1
|
Wu YZ, Wang J, Hu YH, Sun QS, Geng R, Ding LN. Antimicrobial Peptides: Classification, Mechanism, and Application in Plant Disease Resistance. Probiotics Antimicrob Proteins 2025; 17:1432-1446. [PMID: 39969681 DOI: 10.1007/s12602-025-10478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Antimicrobial peptides (AMPs) are a class of alkaline, small molecules found widely in nature. This article surveys the classifications of AMPs, delving into their modes of action and their role in controlling significant plant diseases caused by bacteria, viruses, and fungi. It also explores the prospects and challenges in this field, aiming to provide insights for enhancing crop disease resistance, ensuring food security, deepening the understanding of pathogen mechanisms, and protecting ecological balance.
Collapse
Affiliation(s)
- Yuan-Zhen Wu
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Jin Wang
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Ying-Hui Hu
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Qi-Shuo Sun
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Rui Geng
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Li-Na Ding
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China.
| |
Collapse
|
2
|
Fatima I, Wakade G, Ahmad N, Daniell H. Expression of endochitinase and exochitinase in lettuce chloroplasts increases plant biomass and kills fungal pathogen Candida albicans. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1437-1451. [PMID: 39967296 PMCID: PMC12018847 DOI: 10.1111/pbi.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025]
Abstract
Lettuce (Lactuca sativa) is a popular leafy vegetable with global production of ~28 million Mt, cultivated >1 million hectares, with a market value of US$ 4 billion in 2022. However, lettuce is highly susceptible to fungal pathogens that drastically reduce biomass and quality due to spoilage/rot. Therefore, in this study, we investigated the expression of chitinase genes via the lettuce chloroplast genome to enhance biomass and disease resistance. Site-specific integration of the expression cassette into chloroplast genomes was confirmed using two sets of PCR primers. Homoplasmy in transplastomic lines was confirmed in Southern blots by the absence of untransformed genomes. Maternal inheritance of transgenes was confirmed by the lack of segregation when seedlings were germinated in the selection medium. Chitinases expressed in chloroplasts are active in a broad range of pH (5-9) and temperatures (20-50 °C). Exochitinase expression significantly increased the number of leaves, root or shoot length and biomass throughout the growth cycle. Endochitinase expression reduced root/shoot biomass at early stages but recovered in older plants. Plant extracts expressing endochitinase/exochitinase showed activities as high as purified commercial enzymes. Antifungal activity in Candida albicans cultures inhibited growth up to 87%. A novel Carbotrace 680™ Optotracer binding to the ß-1,4 linkages of chitin, evaluated for the first time in plant systems, is highly sensitive to measure chitinase activity. To the best of our knowledge, this is the first report of chitinase expression via the chloroplast genomes of an edible plant, to confer desired agronomic traits or for biomedical applications.
Collapse
Affiliation(s)
- Iqra Fatima
- Department of Basic & Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- National Institute for Biotechnology and Genetic Engineering CollegePakistan Institute of Engineering and Applied Sciences (NIBGE‐C, PIEAS)FaisalabadPakistan
| | - Geetanjali Wakade
- Department of Basic & Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering CollegePakistan Institute of Engineering and Applied Sciences (NIBGE‐C, PIEAS)FaisalabadPakistan
| | - Henry Daniell
- Department of Basic & Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Lou M, Ji S, Wu R, Zhu Y, Wu J, Zhang J. Microbial production systems and optimization strategies of antimicrobial peptides: a review. World J Microbiol Biotechnol 2025; 41:66. [PMID: 39920500 DOI: 10.1007/s11274-025-04278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
Antibiotic resistance has become a public safety issue of the twenty-first century, posing a growing threat and drawing increased attention. Compared to traditional antibiotics, antimicrobial peptides (AMPs), as naturally produced small peptides, can target multiple pathways within pathogens and render them less prone to developing resistance. This makes them promising alternatives to antibiotics. However, traditional chemical synthesis methods face challenges, such as high costs, low yields, and poor stability, limiting the large-scale industrial production of AMPs. Despite extensive research to improve AMP production efficiency, issues such as low yields and complex extraction processes continue to pose significant barriers to commercial application. Therefore, there is an urgent need for new biosynthesis strategies and optimization methods to enhance AMP production efficiency and quality. This review summarizes the sources, classification, mechanisms of action and recent advances in the microbial synthesis of AMPs. It also explores innovative production methods, including recombinant microbial expression systems, fusion tags, codon optimization, tandem multimer expression, and hybrid peptide expression. Furthermore, we review the applications of gene editing technologies and artificial intelligence in AMP production, providing new perspectives and strategies for efficient, large-scale AMP production.
Collapse
Affiliation(s)
- Mengxue Lou
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China
| | - Yi Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, 110866, People's Republic of China.
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, 110866, People's Republic of China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, 570228, People's Republic of China.
| |
Collapse
|
4
|
Dzurová L, Holásková E, Pospíšilová H, Schneider Rauber G, Frébortová J. Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation. Antibiotics (Basel) 2024; 14:1. [PMID: 39858288 PMCID: PMC11762488 DOI: 10.3390/antibiotics14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Cathelicidins are a group of cationic, amphipathic peptides that play a vital role in the innate immune response of many vertebrates, including humans. Produced by immune and epithelial cells, they serve as natural defenses against a wide range of pathogens, including bacteria, viruses, and fungi. In humans, the cathelicidin LL-37 is essential for wound healing, maintaining skin barrier integrity, and combating infections. Cathelicidins of different origins have shown potential in treating various skin conditions, including melanoma, acne, and diabetic foot ulcers. Despite their promising therapeutic potential, cathelicidins face significant challenges in clinical application. Many peptide-based therapies have failed in clinical trials due to unclear efficacy and safety concerns. Additionally, the emergence of bacterial resistance, which contradicts initial claims of non-resistance, further complicates their development. To successfully translate cathelicidins into effective clinical treatments, therefore, several obstacles must be addressed, including a better understanding of their mechanisms of action, sustainable large-scale production, optimized formulations for drug delivery and stability, and strategies to overcome microbial resistance. This review examines the current knowledge of cathelicidins and their therapeutic applications and discusses the challenges that hinder their clinical use and must be overcome to fully exploit their potential in medicine.
Collapse
Affiliation(s)
- Lenka Dzurová
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 77900 Olomouc, Czech Republic; (E.H.); (H.P.); (J.F.)
| | | | | | | | | |
Collapse
|
5
|
Zhang K, Yang N, Teng D, Mao R, Hao Y, Wang J. Expression and characterization of the new antimicrobial peptide AP138L-arg26 anti Staphylococcus aureus. Appl Microbiol Biotechnol 2024; 108:111. [PMID: 38229298 DOI: 10.1007/s00253-023-12947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 01/18/2024]
Abstract
The low activity and yield of antimicrobial peptides (AMPs) are pressing problems. The improvement of activity and yield through modification and heterologous expression, a potential way to solve the problem, is a research hot-pot. In this work, a new plectasin-derived variant L-type AP138 (AP138L-arg26) was constructed for the study of recombination expression and druggablity. As a result, the total protein concentration of AP138L-arg26 was 3.1 mg/mL in Pichia pastoris X-33 supernatant after 5 days of induction expression in a 5-L fermenter. The recombinant peptide AP138L-arg26 has potential antibacterial activity against selected standard and clinical Gram-positive bacteria (G+, minimum inhibitory concentration (MIC) 2-16 µg/mL) and high stability under different conditions (temperature, pH, ion concentration) and 2 × MIC of AP138L-arg26 could rapidly kill Staphylococcus aureus (S. aureus) (> 99.99%) within 1.5 h. It showed a high safety in vivo and in vivo and a long post-antibiotic effect (PAE, 1.91 h) compared with vancomycin (1.2 h). Furthermore, the bactericidal mechanism was revealed from two dimensions related to its disruption of the cell membrane resulting in intracellular potassium leakage (2.5-fold higher than control), and an increase in intracellular adenosine triphosphate (ATP), and reactive oxygen species (ROS), the decrease of lactate dehydrogenase (LDH) and further intervening metabolism in S. aureus. These results indicate that AP138L-arg26 as a new peptide candidate could be used for more in-depth development in the future. KEY POINTS: • The AP138L-arg26 was expressed in the P. pastoris expression system with high yield • The AP138 L-arg26 showed high stability and safety in vitro and in vivo • The AP138L-arg26 killed S. aureus by affecting cell membranes and metabolism.
Collapse
Affiliation(s)
- Kun Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, People's Republic of China.
| |
Collapse
|
6
|
Chaudhary S, Ali Z, Pantoja‐Angles A, Abdelrahman S, Juárez COB, Rao GS, Hong P, Hauser C, Mahfouz M. High-yield, plant-based production of an antimicrobial peptide with potent activity in a mouse model. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3392-3405. [PMID: 39264967 PMCID: PMC11606426 DOI: 10.1111/pbi.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
Plants offer a promising chassis for the large-scale, cost-effective production of diverse therapeutics, including antimicrobial peptides (AMPs). However, key advances will reduce production costs, including simplifying the downstream processing and purification steps. Here, using Nicotiana benthamiana plants, we present an improved modular design that enables AMPs to be secreted via the endomembrane system and sequestered in an extracellular compartment, the apoplast. Additionally, we translationally fused an AMP to a mutated small ubiquitin-like modifier sequence, thereby enhancing peptide yield and solubilizing the peptide with minimal aggregation and reduced occurrence of necrotic lesions in the plant. This strategy resulted in substantial peptide accumulation, reaching around 2.9 mg AMP per 20 g fresh weight of leaf tissue. Furthermore, the purified AMP demonstrated low collateral toxicity in primary human skin cells, killed pathogenic bacteria by permeabilizing the membrane and exhibited anti-infective efficacy in a preclinical mouse (Mus musculus) model system, reducing bacterial loads by up to three orders of magnitude. A base-case techno-economic analysis demonstrated the economic advantages and scalability of our plant-based platform. We envision that our work can establish plants as efficient bioreactors for producing preclinical-grade AMPs at a commercial scale, with the potential for clinical applications.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Aarón Pantoja‐Angles
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Computational Bioscience Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Cynthia Olivia Baldelamar Juárez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Computational Bioscience Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Gundra Sivakrishna Rao
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Pei‐Ying Hong
- Water Desalination and Reuse Center, Division of Biological Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Charlotte Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Computational Bioscience Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| |
Collapse
|
7
|
Zhang K, Yang N, Mao R, Hao Y, Teng D, Wang J. An amphipathic peptide combats multidrug-resistant Staphylococcus aureus and biofilms. Commun Biol 2024; 7:1582. [PMID: 39604611 PMCID: PMC11603143 DOI: 10.1038/s42003-024-07216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The emergence of drug-resistant Staphylococcus aureus (S. aureus) has resulted in infections in humans and animals that may lead to a crisis in the absence of highly effective drugs. Consequently, the development of alternative or complementary antimicrobial agents is urgently needed. Here, a series of peptides derived from AP138 were designed with high expression, antimicrobial activity, and antibiofilm properties via bioinformatics. Among them, the best derived peptide, A24 (S9A), demonstrated the greatest stability and bactericidal efficiency against multidrug-resistant S. aureus in a physiological environment, with a high hydrophobicity of 35%. This peptide exhibited superior performance compared to the preclinical or clinical antimicrobial peptides (AMPs). A24 displayed increased biocompatibility in vitro and in vivo, exhibiting a low hemolysis rate (less than 3%), minimal cytotoxicity (survival rate exceeding 85%), and no histotoxicity. A24 had the capacity to destroy cell walls, increase cell membrane permeability, and induce increases in intracellular ATP and ROS levels, which resulted in the rapid death of S. aureus. A24 inhibited the formation of early biofilms and eliminated both mature biofilms (40-50%) and persisters (99.9%). Therapeutic doses of A24 were shown to exhibit favorable safety profiles and bactericidal efficacy in vivo and could reduce bacterial loads of multidrug-resistant S. aureus by 4-5 log10 CFU/0.1g levels in mouse peritonitis and endometritis models. Furthermore, A24 increased the survival rate to 100% and exhibited anti-inflammatory properties in a mouse model. The aforementioned data illustrate the potential of A24 as a pharmaceutical agent for the treatment of bacterial infections, including peritonitis and endometritis, in animal husbandry with multidrug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Kun Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China.
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, 100081, Beijing, PR China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, 100081, Beijing, PR China.
| |
Collapse
|
8
|
Chaudhary S, Ali Z, Mahfouz M. Molecular farming for sustainable production of clinical-grade antimicrobial peptides. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2282-2300. [PMID: 38685599 PMCID: PMC11258990 DOI: 10.1111/pbi.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024]
Abstract
Antimicrobial peptides (AMPs) are emerging as next-generation therapeutics due to their broad-spectrum activity against drug-resistant bacterial strains and their ability to eradicate biofilms, modulate immune responses, exert anti-inflammatory effects and improve disease management. They are produced through solid-phase peptide synthesis or in bacterial or yeast cells. Molecular farming, i.e. the production of biologics in plants, offers a low-cost, non-toxic, scalable and simple alternative platform to produce AMPs at a sustainable cost. In this review, we discuss the advantages of molecular farming for producing clinical-grade AMPs, advances in expression and purification systems and the cost advantage for industrial-scale production. We further review how 'green' production is filling the sustainability gap, streamlining patent and regulatory approvals and enabling successful clinical translations that demonstrate the future potential of AMPs produced by molecular farming. Finally, we discuss the regulatory challenges that need to be addressed to fully realize the potential of molecular farming-based AMP production for therapeutics.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences4700 King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
9
|
Belagal P. Current alternative therapies for treating drug-resistant Neisseria gonorrhoeae causing ophthalmia neonatorum. Future Microbiol 2024; 19:631-647. [PMID: 38512111 PMCID: PMC11229588 DOI: 10.2217/fmb-2023-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/03/2024] [Indexed: 03/22/2024] Open
Abstract
Ophthalmia neonatorum is a microbial contraction, damaging eyesight, occurring largely among neonates. Infants are particularly vulnerable to bacterial infections acquired during birth from infected mothers, especially from Neisseria gonorrhoeae and Chlamydia trachomatis. Over the decades, N. gonorrhoeae is alarmingly developing a resistance to most antibiotics currently prescribed. To counter this challenge, it is imperative to find potent and cost-effective therapeutic agents for prophylaxis and treatment, to which the N. gonorrhoeae cannot easily develop resistance. This review showcases alternate therapies such as antimicrobial-fatty acids, -peptides, -nano-formulations etc., currently evident against N. gonorrhoeae-mediated ophthalmia neonatorum, which remains a major cause of ocular morbidity, blindness and even death among neonates in developing countries.
Collapse
|
10
|
Nazarian-Firouzabadi F, Torres MDT, de la Fuente-Nunez C. Recombinant production of antimicrobial peptides in plants. Biotechnol Adv 2024; 71:108296. [PMID: 38042311 PMCID: PMC11537283 DOI: 10.1016/j.biotechadv.2023.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Classical plant breeding methods are limited in their ability to confer disease resistance on plants. However, in recent years, advancements in molecular breeding and biotechnological have provided new approaches to overcome these limitations and protect plants from disease. Antimicrobial peptides (AMPs) constitute promising agents that may be able to protect against infectious agents. Recently, peptides have been recombinantly produced in plants at scale and low cost. Because AMPs are less likely than conventional antimicrobials to elicit resistance of pathogenic bacteria, they open up exciting new avenues for agricultural applications. Here, we review recent advances in the design and production of bioactive recombinant AMPs that can effectively protect crop plants from diseases.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box, 465, Khorramabad, Iran.
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
11
|
Dwivedi M, Parmar MD, Mukherjee D, Yadava A, Yadav H, Saini NP. Biochemistry, Mechanistic Intricacies, and Therapeutic Potential of Antimicrobial Peptides: An Alternative to Traditional Antibiotics. Curr Med Chem 2024; 31:6110-6139. [PMID: 37818561 DOI: 10.2174/0109298673268458230926105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
The emergence of drug-resistant strains of pathogens becomes a major obstacle to treating human diseases. Antibiotics and antivirals are in the application for a long time but now these drugs are not much effective anymore against disease-causing drugresistant microbes and gradually it is becoming a serious complication worldwide. The development of new antibiotics cannot be a stable solution to treat drug-resistant strains due to their evolving nature and escaping antibiotics. At this stage, antimicrobial peptides (AMPs) may provide us with novel therapeutic leads against drug-resistant pathogens. Structurally, antimicrobial peptides are mostly α-helical peptide molecules with amphiphilic properties that carry the positive charge (cationic) and belong to host defense peptides. These positively charged AMPs can interact with negatively charged bacterial cell membranes and may cause the alteration in electrochemical potential on bacterial cell membranes and consequently lead to the death of microbial cells. In the present study, we will elaborate on the implication of AMPs in the treatment of various diseases along with their specific structural and functional properties. This review will provide information which assists in the development of new synthetic peptide analogues to natural AMPs. These analogues will eliminate the limitations of natural AMPs like toxicity and severe hemolytic activities.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Meet Dineshbhai Parmar
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | | | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Nandini Pankaj Saini
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| |
Collapse
|
12
|
Sweany RR, Cary JW, Jaynes JM, Rajasekaran K. Broad-Spectrum Antimicrobial Activity of Synthetic Peptides GV185 and GV187. PLANT DISEASE 2023; 107:3211-3221. [PMID: 36947838 DOI: 10.1094/pdis-11-22-2572-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optimizing synthetic antimicrobial peptides for safe and enhanced activity against fungal and bacterial pathogens is useful for genetic engineering of plants for resistance to plant pathogens and their associated mycotoxins. Nine synthetic peptides modeled after lytic peptides tachyplesin 1, D4E1 from cecropin A, and protegrin 1 were added to germinated spores of fungal species Aspergillus flavus, Rhizopus stolonifer, Fusarium oxysporum f. sp. vasinfectum, F. verticillioides, F. graminearum, Claviceps purpurea, Verticillium dahliae, and Thielaviopsis basicola and bacterial cultures of Pseudomonas syringae pv. tabaci and Xanthomonas campestris pv. campestris at different doses and inhibitory dose response curves, and were modeled to assess antimicrobial activity. Peptides GV185 and GV187, modified from tachyplesin 1, had superior abilities to inhibit fungal and bacterial growth (50% inhibitory concentrations [IC50] ranging from 0.1 to 8.7 µM). R. stolonifer (IC50 = 8.1 µM), A. flavus (IC50 = 3.1 µM), and F. graminearum (IC50 = 2.2 µM) were less inhibited by GV185 and GV187 than all the remaining fungi (IC50 = 1.4 µM) and bacteria (IC50 = 0.1 µM). Of the remaining peptides, GV193, GV195, and GV196 (IC50 range of 0.9 to 6.6 µM) inhibited fungal growth of A. flavus, F. verticillioides, and F. graminearum less than GV185 and GV187 (IC50 range of 0.8 to 3.9 µM), followed by GV197 (IC50 range of 0.8 to 9.1 µM), whereas GV190 and GV192 inhibited poorly (IC50 range of 28.2 to 36.6 µM and 15.5 to 19.4 µM, respectively) and GV198 stimulated growth. GV185 and GV187 had slightly weaker hydrophobic and cationic residues than other tachyplesin 1 modified peptides but still had unexpectedly high lytic activity. Germinated fungal spores of R. stolonifer and F. graminearum exposed to these two peptides and D4E1 and AGM182 appeared wrinkled, with perforations near potential cytoplasmic leakage, which provided evidence of plasma membrane and cell wall lysis. We conclude that peptides GV185 and GV187 are promising candidates for genetic engineering of crops for resistance to plant-pathogenic bacteria and fungi, including A. flavus and aflatoxin contamination.
Collapse
Affiliation(s)
- Rebecca R Sweany
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, New Orleans, LA 70124
| | - Jeffrey W Cary
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, New Orleans, LA 70124
| | - Jesse M Jaynes
- Genvor, LLC, Dallas, TX 75240
- College of Agriculture, Environment and Nutrition Sciences, and College of Arts and Sciences, Tuskegee University, Tuskegee, AL 36088
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture-Agricultural Research Service, New Orleans, LA 70124
| |
Collapse
|
13
|
Li Y, Hu X, Xiao M, Huang J, Lou Y, Hu F, Fu X, Li Y, He H, Cheng J. An analysis of codon utilization patterns in the chloroplast genomes of three species of Coffea. BMC Genom Data 2023; 24:42. [PMID: 37558997 PMCID: PMC10413492 DOI: 10.1186/s12863-023-01143-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The chloroplast genome of plants is known for its small size and low mutation and recombination rates, making it a valuable tool in plant phylogeny, molecular evolution, and population genetics studies. Codon usage bias, an important evolutionary feature, provides insights into species evolution, gene function, and the expression of exogenous genes. Coffee, a key crop in the global tropical agricultural economy, trade, and daily life, warrants investigation into its codon usage bias to guide future research, including the selection of efficient heterologous expression systems for coffee genetic transformation. RESULTS Analysis of the codon utilization patterns in the chloroplast genomes of three Coffea species revealed a high degree of similarity among them. All three species exhibited similar base compositions, with high A/T content and low G/C content and a preference for A/T-ending codons. Among the 30 high-frequency codons identified, 96.67% had A/T endings. Fourteen codons were identified as ideal. Multiple mechanisms, including natural selection, were found to influence the codon usage patterns in the three coffee species, as indicated by ENc-GC3s mapping, PR2 analysis, and neutral analysis. Nicotiana tabacum and Saccharomyces cerevisiae have potential value as the heterologous expression host for three species of coffee genes. CONCLUSION This study highlights the remarkable similarity in codon usage patterns among the three coffee genomes, primarily driven by natural selection. Understanding the gene expression characteristics of coffee and elucidating the laws governing its genetic evolution are facilitated by investigating the codon preferences in these species. The findings can enhance the efficacy of exogenous gene expression and serve as a basis for future studies on coffee evolution.
Collapse
Affiliation(s)
- Yaqi Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Xiang Hu
- Institute of Tropical Eco-Agricultural, Yunnan Academy of Agricultural Sciences, Yuanmou, Yunnan, China
| | - Mingkun Xiao
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Jiaxiong Huang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Yuqiang Lou
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Faguang Hu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Xingfei Fu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
| | - Hongyan He
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China
- Yunnan Academy of Agricultural Engineering, Kunming, Yunnan, China
| | - Jinhuan Cheng
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, Yunnan, China.
- Yunnan Academy of Agricultural Engineering, Kunming, Yunnan, China.
| |
Collapse
|
14
|
Mazurkiewicz-Pisarek A, Baran J, Ciach T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Int J Mol Sci 2023; 24:ijms24109031. [PMID: 37240379 DOI: 10.3390/ijms24109031] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs), or host defence peptides, are short proteins in various life forms. Here we discuss AMPs, which may become a promising substitute or adjuvant in pharmaceutical, biomedical, and cosmeceutical uses. Their pharmacological potential has been investigated intensively, especially as antibacterial and antifungal drugs and as promising antiviral and anticancer agents. AMPs exhibit many properties, and some of these have attracted the attention of the cosmetic industry. AMPs are being developed as novel antibiotics to combat multidrug-resistant pathogens and as potential treatments for various diseases, including cancer, inflammatory disorders, and viral infections. In biomedicine, AMPs are being developed as wound-healing agents because they promote cell growth and tissue repair. The immunomodulatory effects of AMPs could be helpful in the treatment of autoimmune diseases. In the cosmeceutical industry, AMPs are being investigated as potential ingredients in skincare products due to their antioxidant properties (anti-ageing effects) and antibacterial activity, which allows the killing of bacteria that contribute to acne and other skin conditions. The promising benefits of AMPs make them a thrilling area of research, and studies are underway to overcome obstacles and fully harness their therapeutic potential. This review presents the structure, mechanisms of action, possible applications, production methods, and market for AMPs.
Collapse
Affiliation(s)
- Anna Mazurkiewicz-Pisarek
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
15
|
Chaudhary S, Ali Z, Tehseen M, Haney EF, Pantoja-Angles A, Alshehri S, Wang T, Clancy GJ, Ayach M, Hauser C, Hong PY, Hamdan SM, Hancock REW, Mahfouz M. Efficient in planta production of amidated antimicrobial peptides that are active against drug-resistant ESKAPE pathogens. Nat Commun 2023; 14:1464. [PMID: 36928189 PMCID: PMC10020429 DOI: 10.1038/s41467-023-37003-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Antimicrobial peptides (AMPs) are promising next-generation antibiotics that can be used to combat drug-resistant pathogens. However, the high cost involved in AMP synthesis and their short plasma half-life render their clinical translation a challenge. To address these shortcomings, we report efficient production of bioactive amidated AMPs by transient expression of glycine-extended AMPs in Nicotiana benthamiana line expressing the mammalian enzyme peptidylglycine α-amidating mono-oxygenase (PAM). Cationic AMPs accumulate to substantial levels in PAM transgenic plants compare to nontransgenic N. benthamiana. Moreover, AMPs purified from plants exhibit robust killing activity against six highly virulent and antibiotic resistant ESKAPE pathogens, prevent their biofilm formation, analogous to their synthetic counterparts and synergize with antibiotics. We also perform a base case techno-economic analysis of our platform, demonstrating the potential economic advantages and scalability for industrial use. Taken together, our experimental data and techno-economic analysis demonstrate the potential use of plant chassis for large-scale production of clinical-grade AMPs.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Division of Biological Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Aarón Pantoja-Angles
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Salwa Alshehri
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, 21577, Saudi Arabia
| | - Tiannyu Wang
- Water Desalination and Reuse Center, Division of Biological Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gerard J Clancy
- Analytical Chemistry Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Maya Ayach
- Imaging & Characterization Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Charlotte Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Division of Biological Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
16
|
Zhang K, Teng D, Mao R, Yang N, Hao Y, Wang J. Thinking on the Construction of Antimicrobial Peptide Databases: Powerful Tools for the Molecular Design and Screening. Int J Mol Sci 2023; 24:ijms24043134. [PMID: 36834553 PMCID: PMC9960615 DOI: 10.3390/ijms24043134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
With the accelerating growth of antimicrobial resistance (AMR), there is an urgent need for new antimicrobial agents with low or no AMR. Antimicrobial peptides (AMPs) have been extensively studied as alternatives to antibiotics (ATAs). Coupled with the new generation of high-throughput technology for AMP mining, the number of derivatives has increased dramatically, but manual running is time-consuming and laborious. Therefore, it is necessary to establish databases that combine computer algorithms to summarize, analyze, and design new AMPs. A number of AMP databases have already been established, such as the Antimicrobial Peptides Database (APD), the Collection of Antimicrobial Peptides (CAMP), the Database of Antimicrobial Activity and Structure of Peptides (DBAASP), and the Database of Antimicrobial Peptides (dbAMPs). These four AMP databases are comprehensive and are widely used. This review aims to cover the construction, evolution, characteristic function, prediction, and design of these four AMP databases. It also offers ideas for the improvement and application of these databases based on merging the various advantages of these four peptide libraries. This review promotes research and development into new AMPs and lays their foundation in the fields of druggability and clinical precision treatment.
Collapse
Affiliation(s)
- Kun Zhang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Innovative Team of Antimicrobial Peptides and Alternatives to Antibiotics, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Correspondence: ; Tel.: +86-10-82106081 or +86-10-82106079; Fax: +86-10-82106079
| |
Collapse
|
17
|
Hoelscher MP, Forner J, Calderone S, Krämer C, Taylor Z, Loiacono FV, Agrawal S, Karcher D, Moratti F, Kroop X, Bock R. Expression strategies for the efficient synthesis of antimicrobial peptides in plastids. Nat Commun 2022; 13:5856. [PMID: 36195597 PMCID: PMC9532397 DOI: 10.1038/s41467-022-33516-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) kill microbes or inhibit their growth and are promising next-generation antibiotics. Harnessing their full potential as antimicrobial agents will require methods for cost-effective large-scale production and purification. Here, we explore the possibility to exploit the high protein synthesis capacity of the chloroplast to produce AMPs in plants. Generating a large series of 29 sets of transplastomic tobacco plants expressing nine different AMPs as fusion proteins, we show that high-level constitutive AMP expression results in deleterious plant phenotypes. However, by utilizing inducible expression and fusions to the cleavable carrier protein SUMO, the cytotoxic effects of AMPs and fused AMPs are alleviated and plants with wild-type-like phenotypes are obtained. Importantly, purified AMP fusion proteins display antimicrobial activity independently of proteolytic removal of the carrier. Our work provides expression strategies for the synthesis of toxic polypeptides in chloroplasts, and establishes transplastomic plants as efficient production platform for antimicrobial peptides.
Collapse
Affiliation(s)
- Matthijs P Hoelscher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Utrecht University, Pharmaceutical sciences, Pharmaceutics, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Silvia Calderone
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Carolin Krämer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Zachary Taylor
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - F Vanessa Loiacono
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Shreya Agrawal
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
- Neoplants, 630 Rue Noetzlin Bâtiment, 91190, Gif-sur-Yvette, France
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Fabio Moratti
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
18
|
Deo S, Turton KL, Kainth T, Kumar A, Wieden HJ. Strategies for improving antimicrobial peptide production. Biotechnol Adv 2022; 59:107968. [PMID: 35489657 DOI: 10.1016/j.biotechadv.2022.107968] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023]
Abstract
Antimicrobial peptides (AMPs) found in a wide range of animal, insect, and plant species are host defense peptides forming an integral part of their innate immunity. Although the exact mode of action of some AMPs is yet to be deciphered, many exhibit membrane lytic activity or interact with intracellular targets. The ever-growing threat of antibiotic resistance has brought attention to research on AMPs to enhance their clinical use as a therapeutic alternative. AMPs have several advantages over antibiotics such as broad range of antimicrobial activities including anti-fungal, anti-viral and anti-bacterial, and have not reported to contribute to resistance development. Despite the numerous studies to develop efficient production methods for AMPs, limitations including low yield, degradation, and loss of activity persists in many recombinant approaches. In this review, we outline available approaches for AMP production and various expression systems used to achieve higher yield and quality. In addition, recent advances in recombinant strategies, suitable fusion protein partners, and other molecular engineering strategies for improved AMP production are surveyed.
Collapse
Affiliation(s)
- Soumya Deo
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristi L Turton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W., Lethbridge, AB T1K 3M4, Canada
| | - Tajinder Kainth
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hans-Joachim Wieden
- Department of Microbiology, Buller building, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
19
|
Elshikh MS, Ajmal Ali M, Al-Hemaid F, Yong Kim S, Elangbam M, Bahadur Gurung A, Mukherjee P, El-Zaidy M, Lee J. Insights into plastome of Fagonia indica Burm.f. (Zygophyllaceae) : organization, annotation and phylogeny. Saudi J Biol Sci 2022; 29:1313-1321. [PMID: 35280582 PMCID: PMC8913386 DOI: 10.1016/j.sjbs.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/15/2022] Open
Abstract
The enhanced understanding of chloroplast genomics would facilitate various biotechnology applications; however, the chloroplast (cp) genome / plastome characteristics of plants like Fagonia indica Burm.f. (family Zygophyllaceae), which have the capability to grow in extremely hot sand desert, have been rarely understood. The de novo genome sequence of F. indica using the Illumina high-throughput sequencing technology determined 128,379 bp long cp genome, encode 115 unique coding genes. The present study added the evidence of the loss of a copy of the IR in the cp genome of the taxa capable to grow in the hot sand desert. The maximum likelihood analysis revealed two distinct sub-clades i.e. Krameriaceae and Zygophyllaceae of the order Zygophyllales, nested within fabids.
Collapse
Affiliation(s)
- Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Soo Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Meena Elangbam
- Genetics Laboratory, Centre of Advanced Studies in Life Sciences, Manipur University, Canchipur 795 003, India
| | - Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong-793022, Meghalaya, India
| | - Prasanjit Mukherjee
- Department of Botany, Kumar Kalidas Memorial College, Pakur-816107, Jharkhand, India
| | - Mohamed El-Zaidy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
20
|
Antimicrobial Peptides as a Promising Therapeutic Strategy for Neisseria Infections. Curr Microbiol 2022; 79:102. [DOI: 10.1007/s00284-022-02767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/13/2022] [Indexed: 11/03/2022]
|
21
|
Luo X, Wu W, Feng L, Treves H, Ren M. Short Peptides Make a Big Difference: The Role of Botany-Derived AMPs in Disease Control and Protection of Human Health. Int J Mol Sci 2021; 22:11363. [PMID: 34768793 PMCID: PMC8583512 DOI: 10.3390/ijms222111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Botany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses. With their diverse molecular structures, broad-spectrum antimicrobial activity, multiple mechanisms of action, and low cytotoxicity, BAMPs provide ideal backbones for drug design, and are potential candidates for plant protection and disease treatment. Lots of original research has elucidated the properties and antimicrobial mechanisms of BAMPs, and characterized their surface receptors and in vivo targets in pathogens. In this paper, we review and introduce five kinds of representative BAMPs belonging to the pathogenesis-related protein family, dissect their antifungal, antiviral, and anticancer mechanisms, and forecast their prospects in agriculture and global human health. Through the deeper understanding of BAMPs, we provide novel insights for their applications in broad-spectrum and durable plant disease prevention and control, and an outlook on the use of BAMPs in anticancer and antiviral drug design.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
| | - Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
22
|
He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K.‐C. Ma J, McDonald KA, Murad A, Nandi S, O’Keef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JC, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman‐Caldentey K, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1921-1936. [PMID: 34181810 PMCID: PMC8486237 DOI: 10.1111/pbi.13658] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/05/2023]
Abstract
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.
Collapse
Affiliation(s)
- Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Aamaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennaser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andrea Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ramalingam Sathish Kumar
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keef
- Division of Cancer Treatment and DiagnosisMolecular Targets ProgramCenter for Cancer ResearchNational Cancer Institute, and Natural Products Branch, Developmental Therapeutics ProgramNational Cancer Institute, NIHFrederickMDUSA
| | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research Park, NorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Julio C.M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | | | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| |
Collapse
|
23
|
Singh R, Ren Z, Shi Y, Lin S, Kwon K, Balamurugan S, Rai V, Mante F, Koo H, Daniell H. Affordable oral health care: dental biofilm disruption using chloroplast made enzymes with chewing gum delivery. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2113-2125. [PMID: 34076337 PMCID: PMC8486246 DOI: 10.1111/pbi.13643] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 05/09/2023]
Abstract
Current approaches for oral health care rely on procedures that are unaffordable to impoverished populations, whereas aerosolized droplets in the dental clinic and poor oral hygiene may contribute to spread of several infectious diseases including COVID-19, requiring new solutions for dental biofilm/plaque treatment at home. Plant cells have been used to produce monoclonal antibodies or antimicrobial peptides for topical applications to decrease colonization of pathogenic microbes on dental surface. Therefore, we investigated an affordable method for dental biofilm disruption by expressing lipase, dextranase or mutanase in plant cells via the chloroplast genome. Antibiotic resistance gene used to engineer foreign genes into the chloroplast genome were subsequently removed using direct repeats flanking the aadA gene and enzymes were successfully expressed in marker-free lettuce transplastomic lines. Equivalent enzyme units of plant-derived lipase performed better than purified commercial enzymes against biofilms, specifically targeting fungal hyphae formation. Combination of lipase with dextranase and mutanase suppressed biofilm development by degrading the biofilm matrix, with concomitant reduction of bacterial and fungal accumulation. In chewing gum tablets formulated with freeze-dried plant cells, expressed protein was stable up to 3 years at ambient temperature and was efficiently released in a time-dependent manner using a mechanical chewing simulator device. Development of edible plant cells expressing enzymes eliminates the need for purification and cold-chain transportation, providing a potential translatable therapeutic approach. Biofilm disruption through plant enzymes and chewing gum-based delivery offers an effective and affordable dental biofilm control at home particularly for populations with minimal oral care access.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Zhi Ren
- Divisions of Community Oral Health & Pediatric DentistryDepartment of OrthodonticsSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Yao Shi
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shina Lin
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kwang‐Chul Kwon
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shanmugaraj Balamurugan
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Vineeta Rai
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Francis Mante
- Department of Preventive and Restorative DentistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Hyun Koo
- Divisions of Community Oral Health & Pediatric DentistryDepartment of OrthodonticsSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Center for Innovation & Precision DentistrySchool of Dental Medicine and School of Engineering & Applied SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Center for Innovation & Precision DentistrySchool of Dental Medicine and School of Engineering & Applied SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
24
|
Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W. Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants. Molecules 2021; 26:4032. [PMID: 34279372 PMCID: PMC8272150 DOI: 10.3390/molecules26134032] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of drug-resistant pathogens poses a serious critical threat to global public health and requires immediate action. Antimicrobial peptides (AMPs) are a class of short peptides ubiquitously found in all living forms, including plants, insects, mammals, microorganisms and play a significant role in host innate immune system. These peptides are considered as promising candidates to treat microbial infections due to its distinct advantages over conventional antibiotics. Given their potent broad spectrum of antimicrobial action, several AMPs are currently being evaluated in preclinical/clinical trials. However, large quantities of highly purified AMPs are vital for basic research and clinical settings which is still a major bottleneck hindering its application. This can be overcome by genetic engineering approaches to produce sufficient amount of diverse peptides in heterologous host systems. Recently plants are considered as potential alternatives to conventional protein production systems such as microbial and mammalian platforms due to their unique advantages such as rapidity, scalability and safety. In addition, AMPs can also be utilized for development of novel approaches for plant protection thereby increasing the crop yield. Hence, in order to provide a spotlight for the expression of AMP in plants for both clinical or agricultural use, the present review presents the importance of AMPs and efforts aimed at producing recombinant AMPs in plants for molecular farming and plant protection so far.
Collapse
Affiliation(s)
| | - Christine Joy I Bulaon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Khan I, Daniell H. Oral delivery of therapeutic proteins bioencapsulated in plant cells: preclinical and clinical advances. Curr Opin Colloid Interface Sci 2021; 54. [PMID: 33967586 DOI: 10.1016/j.cocis.2021.101452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oral delivery of protein drugs (PDs) made in plant cells could revolutionize current approaches of their production and delivery. Expression of PDs reduces their production cost by elimination of prohibitively expensive fermentation, purification, cold transportation/storage, and sterile injections and increases their shelf life for several years. Ability of plant cell wall to protect PDs from digestive acids/enzymes, commensal bacteria to release PDs in gut lumen after lysis of plant cell wall and role of GALT in inducing tolerance facilitate prevention or treatment allergic, autoimmune diseases or anti-drug antibody responses. Delivery of functional proteins facilitate treatment of inherited or metabolic disorders. Recent advances in making PDs free of antibiotic resistance genes in edible plant cells, long-term storage at ambient temperature maintaining their efficacy, production in cGMP facilities, IND enabling studies for clinical advancement and FDA approval of orally delivered PDs augur well for advancing this novel drug delivery platform technology.
Collapse
Affiliation(s)
- Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Tiwari P, Khare T, Shriram V, Bae H, Kumar V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol Adv 2021; 48:107729. [PMID: 33705914 DOI: 10.1016/j.biotechadv.2021.107729] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Inappropriate and injudicious use of antimicrobial drugs in human health, hygiene, agriculture, animal husbandry and food industries has contributed significantly to rapid emergence and persistence of antimicrobial resistance (AMR), one of the serious global public health threats. The crisis of AMR versus slower discovery of newer antibiotics put forth a daunting task to control these drug-resistant superbugs. Several phyto-antimicrobials have been identified in recent years with direct-killing (bactericidal) and/or drug-resistance reversal (re-sensitization of AMR phenotypes) potencies. Phyto-antimicrobials may hold the key in combating AMR owing to their abilities to target major microbial drug-resistance determinants including cell membrane, drug-efflux pumps, cell communication and biofilms. However, limited distribution, low intracellular concentrations, eco-geographical variations, beside other considerations like dynamic environments, climate change and over-exploitation of plant-resources are major blockades in full potential exploration phyto-antimicrobials. Synthetic biology (SynBio) strategies integrating metabolic engineering, RNA-interference, genome editing/engineering and/or systems biology approaches using plant chassis (as engineerable platforms) offer prospective tools for production of phyto-antimicrobials. With expanding SynBio toolkit, successful attempts towards introduction of entire gene cluster, reconstituting the metabolic pathway or transferring an entire metabolic (or synthetic) pathway into heterologous plant systems highlight the potential of this field. Through this perspective review, we are presenting herein the current situation and options for addressing AMR, emphasizing on the significance of phyto-antimicrobials in this apparently post-antibiotic era, and effective use of plant chassis for phyto-antimicrobial production at industrial scales along with major SynBio tools and useful databases. Current knowledge, recent success stories, associated challenges and prospects of translational success are also discussed.
Collapse
Affiliation(s)
- Pragya Tiwari
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University, Akurdi, Pune 411044, India
| | - Hanhong Bae
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
27
|
Li S, Chang L, Zhang J. Advancing organelle genome transformation and editing for crop improvement. PLANT COMMUNICATIONS 2021; 2:100141. [PMID: 33898977 PMCID: PMC8060728 DOI: 10.1016/j.xplc.2021.100141] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 05/05/2023]
Abstract
Plant cells contain three organelles that harbor DNA: the nucleus, plastids, and mitochondria. Plastid transformation has emerged as an attractive platform for the generation of transgenic plants, also referred to as transplastomic plants. Plastid genomes have been genetically engineered to improve crop yield, nutritional quality, and resistance to abiotic and biotic stresses, as well as for recombinant protein production. Despite many promising proof-of-concept applications, transplastomic plants have not been commercialized to date. Sequence-specific nuclease technologies are widely used to precisely modify nuclear genomes, but these tools have not been applied to edit organelle genomes because the efficient homologous recombination system in plastids facilitates plastid genome editing. Unlike plastid transformation, successful genetic transformation of higher plant mitochondrial genome transformation was tested in several research group, but not successful to date. However, stepwise progress has been made in modifying mitochondrial genes and their transcripts, thus enabling the study of their functions. Here, we provide an overview of advances in organelle transformation and genome editing for crop improvement, and we discuss the bottlenecks and future development of these technologies.
Collapse
Affiliation(s)
- Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
28
|
Daniell H, Jin S, Zhu X, Gitzendanner MA, Soltis DE, Soltis PS. Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:430-447. [PMID: 33484606 PMCID: PMC7955891 DOI: 10.1111/pbi.13556] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | | | - Douglas E. Soltis
- Florida Museum of Natural History and Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
29
|
Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer? Int J Mol Sci 2020; 21:ijms21144854. [PMID: 32659946 PMCID: PMC7402345 DOI: 10.3390/ijms21144854] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, plant genetic engineering has advanced agriculture in terms of crop improvement, stress and disease resistance, and pharmaceutical biosynthesis. Cells from land plants and algae contain three organelles that harbor DNA: the nucleus, plastid, and mitochondria. Although the most common approach for many plant species is the introduction of foreign DNA into the nucleus (nuclear transformation) via Agrobacterium- or biolistics-mediated delivery of transgenes, plastid transformation offers an alternative means for plant transformation. Since there are many copies of the chloroplast genome in each cell, higher levels of protein accumulation can often be achieved from transgenes inserted in the chloroplast genome compared to the nuclear genome. Chloroplasts are therefore becoming attractive hosts for the introduction of new agronomic traits, as well as for the biosynthesis of high-value pharmaceuticals, biomaterials and industrial enzymes. This review provides a comprehensive historical and biological perspective on plastid transformation, with a focus on current and emerging approaches such as the use of single-walled carbon nanotubes (SWNTs) as DNA delivery vehicles, overexpressing morphogenic regulators to enhance regeneration ability, applying genome editing techniques to accelerate double-stranded break formation, and reconsidering protoplasts as a viable material for plastid genome engineering, even in transformation-recalcitrant species.
Collapse
|
30
|
Ghidey M, Islam SMA, Pruett G, Kearney CM. Making plants into cost-effective bioreactors for highly active antimicrobial peptides. N Biotechnol 2020; 56:63-70. [PMID: 31812667 DOI: 10.1016/j.nbt.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
As antibiotic-resistant bacterial pathogens become an ever-increasing concern, antimicrobial peptides (AMPs) have grown increasingly attractive as alternatives. Potentially, plants could be used as cost-effective AMP bioreactors; however, reported heterologous AMP expression is much lower in plants than in E. coli expression systems and often results in plant cytotoxicity, even for AMPs fused to carrier proteins. This suggests that there may be a physical characteristic of the previously described heterologous AMPs which impedes efficient expression in plants. Using a meta-analysis of protein databases, this study has determined that native plant AMPs were significantly less cationic than AMPs native to other taxa. To apply this finding to plant expression, the transient expression of 10 different heterologous AMPs, ranging in charge from +7 to -5, was tested in the tobacco, Nicotiana benthamiana. Elastin-like polypeptide (ELP) was used as the carrier protein for AMP expression. ELP fusion allowed for a simple, cost-effective temperature shift purification. Using this system, all five anionic AMPs expressed well, with two at unusually high levels (375 and 563 μg/gfw). Furthermore, antimicrobial activity against Staphylococcus epidermidis was an order of magnitude greater (average minimum inhibitory concentration MIC of 0.26μM) than that typically seen for AMPs expressed in E. coli systems and was associated with the uncleaved fusion peptide. In summary, this study describes a means of expressing AMP fusions in plants in high yield, purified by a simple temperature-shift protocol, resulting in a fusion peptide with high antimicrobial activity and without the need for a peptide cleavage step.
Collapse
Affiliation(s)
- Meron Ghidey
- Biomedical Studies Program, Baylor University, Waco, TX, 76798, USA
| | | | - Grace Pruett
- Department of Biology, Baylor University, One Bear Place #7388, Waco, TX, 76798, USA
| | - Christopher Michel Kearney
- Biomedical Studies Program, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, One Bear Place #7388, Waco, TX, 76798, USA.
| |
Collapse
|
31
|
Ancín M, Sanz-Barrio R, Santamaría E, Fernández-San Millán A, Larraya L, Veramendi J, Farran I. Functional Improvement of Human Cardiotrophin 1 Produced in Tobacco Chloroplasts by Co-expression with Plastid Thioredoxin m. PLANTS 2020; 9:plants9020183. [PMID: 32024318 PMCID: PMC7076529 DOI: 10.3390/plants9020183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/24/2022]
Abstract
Human cardiotrophin 1 (CT1), a cytokine with excellent therapeutic potential, was previously expressed in tobacco chloroplasts. However, the growth conditions required to reach the highest expression levels resulted in an impairment of its bioactivity. In the present study, we have examined new strategies to modulate the expression of this recombinant protein in chloroplasts so as to enhance its production and bioactivity. In particular, we assessed the effect of both the fusion and co-expression of Trx m with CT1 on the production of a functional CT1 by using plastid transformation. Our data revealed that the Trx m fusion strategy was useful to increase the expression levels of CT1 inside the chloroplasts, although CT1 bioactivity was significantly impaired, and this was likely due to steric hindrance between both proteins. By contrast, the expression of functional CT1 was increased when co-expressed with Trx m, because we demonstrated that recombinant CT1 was functionally active during an in vitro signaling assay. While Trx m/CT1 co-expression did not increase the amount of CT1 in young leaves, our results revealed an increase in CT1 protein stability as the leaves aged in this genotype, which also improved the recombinant protein's overall production. This strategy might be useful to produce other functional biopharmaceuticals in chloroplasts.
Collapse
Affiliation(s)
- María Ancín
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Ruth Sanz-Barrio
- National Centre for Biotechnology, Plant Molecular Genetics Department, CSIC, 28049 Madrid, Spain
| | - Eva Santamaría
- Hepatology Program, University of Navarra, CIMA, E-31008 Pamplona, Spain;
- CIBERehd, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Alicia Fernández-San Millán
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Luis Larraya
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Jon Veramendi
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Inmaculada Farran
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
- Correspondence: ; Tel.: +34-948-168034
| |
Collapse
|
32
|
|
33
|
Shi X, Cordero T, Garrigues S, Marcos JF, Daròs J, Coca M. Efficient production of antifungal proteins in plants using a new transient expression vector derived from tobacco mosaic virus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1069-1080. [PMID: 30521145 PMCID: PMC6523586 DOI: 10.1111/pbi.13038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/24/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Fungi that infect plants, animals or humans pose a serious threat to human health and food security. Antifungal proteins (AFPs) secreted by filamentous fungi are promising biomolecules that could be used to develop new antifungal therapies in medicine and agriculture. They are small highly stable proteins with specific potent activity against fungal pathogens. However, their exploitation requires efficient, sustainable and safe production systems. Here, we report the development of an easy-to-use, open access viral vector based on Tobacco mosaic virus (TMV). This new system allows the fast and efficient assembly of the open reading frames of interest in small intermediate entry plasmids using the Gibson reaction. The manipulated TMV fragments are then transferred to the infectious clone by a second Gibson assembly reaction. Recombinant proteins are produced by agroinoculating plant leaves with the resulting infectious clones. Using this simple viral vector, we have efficiently produced two different AFPs in Nicotiana benthamiana leaves, namely the Aspergillus giganteus AFP and the Penicillium digitatum AfpB. We obtained high protein yields by targeting these bioactive small proteins to the apoplastic space of plant cells. However, when AFPs were targeted to intracellular compartments, we observed toxic effects in the host plants and undetectable levels of protein. We also demonstrate that this production system renders AFPs fully active against target pathogens, and that crude plant extracellular fluids containing the AfpB can protect tomato plants from Botrytis cinerea infection, thus supporting the idea that plants are suitable biofactories to bring these antifungal proteins to the market.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Centre for Research in Agricultural Genomics (CRAGCSIC‐IRTA‐UAB‐UB)Cerdanyola del VallèsSpain
| | - Teresa Cordero
- Instituto de Biología Molecular y Celular de Plantas (IBMCPCSIC‐Universitat Politècnica de València)ValenciaSpain
| | - Sandra Garrigues
- Instituto de Agroquímica y Tecnología de Alimentos (IATA, CSIC)PaternaSpain
| | - Jose F. Marcos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA, CSIC)PaternaSpain
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCPCSIC‐Universitat Politècnica de València)ValenciaSpain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAGCSIC‐IRTA‐UAB‐UB)Cerdanyola del VallèsSpain
| |
Collapse
|
34
|
Kim DS, Kim SW, Song JM, Kim SY, Kwon KC. A new prokaryotic expression vector for the expression of antimicrobial peptide abaecin using SUMO fusion tag. BMC Biotechnol 2019; 19:13. [PMID: 30770741 PMCID: PMC6377777 DOI: 10.1186/s12896-019-0506-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Background Despite the growing demand for antimicrobial peptides (AMPs) for clinical use as an alternative approach against antibiotic-resistant bacteria, the manufacture of AMPs relies on expensive, small-scale chemical methods. The small ubiquitin-related modifier (SUMO) tag is industrially practical for increasing the yield of recombinant proteins by increasing solubility and preventing degradation in expression systems. Results A new vector system, pKSEC1, was designed to produce AMPs, which can work in prokaryotic systems such as Escherichia coli and plant chloroplasts. 6xHis was tagged to SUMO for purification of SUMO-fused AMPs. Abaecin, a 34-aa-long antimicrobial peptide from honeybees, was expressed in a fusion form to 6xHis-SUMO in a new vector system to evaluate the prokaryotic expression platform of the antimicrobial peptides. The fusion sequences were codon-optimized in three different combinations and expressed in E. coli. The combination of the native SUMO sequence with codon-optimized abaecin showed the highest expression level among the three combinations, and most of the expressed fusion proteins were detected in soluble fractions. Cleavage of the SUMO tag by sumoase produced a 29-aa-long abaecin derivative with a C-terminal deletion. However, this abaecin derivative still retained the binding sequence for its target protein, DnaK. Antibacterial activity of the 29-aa long abaecin was tested against Bacillus subtilis alone or in combination with cecropin B. The combined treatment of the abaecin derivative and cecropin B showed bacteriolytic activity 2 to 3 times greater than that of abaecin alone. Conclusions Using a SUMO-tag with an appropriate codon-optimization strategy could be an approach for the production of antimicrobial peptides in E.coli without affecting the viability of the host cell. Electronic supplementary material The online version of this article (10.1186/s12896-019-0506-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Da Sol Kim
- Department of Biological Sciences, Andong National University, Andong, South Korea
| | - Seon Woong Kim
- Department of Biological Sciences, Andong National University, Andong, South Korea
| | - Jae Min Song
- Department of Global Medical Science, Health & Wellness College, Sungshin University, Seoul, South Korea
| | - Soon Young Kim
- Department of Biological Sciences, Andong National University, Andong, South Korea.
| | - Kwang-Chul Kwon
- MicroSynbiotiX Ltd, 11011 N Torrey Pines Rd Ste. #135, La Jolla, CA, 92037, USA.
| |
Collapse
|
35
|
Sinha R, Shukla P. Antimicrobial Peptides: Recent Insights on Biotechnological Interventions and Future Perspectives. Protein Pept Lett 2019; 26:79-87. [PMID: 30370841 PMCID: PMC6416458 DOI: 10.2174/0929866525666181026160852] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
With the unprecedented rise of drug-resistant pathogens, particularly antibiotic-resistant bacteria, and no new antibiotics in the pipeline over the last three decades, the issue of antimicrobial resistance has emerged as a critical public health threat. Antimicrobial Peptides (AMP) have garnered interest as a viable solution to this grave issue and are being explored for their potential antimicrobial applications. Given their low bioavailability in nature, tailoring new AMPs or strategizing approaches for increasing the yield of AMPs, therefore, becomes pertinent. The present review focuses on biotechnological interventions directed towards enhanced AMP synthesis and revisits existing genetic engineering and synthetic biology strategies for production of AMPs. This review further underscores the importance and potential applications of advanced gene editing technologies for the synthesis of novel AMPs in future.
Collapse
Affiliation(s)
| | - Pratyoosh Shukla
- Address correspondence to this author at the Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology,
Maharshi Dayanand University, Rohtak-124001, Haryana, India; E-mail:
| |
Collapse
|
36
|
Penney J, Li J. Protegrin 1 Enhances Innate Cellular Defense via the Insulin-Like Growth Factor 1 Receptor Pathway. Front Cell Infect Microbiol 2018; 8:331. [PMID: 30324092 PMCID: PMC6173103 DOI: 10.3389/fcimb.2018.00331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/28/2018] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) represent a promising area of research to help combat the ever-growing problem of antibiotic resistance. Protegrin-1 is an AMP from the cathelicidin family. It is produced naturally in pigs and its mature form (mPG-1) has potent bactericidal properties and a unique β-hairpin structure that separates it from most AMPs found in mice and humans. While the antibacterial properties of protegrin-1 are well established, the role it plays in immune modulation has yet to be investigated, and our current study sought to explore this alternate role and potential mechanism behind. We found that mPG-1 stimulated intestinal cell migration, this is accompanied with altered expression of genes associated with cell migration, in addition to increased expression of pro-inflammatory cytokines and immune-related factors. Further study suggested that mPG-1 activates insulin-like growth factor 1 receptor (IGF1R) and through this receptor it modulates immune activity as well as cell migration. Our study revealed a novel function of mPG-1, and its associated pathway, suggesting therapeutic potential of the antimicrobial peptide for infection and/or immune disorders, particularly ones affecting the gastrointestinal tract such as inflammatory bowel syndrome.
Collapse
Affiliation(s)
- Jenna Penney
- Department of Life Science and Engineering, Foshan University, Foshan Shi, China.,Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Life Science and Engineering, Foshan University, Foshan Shi, China.,Department of Animal Bioscience, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
37
|
Holásková E, Galuszka P, Mičúchová A, Šebela M, Öz MT, Frébort I. Molecular Farming in Barley: Development of a Novel Production Platform to Produce Human Antimicrobial Peptide LL-37. Biotechnol J 2018; 13:e1700628. [PMID: 29369519 DOI: 10.1002/biot.201700628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/17/2017] [Indexed: 01/01/2023]
Abstract
The peptide LL-37, a component of the human innate immune system, represents a promising drug candidate. In particular, the development of low-cost production platform technology is a critical bottleneck in its use in medicine. In the present study, a viable approach for the LL-37 production in transgenic barley is developed. First, comparative analyses of the effects of different fused peptide epitope tags applicable for accumulation and purification on LL-37 production yield are performed using transient expression in tobacco leaves. Following the selection of the most yielding fusion peptide strategies, eight different constructs for the expression of codon optimized chimeric LL-37 genes in transgenic barley plants are created. The expression of individual constructs is driven either by an endosperm-specific promoter of the barley B1 hordein gene or by the maize ubiquitin promoter. The transgenes are stably integrated into the barley genome and inherited in the subsequent generation. All transgenic lines show normal phenotypes and are fertile. LL-37 accumulated in the barley seeds up to 0.55 mg per 1 kg of grain. The fused epitope tags are cleaved off by the use of enterokinase. Furthermore, in planta produced LL-37 including the fused versions is biologically active.
Collapse
Affiliation(s)
- Edita Holásková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, 783 71, Czech Republic
| | - Petr Galuszka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, 783 71, Czech Republic
| | - Alžbeta Mičúchová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, 783 71, Czech Republic
| | - Marek Šebela
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, 783 71, Czech Republic
| | - Mehmet Tufan Öz
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, 783 71, Czech Republic
| | - Ivo Frébort
- Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Olomouc, 783 71, Czech Republic
| |
Collapse
|
38
|
Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 2018; 41:323-342. [PMID: 28521337 PMCID: PMC5435762 DOI: 10.1093/femsre/fux012] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria, viruses or fungi are among the leading causes of death worldwide. The emergence of drug-resistance mechanisms, especially among bacteria, threatens the efficacy of all current antimicrobial agents, some of them already ineffective. As a result, there is an urgent need for new antimicrobial drugs. Host defense antimicrobial peptides (HDPs) are natural occurring and well-conserved peptides of innate immunity, broadly active against Gram-negative and Gram-positive bacteria, viruses and fungi. They also are able to exert immunomodulatory and adjuvant functions by acting as chemotactic for immune cells, and inducing cytokines and chemokines secretion. Moreover, they show low propensity to elicit microbial adaptation, probably because of their non-specific mechanism of action, and are able to neutralize exotoxins and endotoxins. HDPs have the potential to be a great source of novel antimicrobial agents. The goal of this review is to provide an overview of the advances made in the development of human defensins as well as the cathelicidin LL-37 and their derivatives as antimicrobial agents against bacteria, viruses and fungi for clinical use.
Collapse
Affiliation(s)
- María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
39
|
Rastogi S, Shasany AK. Ocimum Genome Sequencing—A Futuristic Therapeutic Mine. THE OCIMUM GENOME 2018. [PMCID: PMC7124093 DOI: 10.1007/978-3-319-97430-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Next-generation sequencing (NGS) platforms from the past decade are in the continuous efforts of changing the impact of sequencing on our current knowledge about plant genes, genomes, and their regulation. Holy basil (Ocimum tenuiflorum L. or sanctum L.) genome sequencing has also paved the path for deeper exploration of the medicinal properties of this beneficial herb making it a true ‘elixir of life.’ The draft genome sequence of the holy basil has not only opened the avenues for the drug discovery but has also widened the prospects of the molecular breeding for development of new improved plant varieties.
Collapse
|
40
|
Khadeeva NV, Yakovleva EY, Sydoruk KV, Korostyleva TV, Istomina EA, Dunaevsky YE, Odintsova TI, Bogush VG, Belozersky MA. Molecular genetic analysis of collection of transgenic tobacco plants with buckwheat serine proteases inhibitor gene during long-term subculture. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417110047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Xu C, Guo Y, Qiao X, Shang X, Niu W, Jin M. Design, Recombinant Fusion Expression and Biological Evaluation of Vasoactive Intestinal Peptide Analogue as Novel Antimicrobial Agent. Molecules 2017; 22:molecules22111963. [PMID: 29135962 PMCID: PMC6150413 DOI: 10.3390/molecules22111963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides represent an emerging category of therapeutic agents with remarkable structural and functional diversity. Modified vasoactive intestinal peptide (VIP) (VIP analogue 8 with amino acid sequence “FTANYTRLRRQLAVRRYLAAILGRR”) without haemolytic activity and cytotoxicity displayed enhanced antimicrobial activities against Staphylococcus aureus (S. aureus) ATCC 25923 and Escherichia coli (E. coli) ATCC 25922 than parent VIP even in the presence of 180 mM NaCl or 50 mM MgCl2, or in the range of pH 4–10. VIP analogue 8 was expressed as fusion protein thioredoxin (Trx)-VIP8 in E. coli BL21(DE) at a yield of 45.67 mg/L. The minimum inhibitory concentration (MIC) of the recombinant VIP analogue 8 against S. aureus ATCC 25923 and E. coli ATCC 25922 were 2 μM. These findings suggest that VIP analogue 8 is a promising candidate for application as a new and safe antimicrobial agent.
Collapse
Affiliation(s)
- Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yu Guo
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiangjin Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaoya Shang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Weining Niu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Mingliang Jin
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
42
|
Singh A, Kaur G, Singh S, Singh N, Saxena G, Verma PC. Recombinant Plant Engineering for Immunotherapeutic Production. CURRENT MOLECULAR BIOLOGY REPORTS 2017; 3:306-316. [PMID: 32226727 PMCID: PMC7099902 DOI: 10.1007/s40610-017-0078-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE OF REVIEW The requirement for large quantities of therapeutic proteins has fueled a great interest in the production of recombinant proteins in plant bioreactors. The vaccines and bio-therapeutic protein production in plants hold the promise of significantly lowering the cost of manufacturing life-saving drugs. This review will reflect the current status and challenges that the molecular farming platform faces becoming a strategic solution for the development of low-cost bio-therapeutics for developing countries. RECENT FINDINGS Different plant parts have been successfully identified as suitable expression systems for the commercial production of therapeutic proteins for some human and animal diseases ranging from common cold to AIDS. The processed therapeutics from such sources are devoid of any toxic components. The large-scale cultivation of these transgenic plants would be possible anywhere in the world including developing countries, which lack sophisticated drug manufacturing units. A couple of such commercially generated products have already hit the market with success. Newer methods using suitable plant viruses and recombinant gene expression systems have already been devised for producing therapeutic proteins and peptides. SUMMARY Plants are promising bio-factories for therapeutic protein production because of their several advantages over the other expression systems especially the advanced mechanisms for protein synthesis and post-translational modification which are very much similar to animal cells. Plant biotechnologists are much attracted to the bio-farming because of its flexibility, scalability, low manufacturing cost, as well as the lack of risk of toxic or pathogenic contamination. A number of projects on bio-farming are designed and are at various developmental stages but have not yet become available to the pharmaceutical industry. Therefore, we need further advancement in the optimization of lab protocols for up-scaling the production of such therapeutics at commercial level with a promise to offer their best clinical use.
Collapse
Affiliation(s)
- Ankit Singh
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, 110025 India
| | - Gurminder Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, 201303 India
| | - Sanchita Singh
- Genetics and Plant Molecular Biology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P 226001 India
| | - Neetu Singh
- Instrumentation Research Facility, Jawahar Lal Nehru University, New Delhi, 110067 India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, 226001 India
| | - Praveen C. Verma
- Genetics and Plant Molecular Biology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P 226001 India
| |
Collapse
|
43
|
Stoffels L, Taunt HN, Charalambous B, Purton S. Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1130-1140. [PMID: 28160380 PMCID: PMC5552482 DOI: 10.1111/pbi.12703] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 01/06/2017] [Accepted: 01/29/2017] [Indexed: 05/12/2023]
Abstract
There is a pressing need to develop novel antibacterial agents given the widespread antibiotic resistance among pathogenic bacteria and the low specificity of the drugs available. Endolysins are antibacterial proteins that are produced by bacteriophage-infected cells to digest the bacterial cell wall for phage progeny release at the end of the lytic cycle. These highly efficient enzymes show a considerable degree of specificity for the target bacterium of the phage. Furthermore, the emergence of resistance against endolysins appears to be rare as the enzymes have evolved to target molecules in the cell wall that are essential for bacterial viability. Taken together, these factors make recombinant endolysins promising novel antibacterial agents. The chloroplast of the green unicellular alga Chlamydomonas reinhardtii represents an attractive platform for production of therapeutic proteins in general, not least due to the availability of established techniques for foreign gene expression, a lack of endotoxins or potentially infectious agents in the algal host, and low cost of cultivation. The chloroplast is particularly well suited to the production of endolysins as it mimics the native bacterial expression environment of these proteins while being devoid of their cell wall target. In this study, the endolysins Cpl-1 and Pal, specific to the major human pathogen Streptococcus pneumoniae, were produced in the C. reinhardtii chloroplast. The antibacterial activity of cell lysates and the isolated endolysins was demonstrated against different serotypes of S. pneumoniae, including clinical isolates and total recombinant protein yield was quantified at ~1.3 mg/g algal dry weight.
Collapse
Affiliation(s)
- Laura Stoffels
- Algal Biotechnology GroupInstitute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | - Henry N. Taunt
- Algal Biotechnology GroupInstitute of Structural and Molecular BiologyUniversity College LondonLondonUK
- Present address:
AlgenuityEden LaboratoryBroadmead RoadStewartbyUK
| | - Bambos Charalambous
- Research Department of InfectionUniversity College London Medical SchoolLondonUK
| | - Saul Purton
- Algal Biotechnology GroupInstitute of Structural and Molecular BiologyUniversity College LondonLondonUK
| |
Collapse
|
44
|
Ali H. Emerging Roles for MAS-Related G Protein-Coupled Receptor-X2 in Host Defense Peptide, Opioid, and Neuropeptide-Mediated Inflammatory Reactions. Adv Immunol 2017; 136:123-162. [PMID: 28950944 DOI: 10.1016/bs.ai.2017.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) are tissue-resident immune cells that contribute to host defense but are best known for their roles in allergic and inflammatory diseases. In humans, MCs are divided into two subtypes based on the protease content of their secretory granules. Thus, human lung MCs contain only tryptase and are known as MCT, whereas skin MCs contain both tryptase and chymase and are known as MCTC. Patients with severe asthma display elevated MCs in the lung, which undergo phenotypic change from MCT to MCTC. Although the human genome contains four Mas related G protein coupled receptor X (MRGPRX) genes, an important feature of MCTC is that they selectively express MRGPRX2. It is activated by antimicrobial host defense peptides such as human β-defensins and the cathelicidin LL-37 and likely contributes to host defense. MRGPRX2 is also a receptor for the neuropeptide substance P, major basic protein, eosinophil peroxidase, opioids, and many FDA-approved cationic drugs. Increased expression of MRGPRX2 or enhanced downstream signaling likely contributes to chronic inflammatory diseases such as rosacea, atopic dermatitis, chronic urticaria, and severe asthma. In this chapter, I will discuss the expression profile and function of MRGPRX1-4 and review the emerging roles of MRGPRX2 on host defense, chronic inflammatory diseases, and drug-induced pseudoallergic reactions. I will also examine the novel aspects of MRGPRX2 signaling in MCs as it related to degranulation and review the mechanisms of its regulation.
Collapse
Affiliation(s)
- Hydar Ali
- University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States.
| |
Collapse
|
45
|
Adem M, Beyene D, Feyissa T. Recent achievements obtained by chloroplast transformation. PLANT METHODS 2017; 13:30. [PMID: 28428810 PMCID: PMC5395794 DOI: 10.1186/s13007-017-0179-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/09/2017] [Indexed: 05/22/2023]
Abstract
Chloroplasts play a great role for sustained wellbeing of life on the planet. They have the power and raw materials that can be used as sophisticated biological factories. They are rich in energy as they have lots of pigment-protein complexes capable of collecting sunlight, in sugar produced by photosynthesis and in minerals imported from the plant cell. Chloroplast genome transformation offers multiple advantages over nuclear genome which among others, include: integration of the transgene via homologus recombination that enables to eliminate gene silencing and position effect, higher level of transgene expression resulting into higher accumulations of foreign proteins, and significant reduction in environmental dispersion of the transgene due to maternal inheritance which helps to minimize the major critic of plant genetic engineering. Chloroplast genetic engineering has made fruit full progresses in the development of plants resistance to various stresses, phytoremediation of toxic metals, and production of vaccine antigens, biopharmaceuticals, biofuels, biomaterials and industrial enzymes. Although successful results have been achieved, there are still difficulties impeding full potential exploitation and expansion of chloroplast transformation technology to economical plants. These include, lack of species specific regulatory sequences, problem of selection and shoot regeneration, and massive expression of foreign genes resulting in phenotypic alterations of transplastomic plants. The aim of this review is to critically recapitulate the latest development of chloroplast transformation with special focus on the different traits of economic interest.
Collapse
Affiliation(s)
- Muhamed Adem
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Department of Forestry, School of Agriculture and Natural Resources, Madawalabu University, P.O. Box 247, Bale Robe, Oromiya Ethiopia
| | - Dereje Beyene
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
| | - Tileye Feyissa
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box. 1176, Addis Ababa, Ethiopia
- Institute of Biotechnology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
46
|
Montesinos L, Bundó M, Badosa E, San Segundo B, Coca M, Montesinos E. Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm. BMC PLANT BIOLOGY 2017; 17:63. [PMID: 28292258 PMCID: PMC5351061 DOI: 10.1186/s12870-017-1011-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/06/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND BP178 peptide is a synthetic BP100-magainin derivative possessing strong inhibitory activity against plant pathogenic bacteria, offering a great potential for future applications in plant protection and other fields. Here we report the production and recovery of a bioactive BP178 peptide using rice seeds as biofactories. RESULTS A synthetic gene encoding the BP178 peptide was prepared and introduced in rice plants. The gene was efficiently expressed in transgenic rice under the control of an endosperm-specific promoter. Among the three endosperm-specific rice promoters (Glutelin B1, Glutelin B4 or Globulin 1), best results were obtained when using the Globulin 1 promoter. The BP178 peptide accumulated in the seed endosperm and was easily recovered from rice seeds using a simple procedure with a yield of 21 μg/g. The transgene was stably inherited for at least three generations, and peptide accumulation remained stable during long term storage of transgenic seeds. The purified peptide showed in vitro activity against the bacterial plant pathogen Dickeya sp., the causal agent of the dark brown sheath rot of rice. Seedlings of transgenic events showed enhanced resistance to the fungal pathogen Fusarium verticillioides, supporting that the in planta produced peptide was biologically active. CONCLUSIONS The strategy developed in this work for the sustainable production of BP178 peptide using rice seeds as biofactories represents a promising system for future production of peptides for plant protection and possibly in other fields.
Collapse
Affiliation(s)
- Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| | - Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17071 Spain
| |
Collapse
|
47
|
Zhang B, Shanmugaraj B, Daniell H. Expression and functional evaluation of biopharmaceuticals made in plant chloroplasts. Curr Opin Chem Biol 2017; 38:17-23. [PMID: 28229907 DOI: 10.1016/j.cbpa.2017.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 12/19/2022]
Abstract
After approval of the first plant-made biopharmaceutical by FDA for human use, many protein drugs are now in clinical development. Within the last decade, significant advances have been made in expression of heterologous complex/large proteins in chloroplasts of edible plants using codon optimized human or viral genes. Furthermore, advances in quantification enable determination of in-planta drug dosage. Oral delivery of plastid-made biopharmaceuticals (PMB) is affordable because it eliminates prohibitively expensive fermentation, purification processes addressing major challenges of short shelf-life after cold storage. In this review, we discuss recent advances in PMBs against metabolic, inherited or infectious diseases, and also mechanisms of post-translational modifications (PTM) in order to increase our understanding of functional PMBs.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | - Balamurugan Shanmugaraj
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA.
| |
Collapse
|
48
|
Daniell H, Chan HT, Pasoreck EK. Vaccination via Chloroplast Genetics: Affordable Protein Drugs for the Prevention and Treatment of Inherited or Infectious Human Diseases. Annu Rev Genet 2016; 50:595-618. [PMID: 27893966 PMCID: PMC5496655 DOI: 10.1146/annurev-genet-120215-035349] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plastid-made biopharmaceuticals treat major metabolic or genetic disorders, including Alzheimer's, diabetes, hypertension, hemophilia, and retinopathy. Booster vaccines made in chloroplasts prevent global infectious diseases, such as tuberculosis, malaria, cholera, and polio, and biological threats, such as anthrax and plague. Recent advances in this field include commercial-scale production of human therapeutic proteins in FDA-approved cGMP facilities, development of tags to deliver protein drugs to targeted human cells or tissues, methods to deliver precise doses, and long-term stability of protein drugs at ambient temperature, maintaining their efficacy. Codon optimization utilizing valuable information from sequenced chloroplast genomes enhanced expression of eukaryotic human or viral genes in chloroplasts and offered unique insights into translation in chloroplasts. Support from major biopharmaceutical companies, development of hydroponic production systems, and evaluation by regulatory agencies, including the CDC, FDA, and USDA, augur well for advancing this novel concept to the clinic and revolutionizing affordable healthcare.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Hui-Ting Chan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Elise K Pasoreck
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
49
|
Ahmad N, Michoux F, Lössl AG, Nixon PJ. Challenges and perspectives in commercializing plastid transformation technology. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5945-5960. [PMID: 27697788 DOI: 10.1093/jxb/erw360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastid transformation has emerged as an alternative platform to generate transgenic plants. Attractive features of this technology include specific integration of transgenes-either individually or as operons-into the plastid genome through homologous recombination, the potential for high-level protein expression, and transgene containment because of the maternal inheritance of plastids. Several issues associated with nuclear transformation such as gene silencing, variable gene expression due to the Mendelian laws of inheritance, and epigenetic regulation have not been observed in the plastid genome. Plastid transformation has been successfully used for the production of therapeutics, vaccines, antigens, and commercial enzymes, and for engineering various agronomic traits including resistance to biotic and abiotic stresses. However, these demonstrations have usually focused on model systems such as tobacco, and the technology per se has not yet reached the market. Technical factors limiting this technology include the lack of efficient protocols for the transformation of cereals, poor transgene expression in non-green plastids, a limited number of selection markers, and the lengthy procedures required to recover fully segregated plants. This article discusses the technology of transforming the plastid genome, the positive and negative features compared with nuclear transformation, and the current challenges that need to be addressed for successful commercialization.
Collapse
Affiliation(s)
- Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Franck Michoux
- Alkion Biopharma SAS, 4 rue Pierre Fontaine, 91058 Evry, France
| | - Andreas G Lössl
- Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
50
|
Niknejad A, Webster D, Bhave M. Production of bioactive wheat puroindoline proteins in Nicotiana benthamiana using a virus-based transient expression system. Protein Expr Purif 2016; 125:43-52. [PMID: 26363114 DOI: 10.1016/j.pep.2015.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/20/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Abstract
The emergence of antibiotic resistant pathogenic strains of bacteria has necessitated the development of novel antimicrobial agents. The puroindoline A and B (PINA and PINB) proteins of wheat, well-known for their roles in determining the important phenotype of grain texture, are also antimicrobial, making them attractive as natural bio-control agents. However, the biochemical basis of PIN functionality remains unclear due to limitations in expressing them at the required yield and purity and lack of accurate tertiary structure. This study focussed on rapid transient expression of PINs targeted to different subcellular compartments (chloroplast, apoplast, endoplasmic reticulum and cytosol) of Nicotiana benthamiana leaf cells using the deconstructed tobacco mosaic virus-based 'magnICON®' system. The expressed recombinant PINs were characterised by Western blot using the Durotest anti-friabilin antibody, enzyme-linked immunosorbent assays (ELISA) and antimicrobial activity tests. Maximum yield of the His-tagged PINs occurred when targeted to the chloroplast. Both PINs exhibited oligomeric and monomeric forms on gels, but Western blots with the widely used Durotest anti-friabilin antibody identified only oligomeric forms. Only the PINs purified by a hydrophobic interaction method exhibited monomeric forms with the anti-His tag antibody, indicating correct folding. Interestingly, the Durotest antibody did not bind to monomers, suggesting their epitope may be obscured. PINs purified by His-tag affinity purification under native conditions or by the hydrophobic method exhibited antimicrobial activities. The successful in planta expression and optimisation of purification will enable future studies to examine the detailed structure of the PINs and explore novel bio-control applications in health, food and/or agriculture.
Collapse
Affiliation(s)
- Azadeh Niknejad
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Diane Webster
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, Australia.
| |
Collapse
|