1
|
Castelli JZ, Raposo HF, Navarro CDC, Lazaro CM, Sartori MR, Dalla Costa AP, Nogueira PAS, Velloso LA, Vercesi AE, Oliveira HCF. CETP expression in females increases body metabolism under both cold exposure and thermoneutrality contributing to a leaner phenotype. FASEB J 2025; 39:e70389. [PMID: 39924926 DOI: 10.1096/fj.202402843rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Susceptibility to obesity differs depending on the genetic background and housing temperatures. We have recently reported that CETP expressing female mice are leaner due to increased lipolysis, brown adipose tissue (BAT) activity, and body energy expenditure compared to nontransgenic (NTg) littermates under standard housing temperature (22°C). The aim of this study is to evaluate how CETP expression affects body temperature, composition, and metabolism during cold exposure (4°C) and thermoneutrality (30°C). When submitted to cold, CETP mice maintained rectal temperature, body weight, and food intake similarly to NTg mice along acute or chronic exposure to 4°C. The body oxygen consumption in response to an isoproterenol challenge was 21% higher at 22°C, and 41% higher after 7 days of cold exposure in CETP than in NTg mice. In addition, BAT biopsies from CETP mice showed reduced lipid content and increased basal oxygen consumption rates. Under thermoneutrality (30°C), when BAT activity is inhibited, CETP mice showed higher rectal and tail temperatures, increased food intake, and increased energy expenditure. Lean mass was elevated and fat mass reduced in CETP mice kept at 30°C. In this thermoneutral condition, soleus muscle, but not gastrocnemius or liver of CETP mice, showed increased mitochondrial respiration rates. These data indicate that CETP expression confers a greater capacity of elevating body metabolic rates at both cold exposure, through BAT activity, and at thermoneutrality, through increased muscle metabolism. Thus, the CETP expression levels in females should be considered as a new influence in the contexts of obesity and metabolic disorders propensity.
Collapse
Affiliation(s)
- Júlia Z Castelli
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, Brazil
- Obesity and Comorbidity Research Center (OCRC), State University of Campinas, Campinas, Brazil
| | - Helena F Raposo
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, Brazil
- Obesity and Comorbidity Research Center (OCRC), State University of Campinas, Campinas, Brazil
| | - Claudia D C Navarro
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Carolina M Lazaro
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, Brazil
- Obesity and Comorbidity Research Center (OCRC), State University of Campinas, Campinas, Brazil
| | - Marina R Sartori
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Ana Paula Dalla Costa
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Pedro A S Nogueira
- Obesity and Comorbidity Research Center (OCRC), State University of Campinas, Campinas, Brazil
| | - Lício A Velloso
- Obesity and Comorbidity Research Center (OCRC), State University of Campinas, Campinas, Brazil
| | - Anibal E Vercesi
- Obesity and Comorbidity Research Center (OCRC), State University of Campinas, Campinas, Brazil
- Department of Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas, Campinas, Brazil
- Obesity and Comorbidity Research Center (OCRC), State University of Campinas, Campinas, Brazil
| |
Collapse
|
2
|
Zhang X, Ye M, Ge Y, Xiao C, Cui K, You Q, Jiang Z, Guo X. A Spatiotemporally Controlled and Mitochondria-Targeted Prodrug of Hydrogen Sulfide Enables Mild Mitochondrial Uncoupling for the Prevention of Lipid Deposition. J Med Chem 2024; 67:19188-19199. [PMID: 39441124 DOI: 10.1021/acs.jmedchem.4c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Mild mitochondrial uncoupling offers therapeutic benefits for various diseases like obesity by regulating cellular energy metabolism. However, effective chemical intervention tools for inducing mild mitochondria-targeted uncoupling are limited. Herein, we have developed a mitochondria-targeted H2S prodrug M1 with a unique property of on-demand photoactivated generation of H2S accompanied by self-reporting fluorescence for real-time tracking. Upon photoirradiation, M1 decomposes in mitochondria to generate H2S and a turn-on fluorescent coumarin derivative for the visualization and quantification of H2S. M1 is confirmed to induce reactive oxygen species (ROS)-dependent mild mitochondrial uncoupling, activating mitochondria-associated adenosine monophosphate-activated protein kinase (AMPK) to suppress palmitic acid (PA)-induced lipid deposition in hepatocytes. The uncoupling functions induced by M1 are strictly controlled in mitochondria, representing a fresh strategy to prevent lipid deposition and improve metabolic syndrome by increasing cellular energy expenditure.
Collapse
Affiliation(s)
- Xian Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengjie Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Ge
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Can Xiao
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keni Cui
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Zhang K, Cao J, Zhao Z. Fat accumulation in striped hamsters (Cricetulus barabensis) reflects the temperature of prior cold acclimation. Front Zool 2024; 21:4. [PMID: 38350982 PMCID: PMC10865701 DOI: 10.1186/s12983-024-00523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Proper adjustments of metabolic thermogenesis play an important role in thermoregulation in endotherm to cope with cold and/or warm ambient temperatures, however its roles in energy balance and fat accumulation remain uncertain. Our study aimed to investigate the effect of previous cold exposure (10 and 0 °C) on the energy budgets and fat accumulation in the striped hamsters (Cricetulus barabensis) in response to warm acclimation. The body mass, energy intake, resting metabolic rate (RMR) and nonshivering thermogenesis (NST), serum thyroid hormone levels (THs: T3 and T4), and the activity of brown adipose tissue (BAT), indicated by cytochrome c oxidase (COX) activity and uncoupling protein 1 (ucp1) expression, were measured following exposure to the cold (10 °C and 0 °C) and transition to the warm temperature (30 °C). RESULTS The hamsters at 10 °C and 0 °C showed significant increases in energy intake, RMR and NST, and a considerable reduction in body fat than their counterparts kept at 21 °C. After being transferred from cold to warm temperature, the hamsters consumed less food, and decreased RMR and NST, but they significantly increased body fat content. Interestingly, the hamsters that were previously exposed to the colder temperature showed significantly more fat accumulation after transition to the warm. Serum T3 levels, BAT COX activity and ucp1 mRNA expression were significantly increased following cold exposure, and were considerably decreased after transition to the warm. Furthermore, body fat content was negatively correlated with serum T3 levels, BAT COX activity and UCP1 expression. CONCLUSION The data suggest that the positive energy balance resulting from the decreased RMR and NST in BAT under the transition from the cold to the warm plays important roles in inducing fat accumulation. The extent of fat accumulation in the warm appears to reflect the temperature of the previous cold acclimation.
Collapse
Affiliation(s)
- Kaiyuan Zhang
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Zhijun Zhao
- College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Ramón A, Esteves A, Villadóniga C, Chalar C, Castro-Sowinski S. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol 2023; 54:2259-2287. [PMID: 37477802 PMCID: PMC10484896 DOI: 10.1007/s42770-023-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Adriana Esteves
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Carolina Villadóniga
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Cora Chalar
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
5
|
Pati B, Sendh S, Sahu B, Pani S, Jena N, Bal NC. Recent advancements in pharmacological strategies to modulate energy balance for combating obesity. RSC Med Chem 2023; 14:1429-1445. [PMID: 37593583 PMCID: PMC10429841 DOI: 10.1039/d3md00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 08/19/2023] Open
Abstract
The prevalence of obesity along with its related metabolic diseases has increased globally in recent decades. Obesity originates from a heterogeneous physiological state, which is further complicated by the influence of factors such as genetic, behavioural, and environmental. Lifestyle interventions including exercise and diet have limited success, necessitating the development of pharmacological approaches. Mechanistically, strategies target either reducing energy intake or increasing consumption through metabolism boosting. Current drugs lower energy intake via inducing satiety or inhibiting substrate absorption, while targeting mitochondria or cytosolic energy sensors has shown limited success due to toxicity. Nonshivering thermogenesis (NST) has provided hope for activating these processes selectively without significant side effects. The internet-based marketing of plant-based formulations for enhancing metabolism has surged. This review compiles scientific articles, magazines, newspapers, and online resources on anti-obesity drug development. Combination therapy of metabolic boosters and established anti-obesity compounds appears to be a promising future approach that requires further research.
Collapse
Affiliation(s)
- Benudhara Pati
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Satyabrata Sendh
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Sunil Pani
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Nivedita Jena
- Institute of Life Science, DBT ILS Bioincubator Bhubaneswar Odisha 751021-India
| | - Naresh Chandra Bal
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| |
Collapse
|
6
|
Hou D, Chen H, Jia T, Zhang L, Gao W, Chen S, Zhu W. Analysis of differential metabolites and metabolic pathways in adipose tissue of tree shrews (Tupaia belangeri) under gradient cooling acclimation. J Therm Biol 2023; 112:103406. [PMID: 36796882 DOI: 10.1016/j.jtherbio.2022.103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
In order to investigate the influence of gradient cooling acclimation on body mass regulation in tree shrews (Tupaia belangeri), white adipose tissue (WAT) and brown adipose tissue (BAT) in T. belangeri between the control group and gradient cooling acclimation group on day 56 were collected, body mass, food intake, thermogenic capacity, differential metabolites, and related metabolic pathways in WAT and BAT were measured, the changes of differential metabolites were analyzed by non-targeted metabolomics method based on liquid chromatography-mass spectrometry. The results shown that gradient cooling acclimation significantly increased body mass, food intake, resting metabolic rate (RMR), non-shivering thermogenesis (NST), and masses of WAT and BAT. 23 significant differential metabolites in WAT between the gradient cooling acclimation group and the control group, of which the relative contents of 13 differential metabolites were up-regulated and 10 differential metabolites were down-regulated. 27 significant differential metabolites in BAT, of which 18 differential metabolites decreased and 9 differential metabolites increased. 15 differential metabolic pathways in WAT, 8 differential metabolic pathways in BAT, and 4 differential metabolic pathways involved in both WAT and BAT, including Purine metabolism, Pyrimidine metabolism, Glycerol phosphate metabolism, Arginine and proline metabolism, respectively. All of the above results suggested that T. belangeri could use different metabolites of adipose tissue to withstand low temperature environments and enhance their survival.
Collapse
Affiliation(s)
- Dongmin Hou
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Huibao Chen
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Ting Jia
- Yunnan University of Business Management, Kunming, 650106, China
| | - Lin Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wenrong Gao
- School of Biological Resources and Food Engineering, Qujing Normal University, Qujing, 655011, China
| | - Simeng Chen
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.
| |
Collapse
|
7
|
Hostrup M, Onslev J. The beta 2 -adrenergic receptor - a re-emerging target to combat obesity and induce leanness? J Physiol 2021; 600:1209-1227. [PMID: 34676534 DOI: 10.1113/jp281819] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Treatment of obesity with repurposed or novel drugs is an expanding research field. One approach is to target beta2 -adrenergic receptors because they regulate the metabolism and phenotype of adipose and skeletal muscle tissue. Several observations support a role for the beta2 -adrenergic receptor in obesity. Specific human beta2 -adrenergic receptor polymorphisms are associated with body composition and obesity, for which the Gln27Glu polymorphism is associated with obesity, while the Arg16Gly polymorphism is associated with lean mass in men and the development of obesity in specific populations. Individuals with obesity also have lower abundance of beta2 -adrenergic receptors in adipose tissue and are less sensitive to catecholamines. In addition, studies in livestock and rodents demonstrate that selective beta2 -agonists induce a so-called 'repartitioning effect' characterized by muscle accretion and reduced fat deposition. In humans, beta2 -agonists dose-dependently increase resting metabolic rate by 10-50%. And like that observed in other mammals, only a few weeks of treatment with beta2 -agonists increases muscle mass and reduces fat mass in young healthy individuals. Beta2 -agonists also exert beneficial effects on body composition when used concomitantly with training and act additively to increase muscle strength and mass during periods with resistance training. Thus, the beta2 -adrenergic receptor seems like an attractive target in the development of anti-obesity drugs. However, future studies need to verify the long-term efficacy and safety of beta2 -agonists in individuals with obesity, particularly in those with comorbidities.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Johan Onslev
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Roberts FL, Markby GR. New Insights into Molecular Mechanisms Mediating Adaptation to Exercise; A Review Focusing on Mitochondrial Biogenesis, Mitochondrial Function, Mitophagy and Autophagy. Cells 2021; 10:cells10102639. [PMID: 34685618 PMCID: PMC8533934 DOI: 10.3390/cells10102639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise itself is fundamental for good health, and when practiced regularly confers a myriad of metabolic benefits in a range of tissues. These benefits are mediated by a range of adaptive responses in a coordinated, multi-organ manner. The continued understanding of the molecular mechanisms of action which confer beneficial effects of exercise on the body will identify more specific pathways which can be manipulated by therapeutic intervention in order to prevent or treat various metabolism-associated diseases. This is particularly important as exercise is not an available option to all and so novel methods must be identified to confer the beneficial effects of exercise in a therapeutic manner. This review will focus on key emerging molecular mechanisms of mitochondrial biogenesis, autophagy and mitophagy in selected, highly metabolic tissues, describing their regulation and contribution to beneficial adaptations to exercise.
Collapse
|
9
|
Pham HG, Mukherjee S, Choi MJ, Yun JW. BMP11 regulates thermogenesis in white and brown adipocytes. Cell Biochem Funct 2021; 39:496-510. [PMID: 33527439 DOI: 10.1002/cbf.3615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/11/2020] [Accepted: 10/24/2020] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein-11 (BMP11), also known as growth differentiation factor-11 (GDF11), is implicated in skeletal development and joint morphogenesis in mammals. However, its functions in adipogenesis and energy homeostasis are mostly unknown. The present study investigates crucial roles of BMP11 in cultured 3T3-L1 white and HIB1B brown adipocytes, using Bmp11 gene depletion and pharmacological inhibition of BMP11. The silencing of Bmp11 markedly decreases the expression levels of brown-fat signature proteins and beige-specific genes in white adipocytes and significantly down-regulates the expression levels of brown fat-specific genes in brown adipocytes. The deficiency of Bmp11 reduces the expressions of lipolytic protein markers in white and brown adipocytes. Moreover, BMP11 induces browning of 3T3-L1 adipocytes via coordination of multiple signalling pathways, including mTORC1-COX2 and p38MAPK-PGC-1α as non-canonical pathways, as well as Smad1/5/8 as a canonical pathway. We believe this study is the first to provide evidence of the potential roles of BMP11 for improvement of lipid catabolism in both cultured white and brown adipocytes, as well as the effect on browning of white adipocytes. Taken together, these results demonstrate the therapeutic potential for the treatment of obesity.
Collapse
Affiliation(s)
- Huong Giang Pham
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Min Ji Choi
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
10
|
Li H, Wang C, Li L, Li L. Skeletal muscle non-shivering thermogenesis as an attractive strategy to combat obesity. Life Sci 2021; 269:119024. [PMID: 33450257 DOI: 10.1016/j.lfs.2021.119024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/05/2023]
Abstract
Obesity is a chronic disease derived from disequilibrium between energy intake and energy expenditure and evolving as a challenging epidemiological disease in the 21st century. It is urgently necessary to solve this issue by searching for effective strategies and safe drugs. Skeletal muscle could be a potential therapeutic target for the prevention and treatment of obesity and its associated complications due to non-shivering thermogenesis (NST) function. Skeletal muscle NST is based dominantly on futile sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump cycling that leads to a rise in cytosolic Ca2+, increased adenosine triphosphate (ATP) hydrolysis and heat production. This review will highlight the mechanisms of skeletal muscle NST, including SLN mediated SERCA pump futile cycling, SR-mitochondrial crosstalk and increased mitochondrial biogenesis, and thermogenesis induced by uncoupling proteins 3 (UCP3). We then summarize natural products targeting the pathogenesis of obesity via skeletal muscle NST, offering new insights into pharmacotherapy and potential drug candidates to combat obesity.
Collapse
Affiliation(s)
- Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Section of Endocrinology, School of Medicine, Yale University, New Haven 06520, USA.
| | - Can Wang
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lingqiao Li
- Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou 317306, PR China
| |
Collapse
|
11
|
Irandoost P, Lotfi Yagin N, Namazi N, Keshtkar A, Farsi F, Mesri Alamdari N, Vafa M. The effect of Capsaicinoids or Capsinoids in red pepper on thermogenesis in healthy adults: A systematic review and meta-analysis. Phytother Res 2020; 35:1358-1377. [PMID: 33063385 DOI: 10.1002/ptr.6897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 02/05/2023]
Abstract
The outcomes of the earlier trials are controversial concerning the effect of Capsaicinoids/Capsinoids on thermogenesis. We carried out this systematic review and meta-analysis to examine the effect of Capsaicinoids/Capsinoids on thermogenesis indices including resting metabolic rate (RMR) and respiratory quotient (RQ) in healthy adults. An electronic literature search was conducted between 1990 and 2019, using the following databases: PubMed, Web of Sciences, Scopus, Cochrane Central Register of Controlled Trials, and EMBASE. Placebo-controlled clinical trials were considered as eligible papers. Effect sizes were pooled using weighted mean difference (WMD), with a random-effects model. Of the 4,092 articles, 13 studies were included in the meta-analysis. Pooled effect sizes revealed that compared with placebo, Capsaicinoids/Capsinoids significantly increased RMR (WMD: 33.99 Kcal/day, 95% CI: 15.95, 52.03; I2 : 0%, p = .94), energy expenditure, and fat oxidation. It also significantly lessened RQ (WMD: -0.01, 95% CI: -0.02, -0.01; I2 : 5.4%, p = .39) and carbohydrate oxidation. Moreover, intervention in capsule form for longer duration had a more considerable influence on RMR than comparative groups. We observed moderate improvement in RMR, RQ, and fat oxidation following supplementation with Capsaicinoids/Capsinoids. However, further high-quality studies are required to clarify the thermogenic properties of Capsaicinoids/Capsinoids.
Collapse
Affiliation(s)
- Pardis Irandoost
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Lotfi Yagin
- Nutrition Research Center, Student Research Committee, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Farsi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Naimeh Mesri Alamdari
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Prevalence and Associated Factor of Brown Adipose Tissue: Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9106976. [PMID: 32685543 PMCID: PMC7317326 DOI: 10.1155/2020/9106976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 06/01/2020] [Indexed: 01/03/2023]
Abstract
Background Brown adipose tissue generates heat instead of storing energy. It is important in the regulation of body weight, and individual variation in adaptive thermogenesis can be attributed to variations in the amount or activity of BAT. Objective The objective of this study was to systematically review different articles to assess the prevalence of BAT and its associated factors and relation with obesity and diabetes mellitus. Methods A systematic review and meta-analysis were employed on published research works from different electronic databases using keywords. Cross-sectional studies and a few experimental studies were included for systematic review, and only studies done on human population were used for quantitative analysis. Twenty-two peer-reviewed papers were included in the systematic review, and eight papers were used for the meta-analysis for estimation of pooled prevalence of brown adipose tissue using selection criteria. Results The pooled prevalence of brown adipose tissue among adults was 6.97% (95% CI: 6.51-7.43), and it was 7.4% (95% CI 6.51-7.43) after sequential omission of a single study. The heterogeneity in estimating the pooled prevalence among the studies was statistically significant (Cochran Q test, P < 0.001, I 2 = 71.2%), and after sequential omission of a single study, it becomes Cochran Q test, P = 0.065, I 2 = 49.4%. The brown adipose tissue activity was significantly lower in overweight or obese subjects than in lean subjects. Conclusion The percentage of adult individuals with brown adipose tissue was high, and its activity was reduced in obese individuals. Although it is reduced in amount, still it presents in obese individuals. So, activation of the brown adipose tissue in adult and older individuals should be a target for the treatment of obesity.
Collapse
|
13
|
Siemienowicz K, Rae MT, Howells F, Anderson C, Nicol LM, Franks S, Duncan WC. Insights into Manipulating Postprandial Energy Expenditure to Manage Weight Gain in Polycystic Ovary Syndrome. iScience 2020; 23:101164. [PMID: 32464593 PMCID: PMC7256642 DOI: 10.1016/j.isci.2020.101164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/08/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022] Open
Abstract
Women with polycystic ovary syndrome (PCOS) are more likely to be obese and have difficulty in losing weight. They demonstrate an obesity-independent deficit in adaptive energy expenditure. We used a clinically realistic preclinical model to investigate the molecular basis for the reduced postprandial thermogenesis (PPT) and develop a therapeutic strategy to normalize this deficit. Sheep exposed to increased androgens before birth develop the clinical features of PCOS. In adulthood they develop obesity and demonstrate an obesity-independent reduction in PPT. This is associated with reduced adipose tissue uncoupling protein expression and adipose tissue noradrenaline concentrations. These sheep are insulin resistant with reduced insulin signaling in the brain. Increasing brain insulin concentrations using intranasal insulin administration increased PPT in PCOS sheep without any effects on blood glucose concentrations. Intranasal insulin administration with food is a potential novel strategy to improve adaptive energy expenditure and normalize the responses to weight loss strategies in women with PCOS. Obesity can be prenatally programmed by androgens in an ovine model of PCOS This model has the same deficit in postprandial energy expenditure as women with PCOS Reduced adipose tissue thermogenesis links to lower central insulin signaling Therapeutic intranasal insulin raises postprandial energy expenditure in PCOS sheep
Collapse
Affiliation(s)
- Katarzyna Siemienowicz
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| | - Michael T Rae
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| | - Fiona Howells
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Chloe Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Linda M Nicol
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College, London W12 0HS, UK
| | - William C Duncan
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
14
|
Metabolic regulation and the anti-obesity perspectives of brown adipose tissue (BAT); a systematic review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2019.100163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Hostrup M, Jacobson GA, Jessen S, Lemminger AK. Anabolic and lipolytic actions of beta
2
‐agonists in humans and antidoping challenges. Drug Test Anal 2020; 12:597-609. [DOI: 10.1002/dta.2728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Morten Hostrup
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of Copenhagen Copenhagen Denmark
| | - Glenn A. Jacobson
- School of Pharmacy and Pharmacology, College of Health and MedicineUniversity of Tasmania Hobart Australia
| | - Søren Jessen
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of Copenhagen Copenhagen Denmark
| | - Anders Krogh Lemminger
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of Copenhagen Copenhagen Denmark
| |
Collapse
|
16
|
Effects of Polyphenols on Thermogenesis and Mitochondrial Biogenesis. Int J Mol Sci 2018; 19:ijms19092757. [PMID: 30217101 PMCID: PMC6164046 DOI: 10.3390/ijms19092757] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/05/2023] Open
Abstract
Obesity is a health problem worldwide, and energy imbalance has been pointed out as one of the main factors responsible for its development. As mitochondria are a key element in energy homeostasis, the development of obesity has been strongly associated with mitochondrial imbalance. Polyphenols are the largest group of phytochemicals, widely distributed in the plant kingdom, abundant in fruits and vegetables, and have been classically described as antioxidants owing to their well-established ability to eliminate free radicals and reactive oxygen species (ROS). During the last decade, however, growing evidence reports the ability of polyphenols to perform several important biological activities in addition to their antioxidant activity. Special attention has been given to the ability of polyphenols to modulate mitochondrial processes. Thus, some polyphenols are now recognized as molecules capable of modulating pathways that regulate mitochondrial biogenesis, ATP synthesis, and thermogenesis, among others. The present review reports the main benefits of polyphenols in modulating mitochondrial processes that favor the regulation of energy expenditure and offer benefits in the management of obesity, especially thermogenesis and mitochondrial biogenesis.
Collapse
|
17
|
Gasparin FRS, Carreño FO, Mewes JM, Gilglioni EH, Pagadigorria CLS, Natali MRM, Utsunomiya KS, Constantin RP, Ouchida AT, Curti C, Gaemers IC, Elferink RPJO, Constantin J, Ishii-Iwamoto EL. Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2495-2509. [DOI: 10.1016/j.bbadis.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
|
18
|
Acosta FM, Martinez-Tellez B, Sanchez-Delgado G, A. Alcantara JM, Acosta-Manzano P, Morales-Artacho AJ, R. Ruiz J. Physiological responses to acute cold exposure in young lean men. PLoS One 2018; 13:e0196543. [PMID: 29734360 PMCID: PMC5937792 DOI: 10.1371/journal.pone.0196543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/14/2018] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to comprehensively describe the physiological responses to an acute bout of mild cold in young lean men (n = 11, age: 23 ± 2 years, body mass index: 23.1 ± 1.2 kg/m2) to better understand the underlying mechanisms of non-shivering thermogenesis and how it is regulated. Resting energy expenditure, substrate metabolism, skin temperature, thermal comfort perception, superficial muscle activity, hemodynamics of the forearm and abdominal regions, and heart rate variability were measured under warm conditions (22.7 ± 0.2°C) and during an individualized cooling protocol (air-conditioning and water cooling vest) in a cold room (19.4 ± 0.1°C). The temperature of the cooling vest started at 16.6°C and decreased ~ 1.4°C every 10 minutes until participants shivered (93.5 ± 26.3 min). All measurements were analysed across 4 periods: warm period, at 31% and at 64% of individual´s cold exposure time until shivering occurred, and at the shivering threshold. Energy expenditure increased from warm period to 31% of cold exposure by 16.7% (P = 0.078) and to the shivering threshold by 31.7% (P = 0.023). Fat oxidation increased by 72.6% from warm period to 31% of cold exposure (P = 0.004), whereas no changes occurred in carbohydrates oxidation. As shivering came closer, the skin temperature and thermal comfort perception decreased (all P<0.05), except in the supraclavicular skin temperature, which did not change (P>0.05). Furthermore, the superficial muscle activation increased at the shivering threshold. It is noteworthy that the largest physiological changes occurred during the first 30 minutes of cold exposure, when the participants felt less discomfort.
Collapse
Affiliation(s)
- Francisco M. Acosta
- PROFITH “PROmoting FITness and Health through physical activity” research group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH “PROmoting FITness and Health through physical activity” research group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Medicine, Division of Endocrinology, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Guillermo Sanchez-Delgado
- PROFITH “PROmoting FITness and Health through physical activity” research group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Juan M. A. Alcantara
- PROFITH “PROmoting FITness and Health through physical activity” research group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Pedro Acosta-Manzano
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Antonio J. Morales-Artacho
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jonatan R. Ruiz
- PROFITH “PROmoting FITness and Health through physical activity” research group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
19
|
Schlader ZJ, Sackett JR, Sarker S, Johnson BD. Orderly recruitment of thermoeffectors in resting humans. Am J Physiol Regul Integr Comp Physiol 2017; 314:R171-R180. [PMID: 29021192 DOI: 10.1152/ajpregu.00324.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recruitment of thermoeffectors, including thermoregulatory behavior, relative to changes in body temperature has not been quantified in humans. We tested the hypothesis that changes in skin blood flow, behavior, and sweating or metabolic rate are initiated with increasing changes in mean skin temperature (Tskin) in resting humans. While wearing a water-perfused suit, 12 healthy young adults underwent heat (Heat) and cold stress (Cold) that induced gradual changes in Tskin. Subjects controlled the temperature of their dorsal neck to their perceived thermal comfort. Thus neck skin temperature provided an index of thermoregulatory behavior. Neck skin temperature (Tskin), core temperature (Tcore), metabolic rate, sweat rate, and nonglabrous skin blood flow were measured continually. Data were analyzed using segmental regression analysis, providing an index of thermoeffector activation relative to changes in Tskin. In Heat, increases in skin blood flow were observed with the smallest elevations in Tskin ( P < 0.01). Thermal behavior was initiated with an increase in Tskin of 2.4 ± 1.3°C (mean ± SD, P = 0.04), while sweating was observed with further elevations in Tskin (3.4 ± 0.5°C, P = 0.04), which coincided with increases in Tcore ( P = 0.98). In Cold, reductions in skin blood flow occurred with the smallest decrease in Tskin ( P < 0.01). Thermal behavior was initiated with a Tskin decrease of 1.5 ± 1.3°C, while metabolic rate ( P = 0.10) and Tcore ( P = 0.76) did not change throughout. These data indicate that autonomic and behavioral thermoeffectors are recruited in coordination with one another and likely in an orderly manner relative to the comparative physiological cost.
Collapse
Affiliation(s)
- Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo , Buffalo, New York
| | - James R Sackett
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo , Buffalo, New York
| | - Suman Sarker
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo , Buffalo, New York
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo , Buffalo, New York
| |
Collapse
|
20
|
Kim ER, Fan S, Akhmedov D, Sun K, Lim H, O'Brien W, Xu Y, Mangieri LR, Zhu Y, Lee CC, Chung Y, Xia Y, Xu Y, Li F, Sun K, Berdeaux R, Tong Q. Red blood cell β-adrenergic receptors contribute to diet-induced energy expenditure by increasing O2 supply. JCI Insight 2017; 2:93367. [PMID: 28724789 DOI: 10.1172/jci.insight.93367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022] Open
Abstract
Diet-induced obesity (DIO) represents the major cause for the current obesity epidemic, but the mechanism underlying DIO is unclear. β-Adrenergic receptors (β-ARs) play a major role in sympathetic nervous system-mediated (SNS-mediated) diet-induced energy expenditure (EE). Rbc express abundant β-ARs; however, a potential role for rbc in DIO remains untested. Here, we demonstrated that high-fat, high-caloric diet (HFD) feeding increased both EE and blood O2 content, and the HFD-induced increases in blood O2 level and in body weight gain were negatively correlated. Deficiency of β-ARs in rbc reduced glycolysis and ATP levels, diminished HFD-induced increases in both blood O2 content and EE, and resulted in DIO. Importantly, specific activation of cAMP signaling in rbc promoted HFD-induced EE and reduced HFD-induced tissue hypoxia independent of obesity. Both HFD and pharmacological activation cAMP signaling in rbc led to increased glycolysis and ATP levels. These results identify a previously unknown role for rbc β-ARs in mediating the SNS action on HFD-induced EE by increasing O2 supply, and they demonstrate that HFD-induced EE is limited by blood O2 availability and can be augenmented by increased O2 supply.
Collapse
Affiliation(s)
- Eun Ran Kim
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - Shengjie Fan
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA.,School of Pharmacy, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences
| | - Kaiqi Sun
- Department of Biochemistry and Molecular Biology, Graduate Program in Biochemistry, and
| | - Hoyong Lim
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - William O'Brien
- Department of Biochemistry and Molecular Biology, Graduate Program in Biochemistry, and
| | - Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - Leandra R Mangieri
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA.,Department of Neurobiology and Anatomy, Graduate Program in Neuroscience, Graduate School of Biological Sciences, University of Texas McGovern Medical School, Houston, Texas, USA
| | - Yaming Zhu
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - Cheng-Chi Lee
- Department of Biochemistry and Molecular Biology, Graduate Program in Biochemistry, and
| | - Yeonseok Chung
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, Graduate Program in Biochemistry, and
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, and
| | - Feng Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kai Sun
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA
| | - Rebecca Berdeaux
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, Graduate Program in Cell and Regulatory Biology, Graduate School of Biomedical Sciences
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine and University of Texas McGovern Medical School, Houston, Texas, USA.,Department of Neurobiology and Anatomy, Graduate Program in Neuroscience, Graduate School of Biological Sciences, University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
21
|
Shi LL, Fan WJ, Zhang JY, Zhao XY, Tan S, Wen J, Cao J, Zhang XY, Chi QS, Wang DH, Zhao ZJ. The roles of metabolic thermogenesis in body fat regulation in striped hamsters fed high-fat diet at different temperatures. Comp Biochem Physiol A Mol Integr Physiol 2017; 212:35-44. [PMID: 28711354 DOI: 10.1016/j.cbpa.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
Abstract
The metabolic thermogenesis plays important roles in thermoregulation, and it may be also involved in body fat regulation. The thermogenesis of brown adipose tissue (BAT) is largely affected by ambient temperature, but it is unclear if the roles in body fat regulation are dependent on the temperature. In the present study, uncoupling protein 1 (ucp1)-based BAT thermogenesis, energy budget and body fat content were examined in the striped hamsters fed high fat diet (HF) at cold (5°C) and warm (30°C) temperatures. The effect of 2, 4-dinitrophenol (DNP), a chemical uncoupler, on body fat was also examined. The striped hamsters showed a notable increase in body fat following the HF feeding at 21°C. The increased body fat was markedly elevated at 30°C, but was significantly attenuated at 5°C compared to that at 21°C. The hamsters significantly increased energy intake at 5°C, but consumed less food at 30°C relative to those at 21°C. Metabolic thermogenesis, indicated by basal metabolic rate, UCP1 expression and/or serum triiodothyronine levels, significantly increased at 5°C, but decreased at 30°C compared to that at 21°C. A significant decrease in body fat content was observed in DNP-treated hamsters relative to the controls. These findings suggest that the roles of metabolic thermogenesis in body fat regulation largely depend on ambient temperature. The cold-induced enhancement of BAT thermogenesis may contribute the decreased body fat, resulting in a lean mass. Instead, the attenuation of BAT thermogenesis at the warm may result in notable obesity.
Collapse
Affiliation(s)
- Lu-Lu Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wei-Jia Fan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ji-Ying Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Ya Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Song Tan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Wen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
22
|
Broatch JR, Petersen A, Bishop DJ. Cold-water immersion following sprint interval training does not alter endurance signaling pathways or training adaptations in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2017; 313:R372-R384. [PMID: 28679683 DOI: 10.1152/ajpregu.00434.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 01/14/2023]
Abstract
We investigated the underlying molecular mechanisms by which postexercise cold-water immersion (CWI) may alter key markers of mitochondrial biogenesis following both a single session and 6 wk of sprint interval training (SIT). Nineteen men performed a single SIT session, followed by one of two 15-min recovery conditions: cold-water immersion (10°C) or a passive room temperature control (23°C). Sixteen of these participants also completed 6 wk of SIT, each session followed immediately by their designated recovery condition. Four muscle biopsies were obtained in total, three during the single SIT session (preexercise, postrecovery, and 3 h postrecovery) and one 48 h after the last SIT session. After a single SIT session, phosphorylated (p-)AMPK, p-p38 MAPK, p-p53, and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA were all increased (P < 0.05). Postexercise CWI had no effect on these responses. Consistent with the lack of a response after a single session, regular postexercise CWI had no effect on PGC-1α or p53 protein content. Six weeks of SIT increased peak aerobic power, maximal oxygen consumption, maximal uncoupled respiration (complexes I and II), and 2-km time trial performance (P < 0.05). However, regular CWI had no effect on changes in these markers, consistent with the lack of response in the markers of mitochondrial biogenesis. Although these observations suggest that CWI is not detrimental to endurance adaptations following 6 wk of SIT, they question whether postexercise CWI is an effective strategy to promote mitochondrial biogenesis and improvements in endurance performance.
Collapse
Affiliation(s)
- James R Broatch
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; and
| | - Aaron Petersen
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; and
| | - David J Bishop
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; and.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
23
|
Ju H, Kim T, Chung CM, Park J, Nikawa T, Park K, Choi I. Metabolic Suppression by 3-Iodothyronamine Induced Muscle Cell Atrophy via Activation of FoxO-Proteasome Signaling and Downregulation of Akt1-S6K Signaling. Biol Pharm Bull 2017; 40:576-582. [PMID: 28163294 DOI: 10.1248/bpb.b16-00653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The homeostasis of muscle properties depends on both physical and metabolic stresses. Whereas physical stress entails metabolic response for muscle homeostasis, the latter does not necessarily involve the former and may thus solely affect the homeostasis. We here report that metabolic suppression by the hypometabolic agent 3-iodothyronamine (T1AM) induced muscle cell atrophy without physical stress. We observed that the oxygen consumption rate of C2C12 myotubes decreased 40% upon treatment with 75 µM T1AM for 6 h versus 10% in the vehicle (dimethyl sulfoxide) control. The T1AM treatment reduced cell diameter of myotubes by 15% compared to the control (p<0.05). The cell diameter was reversed completely by 9 h after T1AM was removed. The T1AM treatment also significantly suppressed the expression levels of heat shock protein 72 and αB-crystallin as well as the phosphorylation levels of Akt1, mammalian target of rapamycin (mTOR), S6K, forkhead box O1 (FoxO1) and FoxO3. In contrast, the levels of ubiquitin E3 ligase MuRF1 and chymotrypsin-like activity of proteasome were significantly elevated by T1AM treatment. These results suggest that T1AM-mediated metabolic suppression induced muscle cell atrophy via activation of catabolic signaling and inhibition of anabolic signaling.
Collapse
Affiliation(s)
- Hyunwoo Ju
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University
| | - Taewan Kim
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University
| | - Chan-Moon Chung
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University
| | - Junsoo Park
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Health Biosciences, University of Tokushima Graduate School
| | | | - Inho Choi
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University
| |
Collapse
|
24
|
Shu L, Hoo RLC, Wu X, Pan Y, Lee IPC, Cheong LY, Bornstein SR, Rong X, Guo J, Xu A. A-FABP mediates adaptive thermogenesis by promoting intracellular activation of thyroid hormones in brown adipocytes. Nat Commun 2017; 8:14147. [PMID: 28128199 PMCID: PMC5290165 DOI: 10.1038/ncomms14147] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023] Open
Abstract
The adipokine adipocyte fatty acid-binding protein (A-FABP) has been implicated in obesity-related cardio-metabolic complications. Here we show that A-FABP increases thermogenesis by promoting the conversion of T4 to T3 in brown adipocytes. We find that A-FABP levels are increased in both white (WAT) and brown (BAT) adipose tissues and the bloodstream in response to thermogenic stimuli. A-FABP knockout mice have reduced thermogenesis and whole-body energy expenditure after cold stress or after feeding a high-fat diet, which can be reversed by infusion of recombinant A-FABP. Mechanistically, A-FABP induces the expression of type-II iodothyronine deiodinase in BAT via inhibition of the nuclear receptor liver X receptor α, thereby leading to the conversion of thyroid hormone from its inactive form T4 to active T3. The thermogenic responses to T4 are abrogated in A-FABP KO mice, but enhanced by A-FABP. Thus, A-FABP acts as a physiological stimulator of BAT-mediated adaptive thermogenesis.
Collapse
Affiliation(s)
- Lingling Shu
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ruby L. C. Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yong Pan
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ida P. C. Lee
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Xianglu Rong
- Joint Laboratory of Guangdong and Hong Kong on Metabolic Diseases, Guangdong Pharmaceutical University, 510000 Guangzhou, China
| | - Jiao Guo
- Joint Laboratory of Guangdong and Hong Kong on Metabolic Diseases, Guangdong Pharmaceutical University, 510000 Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Gavrila A, Hasselgren PO, Glasgow A, Doyle AN, Lee AJ, Fox P, Gautam S, Hennessey JV, Kolodny GM, Cypess AM. Variable Cold-Induced Brown Adipose Tissue Response to Thyroid Hormone Status. Thyroid 2017; 27:1-10. [PMID: 27750020 PMCID: PMC5206686 DOI: 10.1089/thy.2015.0646] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND In addition to its role in adaptive thermogenesis, brown adipose tissue (BAT) may protect from weight gain, insulin resistance/diabetes, and metabolic syndrome. Prior studies have shown contradictory results regarding the influence of thyroid hormone (TH) levels on BAT volume and activity. The aim of this pilot study was to gain further insights regarding the effect of TH treatment on BAT function in adult humans by evaluating the BAT mass and activity prospectively in six patients, first in the hypothyroid and then in the thyrotoxic phase. METHODS The study subjects underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) scanning after cold exposure to measure BAT mass and activity while undergoing treatment for differentiated thyroid cancer, first while hypothyroid following TH withdrawal at the time of the radioactive iodine treatment and then three to six months after starting TH suppressive treatment when they were iatrogenically thyrotoxic. Thermogenic and metabolic parameters were measured in both phases. RESULTS All study subjects had detectable BAT under cold stimulation in both the hypothyroid and thyrotoxic state. The majority but not all (4/6) subjects showed an increase in detectable BAT volume and activity under cold stimulation between the hypothyroid and thyrotoxic phase (total BAT volume: 72.0 ± 21.0 vs. 87.7 ± 16.5 mL, p = 0.25; total BAT activity 158.1 ± 72.8 vs. 189.0 ± 55.5 SUV*g/mL, p = 0.34). Importantly, circulating triiodothyronine was a stronger predictor of energy expenditure changes compared with cold-induced BAT activity. CONCLUSIONS Iatrogenic hypothyroidism lasting two to four weeks does not prevent cold-induced BAT activation, while the use of TH to induce thyrotoxicosis does not consistently increase cold-induced BAT activity. It remains to be determined which physiological factors besides TH play a role in regulating BAT function.
Collapse
Affiliation(s)
- Alina Gavrila
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Allison Glasgow
- Harvard Catalyst Clinical Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Ashley N. Doyle
- Harvard Catalyst Clinical Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Alice J. Lee
- Harvard Catalyst Clinical Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Peter Fox
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Shiva Gautam
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - James V. Hennessey
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Gerald M. Kolodny
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Aaron M. Cypess
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Section of Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Hattori H, Yamauchi K, Onwona-Agyeman S, Mitsunaga T. Effect of Grains of Paradise (GP) Extract Intake on Obesity and Sympathetic Nerve Activity. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ajps.2017.82007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Schrauwen P, van Marken Lichtenbelt WD. Combatting type 2 diabetes by turning up the heat. Diabetologia 2016; 59:2269-2279. [PMID: 27591854 PMCID: PMC5506100 DOI: 10.1007/s00125-016-4068-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
In our westernised society, the level of physical activity is low. Interventions that increase energy expenditure are generally associated with an improvement in metabolic health. Exercise and exercise training increase energy metabolism and are considered to be among the best strategies for prevention of type 2 diabetes mellitus. More recently, cold exposure has been suggested to have a therapeutic value in type 2 diabetes. At a cellular level, there is evidence that increasing the turnover of cellular substrates such as fatty acids is associated with preventive effects against lipid-induced insulin resistance. Cellular energy sensors may underlie the effects linking energy turnover with metabolic health effects. Here we review data supporting the hypothesis that increasing energy and substrate turnover has beneficial effects on insulin sensitivity and should be considered a target for the prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. BOX 616, 6200MD, Maastricht, the Netherlands.
| | - Wouter D van Marken Lichtenbelt
- Department of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, P.O. BOX 616, 6200MD, Maastricht, the Netherlands
| |
Collapse
|
28
|
Abstract
Background Obesity is a consequence of chronic energy imbalance. We need accurate and precise measurements of energy intake and expenditure, as well as the related behaviors, to fully understand how energy homeostasis is regulated in order to develop interventions and evaluate their effectiveness to combat the global obesity epidemic. Scope of review We provide an in-depth review of the methodologies currently used to measure energy intake and expenditure in humans, including their principles, advantages, and limitations in the clinical research setting. The aim is to provide researchers with a comprehensive guide to conduct obesity research of the highest possible quality. Major conclusions An array of methodologies is available to measure various aspects of energy metabolism and none is perfect under all circumstances. The choice of methods should be specific to particular research questions with practicality and quality of data the priorities for consideration. A combination of complementary measurements may be preferable. There is an imperative need to develop new methodologies to improve the accuracy and precision of energy intake assessments. Image-based technology is a significant step to improve energy intake measurement. Physical activity informs patterns but not absolute energy expenditure. Combining complementary measurements overcomes shortfalls of individual methods.
Collapse
|
29
|
Bile acid receptor agonists INT747 and INT777 decrease oestrogen deficiency-related postmenopausal obesity and hepatic steatosis in mice. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2054-2062. [PMID: 27475255 DOI: 10.1016/j.bbadis.2016.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/09/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Menopause is often followed by obesity and, related to this, non-alcoholic fatty liver disease (NAFLD). Two bile acid (BA) receptors, farnesoid X receptor (FXR) and G-protein-coupled receptor TGR5, have emerged as putative therapeutic targets for obesity and NAFLD. AIM OF THIS STUDY to evaluate the efficacy of selective agonists INT747/obeticholic acid (FXR) and INT777 (TGR5) as novel treatments for the metabolic effects of oestrogen deficiency. Ovariectomized (OVX) or sham-operated (SHAM) mice were fed a high-fat diet (HFD) for 5weeks. During the last 4weeks two groups of OVX and SHAM mice received either INT747- or INT777-supplemented HFD. OVX mice had significantly higher bodyweight gain than SHAM mice, which was attenuated by INT747- or INT777-treatment. No significant changes in food intake or physical activity were found. OVX mice had significantly lower energy expenditure than SHAM mice; INT747- and INT777-treated OVX mice had intermediate energy expenditure. Liver triglyceride and cholesterol content was significantly increased in OVX compared to SHAM mice, which was normalized by INT747- or INT777-treatment. Significant changes in metabolic gene expression were found in liver (Cpt1, Acox1), muscle (Ucp3, Pdk4, Cpt1, Acox1, Fasn, Fgf21), brown adipocytes (Dio2) and white adipocytes (c/EBPα, Pparγ, Adipoq). For the first time, expression of FXR and induction of its target gene Pltp1 was shown in skeletal muscle. BA receptor agonists are suitable therapeutics to correct postmenopausal metabolic changes in an OVX mouse model. Potential mechanisms include increased energy expenditure and changes in expression patterns of key metabolic genes in liver, muscle and adipose tissues.
Collapse
|
30
|
Glycogen Repletion in Brown Adipose Tissue upon Refeeding Is Primarily Driven by Phosphorylation-Independent Mechanisms. PLoS One 2016; 11:e0156148. [PMID: 27213961 PMCID: PMC4877058 DOI: 10.1371/journal.pone.0156148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022] Open
Abstract
Glycogen storage in brown adipose tissue (BAT) is generally thought to take place through passive, substrate-driven activation of glycogenesis rather than programmatic shifts favoring or opposing the storage and/or retention of glycogen. This perception exists despite a growing body of evidence suggesting that BAT glycogen storage is actively regulated by covalent modification of key glycogen-metabolic enzymes, protein turnover, and endocrine hormone signaling. Members of one such class of covalent-modification regulators, glycogen-binding Phosphoprotein Phosphatase-1 (PP1)-regulatory subunits (PPP1Rs), targeting PP1 to glycogen-metabolic enzymes, were dynamically regulated in response to 24 hr of starvation and/or 24 hr of starvation followed by ad libitum refeeding. Over-expression of the PPP1R Protein Targeting to Glycogen (PTG), under the control of the aP2 promoter in mice, inactivated glycogen phosphorylase (GP) and enhanced basal- and starvation-state glycogen storage. Total interscapular BAT glycogen synthase and the constitutive activity of GS were conditionally affected. During starvation, glucose-6-phosphate (G-6-P) levels and the relative phosphorylation of Akt (p-Ser-473-Akt) were both increased in PTG-overexpressing (Tg) mice, suggesting that elevated glycogen storage during starvation modifies broader cellular metabolic pathways. During refeeding, Tg and WT mice reaccumulated glycogen similarly despite altered GS and GP activities. All observations during refeeding suggest that the phosphorylation states of GS and GP are not physiologically rate-controlling, despite there being a clear balance of endogenous kinase- and phosphatase activities. The studies presented here reveal IBAT glycogen storage to be a tightly-regulated process at all levels, with potential effects on nutrient sensing in vivo.
Collapse
|
31
|
Fat Quality Influences the Obesogenic Effect of High Fat Diets. Nutrients 2015; 7:9475-91. [PMID: 26580650 PMCID: PMC4663608 DOI: 10.3390/nu7115480] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/22/2022] Open
Abstract
High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy) rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids.
Collapse
|
32
|
Fernström M, Bakkman L, Loogna P, Rooyackers O, Svensson M, Jakobsson T, Brandt L, Lagerros YT. Improved Muscle Mitochondrial Capacity Following Gastric Bypass Surgery in Obese Subjects. Obes Surg 2015; 26:1391-7. [DOI: 10.1007/s11695-015-1932-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Blondin DP, Labbé SM, Turcotte EE, Haman F, Richard D, Carpentier AC. A critical appraisal of brown adipose tissue metabolism in humans. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.15.14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Roman S, Agil A, Peran M, Alvaro-Galue E, Ruiz-Ojeda FJ, Fernández-Vázquez G, Marchal JA. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders. Transl Res 2015; 165:464-79. [PMID: 25433289 DOI: 10.1016/j.trsl.2014.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/16/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023]
Abstract
In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as obesity-associated type 2 diabetes mellitus and cardiovascular diseases. In contrast, the thermogenic function of BAT allows high consumption of fatty acids because of the activity of uncoupling protein 1 in the internal mitochondrial membrane. Interestingly, obesity reduction and insulin sensitization have been achieved by BAT activation-regeneration in animal models. This review describes the origin, function, and differentiation mechanisms of BAT to identify new therapeutic strategies for the treatment of metabolic disorders related to obesity. On the basis of the animal studies, novel approaches for BAT regeneration combining stem cells from the adipose tissue with active components, such as melatonin, may have potential for the treatment of metabolic disorders in humans.
Collapse
Affiliation(s)
- Sabiniano Roman
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Tissue Engineering Group, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Ahmad Agil
- Department of Pharmacology and Neurosciences Institute, Faculty of Medicine, Biosanitary Institute of Granada (ibs.GRANADA), Hospitals Unversity/University of Granada, Granada, Spain
| | - Macarena Peran
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Eduardo Alvaro-Galue
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Wake Forest Institute for Regenerative Medicine Wake Forest School of Medicine, Winston Salem, NC
| | - Francisco J Ruiz-Ojeda
- Institute of Nutrition and Food Technology, Centre for Biomedical Research, University of Granada, Granada, Spain
| | | | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Biosanitary Institute of Granada (ibs.GRANADA), Hospitals Unversity/University of Granada, Granada, Spain.
| |
Collapse
|
35
|
Leone S, Chiavaroli A, Shohreh R, Ferrante C, Ricciuti A, Manippa F, Recinella L, Di Nisio C, Orlando G, Salvatori R, Vacca M, Brunetti L. Increased locomotor and thermogenic activity in mice with targeted ablation of the GHRH gene. Growth Horm IGF Res 2015; 25:80-84. [PMID: 25588992 DOI: 10.1016/j.ghir.2014.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/09/2014] [Accepted: 12/23/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Growth hormone (GH) deficiency (GHD) leads to growth failure and changes in body composition, including increased fat accumulation and reduced lean body mass in both humans and rodents. The aim of this study was to examine the factors that contribute to energy imbalance in the GH releasing hormone knock out (GHRHKO) mice, a well established model of GHD. DESIGN We evaluated food intake (of standard laboratory chow), total body weight (TBW), locomotor activity, body temperature and interscapular brown adipose tissue (BAT) weight in 8 adult male mice homozygous for the GHRHKO allele (-/-) and 8 heterozygous (+/-) animals as controls. The gene expression of uncoupling protein-1 (UCP-1) in BAT and the levels of norepinephrine (NE), dopamine (DA), and serotonin (5-hydroxytryptamine, 5-HT) in the ventral striatum were measured by real-time reverse transcription polymerase chain reaction (RT-PCR) and high performance liquid chromatography (HPLC) analysis, respectively. RESULTS Throughout 2 months of observation -/- mice consumed approximately 40% more food (normalized to TBW; P<0.001), and showed increased locomotor activity in 24h time compared to controls (P<0.05). Moreover, -/- animals showed increased body temperature (P<0.001), BAT weight (P<0.001), and UCP-1 gene expression (P<0.001), while NE levels in the striatum area were lower (P<0.05) than controls. CONCLUSIONS The present study demonstrates that the increased food intake observed in GHRH ablated animals is associated with increased locomotor and thermogenic activity.
Collapse
Affiliation(s)
- Sheila Leone
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | | | - Rugia Shohreh
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | | | | | - Fabio Manippa
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Chiara Di Nisio
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | | | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michele Vacca
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy.
| |
Collapse
|
36
|
Maurya SK, Bal NC, Sopariwala DH, Pant M, Rowland LA, Shaikh SA, Periasamy M. Sarcolipin Is a Key Determinant of the Basal Metabolic Rate, and Its Overexpression Enhances Energy Expenditure and Resistance against Diet-induced Obesity. J Biol Chem 2015; 290:10840-9. [PMID: 25713078 DOI: 10.1074/jbc.m115.636878] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 11/06/2022] Open
Abstract
Sarcolipin (SLN) is a novel regulator of sarcoplasmic reticulum Ca(2+) ATPase (SERCA) in muscle. SLN binding to SERCA uncouples Ca(2+) transport from ATP hydrolysis. By this mechanism, SLN promotes the futile cycling of SERCA, contributing to muscle heat production. We recently showed that SLN plays an important role in cold- and diet-induced thermogenesis. However, the detailed mechanism of how SLN regulates muscle metabolism remains unclear. In this study, we used both SLN knockout (Sln(-/-)) and skeletal muscle-specific SLN overexpression (Sln(OE)) mice to explore energy metabolism by pair feeding (fixed calories) and high-fat diet feeding (ad libitum). Our results show that, upon pair feeding, Sln(OE) mice lost weight compared with the WT, but Sln(-/-) mice gained weight. Interestingly, when fed with a high-fat diet, Sln(OE) mice consumed more calories but gained less weight and maintained a normal metabolic profile in comparison with WT and Sln(-/-) mice. We found that oxygen consumption and fatty acid oxidation were increased markedly in Sln(OE) mice. There was also an increase in both mitochondrial number and size in Sln(OE) muscle, together with increased expression of peroxisome proliferator-activated receptor δ (PPARδ) and PPAR γ coactivator 1 α (PGC1α), key transcriptional activators of mitochondrial biogenesis and enzymes involved in oxidative metabolism. These results, taken together, establish an important role for SLN in muscle metabolism and energy expenditure. On the basis of these data we propose that SLN is a novel target for enhancing whole-body energy expenditure.
Collapse
Affiliation(s)
- Santosh K Maurya
- the Sanford Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| | - Naresh C Bal
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Danesh H Sopariwala
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Meghna Pant
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Leslie A Rowland
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Sana A Shaikh
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210 and
| | - Muthu Periasamy
- the Sanford Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| |
Collapse
|
37
|
Pumprla J, Howorka K, Kolackova Z, Sovova E. Non-contact radiofrequency-induced reduction of subcutaneous abdominal fat correlates with initial cardiovascular autonomic balance and fat tissue hormones: safety analysis. F1000Res 2015; 4:49. [PMID: 26069728 PMCID: PMC4431383 DOI: 10.12688/f1000research.5708.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 12/14/2022] Open
Abstract
Background and objective: The non-invasive reduction of subcutaneous abdominal fat became popular in the last decade. Radiofrequency (RF), non-contact, selective-field device Vanquish® has been developed to selectively induce deep fat tissue heating to reduce waist circumference. Our analysis evaluates immediate and sustained effects of this treatment on cardiovascular autonomic function and on selected metabolic parameters. Study design/patients and methods: A retrospective proof-of-concept analysis of RF treatment effects was conducted in 20 individuals with metabolic syndrome, to reduce the subcutaneous abdominal fat. Four 30-minutes treatment sessions (manufacturer´s standard protocol) were performed in 1-week intervals. Vital signs, ECG, lab screening, body composition, subcutaneous fat thickness and spectral analysis of heart rate variability (HRV) have been examined before, after the 1
st and 4
th treatment, and at follow-up visits 1 month and 3 months after the treatment. Results: The RF treatment led to a significant reduction of abdominal circumference after the 4
th session (p<0.001), and during follow-up after 1 and 3 months (p<0.001 and p<0.02, resp.). There was a significant correlation (r=-0.58, p=0.007) between reduction of abdominal circumference and initial very-low frequency (VLF) spectral power at 1 month follow-up. A significant increase of cumulative spectral power in low frequency (p=0.02) and reduction in high frequency (p=0.05) band have been observed immediately (20
+14 minutes) after the treatment. On the contrary, no sustained impact on autonomic balance has been recorded 39
+18 days after the treatment. A significant correlation between the initial adiponectin values and immediate autonomic response to one treatment was observed in VLF and total spectral bands (r>0.59, p<0.04). Conclusions: Our analysis shows that the selective-field RF treatment is safe and efficient for reduction of subcutaneous abdominal fat. While the treatment increases the immediate sympathetic response of the body to deep tissue heating, no sustained change in autonomic function could be recorded at 1 month follow-up. The observed correlation between initial VLF spectral power and waist circumference reduction at follow-up, as well as the association of initial adiponectin values and immediate autonomic response to the treatment might be instrumental for decisions on body contouring strategies.
Collapse
Affiliation(s)
- Jiri Pumprla
- International Research Group Functional Rehabilitation & Group Education, Vienna, 1090, Austria ; Vila Krasy Aesthetic Centre, Internal Medicine Outpatient Clinic, Olomouc, 779 00, Czech Republic ; Department of Internal Medicine I and Department of Sports Medicine and Cardiovascular Rehabilitation, University Palacky Medical School, Olomouc, 771 47, Czech Republic
| | - Kinga Howorka
- International Research Group Functional Rehabilitation & Group Education, Vienna, 1090, Austria ; Center of Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, 1090, Austria ; Internal Medicine/Diabetology Clinic, Prevention and Aesthetics Centre, Vienna, 1170, Austria
| | - Zuzana Kolackova
- Vila Krasy Aesthetic Centre, Internal Medicine Outpatient Clinic, Olomouc, 779 00, Czech Republic
| | - Eliska Sovova
- Department of Internal Medicine I and Department of Sports Medicine and Cardiovascular Rehabilitation, University Palacky Medical School, Olomouc, 771 47, Czech Republic
| |
Collapse
|
38
|
Vosselman MJ, Vijgen GHEJ, Kingma BRM, Brans B, van Marken Lichtenbelt WD. Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin. PLoS One 2014; 9:e101653. [PMID: 25014028 PMCID: PMC4094425 DOI: 10.1371/journal.pone.0101653] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 06/06/2014] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Mild cold acclimation is known to increase brown adipose tissue (BAT) activity and cold-induced thermogenesis (CIT) in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as 'the Iceman', who has multiple world records in withstanding extreme cold challenges. Furthermore, his monozygotic twin brother who has a 'normal' sedentary lifestyle without extreme cold exposures was measured. METHODS The Iceman (subject A) and his brother (subject B) were studied during mild cold (13°C) and thermoneutral conditions (31°C). Measurements included BAT activity and respiratory muscle activity by [18F]FDG-PET/CT imaging and energy expenditure through indirect calorimetry. In addition, body temperatures, cardiovascular parameters, skin perfusion, and thermal sensation and comfort were measured. Finally, we determined polymorphisms for uncoupling protein-1 and β3-adrenergic receptor. RESULTS Subjects had comparable BAT activity (A: 1144 SUVtotal and B: 1325 SUVtotal), within the range previously observed in young adult men. They were genotyped with the polymorphism for uncoupling protein-1 (G/G). CIT was relatively high (A: 40.1% and B: 41.9%), but unlike during our previous cold exposure tests in young adult men, here both subjects practiced a g-Tummo like breathing technique, which involves vigorous respiratory muscle activity. This was confirmed by high [18F]FDG-uptake in respiratory muscle. CONCLUSION No significant differences were found between the two subjects, indicating that a lifestyle with frequent exposures to extreme cold does not seem to affect BAT activity and CIT. In both subjects, BAT was not higher compared to earlier observations, whereas CIT was very high, suggesting that g-Tummo like breathing during cold exposure may cause additional heat production by vigorous isometric respiratory muscle contraction. The results must be interpreted with caution given the low subject number and the fact that both participants practised the g-Tummo like breathing technique.
Collapse
Affiliation(s)
- Maarten J. Vosselman
- Department of Human Biology, School for Nutrition, Toxicology and Metabolism – NUTRIM, Maastricht, the Netherlands
| | - Guy H. E. J. Vijgen
- Department of Surgery (G.V.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Boris R. M. Kingma
- Department of Human Biology, School for Nutrition, Toxicology and Metabolism – NUTRIM, Maastricht, the Netherlands
| | - Boudewijn Brans
- Department of Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | |
Collapse
|
39
|
Armbruszt S, Garami A. The short- and long-term effects of food intake on thermogenesis. Temperature (Austin) 2014; 1:96. [PMID: 27583289 PMCID: PMC4977166 DOI: 10.4161/temp.29733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 12/04/2022] Open
Affiliation(s)
- Simon Armbruszt
- Institute of Nutritional Sciences and Dietetics; Faculty of Health Sciences; University of Pécs; Pécs, Hungary
| | - András Garami
- Department of Pathophysiology and Gerontology; Medical School; University of Pécs; Pécs, Hungary
| |
Collapse
|
40
|
A predictive model of the dynamics of body weight and food intake in rats submitted to caloric restrictions. PLoS One 2014; 9:e100073. [PMID: 24932616 PMCID: PMC4059745 DOI: 10.1371/journal.pone.0100073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 05/22/2014] [Indexed: 01/28/2023] Open
Abstract
Dynamics of body weight and food intake can be studied by temporally perturbing food availability. This perturbation can be obtained by modifying the amount of available food over time while keeping the overall food quantity constant. To describe food intake dynamics, we developed a mathematical model that describes body weight, fat mass, fat-free mass, energy expenditure and food intake dynamics in rats. In addition, the model considers regulation of food intake by leptin, ghrelin and glucose. We tested our model on rats experiencing temporally variable food availability. Our model is able to predict body weight and food intake variations by taking into account energy expenditure dynamics based on a memory of the previous food intake. This model allowed us to estimate this memory lag to approximately 8 days. It also explains how important variations in food availability during periods longer than these 8 days can induce body weight gains.
Collapse
|
41
|
Zhang Z, Cypess AM, Miao Q, Ye H, Liew CW, Zhang Q, Xue R, Zhang S, Zuo C, Xu Z, Tang Q, Hu R, Guan Y, Li Y. The prevalence and predictors of active brown adipose tissue in Chinese adults. Eur J Endocrinol 2014; 170:359-66. [PMID: 24288355 PMCID: PMC4127998 DOI: 10.1530/eje-13-0712] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Previous studies have shown that active brown adipose tissue (BAT) is present in adults and may play important roles in the regulation of energy homeostasis. However, nearly every study has been carried out in patients undergoing scanning for cancer surveillance (CS), whose metabolism and BAT activity may not reflect those of healthy individuals. The objective of this study was to investigate the prevalence and predictors of active BAT in Chinese adults, particularly in healthy individuals. DESIGN A total of 31,088 consecutive subjects aged ≥18 years who had undergone positron emission tomography/computed tomography (PET/CT) scanning of BAT were evaluated in this study. METHODS We measured BAT activity via (18)F-fluorodeoxyglucose PET/CT in subjects who had undergone scanning for either a routine medical checkup (MC) or CS in Shanghai. Then, we investigated the predictors of active BAT, particularly in healthy individuals. RESULTS In both groups, the prevalence of BAT was higher in women than in men. Using a multivariate logistic analysis, we found age, sex, BMI, and high thyroid glucose uptake to be significant predictors of BAT activity in the MC group. Similarly, we found age, sex, and BMI to be significant predictors of BAT activity, but not thyroid high glucose uptake, in the CS group. CONCLUSIONS In Chinese adults, BAT activity inversely correlates with BMI and thyroid high glucose uptake, which reinforces the central role of brown fat in adult metabolism and provides clues to a potential means for treating the metabolic syndrome.
Collapse
Affiliation(s)
- Zhaoyun Zhang
- The Division of Endocrinology and Metabolism, the Department of Internal Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhou Z, Darwal MA, Cheng EA, Taylor SR, Duan E, Harding PA. Cellular reprogramming into a brown adipose tissue-like phenotype by co-expression of HB-EGF and ADAM 12S. Growth Factors 2013; 31:185-98. [PMID: 24116709 DOI: 10.3109/08977194.2013.840297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abnormal adipogenesis leads to excessive fat accumulation and several health disorders. Mouse fibroblasts (MLC) transfected with ADAM 12S and HB-EGF promoted lipid accumulation. Addition of KBR-7785, an ADAM 12S inhibitor, to HB-EGF/ADAM 12S expressing cells suppressed adipogenesis. BrdU incorporation was attenuated and enhanced mitotracker staining was observed in HB-EGF/ADAM 12S cells. Quantitative real time RT-PCR resulted in elevated levels of expression of three brown adipose tissue (BAT) genes (PRDM16, PGC-1α, and UCP-1), while expression levels of the three white adipose tissue (WAT) genes (PPARγ, C/EBPα, and AKT-1) were unaltered in HB-EGF/ADAM 12S cells. Amino- or carboxy-terminal deletions of HB-EGF (HB-EGFΔN and HB-EGFΔC) co-expressed with ADAM 12S stimulated lipid accumulation. Human epidermoid carcinoma cells (A431) also exhibited lipid accumulation by HB-EGF/ADAM 12S co-expression. These studies suggest ADAM 12S and HB-EGF are involved in cellular plasticity resulting in the production of BAT-like cells and offers insight into novel therapeutic approaches for fighting obesity.
Collapse
Affiliation(s)
- Z Zhou
- Department of Biology, Miami University , Oxford, OH , USA
| | | | | | | | | | | |
Collapse
|
43
|
Yamada T, Tsukita S, Katagiri H. Identification of a novel interorgan mechanism favoring energy storage in overnutrition. Adipocyte 2013; 2:281-4. [PMID: 24052907 PMCID: PMC3774707 DOI: 10.4161/adip.25499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 12/31/2022] Open
Abstract
While body weight is essentially determined by the balance of energy intake and energy consumption, it is not necessarily the case that changes in daily food intakes and exercise directly reflect changes in body weight. In recent years, it has been revealed that numerous metabolic interactions between organs, which are organized by the brain, function as a feedback mechanism, and are involved in maintaining body weight homeostasis against excess energy intake. On the other hand, since obesity has seen an explosive increase in this age of plenty, there must be other interactions between organs working as feedforward mechanisms favoring weight gain. However, no such interaction has yet been demonstrated. Recently, we discovered a new interorgan neural network, from the liver, which may represent the feedforward mechanism.(1) Under conditions of excessive energy intake, changes in glucose metabolism occur in the liver with increased expression of hepatic glucokinase (GK) and the induction of neuronal signal transmission via the afferent vagus nerve. These signals are received by the medulla and result in inactivation of sympathetic nerve to brown adipose tissue (BAT), thereby suppressing thermogenesis in BAT and promoting adiposity. Furthermore, the efficacy of the liver-to-BAT interaction differs among mouse strains and these differences may contribute to determining the obesity predispositions of various strains. In conclusion, this novel interorgan neuronal relay system functions to suppress energy expenditure when energy intake is increased, and thus, is considered to be a thrifty mechanism operating on the whole body level. During periods when sufficient food was not always available, this system worked in favor of survival. However, in the current age of plenty, it is assumed to work as a mechanism flipping a metabolic switch toward obesity.
Collapse
|
44
|
Imaging Cold-Activated Brown Adipose Tissue Using Dynamic T2*-Weighted Magnetic Resonance Imaging and 2-Deoxy-2-[18F]fluoro-D-glucose Positron Emission Tomography. Invest Radiol 2013; 48:708-14. [DOI: 10.1097/rli.0b013e31829363b8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Branca RT, Zhang L, Warren WS, Auerbach E, Khanna A, Degan S, Ugurbil K, Maronpot R. In vivo noninvasive detection of Brown Adipose Tissue through intermolecular zero-quantum MRI. PLoS One 2013; 8:e74206. [PMID: 24040203 PMCID: PMC3769256 DOI: 10.1371/journal.pone.0074206] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/27/2013] [Indexed: 12/12/2022] Open
Abstract
The recent discovery of active Brown Adipose Tissue (BAT) in adult humans has opened new avenues for obesity research and treatment, as reduced BAT activity seem to be implicated in human energy imbalance, diabetes, and hypertension. However, clinical applications are currently limited by the lack of non-invasive tools for measuring mass and function of this tissue in humans. Here we present a new magnetic resonance imaging method based on the normally invisible intermolecular multiple-quantum coherence 1H MR signal. This method, which doesn’t require special hardware modifications, can be used to overcome partial volume effect, the major limitation of MR-based approaches that are currently being investigated for the detection of BAT in humans. With this method we can exploit the characteristic cellular structure of BAT to selectively image it, even when (as in humans) it is intimately mixed with other tissues. We demonstrate and validate this method in mice using PET scans and histology. We compare this methodology with conventional 1H MR fat fraction methods. Finally, we investigate its feasibility for the detection of BAT in humans.
Collapse
Affiliation(s)
- Rosa T. Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Le Zhang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Applied Science and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Edward Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Arjun Khanna
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Simone Degan
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Robert Maronpot
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
46
|
|
47
|
Nadkarni NA, Chaumontet C, Azzout-Marniche D, Piedcoq J, Fromentin G, Tomé D, Even PC. The carbohydrate sensitive rat as a model of obesity. PLoS One 2013; 8:e68436. [PMID: 23935869 PMCID: PMC3728328 DOI: 10.1371/journal.pone.0068436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/30/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Sensitivity to obesity is highly variable in humans, and rats fed a high fat diet (HFD) are used as a model of this inhomogeneity. Energy expenditure components (basal metabolism, thermic effect of feeding, activity) and variations in substrate partitioning are possible factors underlying the variability. Unfortunately, in rats as in humans, results have often been inconclusive and measurements usually made after obesity onset, obscuring if metabolism was a cause or consequence. Additionally, the role of high carbohydrate diet (HCD) has seldom been studied. METHODOLOGY/FINDINGS Rats (n=24) were fed for 3 weeks on HCD and then 3 weeks on HFD. Body composition was tracked by MRI and compared to energy expenditure components measured prior to obesity. RESULTS 1) under HFD, as expected, by adiposity rats were variable enough to be separable into relatively fat resistant (FR) and sensitive (FS) groups, 2) under HCD, and again by adiposity, rats were also variable enough to be separable into carbohydrate resistant (CR) and sensitive (CS) groups, the normal body weight of CS rats hiding viscerally-biased fat accumulation, 3) HCD adiposity sensitivity was not related to that under HFD, and both HCD and HFD adiposity sensitivities were not related to energy expenditure components (BMR, TEF, activity cost), and 4) only carbohydrate to fat partitioning in response to an HCD test meal was related to HCD-induced adiposity. CONCLUSIONS/SIGNIFICANCE The rat model of human obesity is based on substantial variance in adiposity gains under HFD (FR/FS model). Here, since we also found this phenomenon under HCD, where it was also linked to an identifiable metabolic difference, we should consider the existence of another model: the carbohydrate resistant (CR) or sensitive (CS) rat. This new model is potentially complementary to the FR/FS model due to relatively greater visceral fat accumulation on a low fat high carbohydrate diet.
Collapse
Affiliation(s)
- Nachiket A. Nadkarni
- Chaire Aliment, Nutrition, Comportement Alimentaire, AgroParisTech, Paris, France
| | - Catherine Chaumontet
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
| | - Dalila Azzout-Marniche
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
| | - Julien Piedcoq
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
| | - Gilles Fromentin
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
| | - Daniel Tomé
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
| | - Patrick C. Even
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
- * E-mail:
| |
Collapse
|
48
|
Abstract
Brown adipose tissue (BAT) plays a key role in energy homeostasis and thermogenesis in animals, conferring protection against diet-induced obesity and hypothermia through the action of uncoupling protein 1 (UCP1). Recent metabolic imaging studies using positron emission tomography computerized tomography (PET-CT) scanning have serendipitously revealed significant depots of BAT in the cervical-supraclavicular regions, demonstrating persistence of BAT beyond infancy. Subsequent cold-stimulated PET-CT studies and direct histological examination of adipose tissues have demonstrated that BAT is highly prevalent in adult humans. BAT activity correlates positively with increment of energy expenditure during cold exposure and negatively with age, body mass index, and fasting glycemia, suggesting regulatory links between BAT, cold-induced thermogenesis, and energy metabolism. Human BAT tissue biopsies express UCP1 and harbor inducible precursors that differentiate into UCP1-expressing adipocytes in vitro. These recent discoveries represent a metabolic renaissance for human adipose biology, overturning previous belief that BAT had no relevance in adult humans. They also have implications for the understanding of the pathogenesis and treatment of obesity and its metabolic sequelae.
Collapse
Affiliation(s)
- Paul Lee
- School of Medicine, University of Queensland, Brisbane, Queensland 4107, Australia.
| | | | | |
Collapse
|
49
|
Barneda D, Frontini A, Cinti S, Christian M. Dynamic changes in lipid droplet-associated proteins in the "browning" of white adipose tissues. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:924-933. [PMID: 23376222 DOI: 10.1016/j.bbalip.2013.01.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/18/2012] [Accepted: 01/23/2013] [Indexed: 12/30/2022]
Abstract
The morphological and functional differences between lipid droplets (LDs) in brown (BAT) and white (WAT) adipose tissues will largely be determined by their associated proteins. Analysing mRNA expression in mice fat depots we have found that most LD protein genes are expressed at higher levels in BAT, with the greatest differences observed for Cidea and Plin5. Prolonged cold exposure, which induces the appearance of brown-like adipocytes in mice WAT depots, was accompanied with the potentiation of the lipolytic machinery, with changes in ATGL, CGI-58 and G0S2 gene expression. However the major change detected in WAT was the enhancement of Cidea mRNA. Together with the increase in Cidec, it indicates that LD enlargement through LD-LD transference of fat is an important process during WAT browning. To study the dynamics of this phenotypic change, we have applied 4D confocal microscopy in differentiated 3T3-L1 cells under sustained β-adrenergic stimulation. Under these conditions the cells experienced a LD remodelling cycle, with progressive reduction on the LD size by lipolysis, followed by the formation of new LDs, which were subjected to an enlargement process, likely to be CIDE-triggered, until the cell returned to the basal state. This transformation would be triggered by the activation of a thermogenic futile cycle of lipolysis/lipogenesis and could facilitate the molecular mechanism for the unilocular to multilocular transformation during WAT browning. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.
Collapse
MESH Headings
- 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics
- 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
- 1-Methyl-3-isobutylxanthine/pharmacology
- 3T3-L1 Cells
- Adaptation, Physiological
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adrenergic beta-Agonists/pharmacology
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation/drug effects
- Female
- Image Processing, Computer-Assisted
- Immunoenzyme Techniques
- Isoproterenol/pharmacology
- Lipase/genetics
- Lipase/metabolism
- Lipids/chemistry
- Lipolysis
- Mice
- Microscopy, Confocal
- Phosphodiesterase Inhibitors/pharmacology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Temperature
Collapse
Affiliation(s)
- David Barneda
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 ONN, UK
| | | | | | | |
Collapse
|
50
|
Kuroki C, Takahashi Y, Ootsuka Y, Kanmura Y, Kuwaki T. The Impact of Hypothermia on Emergence from Isoflurane Anesthesia in Orexin Neuron-Ablated Mice. Anesth Analg 2013; 116:1001-1005. [DOI: 10.1213/ane.0b013e31828842f0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|