islets have been reported to express a number of non-classical peptide hormones involved in metabolic signalling, whose major production site was believed to reside outside pancreas, e.g. in the small intestine. We highlight the key non-classical islet peptides, and consider their involvement, together with established islet hormones, in regulation of stimulus-secretion coupling as well as proliferation, survival and transdifferentiation of β-cells. We furthermore focus on the paracrine interaction between classical and non-classical islet hormones in the maintenance of β-cell function. Understanding the functional relationships between these islet peptides might help to develop novel, more efficient treatments for diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| | - R Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrei I Tarasov
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|