1
|
Awan MJA, Farooq MA, Buzdar MI, Zia A, Ehsan A, Waqas MAB, Hensel G, Amin I, Mansoor S. Advances in gene editing-led route for hybrid breeding in crops. Biotechnol Adv 2025; 81:108569. [PMID: 40154762 DOI: 10.1016/j.biotechadv.2025.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/22/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
With the global demand for sustainable agriculture on the rise, RNA-guided nuclease technology offers transformative applications in crop breeding. Traditional hybrid breeding methods, like three-line and two-line systems, are often labor-intensive, transgenic, and economically burdensome. While chemical mutagens facilitate these systems, they not only generate weak alleles but also produce strong alleles that induce permanent sterility through random mutagenesis. In contrast, RNA-guided nuclease system, such as clustered regularly interspaced short palindromic repeats (CRISPR)- associated protein (Cas) system, facilitates more efficient hybrid production by inducing male sterility through targeted genome modifications in male sterility genes, such as MS8, MS10, MS26, and MS45 which allows precise manipulation of pollen development or pollen abortion in various crops. Moreover, this approach allows haploid induction for the rapid generation of recombinant and homozygous lines from hybrid parents by editing essential genes, like CENH3, MTL/NLD/PLA, and DMP, resulting in high-yield, transgene-free hybrids. Additionally, this system supports synthetic apomixis induction by employing the MiMe (Mitosis instead of Meiosis) strategy, coupled with parthenogenesis in hybrid plants, to create heterozygous lines and retain hybrid vigor in subsequent generations. RNA-guided nuclease-induced synthetic apomixis also enables genome stacking for autopolyploid progressive heterosis via clonal gamete production for trait maintenance to enhance crop adaptability without compromising yield. Additionally, CRISPR-Cas-mediated de novo domestication of wild relatives, along with recent advances to circumvent tissue culture- recalcitrance and -dependency through heterologous expression of morphogenic regulators, holds great promise for incorporating diversity-enriched germplasm into the breeding programs. These approaches aim to generate elite hybrids adapted to dynamic environments and address the anticipated challenges of food insecurity.
Collapse
Affiliation(s)
- Muhammad Jawad Akbar Awan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| | - Muhammad Awais Farooq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum, University of Bologna, Italy
| | - Muhammad Ismail Buzdar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Asma Zia
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Aiman Ehsan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Abu Bakar Waqas
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan
| | - Goetz Hensel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Centre for Plant Genome Engineering, Düsseldorf, Germany; Cluster of Excellence in Plant Sciences "SMART Plants for Tomorrow's Needs", Heinrich Heine University Düsseldorf, Germany.
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan.
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad, Pakistan; Jamil ur Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
2
|
Musazade E, Liu Y, Chen X, Gao J, Wang M, Han X, Feng X. Advances and Challenges in Haploid Induction for Warm-Season Legumes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6315-6332. [PMID: 40059329 DOI: 10.1021/acs.jafc.4c10447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Haploid induction via doubled haploid (DH) technology is pivotal for achieving true homozygosity in plant breeding; however, Fabaceae species lag in establishing effective haploidization methods. This review explores recent advances in DH techniques for warm-season legumes, including soybean, cowpea, pigeon pea, common bean, peanut, mung bean, and winged bean, highlighting key challenges and perspectives. While anther culture, cold pretreatment, and MS-based medium with growth regulators demonstrate potential, fully reproducible protocols remain elusive. Advances in microspore-derived embryogenesis have improved regeneration consistency in soybeans, cowpeas, and peanuts. Key areas for improving DH technology include optimizing regeneration conditions, such as shortening the callus phase and accelerating embryo and shoot development. Recent advancements in CRISPR/Cas9-mediated genome modifications, targeting genes like CENH3, MTL, and DMP, offer promising strategies to enhance efficiency and overcome resistance to conventional methods. Integrating molecular tools with haploid induction and conventional breeding techniques can significantly improve legume breeding and productivity.
Collapse
Affiliation(s)
- Elshan Musazade
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130112, P.R. China
| | - Yiqian Liu
- Agronomy College, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Xiao Chen
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130112, P.R. China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130112, P.R. China
| | - Mingjing Wang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130112, P.R. China
| | - Xiao Han
- Agronomy College, Jilin Agricultural University, Changchun 130118, P.R. China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130112, P.R. China
| |
Collapse
|
3
|
Liu Y, Elshan M, Li G, Han X, Chen X, Feng X. Perspectives of Genome Editing Mediated Haploid Inducer Systems in Legumes. Int J Mol Sci 2025; 26:1154. [PMID: 39940922 PMCID: PMC11818222 DOI: 10.3390/ijms26031154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Genome editing-mediated haploid inducer systems (HISs) present a promising strategy for enhancing breeding efficiency in legume crops, which are vital for sustainable agriculture due to their nutritional benefits and ability to fix nitrogen. Traditional legume breeding is often slow and complicated by the complexity of legumes' genomes and the challenges associated with tissue culture. Recent advancements have broadened the applicability of HISs in legume crops, facilitating a reduction in the duration of the breeding cycle. By integrating genome editing technology with haploid breeding systems, researchers can achieve precise genetic modifications and rapidly produce homozygous lines, thereby significantly accelerating the development of desired traits. This review explores the current status and future prospects of genome editing-mediated HISs in legumes, emphasizing the mechanisms of haploid induction; recent breakthroughs; and existing technical challenges. Furthermore, we highlight the necessity for additional research to optimize these systems across various legume species, which has the potential to greatly enhance breeding efficiency and contribute to the sustainability of legume production.
Collapse
Affiliation(s)
- Yiqian Liu
- Agronomy College, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (X.H.)
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (M.E.); (G.L.)
| | - Musazade Elshan
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (M.E.); (G.L.)
| | - Geng Li
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (M.E.); (G.L.)
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xiao Han
- Agronomy College, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (X.H.)
| | - Xiao Chen
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (M.E.); (G.L.)
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (M.E.); (G.L.)
| |
Collapse
|
4
|
Kozar EV, Domblides EA. Protocol for obtaining doubled haploids in isolated microspore culture in vitro for poorly responsive genotypes of brassicaceae family. Biol Methods Protoc 2024; 9:bpae091. [PMID: 39720620 PMCID: PMC11668254 DOI: 10.1093/biomethods/bpae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024] Open
Abstract
In this protocol for obtaining doubled haploids plants (DH), we propose a new method for microspore isolation. This method is useful for genotypes of the Brassicaceae family with low responsiveness to DH technology. For such crops, it allows increasing the embryo yield several times and sometimes obtaining embryos for the first time. This method of microspore isolation reduces the mechanical impact on the bud tissue, which minimizes somatic cell destruction and reduces to get it into the preparation through the filter, thus increasing its purity. The new isolation method also increases the relative concentration of embryogenic microspores in the preparation. This is possible because the anther tissues are not destroyed during the isolation process. Therefore, the anther retains its structure and microspores of early and late stages are trapped by the anther tissue, thus the anther acts as a sieve. Late stages are trapped because of their larger size, while early stages are trapped because they are even more tightly bound to the anther tissue. Together, these factors increase the efficiency of the technology for DH production in vitro microspore culture. This protocol article provides a detailed experimental protocol to the method presented in the experimental article (E.V. Kozar, E.G. Kozar, E.A. Domblides. Effect of the Method of Microspore Isolation on the Efficiency of Isolated Microspore Culture In Vitro for Brassicaceae Family. Horticulturae. 2022. Vol. 8, No. 10. P. 864. DOI 10.3390/horticulturae8100864) but does not repeat all the results documenting the efficacy of the actual method.
Collapse
Affiliation(s)
- Elena V Kozar
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), Selektsionnaya St, 14, VNIISSOK, Odintsovo Reg., 143072 Moscow, Russia
| | - Elena A Domblides
- Federal State Budgetary Scientific Institution Federal Scientific Vegetable Center (FSBSI FSVC), Selektsionnaya St, 14, VNIISSOK, Odintsovo Reg., 143072 Moscow, Russia
| |
Collapse
|
5
|
Nieuwenhuis R, Hesselink T, van den Broeck HC, Cordewener J, Schijlen E, Bakker L, Diaz Trivino S, Struss D, de Hoop SJ, de Jong H, Peters SA. Genome architecture and genetic diversity of allopolyploid okra (Abelmoschus esculentus). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:225-241. [PMID: 38133904 DOI: 10.1111/tpj.16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/17/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The allopolyploid okra (Abelmoschus esculentus) unveiled telomeric repeats flanking distal gene-rich regions and short interstitial TTTAGGG telomeric repeats, possibly representing hallmarks of chromosomal speciation. Ribosomal RNA (rRNA) genes organize into 5S clusters, distinct from the 18S-5.8S-28S units, indicating an S-type rRNA gene arrangement. The assembly, in line with cytogenetic and cytometry observations, identifies 65 chromosomes and a 1.45 Gb genome size estimate in a haploid sibling. The lack of aberrant meiotic configurations implies limited to no recombination among sub-genomes. k-mer distribution analysis reveals 75% has a diploid nature and 15% heterozygosity. The configurations of Benchmarking Universal Single-Copy Ortholog (BUSCO), k-mer, and repeat clustering point to the presence of at least two sub-genomes one with 30 and the other with 35 chromosomes, indicating the allopolyploid nature of the okra genome. Over 130 000 putative genes, derived from mapped IsoSeq data and transcriptome data from public okra accessions, exhibit a low genetic diversity of one single nucleotide polymorphisms per 2.1 kbp. The genes are predominantly located at the distal chromosome ends, declining toward central scaffold domains. Long terminal repeat retrotransposons prevail in central domains, consistent with the observed pericentromeric heterochromatin and distal euchromatin. Disparities in paralogous gene counts suggest potential sub-genome differentiation implying possible sub-genome dominance. Amino acid query sequences of putative genes facilitated phenol biosynthesis pathway annotation. Comparison with manually curated reference KEGG pathways from related Malvaceae species reveals the genetic basis for putative enzyme coding genes that likely enable metabolic reactions involved in the biosynthesis of dietary and therapeutic compounds in okra.
Collapse
Affiliation(s)
- Ronald Nieuwenhuis
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Thamara Hesselink
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Hetty C van den Broeck
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jan Cordewener
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Elio Schijlen
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Linda Bakker
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sara Diaz Trivino
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Darush Struss
- East-West International B.V., Heiligeweg 18, 1601 PN, Enkhuizen, The Netherlands
| | - Simon-Jan de Hoop
- East-West International B.V., Heiligeweg 18, 1601 PN, Enkhuizen, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
6
|
Baliyan N, Srivastava A, Rao M, Mishra AK, Bharti H, Khar A, Mangal M. Correlation of stages of microsporogenesis with bud and anther morphology in pepper genotypes through DAPI staining with different levels of mordant in cytological fixative. PROTOPLASMA 2024; 261:367-376. [PMID: 37910230 DOI: 10.1007/s00709-023-01903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
The haploid and doubled haploid plants serve as valuable tools for breeders due to their ability to expedite the mapping of genes of agronomic importance, as well as accelerate the breeding cycle for generation of novel hybrids and improved homogenous varieties. Successful anther/microspore culture largely depends on the use of microspores at appropriate developmental stages at the time of culture, which can be specific for each plant species and genotype. In the present study, we described the visible morphological characteristics of flower buds and anthers at different developmental stages to identify the optimal microspore stage within the anther/buds of two pepper hybrids, Indra and Lakshmi. This information enabled us to predict the suitable microspore stage for successful haploid production. To enhance the visualization of nuclei in the pepper microspores, different concentrations of FeCl3 were employed as a mordant to Carnoy's fixative I, followed by DAPI staining. A clear and distinct nucleus was observed using DAPI staining procedures in the pepper microspores when fixed in Carnoy's solution containing ferric chloride (40-90 µl) as mordant. The use of mordant thus facilitated the efficient cytological analysis of the pepper microspores. Present results indicate that, to achieve efficient haploid production, flower buds with an average length of 4.4 to 5.02 mm for the hybrid Indra and 5.15 to 5.40 mm for the hybrid Lakshmi should be utilized. Additionally, these buds should have a calyx covering approximately 80-90% of the total bud length. We observed that in such buds, microspores are in the late-uninucleate and early binucleate stage which has been reported to be the most conducive stage for androgenesis induction in pepper.
Collapse
Affiliation(s)
- Nikita Baliyan
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arpita Srivastava
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Ajay Kumar Mishra
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hemlata Bharti
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Khar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manisha Mangal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
7
|
Quiroz LF, Gondalia N, Brychkova G, McKeown PC, Spillane C. Haploid rhapsody: the molecular and cellular orchestra of in vivo haploid induction in plants. THE NEW PHYTOLOGIST 2024; 241:1936-1949. [PMID: 38180262 DOI: 10.1111/nph.19523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
In planta haploid induction (HI), which reduces the chromosome number in the progeny after fertilization, has garnered increasing attention for its significant potential in crop breeding and genetic research. Despite the identification of several natural and synthetic HI systems in different plant species, the molecular and cellular mechanisms underlying these HI systems remain largely unknown. This review synthesizes the current understanding of HI systems in plants (with a focus on genes and molecular mechanisms involved), including the molecular and cellular interactions which orchestrate the HI process. As most HI systems can function across taxonomic boundaries, we particularly discuss the evidence for conserved mechanisms underlying the process. These include mechanisms involved in preserving chromosomal integrity, centromere function, gamete communication and/or fusion, and maintenance of karyogamy. While significant discoveries and advances on haploid inducer systems have arisen over the past decades, we underscore gaps in understanding and deliberate on directions for further research for a more comprehensive understanding of in vivo HI processes in plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Nikita Gondalia
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Galina Brychkova
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| |
Collapse
|
8
|
Minow MAA, Marand AP, Schmitz RJ. Leveraging Single-Cell Populations to Uncover the Genetic Basis of Complex Traits. Annu Rev Genet 2023; 57:297-319. [PMID: 37562412 PMCID: PMC10775913 DOI: 10.1146/annurev-genet-022123-110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The ease and throughput of single-cell genomics have steadily improved, and its current trajectory suggests that surveying single-cell populations will become routine. We discuss the merger of quantitative genetics with single-cell genomics and emphasize how this synergizes with advantages intrinsic to plants. Single-cell population genomics provides increased detection resolution when mapping variants that control molecular traits, including gene expression or chromatin accessibility. Additionally, single-cell population genomics reveals the cell types in which variants act and, when combined with organism-level phenotype measurements, unveils which cellular contexts impact higher-order traits. Emerging technologies, notably multiomics, can facilitate the measurement of both genetic changes and genomic traits in single cells, enabling single-cell genetic experiments. The implementation of single-cell genetics will advance the investigation of the genetic architecture of complex molecular traits and provide new experimental paradigms to study eukaryotic genetics.
Collapse
Affiliation(s)
- Mark A A Minow
- Department of Genetics, University of Georgia, Athens, Georgia, USA;
| | | | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
9
|
Guo N, Han S, Zong M, Wang G, Duan M, Liu F. Construction and Application of an F1-Derived Doubled-Haploid Population and High-Density Genetic Map for Ornamental Kale Breeding. Genes (Basel) 2023; 14:2104. [PMID: 38003047 PMCID: PMC10670981 DOI: 10.3390/genes14112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Ornamental kale (Brassica oleracea var. acephala) is an attractive ornamental plant with a range of leaf colors and shapes. Breeding new varieties of ornamental kale has proven challenging due to its lengthy breeding cycle and the limited availability of genetic markers. In this study, a F1DH ornamental kale population comprising 300 DH lines was constructed using microspore culture. A high-density genetic map was developed by conducting whole-genome sequencing on 150 individuals from the F1DH population. The genetic map contained 1696 bin markers with 982,642 single-nucleotide polymorphisms (SNPs) spanning a total distance of 775.81 cM on all nine chromosomes with an average distance between markers of 0.46 cM. The ornamental kale genetic map contained substantially more SNP markers compared with published genetic maps for other B. oleracea crops. Furthermore, utilizing this high-density genetic map, we identified seven quantitative trait loci (QTLs) that significantly influence the leaf shape of ornamental kale. These findings are valuable for understanding the genetic basis of key agronomic traits in ornamental kale. The F1DH progenies provide an excellent resource for germplasm innovation and breeding new varieties of ornamental kale. Additionally, the high-density genetic map provides crucial insights for gene mapping and unraveling the molecular mechanisms behind important agronomic traits in ornamental kale.
Collapse
Affiliation(s)
| | | | | | | | | | - Fan Liu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (N.G.); (S.H.); (M.Z.); (G.W.); (M.D.)
| |
Collapse
|
10
|
Wu X, Xie L, Sun X, Wang N, Finnegan EJ, Helliwell C, Yao J, Zhang H, Wu X, Hands P, Lu F, Ma L, Zhou B, Chaudhury A, Cao X, Luo M. Mutation in Polycomb repressive complex 2 gene OsFIE2 promotes asexual embryo formation in rice. NATURE PLANTS 2023; 9:1848-1861. [PMID: 37814022 PMCID: PMC10654051 DOI: 10.1038/s41477-023-01536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Prevention of autonomous division of the egg apparatus and central cell in a female gametophyte before fertilization ensures successful reproduction in flowering plants. Here we show that rice ovules of Polycomb repressive complex 2 (PRC2) Osfie1 and Osfie2 double mutants exhibit asexual embryo and autonomous endosperm formation at a high frequency, while ovules of single Osfie2 mutants display asexual pre-embryo-like structures at a lower frequency without fertilization. Earlier onset, higher penetrance and better development of asexual embryos in the double mutants compared with those in Osfie2 suggest that the autonomous endosperm facilitated asexual embryo development. Transcriptomic analysis showed that male genome-expressed OsBBM1 and OsWOX8/9 were activated in the asexual embryos. Similarly, the maternal alleles of the paternally expressed imprinted genes were activated in the autonomous endosperm, suggesting that the egg apparatus and central cell convergently adopt PRC2 to maintain the non-dividing state before fertilization, possibly through silencing of the maternal alleles of male genome-expressed genes.
Collapse
Affiliation(s)
- Xiaoba Wu
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia.
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi, P. R. China
| | - Xizhe Sun
- The State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, P. R. China
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, P. R. China
| | - E Jean Finnegan
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Chris Helliwell
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, P. R. China
| | - Phil Hands
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lisong Ma
- The State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, P. R. China
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bing Zhou
- Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Abed Chaudhury
- Krishan Foundation Pty Ltd, Canberra, Australian Capital Territory, Australia
| | - Xiaofeng Cao
- University of Chinese Academy of Sciences, Beijing, P. R. China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Ming Luo
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
11
|
Arshad S, Wei M, Ali Q, Mustafa G, Ma Z, Yan Y. Paclitaxel and Caffeine-Taurine, New Colchicine Alternatives for Chromosomes Doubling in Maize Haploid Breeding. Int J Mol Sci 2023; 24:14659. [PMID: 37834106 PMCID: PMC10572353 DOI: 10.3390/ijms241914659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/25/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
The doubled haploid (DH) technology is employed worldwide in various crop-breeding programs, especially maize. Still, restoring tassel fertility is measured as one of the major restrictive factors in producing DH lines. Colchicine, nitrous oxide, oryzalin, and amiprophosmethyl are common chromosome-doubling agents that aid in developing viable diploids (2n) from sterile haploids (n). Although colchicine is the most widely used polyploidy-inducing agent, it is highly toxic to mammals and plants. Therefore, there is a dire need to explore natural, non-toxic, or low-toxic cheaper and accessible substitutes with a higher survival and fertility rate. To the best of our knowledge, the advanced usage of human anticancer drugs "Paclitaxel (PTX)" and "Caffeine-Taurine (CAF-T)" for in vivo maize haploids doubling is being disclosed for the first time. These two antimitotic and antimicrotubular agents (PTX and CAF-T) were assessed under various treatment conditions compared to colchicine. As a result, the maximum actual doubling rates (ADR) for PTX versus colchicine in maize haploid seedlings were 42.1% (400 M, 16 h treatment) versus 31.9% (0.5 mM, 24 h treatment), respectively. In addition, the ADR in maize haploid seeds were CAF-T 20.0% (caffeine 2 g/L + taurine 12 g/L, 16 h), PTX 19.9% (100 μM, 24 h treatment), and colchicine 26.0% (2.0 mM, 8 h treatment). Moreover, the morphological and physiological by-effects in haploid plants by PTX were significantly lower than colchicine. Hence, PTX and CAF-T are better alternatives than the widely used traditional colchicine to improve chromosome-doubling in maize crop.
Collapse
Affiliation(s)
- Saeed Arshad
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.A.); (M.W.); (Z.M.)
| | - Mengli Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.A.); (M.W.); (Z.M.)
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.A.); (G.M.)
| | - Ghulam Mustafa
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.A.); (G.M.)
| | - Zhengqiang Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.A.); (M.W.); (Z.M.)
| | - Yuanxin Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.A.); (M.W.); (Z.M.)
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
| |
Collapse
|
12
|
Kruppa J, Kanbar OZ, Tóth-Lencsés KA, Kiss E, Bóna L, Lantos C, Pauk J. Induction of Triticale (× Triticosecale Wittmack) In Vitro Androgenesis in Anther Cultures of F 1 Hybrid Combinations, Varieties and Homogeneity Testing of Offspring Generation. Life (Basel) 2023; 13:1970. [PMID: 37895352 PMCID: PMC10608130 DOI: 10.3390/life13101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
In cereal breeding, in vitro androgenesis methods are frequently applied to achieve doubled haploid (DH) plants. The aim of this study was to determine the effects of genotype (three registered varieties and eight F1 crossing combinations) and induction medium (W14mf and P4mf) on anther cultures (ACs) of triticale (×Triticosecale Wittmack). Androgenesis was induced in the treatment of each tested genotype, and the genotype significantly influenced the efficiency of AC, including in embryo-like structures (ELSs), albinos, green plantlets, and transplanted plantlets. The utilized medium also had a significant effect on the number of ELSs, albinos, and transplanted plantlets. Both media were suitable for AC in triticale DH plant production. The efficiency of AC was higher when using the P4mf medium (103.7 ELS/100 anthers, 19.7 green plantlets/100 anthers) than when using the W14mf medium (90.0 ELS/100 anthers, 17.0 green plantlets/100 anthers). However, the green plantlet regeneration efficiency of microspore-derived structures was 18.0% when using the W14mf medium, while this value was 15.9% in the case of ELSs induced with the P4mf medium. After nursery seed evaluation and propagation (DH1), the genetic homogeneity of the offspring generation (DH2) was tested using a molecular genetic method. Most of the tested DH lines showed homogeneity and were progressed into a breeding program after agronomic selection. Some DH lines showed inhomogeneity, which could be explained by the outcross inclination of triticale. We would like to call breeders' attention to the outcross character of triticale and emphasize the vigilant propagation and maintenance of the triticale DH lines in breeding programs. Due to the outcross nature of triticale, even in self-pollinated genotypes, breeders should focus on careful maintenance, along with isolation in the case of line propagations, in triticale breeding programs.
Collapse
Affiliation(s)
| | | | - Kitti Andrea Tóth-Lencsés
- Molecular Genetics and Breeding Group, Department of Genetics and Genomics, Institute of Genetics and Biotechnology (GBI), Szent István Campus, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (K.A.T.-L.); (E.K.)
| | - Erzsébet Kiss
- Molecular Genetics and Breeding Group, Department of Genetics and Genomics, Institute of Genetics and Biotechnology (GBI), Szent István Campus, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (K.A.T.-L.); (E.K.)
| | - Lajos Bóna
- Cereal Research Non-Profit Ltd., H-6726 Szeged, Hungary; (O.Z.K.); (L.B.)
| | - Csaba Lantos
- Cereal Research Non-Profit Ltd., H-6726 Szeged, Hungary; (O.Z.K.); (L.B.)
| | - János Pauk
- Cereal Research Non-Profit Ltd., H-6726 Szeged, Hungary; (O.Z.K.); (L.B.)
| |
Collapse
|
13
|
Mayakaduwa R, Silva T. Haploid Induction in Indica Rice: Exploring New Opportunities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3118. [PMID: 37687363 PMCID: PMC10490219 DOI: 10.3390/plants12173118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Haploid plants are of significant interest to crop breeders due to their ability to expedite the development of inbred lines. Chromosome-doubling of haploids, produced by either in vitro or in vivo methods, results in fully homozygous doubled haploids. For nearly five decades, in vitro methods of anther and microspore culture have been attempted in many crops. In rice, in vitro methods are used with some success in japonica cultivars, although indica types have remained recalcitrant to a large extent. This review aims to explore the reasons for the lack of success of in vitro methods in indica rice and discuss new advancements in in vivo haploid induction protocols in other cereals and their relevance to rice. In particular, the current level of understanding of in vivo haploid inducer systems that utilize MTL and CENH3 mutants is analyzed in detail. One notable advantage of in vivo haploid induction systems is that they do not require tissue culture competence. This makes these methods more accessible and potentially transformative for research, offering a pragmatic approach to improving indica rice cultivars. By embracing these in vivo methods and harnessing the power of gene editing technologies like CRISPR/Cas9 systems, breeders can reshape their approach to indica rice improvement.
Collapse
Affiliation(s)
| | - Tara Silva
- Department of Plant Sciences, University of Colombo, Colombo 00300, Sri Lanka;
| |
Collapse
|
14
|
Bekalu ZE, Panting M, Bæksted Holme I, Brinch-Pedersen H. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing. Int J Mol Sci 2023; 24:11920. [PMID: 37569295 PMCID: PMC10419073 DOI: 10.3390/ijms241511920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Currently, the development of genome editing (GE) tools has provided a wide platform for targeted modification of plant genomes. However, the lack of versatile DNA delivery systems for a large variety of crop species has been the main bottleneck for improving crops with beneficial traits. Currently, the generation of plants with heritable mutations induced by GE tools mostly goes through tissue culture. Unfortunately, current tissue culture systems restrict successful results to only a limited number of plant species and genotypes. In order to release the full potential of the GE tools, procedures need to be species and genotype independent. This review provides an in-depth summary and insights into the various in vitro tissue culture systems used for GE in the economically important crops barley, wheat, rice, sorghum, soybean, maize, potatoes, cassava, and millet and uncovers new opportunities and challenges of already-established tissue culture platforms for GE in the crops.
Collapse
|
15
|
Wang C, Zhang P, He Y, Huang F, Wang X, Li H, Yuan L, Hou J, Chen G, Wang W, Wu J, Tang X. Exogenous spraying of IAA improved the efficiency of microspore embryogenesis in Wucai (Brassica campestris L.) by affecting the balance of endogenous hormones, energy metabolism, and cell wall degradation. BMC Genomics 2023; 24:380. [PMID: 37415142 DOI: 10.1186/s12864-023-09483-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Microspore embryogenesis is an extraordinarily complicated process, comprehensively regulated by a composite network of physiological and molecular factors, among which hormone is one of the most crucial factors. Auxin is required for stress-induced microspore reprogramming, however, the mechanism of its regulation of microspore embryogenesis is still unclear. RESULTS In this study, we found exogenously spraying 100 mg·L- 1 IAA on the buds of Wucai significantly increased the rate of microspore embryogenesis, and moreover accelerated the process of embryogenesis. Physiological and biochemical tests showed that the contents of amino acids, soluble total sugar, soluble protein, and starch were significantly increased after IAA treatment. Furthermore, exogenously spraying 100 mg·L- 1 IAA significantly enhanced IAA, GA4, and GA9 content, increased catalase (CAT) and malondialdehyde (MDA) activity, and reduced abscisic acid (ABA), MDA and soluble protopectin content, H2O2 and O2·- production rate in the bud with the largest population of late-uninucleate-stage microspores. Transcriptome sequencing was performed on buds respectively treated with 100 mg·L- 1 IAA and fresh water. A total of 2004 DEGs were identified, of which 79 were involved in micropores development, embryonic development and cell wall formation and modification, most of which were upregulated. KEGG and GO analysis revealed that 9.52% of DEGs were enriched in plant hormone synthesis and signal transduction pathways, pentose and glucuronic acid exchange pathways, and oxidative phosphorylation pathways. CONCLUSIONS These findings indicated that exogenous IAA altered the contents of endogenous hormone content, total soluble sugar, amino acid, starch, soluble protein, MDA and protopectin, the activities of CAT and peroxidase (POD), and the production rate of H2O2 and O2·-. Combined with transcriptome analysis, it was found that most genes related to gibberellin (GA) and Auxin (IAA) synthesis and signal transduction, pectin methylase (PME) and polygalacturonase (PGs) genes and genes related to ATP synthesis and electron transport chain were upregulated, and genes related to ABA synthesis and signal transduction were downregulated. These results indicated that exogenous IAA treatment could change the balance of endogenous hormones, accelerate cell wall degradation, promote ATP synthesis and nutrient accumulation, inhibit ROS accumulation, which ultimately promote microspore embryogenesis.
Collapse
Affiliation(s)
- Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Peiyu Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Yun He
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Furong Huang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Xu Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Hong Li
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Wenjie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Jianqiang Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China.
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China.
| |
Collapse
|
16
|
Pérez-Pérez Y, Solís MT, Albacete A, Testillano PS. Opposite Auxin Dynamics Determine the Gametophytic and Embryogenic Fates of the Microspore. Int J Mol Sci 2023; 24:11177. [PMID: 37446349 DOI: 10.3390/ijms241311177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed the dynamics and role of endogenous auxin in microspore development during these two different scenarios, in Brassica napus. We analyzed auxin concentration, cellular accumulation, the expression of the TAA1 auxin biosynthesis gene, and the PIN1-like efflux carrier gene, as well as the effects of inhibiting auxin biosynthesis by kynurenine on microspore embryogenesis. During the gametophytic pathway, auxin levels and TAA1 and PIN1-like expression were high at early stages, in tetrads and tapetum, while they progressively decreased during gametogenesis in both pollen and tapetum cells. In contrast, in microspore embryogenesis, TAA1 and PIN1-like genes were upregulated, and auxin concentration increased from the first embryogenic divisions. Kynurenine treatment decreased both embryogenesis induction and embryo production, indicating that auxin biosynthesis is required for microspore embryogenesis initiation and progression. The findings indicate that auxin exhibits two opposite profiles during these two microspore developmental pathways, which determine the different cell fates of the microspore.
Collapse
Affiliation(s)
- Yolanda Pérez-Pérez
- Pollen Biotechnology of Crop Plants Group, Biological Research Center Margarita Salas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Teresa Solís
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alfonso Albacete
- Department of Plant Nutrition, Center for Edaphology and Applied Biology of Segura, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants Group, Biological Research Center Margarita Salas, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
17
|
Benson CW, Sheltra MR, Maughan PJ, Jellen EN, Robbins MD, Bushman BS, Patterson EL, Hall ND, Huff DR. Homoeologous evolution of the allotetraploid genome of Poa annua L. BMC Genomics 2023; 24:350. [PMID: 37365554 DOI: 10.1186/s12864-023-09456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua's diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua's evolutionary novelty. RESULTS We find that the diploids diverged from their common ancestor 5.5 - 6.3 million years ago and hybridized to form P. annua ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua's B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. CONCLUSIONS The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding.
Collapse
Affiliation(s)
- Christopher W Benson
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA.
- Intercollegiate Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA.
| | - Matthew R Sheltra
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
- Intercollegiate Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Peter J Maughan
- Department of Plant and Wildlife Sciences, Brigham Young University, Logan, UT, USA
| | - Eric N Jellen
- Department of Plant and Wildlife Sciences, Brigham Young University, Logan, UT, USA
| | | | | | - Eric L Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Nathan D Hall
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - David R Huff
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
18
|
Luo M, Wu X, Xie L, Sun X, Wang N, Finnegan J, Helliwell C, Yao J, Zhang H, Wu X, Lu F, Ma L, Zhou B, Chaudhury A, Cao X, Hands P. Polycomb Repressive Complex 2 (PRC2) suppresses asexual embryo and autonomous endosperm formation in rice.. [DOI: 10.21203/rs.3.rs-1087314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Abstract
Prevention of autonomous division of the egg apparatus and central cell in a female gametophyte before fertilization ensures successful reproduction in flowering plants. Here we show that rice ovules with PRC2 Osfie1 and Osfie2 double mutations exhibit asexual embryo and autonomous endosperm formation at a high frequency, while ovules with a single Osfie2 mutation display asexual pre-embryo-like structures at a lower frequency without fertilization. Confocal microscopy images indicate that the asexual embryos were mainly derived from eggs in the double mutants, while the asexual pre-embryos likely originated from eggs or synergids. Early onsetting, higher penetrance and better development of asexual embryos in the double mutants compared with those in Osfie2 suggest that autonomous endosperm facilitated the asexual embryo development. Transcriptomic analysis showed pluripotency factors such as male genome expressed OsBBM1 and OsWOX8/9 were activated in the asexual embryos. Similarly, the maternal alleles of the paternally expressed imprinted genes were activated in the autonomous endosperm. Our results suggest that the egg apparatus and central cell convergently adopt PRC2 to suppresses asexual embryo and autonomous endosperm formation possibly through silencing male genome-expressed genes.
Collapse
Affiliation(s)
- Ming Luo
- CSIRO Agriculture and Food, Box 1700, ACT 2601, Australia
| | - Xiaoba Wu
- Institute of Botany, Chinese Academy of Sciences
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830046, P. R. China
| | - Xizhe Sun
- Division of Plant Science, Research School of Biology, the Australian National University, ACT 2601, Australia
| | - Ningning Wang
- Faculty of agronomy, Jilin Agricultural University, Changchun, 130118, P.R. China
| | - Jean Finnegan
- CSIRO Agriculture and Food, Box 1700, ACT 2601, Australia
| | | | | | - Hongyu Zhang
- Sate Key Laboratory of Gene Discovery and Utilization, Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, P. R. China
| | | | - Falong Lu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
| | - Lisong Ma
- Division of Plant Science, Research School of Biology, the Australian National University, ACT 2601, Australia
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences; Beijing
| | | | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
| | - Phil Hands
- CSIRO Agriculture and Food, Box 1700, ACT 2601, Australia
| |
Collapse
|
19
|
Zhang L, Nie FJ, Gong L, Gan XY, Zhang GH, Liu X, Yang WJ, Shi L, Chen YC, Xie RX, Guo ZQ, Song Y. Regenerative plantlets with improved agronomic characteristics caused by anther culture of tetraploid potato ( Solanum tuberosum L.). PeerJ 2023; 11:e14984. [PMID: 37187528 PMCID: PMC10178354 DOI: 10.7717/peerj.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/10/2023] [Indexed: 05/17/2023] Open
Abstract
Objective As the primary means of plant-induced haploid, anther culture is of great significance in quickly obtaining pure lines and significantly shortening the potato breeding cycle. Nevertheless, the methods of anther culture of tetraploid potato were still not well established. Methods In this study, 16 potato cultivars (lines) were used for anther culture in vitro. The corresponding relation between the different development stages of microspores and the external morphology of buds was investigated. A highly-efficient anther culture system of tetraploid potatoes was established. Results It was shown in the results that the combined use of 0.5 mg/L 1-Naphthylacetic acid (NAA), 1.0 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D), and 1.0 mg/L Kinetin (KT) was the ideal choice of hormone pairing for anther callus. Ten of the 16 potato cultivars examined could be induced callus with their respective anthers, and the induction rate ranged from 4.44% to 22.67% using this hormone combination. According to the outcome from the orthogonal design experiments of four kinds of appendages, we found that the medium with sucrose (40 g/L), AgNO3 (30 mg/L), activated carbon (3 g/L), potato extract (200 g/L) had a promotive induction effect on the anther callus. In contrast, adding 1 mg/L Zeatin (ZT) effectively facilitated callus differentiation. Conclusion Finally, 201 anther culture plantlets were differentiated from 10 potato cultivars. Among these, Qingshu 168 and Ningshu 15 had higher efficiency than anther culture. After identification by flow cytometry and fluorescence in situ hybridization, 10 haploid plantlets (5%), 177 tetraploids (88%), and 14 octoploids (7%) were obtained. Some premium anther-cultured plantlets were further selected by morphological and agronomic comparison. Our findings provide important guidance for potato ploidy breeding.
Collapse
Affiliation(s)
- Li Zhang
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
- College of Agriculture, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Feng-jie Nie
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Lei Gong
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Xiao-yan Gan
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Guo-hui Zhang
- Guyuan Institute of Agricultural Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Guyuan, Ningxia, China
| | - Xuan Liu
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Wen-jing Yang
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Lei Shi
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Yu-chao Chen
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Rui-xia Xie
- Guyuan Institute of Agricultural Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Guyuan, Ningxia, China
| | - Zhi-qian Guo
- Guyuan Institute of Agricultural Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Guyuan, Ningxia, China
| | - Yuxia Song
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| |
Collapse
|
20
|
Flores-Tornero M, Sapeta H, Becker JD. Improving the haploidization toolbox: Maternal factors take the stage. MOLECULAR PLANT 2023; 16:651-653. [PMID: 36840354 DOI: 10.1016/j.molp.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/20/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Affiliation(s)
- María Flores-Tornero
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Helena Sapeta
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
21
|
Li R, Tian M, He Q, Zhang L. Correlation between Parental Transcriptome and Field Data for the Characterization of Heterosis in Chinese Cabbage. Genes (Basel) 2023; 14:genes14040776. [PMID: 37107533 PMCID: PMC10137735 DOI: 10.3390/genes14040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
In Chinese cabbage breeding, hybrids have made a terrific contribution due to heterosis, the superior performance of offspring compared to their inbred parents. Since the development of new, top-performing hybrids requires a large scale of human and material resources, the prediction of hybrid performance is of utmost interest to plant breeders. In our research, leaf transcriptome data from eight parents were used to investigate if they might be employed as markers to predict hybrid performance and heterosis. In Chinese cabbage, heterosis of plant growth weight (PGW) and heterosis of head weight (HW) were more obvious than other traits. The number of differential expression genes (DEGs) between parents was related to the PGW, length of the biggest outer leaf (LOL), leaf head height (LHH), leaf head width (LHW), HW, leaf number of head (LNH) and plant height (PH) of hybrids, and up-regulated DEGs number was also associated with these traits. Euclidean and binary distances of parental gene expression levels were significantly correlated with the PGW, LOL, LHH, LHW, HW and PH of hybrids. Additionally, there was a significant correlation between the parental expression levels of multiple genes involved in the ribosomal metabolic pathway and hybrid observations and heterosis in PGW, with the BrRPL23A gene showing the highest correlation with the MPH of PGW(r = 0.75). Therefore, leaf transcriptome data can preliminarily predict the hybrid performance and select parents in Chinese cabbage.
Collapse
Affiliation(s)
- Ru Li
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Min Tian
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qiong He
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Lugang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
22
|
Zhang X, Shi C, Li S, Zhang B, Luo P, Peng X, Zhao P, Dresselhaus T, Sun MX. A female in vivo haploid-induction system via mutagenesis of egg cell-specific peptidases. MOLECULAR PLANT 2023; 16:471-480. [PMID: 36600599 DOI: 10.1016/j.molp.2023.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Crop breeding schemes can be significantly accelerated by using (doubled) haploid plants. In vivo haploid induction has been applied in plant breeding for decades but is still not available for all crops and genotypes, and haploidization rates are generally very low. Therefore, methodological improvements to and new concepts for haploidization are required. Here, we report a novel system for the induction of haploid plants by mutating genes encoding egg cell-specific aspartic endopeptidases (ECSs). We show that after successful sperm-egg cell fusion, ECSs play a critical role to ensure male and female nucleus fusion after fertilization. The ecs1 ecs2 double mutant can induce haploids by both selfing and hybridization in Arabidopsis and ECS mutation is also capable of producing haploids in rice. In summary, our study develops a novel approach for maternal haploidization and provides new insights into the molecular basis of fertilization.
Collapse
Affiliation(s)
- Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Siling Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pan Luo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
23
|
Aboobucker SI, Zhou L, Lübberstedt T. Haploid male fertility is restored by parallel spindle genes in Arabidopsis thaliana. NATURE PLANTS 2023; 9:214-218. [PMID: 36624258 DOI: 10.1038/s41477-022-01332-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Doubled haploid technology can accelerate plant breeding and its two main steps are haploid induction and subsequent doubled haploid production from fertile haploid plants. Although haploid female fertility is present to some extent in plants, the lack of haploid male fertility is a bottleneck. Herein, we demonstrate that mutations in the parallel spindle genes are sufficient to restore haploid male fertility in Arabidopsis with no impact on haploid female fertility.
Collapse
Affiliation(s)
| | - Liming Zhou
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
24
|
Mabuza LM, Mchunu NP, Crampton BG, Swanevelder DZH. Accelerated Breeding for Helianthus annuus (Sunflower) through Doubled Haploidy: An Insight on Past and Future Prospects in the Era of Genome Editing. PLANTS (BASEL, SWITZERLAND) 2023; 12:485. [PMID: 36771570 PMCID: PMC9921946 DOI: 10.3390/plants12030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The aim of any breeding process is to fully express the targeted, superior/desirable parent characteristic in the progeny. Hybrids are often used in this dynamic, and complex process for which homozygous parents-which may require up to eight generations of back crossing and selection-are required. Doubled haploid (DH) technologies can facilitate the production of true breeding lines faster and in a more efficient manner than the traditional back crossing and selection strategies. Sunflower is the third most important oilseed crop in the world and has no available double haploid induction procedure/technique that can be efficiently used in breeding programs. A reproducible and efficient doubled haploid induction method would be a valuable tool in accelerating the breeding of new elite sunflower varieties. Although several attempts have been made, the establishment of a sunflower doubled haploid induction protocol has remained a challenge owing recalcitrance to in vitro culture regeneration. Approaches for haploid development in other crops are often cultivar specific, difficult to reproduce, and rely on available tissue culture protocols-which on their own are also cultivar and/or species specific. As an out-crossing crop, the lack of a double haploid system limits sunflower breeding and associated improvement processes, thereby delaying new hybrid and trait developments. Significant molecular advances targeting genes, such as the centromeric histone 3 (CenH3) and Matrilineal (MTL) gene with CRISPR/Cas9, and the successful use of viral vectors for the delivery of CRISPR/Cas9 components into plant cells eliminating the in vitro culture bottleneck, have the potential to improve double haploid technology in sunflower. In this review, the different strategies, their challenges, and opportunities for achieving doubled haploids in sunflower are explored.
Collapse
Affiliation(s)
- Londiwe M. Mabuza
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Nokuthula P. Mchunu
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
- Strategy, Planning and Partnerships, National Research Foundation, Pretoria 0184, South Africa
| | - Bridget G. Crampton
- Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Dirk Z. H. Swanevelder
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Onderstepoort, Pretoria 0110, South Africa
| |
Collapse
|
25
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
26
|
Jin SB, Kim MJ, Choi CW, Park SM, Yun SH. Anther Culture-Derived Haploids of Citrus aurantium L. (Sour Orange) and Genetic Verification of Haploid-Derived Regenerated Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3022. [PMID: 36432751 PMCID: PMC9698947 DOI: 10.3390/plants11223022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Citrus plants are important fruit tree species; however, the breeding of high-quality varieties of citrus species is a time-consuming process. Using haploid-derived plants from anther culture may reduce the time required for obtaining purebred lines. This study aimed to genetically verify whether anther culture-derived sour orange (Citrus aurantium L.) plants developed from somatic embryos or haploid tissues. Sour orange anthers were cultured in N6 and MS media to induce calli and somatic embryos. N6 liquid medium supplemented with 1 mg·L-1 gibberellic acid and 200 µM spermidine resulted in a 10% increase in callus and embryo induction rates. Regenerated plants were validated using simple sequence repeat markers. Out of the 109 regenerated plants, ploidy analysis identified 99 diploids, two haploids, and eight putative aneuploids; out of the 99 diploid plants, 33 were haploid-derived homozygous diploids. The chromosomal analysis confirmed most plants as diploids, whereas some were identified as aneuploids (19-21 chromosomes). Furthermore, phylogenetic analysis confirmed that the resultant homozygous or heterozygous plants were haploid-derived. This is the first report of haploid-derived homozygous diploid and aneuploid sour orange plants obtained through anther culture. Moreover, the anther cultivation technique described herein can be applied to other citrus varieties.
Collapse
Affiliation(s)
- Seong Beom Jin
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 63613, Korea
| | | | | | | | | |
Collapse
|
27
|
Transcriptome and proteome associated analysis of flavonoid metabolism in haploid Ginkgo biloba. Int J Biol Macromol 2022; 224:306-318. [DOI: 10.1016/j.ijbiomac.2022.10.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
28
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, Isik F, Ko JH, Li C, Li Q, Niu S, Qu G, Vu THG, Wang XR, Wei Z, Zhang L, Wei H. Current status and trends in forest genomics. FORESTRY RESEARCH 2022; 2:11. [PMID: 39525413 PMCID: PMC11524260 DOI: 10.48130/fr-2022-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2024]
Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing technologies, single cell RNA-seq, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing, and spatial transcriptomes, as well as bioinformatics analysis technologies, which have led to the generation of multidimensional, multilayered, and spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research branches of forest genomics, and then provided future research directions and focuses for each area. Evidently, a shift from simple biotechnology-based research to advanced and integrative genomics research, and a setup for investigation and interpretation of many spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
Collapse
Affiliation(s)
- Dulal Borthakur
- Dulal Borthakur, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuan Hieu Cao
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Fikret Isik
- Cooperative Tree Improvement Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100093, P.R. China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Thi Ha Giang Vu
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå 90187, Sweden
| | - Zhigang Wei
- College of Life Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
29
|
Hu Y, Šmarda P, Liu G, Wang B, Gao X, Guo Q. High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage. Int J Mol Sci 2022; 23:8958. [PMID: 36012222 PMCID: PMC9409250 DOI: 10.3390/ijms23168958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
As a representative of gymnosperms, the discovery of natural haploids of Ginkgo biloba L. has opened a new door for its research. Haploid germplasm has always been a research material of interest to researchers because of its special characteristics. However, we do not yet know the special features and mechanisms of haploid ginkgo following this significant discovery. In this study, we conducted a homogenous garden experiment on haploid and diploid ginkgo to explore the differences in growth, physiology and biochemistry between the two. Additionally, a high-depth transcriptome database of both was established to reveal their transcriptional differences. The results showed that haploid ginkgo exhibited weaker growth potential, lower photosynthesis and flavonoid accumulation capacity. Although the up-regulated expression of DEGs in haploid ginkgo reached 46.7% of the total DEGs in the whole transcriptome data, the gene sets of photosynthesis metabolic, glycolysis/gluconeogenesis and flavonoid biosynthesis pathways, which were significantly related to these differences, were found to show a significant down-regulated expression trend by gene set enrichment analysis (GSEA). We further found that the major metabolic pathways in the haploid ginkgo transcriptional database were down-regulated in expression compared to the diploid. This study reveals for the first time the phenotypic, growth and physiological differences in haploid ginkgos, and demonstrates their transcriptional patterns based on high-depth transcriptomic data, laying the foundation for subsequent in-depth studies of haploid ginkgos.
Collapse
Affiliation(s)
- Yaping Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Botany and Zoology, Masaryk University, Koltlářská 2, 61137 Brno, Czech Republic
| | - Petr Šmarda
- Department of Botany and Zoology, Masaryk University, Koltlářská 2, 61137 Brno, Czech Republic
| | - Ganping Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Beibei Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoge Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qirong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
30
|
Sidhu GS, Conner JA, Ozias-Akins P. Controlled Induction of Parthenogenesis in Transgenic Rice via Post-translational Activation of PsASGR-BBML. FRONTIERS IN PLANT SCIENCE 2022; 13:925467. [PMID: 35873991 PMCID: PMC9305695 DOI: 10.3389/fpls.2022.925467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Modern plant breeding programs rely heavily on the generation of homozygous lines, with the traditional process requiring the inbreeding of a heterozygous cross for five to six generations. Doubled haploid (DH) technology, a process of generating haploid plants from an initial heterozygote, followed by chromosome doubling, reduces the process to two generations. Currently established in vitro methods of haploid induction include androgenesis and gynogenesis, while in vivo methods are based on uni-parental genome elimination. Parthenogenesis, embryogenesis from unfertilized egg cells, presents another potential method of haploid induction. PsASGR-BABY BOOM-like, an AP2 transcription factor, induces parthenogenesis in a natural apomictic species, Pennisetum squamulatum (Cenchrus squamulatus) and PsASGR-BBML transgenes promote parthenogenesis in several crop plants, including rice, maize, and pearl millet. The dominant nature of PsASGR-BBML transgenes impedes their use in DH technology. Using a glucocorticoid-based post-translational regulation system and watering with a 100 μM DEX solution before anthesis, PsASGR-BBML can be regulated at the flowering stage to promote parthenogenesis. Conditional expression presents a novel opportunity to use parthenogenetic genes in DH production technology and to elucidate the molecular mechanism underlying parthenogenetic embryogenesis.
Collapse
Affiliation(s)
- Gurjot Singh Sidhu
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
| | - Joann A. Conner
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| |
Collapse
|
31
|
Underwood CJ, Mercier R. Engineering Apomixis: Clonal Seeds Approaching the Fields. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:201-225. [PMID: 35138881 DOI: 10.1146/annurev-arplant-102720-013958] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Apomixis is a form of reproduction leading to clonal seeds and offspring that are genetically identical to the maternal plant. While apomixis naturally occurs in hundreds of plant species distributed across diverse plant families, it is absent in major crop species. Apomixis has a revolutionary potential in plant breeding, as it could allow the instant fixation and propagation though seeds of any plant genotype, most notably F1 hybrids. Mastering and implementing apomixis would reduce the cost of hybrid seed production, facilitate new types of hybrid breeding, and make it possible to harness hybrid vigor in crops that are not presently cultivated as hybrids. Synthetic apomixis can be engineered by combining modifications of meiosis and fertilization. Here, we review the current knowledge and recent major achievements toward the development of efficient apomictic systems usable in agriculture.
Collapse
Affiliation(s)
- Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany; ,
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany; ,
| |
Collapse
|
32
|
Chumakov MI, Mazilov SI. Genetic Control of Maize Gynogenesis. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Tel-Zur N. Breeding an underutilized fruit crop: a long-term program for Hylocereus. HORTICULTURE RESEARCH 2022; 9:uhac078. [PMID: 35707296 PMCID: PMC9189603 DOI: 10.1093/hr/uhac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
This review describes three decades of introduction, agro-technology development, breeding and selection of Hylocereus species, known as pitaya or dragon fruit, as an example of a holistic program aimed to develop the horticultural potential of a perennial underutilized fruit crop. Interspecific homoploid and interploid crosses and embryo rescue procedures produced improved hybrids, some of which have been released to farmers. Molecular tools and morphological and phenological comparisons between the parental species and the resulting hybrids provided valuable information on dominant/recessive traits and on genetic relationships that could be exploited for further hybridizations. In addition, Hylocereus were crossed with species of the closely related genus Selenicereus, producing valuable intergeneric hybrids. In situ chromosome doubling resulted in the production of autopolyploid lines, from which an understanding of the effect of increased ploidy on fruit traits and metabolomic profiles was obtained. Gamete-derived lines were produced, adding to our biobank homozygote lines that were subsequently used for further hybridization. Spontaneous chromosome doubling occurred in haploid gamete-derived Hylocereus monacanthus lines and in interspecific interploid Hylocereus megalanthus × H. undatus hybrids obtained from an embryo rescue procedure, resulting in plants with double the expected ploidy. Challenging technical problems were addressed by the development of protocols for DNA isolation, flow cytometry, in situ chromosome doubling, androgenesis, gynogenesis and embryo rescue following interspecific and interploidy crosses. Current research leading to the development of genomics and molecular tools, including a draft genome of H. undatus, is also presented. Perspectives for further development of Hylocereus species and hybrids are discussed.
Collapse
|
34
|
Zhang X, Zhang L, Zhang J, Jia M, Cao L, Yu J, Zhao D. Haploid induction in allotetraploid tobacco using DMPs mutation. PLANTA 2022; 255:98. [PMID: 35380264 DOI: 10.1007/s00425-022-03877-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
MAIN CONCLUSION dmp1dmp2dmp3 mutants created by CRISPR/Cas9 could trigger maternal haploids in the allotetraploid model plant Nicotiana tabacum L. Double haploid (DH) technology is becoming increasingly important because it can significantly accelerate the breeding process. Haploid induction plays a fundamental role in the production of DH lines. Haploid induction has been realized and applied in diploid plants using DMP genes. However, it has yet to be elucidated whether haploid induction could be established in polyploid plants. In the current study, three homologues of the DMP genes (NtDMP1, 2, and 3) were identified in the allotetraploid plant Nicotiana tabacum, and the encoded proteins localized in the endoplasmic reticulum. Loss-of-function mutations in all three genes triggered maternal haploids with an induction rate of 1.52-1.75%. Compared with wild-type tobacco, the created haploid inducer exhibited differences in pollen vigor and seed germination rate. Furthermore, to rapidly and easily screen haploids, a visible haploid identification system was established based on a powdery mildew resistance phenotype. Findings from this study lay the foundation for the potential application of haploid inducers in allotetraploid plants such as tobacco.
Collapse
Affiliation(s)
- Xiaolian Zhang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Lili Zhang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Jishun Zhang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Mengao Jia
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Linggai Cao
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Jing Yu
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, China
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Degang Zhao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- Guizhou Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
35
|
Juzoń K, Warchoł M, Dziurka K, Czyczyło-Mysza IM, Marcińska I, Skrzypek E. The effect of 2,4-dichlorophenoxyacetic acid on the production of oat ( Avena sativa L.) doubled haploid lines through wide hybridization. PeerJ 2022; 10:e12854. [PMID: 35178299 PMCID: PMC8812298 DOI: 10.7717/peerj.12854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Development of new cultivars is one of the vital options for adapting agriculture to climate change, and the production of doubled haploid (DH) plants can make a significant contribution to accelerating the breeding process. Oat is one of the cereals with particular health benefits, but it unfortunately still remains recalcitrant to haploidization. Our previous studies have clearly demonstrated that post-pollination with hormone treatment is a key step in haploid production through wide hybridization and indicated it as the most effective method for this species. Therefore, we subsequently addressed the problem of the influence of 2,4-dichlorophenoxyacetic acid (2,4-D) concentration on consecutive stages of DH production. METHODS Twenty-nine genotypes were tested, 9,465 florets were pollinated with maize pollen 2 days after emasculation and then treated with 2,4-D at 50 mg/L and 100 mg/L. RESULTS The applied treatments did not reveal any differences in the number of obtained haploid embryos. However, almost twice as many haploid plants formed on MS medium after applying a higher auxin concentration and 20% more successfully acclimatized. Moreover, 100 mg/L 2,4-D treatment resulted in twice as many DH lines that produced almost three times more seeds compared to 50 mg/L treatment. Nevertheless, the results have confirmed the existence of strong genotypic variation, which may significantly limit the development of an effective and economically feasible method that could be incorporated into breeding programs.
Collapse
Affiliation(s)
- Katarzyna Juzoń
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | - Marzena Warchoł
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | - Kinga Dziurka
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | | | - Izabela Marcińska
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | - Edyta Skrzypek
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| |
Collapse
|
36
|
Karakotov SD, Apasov IV, Nalbandyan AA, Vasilchenko EN, Fedulova TP. Modern issues of sugar beet (Beta vulgaris L.) hybrid breeding. Vavilovskii Zhurnal Genet Selektsii 2022; 25:394-400. [PMID: 35088010 PMCID: PMC8765770 DOI: 10.18699/vj21.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022] Open
Abstract
High efficiency of the cultivation of unfertilized sugar beet ovules and preparation of haploid regenerants
(microclones) of pollinators – maintainers of О-type sterility and MS forms of the RMS 120 hybrid components has
been shown. A technological method that accelerates the creation of new uniform starting material is proposed.
It speeds up the breeding process two to threefold. The identification of haploid regenerants with sterile cytoplasm
in initial populations is of great theoretical and practical importance for breeding, as it facilitates the production of
homozygous lines with cytoplasmic male sterility and high-performance hybrids on sterile basis. As shown by molecular analysis, a single-nucleotide polymorphism never reported hitherto is present in the mitochondrial genome
of the haploid plant regenerants. It allows identification of microclones as fertile and sterile forms. It has been found
that DNA markers of the sugar beet mitochondrial genome belonging to the TR minisatellite family (TR1 and TR3)
enable reliable enough identification of haploid microclonal plants as MS- or O-type forms. Fragments of 1000 bp in
length have been detected in monogenic forms in the analysis of 11 sugar beet plants cultured in vitro by PCR with the
OP-S4 random RAPD primer. Testing of the OP-S4 marker’s being in the same linkage group as the genes responsible
for expression of the economically valuable trait monogermity demonstrates its relative reliability. By the proposed
method, dihaploid lines (DH) of the male-sterile form and the О-type sterility maintainer of the RMS 120 sugar beet
hybrid have been obtained in in vitro culture. These lines are highly uniform in biomorphological traits, as proven
under field conditions.
Collapse
Affiliation(s)
- S D Karakotov
- Shchelkovo Agrokhim Company, Shchelkovo, Moscow region, Russia
| | - I V Apasov
- The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar, vil. VNIISS, Ramonsky district, Voronezh region, Russia
| | - A A Nalbandyan
- The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar, vil. VNIISS, Ramonsky district, Voronezh region, Russia
| | - E N Vasilchenko
- The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar, vil. VNIISS, Ramonsky district, Voronezh region, Russia
| | - T P Fedulova
- The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar, vil. VNIISS, Ramonsky district, Voronezh region, Russia
| |
Collapse
|
37
|
Tissue Culture Response of Ornamental and Medicinal Aesculus Species—A Review. PLANTS 2022; 11:plants11030277. [PMID: 35161258 PMCID: PMC8839481 DOI: 10.3390/plants11030277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
Abstract
Species of the genus Aesculus are very attractive woody ornamentals. Their organs contain numerous health-promoting phytochemicals. The most valuable of them—aescin—is used in commercial preparations for the treatment of venous insufficiency. The industrial source of aescin is horse chestnut seeds because the zygotic embryos are the main site of its accumulation. Horse chestnut somatic and zygotic embryos contain similar amount of aescin, hence somatic embryos could be exploited as an alternative source of aescin. Somatic embryogenesis, androgenesis and de novo shoot organogenesis were successfully achieved in several Aesculus species, as well as secondary somatic embryogenesis and shoot organogenesis, which enables mass production of embryos and shoots. In addition, an efficient method for cryopreservation of embryogenic tissue was established, assuring constant availability of the plant material. The developed methods are suitable for clonal propagation of elite specimens selected as the best aescin producers, the most attractive ornamentals or plants resistant to pests and diseases. These methods are also useful for molecular breeding purposes. Thus, in this review, the medicinal uses and a comprehensive survey of in vitro propagation methods established for Aesculus species, as well as the feasibility of in vitro production of aescin, are presented and discussed.
Collapse
|
38
|
Kolesnikova EO, Donskikh EI, Berdnikov RV. Haploid biotechnology as a tool for creating a selection material for sugar beets. Vavilovskii Zhurnal Genet Selektsii 2022; 25:812-821. [PMID: 35083402 PMCID: PMC8753530 DOI: 10.18699/vj21.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Since the discovery of the phenomenon of haploidy, biotechnology has become an integral part in
the successful creation of new varieties and hybrids of various plant species. In particular, these technologies
are actively used in agriculture, which is concerned with increasing the volume and improving the quality of
products. The integration of haploid production techniques together with other available biotechnological tools
such as marker selection (MAS), induced mutagenesis and genetic engineering technologies can significantly accelerate
crop breeding. This article shows the main stages in the development of biotechnology since 1921. Now
they are successfully used to create doubled haploids to accelerate the selection process of various plants and,
in particular, sugar beet, which is the most important sugar crop in regions with a temperate climate. There are
several methods for obtaining forms with a single set of chromosomes. For sugar beets, the use of gynogenesis
turned out to be expedient, since in this case the other methods turned out to be ineffective in the mass production
of haploids. The article considers the stages of obtaining the H and DH lines of Beta vulgaris L., as well as
the main stages of biotechnological production of homozygous breeding material of this culture. These stages
include selecting parental forms – donor explants, sterilizing buds and introducing non-pollinated ovules in vitro,
obtaining haploids, doubling their chromosome set, creating doubled haploids, determining ploidy at different
stages, relocating the obtained plants to greenhouses and growing stecklings. A number of advantages that
the technology of creating doubled haploids in vitro has in comparison with traditional methods of selection are
described. It has been shown that the use of these approaches is relevant when obtaining new highly productive
hybrids and varieties of agricultural plants; however, the methods for the production of homozygous forms in
sugar beet still require additional research aimed at increasing the efficiency and reproducibility of each stage
of the process.
Collapse
Affiliation(s)
| | - E. I. Donskikh
- Breeding and Genetic Center “UnionSeedsBeet”, Ltd., VNIISS
| | | |
Collapse
|
39
|
Dubas E, Castillo AM, Żur I, Krzewska M, Vallés MP. Microtubule organization changes severely after mannitol and n-butanol treatments inducing microspore embryogenesis in bread wheat. BMC PLANT BIOLOGY 2021; 21:586. [PMID: 34886809 PMCID: PMC8656030 DOI: 10.1186/s12870-021-03345-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND A mannitol stress treatment and a subsequent application of n-butanol, known as a microtubule-disrupting agent, enhance microspore embryogenesis (ME) induction and plant regeneration in bread wheat. To characterize changes in cortical (CMT) and endoplasmic (EMT) microtubules organization and dynamics, associated with ME induction treatments, immunocytochemistry studies complemented by confocal laser scanning microscopy (CLSM) were accomplished. This technique has allowed us to perform advanced 3- and 4D studies of MT architecture. The degree of MT fragmentation was examined by the relative fluorescence intensity quantification. RESULTS In uni-nucleated mannitol-treated microspores, severe CMT and EMT fragmentation occurs, although a complex network of short EMT bundles protected the nucleus. Additional treatment with n-butanol resulted in further depolymerization of both CMT and EMT, simultaneously with the formation of MT aggregates in the perinuclear region. Some aggregates resembled a preprophase band. In addition, a portion of the microspores progressed to the first mitotic division during the treatments. Bi-nucleate pollen-like structures showed a high MT depolymerization after mannitol treatment and numerous EMT bundles around the vegetative and generative nuclei after n-butanol. Interestingly, bi-nucleate symmetric structures showed prominent stabilization of EMT. CONCLUSIONS Fragmentation and stabilization of microtubules induced by mannitol- and n-butanol lead to new configurations essential for the induction of microspore embryogenesis in bread wheat. These results provide robust insight into MT dynamics during EM induction and open avenues to address newly targeted treatments to induce ME in recalcitrant species.
Collapse
Affiliation(s)
- E Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - A M Castillo
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain
| | - I Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - M P Vallés
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda Montañana 1005, 50059, Zaragoza, Spain.
| |
Collapse
|
40
|
Williams JH. Consequences of whole genome duplication for 2n pollen performance. PLANT REPRODUCTION 2021; 34:321-334. [PMID: 34302535 DOI: 10.1007/s00497-021-00426-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The vegetative cell of the angiosperm male gametophyte (pollen) functions as a free-living, single-celled organism that both produces and transports sperm to egg. Whole-genome duplication (WGD) should have strong effects on pollen because of the haploid to diploid transition and because of both genetic and epigenetic effects on cell-level phenotypes. To disentangle historical effects of WGD on pollen performance, studies can compare 1n pollen from diploids to neo-2n pollen from diploids and synthetic autotetraploids to older 2n pollen from established neo-autotetraploids. WGD doubles both gene number and bulk nuclear DNA mass, and a substantial proportion of diploid and autotetraploid heterozygosity can be transmitted to 2n pollen. Relative to 1n pollen, 2n pollen can exhibit heterosis due to higher gene dosage, higher heterozygosity and new allelic interactions. Doubled genome size also has consequences for gene regulation and expression as well as epigenetic effects on cell architecture. Pollen volume doubling is a universal effect of WGD, whereas an increase in aperture number is common among taxa with simultaneous microsporogenesis and pored apertures, mostly eudicots. WGD instantly affects numerous evolved compromises among mature pollen functional traits and these are rapidly shaped by highly diverse tissue interactions and pollen competitive environments in the early post-WGD generations. 2n pollen phenotypes generally incur higher performance costs, and the degree to which these are met or evolve by scaling up provisioning and metabolic vigor needs further study.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
41
|
Dubas E, Żur I, Moravčiková J, Fodor J, Krzewska M, Surówka E, Nowicka A, Gerši Z. Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.745865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we describe and integrate the latest knowledge on the signaling role of proteins and peptides in the stress-induced microspore embryogenesis (ME) in some crop plants with agricultural importance (i.e., oilseed rape, tobacco, barley, wheat, rice, triticale, rye). Based on the results received from the most advanced omix analyses, we have selected some inconspicuous but possibly important players in microspores reprogramming toward embryogenic development. We provide an overview of the roles and downstream effect of stress-related proteins (e.g., β-1,3-glucanases, chitinases) and small signaling peptides, especially cysteine—(e.g., glutathione, γ-thionins, rapid alkalinization factor, lipid transfer, phytosulfokine) and glycine-rich peptides and other proteins (e.g., fasciclin-like arabinogalactan protein) on acclimation ability of microspores and the cell wall reconstruction in a context of ME induction and haploids/doubled haploids (DHs) production. Application of these molecules, stimulating the induction and proper development of embryo-like structures and green plant regeneration, brings significant improvement of the effectiveness of DHs procedures and could result in its wider incorporation on a commercial scale. Recent advances in the design and construction of synthetic peptides–mainly cysteine-rich peptides and their derivatives–have accelerated the development of new DNA-free genome-editing techniques. These new systems are evolving incredibly fast and soon will find application in many areas of plant science and breeding.
Collapse
|
42
|
Mineykina A, Bondareva L, Soldatenko A, Domblides E. Androgenesis of Red Cabbage in Isolated Microspore Culture In Vitro. PLANTS 2021; 10:plants10091950. [PMID: 34579482 PMCID: PMC8467632 DOI: 10.3390/plants10091950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Red cabbage belongs to the economically important group of vegetable crops of the Brassicaceae family. A unique feature of this vegetable crop that distinguishes it from other members of the family is its unique biochemical composition characterized by high anthocyanin content, which gives it antioxidant properties. The production mainly uses F1 hybrids, which require constant parental lines, requiring 6–7 generations of inbreeding. Culture of isolated microspores in vitro is currently one of the promising methods for the accelerated production of pure lines with 100% homozygosity. The aim of this study is to investigate the factors and select optimal parameters for successful induction of red cabbage embryogenesis in isolated microspore culture in vitro and subsequent regeneration of DH plants. As a result of research, for the first time, it was possible to carry out the full cycle of obtaining DH plants of red cabbage from the induction of embryogenesis to their inclusion in the breeding process. The size of buds containing predominantly microspores at the late vacuolated stage and pollen at the early bi-cellular stage has to be selected individually for each genotype, because the embryoid yield will be determined by the interaction of these two factors. In the six samples studied, the maximum embryoid yield was obtained from buds 4.1–4.4 mm and 4.5–5.0 mm long, depending on the genotype. Cultivation of microspores was carried out on liquid NLN culture medium with 13% sucrose. The maximum number of embryoids (173.5 ± 7.5 pcs./Petri dish) was obtained on culture medium with pH 5.8 and heat shock at 32 °C for 48 h. Successful embryoid development and plant regeneration by direct germination from shoot apical meristem were achieved on MS culture medium with 2% sucrose and 0.7% agar, supplemented with 6-benzylaminopurine at a concentration of 1 mg/L. Analysis of the obtained regenerated plants, which successfully passed the stage of adaptation to ex vitro conditions by flow cytometry, showed that most of them were doubled haploids (up to 90.9%). A low number of seeds produced by self-fertilization in DH plants was observed.
Collapse
Affiliation(s)
- Anna Mineykina
- Correspondence: (A.M.); (E.D.); Tel.: +7-495-599-2442 (A.M.)
| | | | | | - Elena Domblides
- Correspondence: (A.M.); (E.D.); Tel.: +7-495-599-2442 (A.M.)
| |
Collapse
|
43
|
In Vitro Anther Culture for Doubled Haploid Plant Production in Spelt Wheat. Methods Mol Biol 2021. [PMID: 34270035 DOI: 10.1007/978-1-0716-1315-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Doubled haploid (DH) plant production belongs to modern biotechnology methods of plant breeding. The main advantage of DH plant production methods is the development of genetically homozygous lines in one generation, whilst in conventional breeding programmes, the development of homozygous lines requires more generations. The present chapter describes an efficient protocol for DH plant production in spelt wheat genotypes using in vitro anther culture.
Collapse
|
44
|
Mir R, Calabuig-Serna A, Seguí-Simarro JM. Doubled Haploids in Eggplant. BIOLOGY 2021; 10:685. [PMID: 34356540 PMCID: PMC8301345 DOI: 10.3390/biology10070685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
Eggplant is a solanaceous crop cultivated worldwide for its edible fruit. Eggplant breeding programs are mainly aimed to the generation of F1 hybrids by crossing two highly homozygous, pure lines, which are traditionally obtained upon several self crossing generations, which is an expensive and time consuming process. Alternatively, fully homozygous, doubled haploid (DH) individuals can be induced from haploid cells of the germ line in a single generation. Several attempts have been made to develop protocols to produce eggplant DHs principally using anther culture and isolated microspore culture. Eggplant could be considered a moderately recalcitrant species in terms of ability for DH production. Anther culture stands nowadays as the most valuable technology to obtain eggplant DHs. However, the theoretical possibility of having plants regenerated from somatic tissues of the anther walls cannot be ruled out. For this reason, the use of isolated microspores is recommended when possible. This approach still has room for improvement, but it is largely genotype-dependent. In this review, we compile the most relevant advances made in DH production in eggplant, their application to breeding programs, and the future perspectives for the development of other, less genotype-dependent, DH technologies.
Collapse
Affiliation(s)
| | | | - Jose M. Seguí-Simarro
- Cell Biology Group—COMAV Institute, Universitat Politècnica de València, 46011 Valencia, Spain; (R.M.); (A.C.-S.)
| |
Collapse
|
45
|
Thondehaalmath T, Kulaar DS, Bondada R, Maruthachalam R. Understanding and exploiting uniparental genome elimination in plants: insights from Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4646-4662. [PMID: 33851980 DOI: 10.1093/jxb/erab161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Uniparental genome elimination (UGE) refers to the preferential exclusion of one set of the parental chromosome complement during embryogenesis following successful fertilization, giving rise to uniparental haploid progeny. This artificially induced phenomenon was documented as one of the consequences of distant (wide) hybridization in plants. Ten decades since its discovery, attempts to unravel the molecular mechanism behind this process remained elusive due to a lack of genetic tools and genomic resources in the species exhibiting UGE. Hence, its successful adoption in agronomic crops for in planta (in vivo) haploid production remains implausible. Recently, Arabidopsis thaliana has emerged as a model system to unravel the molecular basis of UGE. It is now possible to simulate the genetic consequences of distant crosses in an A. thaliana intraspecific cross by a simple modification of centromeres, via the manipulation of the centromere-specific histone H3 variant gene, CENH3. Thus, the experimental advantages conferred by A. thaliana have been used to elucidate and exploit the benefits of UGE in crop breeding. In this review, we discuss developments and prospects of CENH3 gene-mediated UGE and other in planta haploid induction strategies to illustrate its potential in expediting plant breeding and genetics in A. thaliana and other model plants.
Collapse
Affiliation(s)
- Tejas Thondehaalmath
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Dilsher Singh Kulaar
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ramesh Bondada
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| |
Collapse
|
46
|
Shan T, Pang S, Wang X, Li J. The Inheritable Characteristics of Monoecy and Parthenogenesis Provide A Means for Establishing A Doubled Haploid Population in the Economically Important Brown Alga Undaria pinnatifida (Laminariales, Alariaceae). JOURNAL OF PHYCOLOGY 2021; 57:1026-1034. [PMID: 33624318 DOI: 10.1111/jpy.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Monoecy and parthenogenesis exist in certain male and female gametophytes of the brown alga Undaria pinnatifida. The inheritance of these traits is not known. In this study, we made a cross between a male and a female gametophyte clone which could exhibit monoecy and parthenogenesis phenotypes, respectively, and obtained their next-generation gametophyte offspring. We found that under conditions suitable for gametogenesis, all of the male offspring (n = 100) exhibited monoecy phenotype and all of the female offspring (n = 100) only formed oogonia and underwent parthenogenesis, suggesting that monoecy and parthenogenesis phenotypes are inheritable. Then, we established a doubled haploid (DH) population through monoecious selfing and parthenogenesis, and evaluated the young sporophyte growth and the maximum quantum yield (Fv /Fm ) of 10 "male" and 10 "female" DH lines. On day 60, the average length of the "male" DH lines was significantly larger than that of the "female" DH lines, while their average Fv /Fm values were not significantly different. Monoecious selfing seemed superior to parthenogenesis as the sporophyte formation efficiency, and the young sporophyte growth was better in the former than in the latter. We also crossed two monoecious gametophytes with another male gametophyte, and a parentage analysis showed success of obtaining hybrid sporophytes, indicating that the female gametes released by the monoecious gametophyte can actually be fertilized by sperm. The approach of establishing a DH population proposed here will be useful in genetic breeding and quantitative trait loci mapping in U. pinnatifida and may be applicable to other kelp species.
Collapse
Affiliation(s)
- Tifeng Shan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, China
| | - Shaojun Pang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, China
| | - Xuemei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, China
| | - Jing Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, China
| |
Collapse
|
47
|
Galán-Ávila A, García-Fortea E, Prohens J, Herraiz FJ. Microgametophyte Development in Cannabis sativa L. and First Androgenesis Induction Through Microspore Embryogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:669424. [PMID: 34113367 PMCID: PMC8186446 DOI: 10.3389/fpls.2021.669424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Development of double haploids is an elusive current breeding objective in Cannabis sativa L. We have studied the whole process of anther and pollen grain formation during meiosis, microsporogenesis, and microgametogenesis and correlated the different microgametophyte developmental stages with bud length in plants from varieties USO31 and Finola. We also studied microspore and pollen amyloplast content and studied the effect of a cold pretreatment to excised buds prior to microspore in vitro culture. Up to 476,903 microspores and pollen grains per male flower, with in vivo microspore viability rates from 53.71 to 70.88% were found. A high uniformity in the developmental stage of microspores and pollen grains contained in anthers was observed, and this allowed the identification of bud length intervals containing mostly vacuolate microspores and young bi-cellular pollen grains. The starch presence in C. sativa microspores and pollen grains follows a similar pattern to that observed in species recalcitrant to androgenesis. Although at a low frequency, cold-shock pretreatment applied on buds can deviate the naturally occurring gametophytic pathway toward an embryogenic development. This represents the first report concerning androgenesis induction in C. sativa, which lays the foundations for double haploid research in this species.
Collapse
Affiliation(s)
- Alberto Galán-Ávila
- Ploidy and Genomics S.L., Centro Europeo de Empresas Innovadoras de Valencia, Parc Tecnològic, Valencia, Spain
| | - Edgar García-Fortea
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Jaime Prohens
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Francisco Javier Herraiz
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
48
|
Improved Anther Culture Media for Enhanced Callus Formation and Plant Regeneration in Rice ( Oryza sativa L.). PLANTS 2021; 10:plants10050839. [PMID: 33921954 PMCID: PMC8143452 DOI: 10.3390/plants10050839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
Anther culture technique is the most viable and efficient method of producing homozygous doubled haploid plants within a short period. However, the practical application of this technology in rice improvement is still limited by various factors that influence culture efficiency. The present study was conducted to determine the effects of two improved anther culture media, Ali-1 (A1) and Ali-2 (A2), a modified N6 medium, to enhance the callus formation and plant regeneration of japonica, indica, and hybrids of indica and japonica cross. The current study demonstrated that genotype and media had a significant impact (p < 0.001) on both callus induction frequency and green plantlet regeneration efficiency. The use of the A1 and A2 medium significantly enhanced callus induction frequency of japonica rice type, Nipponbare, and the hybrids of indica × japonica cross (CXY6, CXY24, and Y2) but not the indica rice type, NSIC Rc480. However, the A1 medium is found superior to the N6 medium as it significantly improved the green plantlet regeneration efficiency of CXY6, CXY24, and Y2 by almost 36%, 118%, and 277%, respectively. Furthermore, it substantially reduced the albino plantlet regeneration of the induced callus in two hybrids (CXY6 and Y2). Therefore, the improved anther culture medium A1 can produce doubled haploid rice plants for indica × japonica, which can be useful in different breeding programs that will enable the speedy development of rice varieties for resource-poor farmers.
Collapse
|
49
|
Sandhu N, Yadav S, Catolos M, Cruz MTS, Kumar A. Developing Climate-Resilient, Direct-Seeded, Adapted Multiple-Stress-Tolerant Rice Applying Genomics-Assisted Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:637488. [PMID: 33936127 PMCID: PMC8082028 DOI: 10.3389/fpls.2021.637488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
There is an urgent need to breed dry direct-seeded adapted rice varieties in order to address the emerging scenario of water-labor shortage. The aim of this study was to develop high-yielding, direct-seeded adapted varieties utilizing biparental to multiparental crosses involving as many as six different parents in conventional breeding programs and 12 parents in genomics-assisted breeding programs. The rigorous single plant selections were followed from the F2 generation onwards utilizing phenotypic selection and quantitative trait locus (QTL)/gene-based/linked markers for tracking the presence of desirable alleles of targeted QTL/genes. In conventional breeding, multiparent lines had significantly higher yields (2,072-6,569 kg ha-1) than the biparental lines (1,493-6,326 kg ha-1). GAB lines derived from multiparent crosses had significantly higher (3,293-6,719 kg ha-1) yields than the multiparent lines from conventional breeding (2,072-6,569 kg ha-1). Eleven promising lines from genomics-assisted breeding carrying 7-11 QTL/genes and eight lines from conventional breeding with grain-yield improvement from 727 to 1,705 kg ha-1 and 68 to 902 kg ha-1, respectively, over the best check were selected. The developed lines may be released as varieties/parental lines to develop better rice varieties for direct-seeded situations or as novel breeding material to study genetic interactions.
Collapse
Affiliation(s)
- Nitika Sandhu
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Shailesh Yadav
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Margaret Catolos
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Ma Teresa Sta Cruz
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Arvind Kumar
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
- International Rice Research Institute South Asia Regional Centre, Varanasi, India
| |
Collapse
|
50
|
Alan AR, Celebi-Toprak F, Lachin A, Yildiz D, Gozen V, Besirli G. Doubled Haploid Broccoli (Brassica olearacea var. italica) Plants from Anther Culture. Methods Mol Biol 2021; 2288:201-216. [PMID: 34270013 DOI: 10.1007/978-1-0716-1335-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Broccoli (Brassica olearecea var. italica) is a cole crop grown for its floral heads and stalks. It is rich in bioactive chemicals good for human health. Broccoli has been consumed as a vegetable since Roman times, but its production and consumption have increased significantly over the past few decades. Breeders try to develop new broccoli varieties with high yield, improved quality, and resistance to biotic and abiotic stresses. Almost all new broccoli varieties are F1 hybrids. Development of inbred broccoli lines that can be used as parents in hybrid production is a time-consuming and difficult process. Haploidization techniques can be utilized as a valuable support in broccoli breeding programs to speed up the production of genetically pure genotypes. Haploid plants of broccoli can be produced from immature male gametophytes via anther and microspore cultures with similar success rates. The most important parameters affecting the success of haploidization in broccoli are the genetic background (genotype) and the developmental stage of the microspores. Broccoli genotypes differ in their responses to androgenesis induction. The highest androgenesis response could be induced from microspores in late uninucleate and early binucleate stages. Recovery of diploid broccoli plants from haploids is possible via spontaneous and induced doubling. Doubled haploid (DH) broccoli lines are considered to be fully homozygous. Therefore, the production of DH lines is an alternative way to obtain pure inbred lines that can be utilized as parents in the development of new F1 hybrid varieties showing high levels of heterosis, high-quality heads, and uniform harvestable crop. We are using an anther culture-based haploid plant production system to develop DH broccoli lines in our broccoli breeding program. DH broccoli lines are produced from different genetic backgrounds within a year and handed to broccoli breeders.
Collapse
Affiliation(s)
- Ali Ramazan Alan
- Plant Genetics and Agricultural Biotechnology Application and Research Center (PAU BIYOM), Pamukkale University, Denizli, Turkey. .,Department of Biology, Pamukkale University, Denizli, Turkey.
| | - Fevziye Celebi-Toprak
- Plant Genetics and Agricultural Biotechnology Application and Research Center (PAU BIYOM), Pamukkale University, Denizli, Turkey.,Department of Biology, Pamukkale University, Denizli, Turkey
| | - Alireza Lachin
- Plant Genetics and Agricultural Biotechnology Application and Research Center (PAU BIYOM), Pamukkale University, Denizli, Turkey.,Department of Biology, Pamukkale University, Denizli, Turkey
| | - Doguscan Yildiz
- Plant Genetics and Agricultural Biotechnology Application and Research Center (PAU BIYOM), Pamukkale University, Denizli, Turkey
| | - Volkan Gozen
- Vegetable and Ornamental Plant Department of Bati Akdeniz Agricultural Research Institute (BATEM), Antalya, Turkey
| | - Gulay Besirli
- Atatürk Horticultural Central Research Institute, Yalova, Turkey
| |
Collapse
|