1
|
Kaulpiboon J, Rudeekulthamrong P. Maltotriosyl-erythritol, a transglycosylation product of erythritol by Thermus sp. amylomaltase and its application to prebiotic. Food Chem 2025; 472:142937. [PMID: 39827568 DOI: 10.1016/j.foodchem.2025.142937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
In this study, maltotriosyl-erythritol (EG3) was synthesized as a novel prebiotic candidate via transglycosylation using recombinant amylomaltase (AMase) from Thermus sp. Tapioca starch served as the glucosyl donor, and erythritol as the acceptor. High-performance liquid chromatography (HPLC) revealed an EG3 yield of 14.0 % with a concentration of 2.8 mg/mL. Mass spectrometry confirmed the molecular weight of EG3 as 608 Da, and its strucopture was verified by 1H and 13C NMR analysis. EG3 exhibited greater resistance to acid, heat, and digestive enzymes compared to erythritol glucosides (EG1-2) and significantly promoted the growth of Lactobacillus casei BCC36987. Fermentation of EG3 resulted in the highest levels of lactic acid and total short-chain fatty acids, which may contribute to reduced pH levels. These findings suggest that erythritol-receptor products formed via AMase-catalyzed reactions, particularly EG3, are promising prebiotic ingredients, with the prebiotic activity of erythritol derivatives being influenced by the length of the carbohydrate chain.
Collapse
Affiliation(s)
- Jarunee Kaulpiboon
- Division of Biochemistry, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Prakarn Rudeekulthamrong
- Department of Biochemistry, Phramongkutklao College of Medicine, Phramongkutklao Hospital, Bangkok 10400, Thailand.
| |
Collapse
|
2
|
Westerbeke FHM, Attaye I, Rios‐Morales M, Nieuwdorp M. Glycaemic sugar metabolism and the gut microbiota: past, present and future. FEBS J 2025; 292:1421-1436. [PMID: 39359099 PMCID: PMC11927047 DOI: 10.1111/febs.17293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Non-communicable diseases (NCDs), such as type 2 diabetes (T2D) and metabolic dysfunction-associated fatty liver disease, have reached epidemic proportions worldwide. The global increase in dietary sugar consumption, which is largely attributed to the production and widespread use of cheap alternatives such as high-fructose corn syrup, is a major driving factor of NCDs. Therefore, a comprehensive understanding of sugar metabolism and its impact on host health is imperative to rise to the challenge of reducing NCDs. Notably, fructose appears to exert more pronounced deleterious effects than glucose, as hepatic fructose metabolism induces de novo lipogenesis and insulin resistance through distinct mechanisms. Furthermore, recent studies have demonstrated an intricate relationship between sugar metabolism and the small intestinal microbiota (SIM). In contrast to the beneficial role of colonic microbiota in complex carbohydrate metabolism, sugar metabolism by the SIM appears to be less beneficial to the host as it can generate toxic metabolites. These fermentation products can serve as a substrate for fatty acid synthesis, imposing negative health effects on the host. Nevertheless, due to the challenging accessibility of the small intestine, our knowledge of the SIM and its involvement in sugar metabolism remains limited. This review presents an overview of the current knowledge in this field along with implications for future research, ultimately offering potential therapeutic avenues for addressing NCDs.
Collapse
Affiliation(s)
- Florine H. M. Westerbeke
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Melany Rios‐Morales
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular MedicineAmsterdam University Medical Centers, location AMCThe Netherlands
| |
Collapse
|
3
|
Chen WY, Zhang JH, Chen LL, Byrne CD, Targher G, Luo L, Ni Y, Zheng MH, Sun DQ. Bioactive metabolites: A clue to the link between MASLD and CKD? Clin Mol Hepatol 2025; 31:56-73. [PMID: 39428978 PMCID: PMC11791555 DOI: 10.3350/cmh.2024.0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
Collapse
Affiliation(s)
- Wen-Ying Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Hui Zhang
- Department of Pediatric Laboratory, Affiliated Children’s Hospital of Jiangnan University, Wuxi Children’s Hospital, Wuxi, Jiangsu, China
| | - Li-Li Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Liang Luo
- Intensive Care Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yan Ni
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Dan-Qin Sun
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Department of Nephrology, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|
4
|
Di Lorenzo M, Aurino L, Cataldi M, Cacciapuoti N, Di Lauro M, Lonardo MS, Gautiero C, Guida B. A Close Relationship Between Ultra-Processed Foods and Adiposity in Adults in Southern Italy. Nutrients 2024; 16:3923. [PMID: 39599709 PMCID: PMC11597779 DOI: 10.3390/nu16223923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES One of the main culprits of the obesity epidemic is the obesogenic food environment, which promotes the consumption of ultra-processed foods (UPFs) that are highly palatable, have low nutritional quality and a high caloric impact and are economical and ready to use. This monocentric retrospective study explored the association between UPFs, obesity and adiposity measurements among adults living with obesity in Southern Italy. METHODS According to their Body Mass Index (BMI) values, 175 participants (63M) were recruited and stratified into three groups. To evaluate their usual eating habits, PREDIMED and the Nova Food Frequency Questionnaire (NFFQ) were administered to investigate Mediterranean diet (MD) adherence and UPF consumption. Anthropometric and biochemical measurements, body composition, as well as visceral obesity indices were collected. RESULTS The data showed an increase in UPF consumption as the BMI increased, with a concomitant decrease in MD adherence. Soft drinks were the most representative UPF in all groups, and we observed a significant increase in such consumption as the BMI increased. In addition, in the highest tertile of UPF consumption, there was an increase in adiposity indices. CONCLUSIONS Our data suggest that high UPF consumption correlates with an increased BMI and visceral adiposity, and it is a predictive risk factor for the occurrence of non-communicable diseases.
Collapse
Affiliation(s)
- Mariana Di Lorenzo
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Laura Aurino
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Nunzia Cacciapuoti
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Mariastella Di Lauro
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Maria Serena Lonardo
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Claudia Gautiero
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, Physiology Nutrition Unit, University of Naples Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; (M.D.L.); (L.A.); (N.C.); (M.D.L.); (M.S.L.); (C.G.); (B.G.)
| |
Collapse
|
5
|
Agarwal V, Das S, Kapoor N, Prusty B, Das B. Dietary Fructose: A Literature Review of Current Evidence and Implications on Metabolic Health. Cureus 2024; 16:e74143. [PMID: 39712814 PMCID: PMC11663027 DOI: 10.7759/cureus.74143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
With the increasing intake of dietary fructose, primarily from sucrose and sweetened beverages, metabolic illnesses such as type 2 diabetes mellitus, hypertension, fatty liver disease, dyslipidemia, and hyperuricemia have become more prevalent worldwide, and there is also growing concern about the development of malignancies. These negative health impacts have been validated in various meta-analyses and randomized controlled trials. In contrast, the naturally occurring fructose found in fruits and vegetables contains only a minimal amount of fructose and, when consumed in moderation, may be a healthier choice. This review focuses on the biology of fructose, including its dietary sources, the physiology of its metabolism, and the pathological basis of various disorders related to high dietary fructose intake.
Collapse
Affiliation(s)
- Vishal Agarwal
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Sambit Das
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Nitin Kapoor
- Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore, IND
| | - Binod Prusty
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Bijay Das
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| |
Collapse
|
6
|
DeChristopher LR, Tucker KL. Disproportionately higher cardiovascular disease risk and incidence with high fructose corn syrup sweetened beverage intake among black young adults-the CARDIA study. Nutr J 2024; 23:84. [PMID: 39075463 PMCID: PMC11285415 DOI: 10.1186/s12937-024-00978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The black/white heart disease mortality disparity began increasing in the early 1980's, coincident with the switch from sucrose to high-fructose-corn-syrup/(HFCS) in the US food supply. There has been more fructose in HFCS than generally-recognized-as-safe/GRAS, which has contributed to unprecedented excess-free-fructose/(unpaired-fructose) in foods/beverages. Average- per-capita excess-free-fructose, from HFCS, began exceeding dosages/(5-10 g) that trigger fructose-malabsorption in the early 1980's. Fructose malabsorption contributes to gut-dysbiosis and gut-in-situ-fructosylation of dietary peptides/incretins/(GLP-1/GIP) which forms atherosclerotic advanced-glycation-end-products. Both dysregulate gut endocrine function and are risk factors for cardiovascular disease/(CVD). Limited research shows that African Americans have higher fructose malabsorption prevalence than others. CVD risk begins early in life. METHODS Coronary-Artery-Risk-Development-in-Adults/(CARDIA) study data beginning in 1985-86 with 2186 Black and 2277 White participants, aged 18-30 y, were used to test the hypothesis that HFCS sweetened beverage intake increases CVD risk/incidence, more among Black than White young adults, and at lower intakes; while orange juice-a low excess-free-fructose juice with comparable total sugars and total fructose, but a 1:1 fructose-to-glucose-ratio, i.e., low excess-free-fructose, does not. Cox proportional hazards models were used to calculate hazard ratios. RESULTS HFCS sweetened beverage intake was associated with higher CVD risk (HR = 1.7) than smoking (HR = 1.6). CVD risk was higher at lower HFCS sweetened beverage intake among Black than White participants. Intake, as low as 3 times/wk, was associated with twice the CVD risk vs. less frequent/never, among Black participants only (HR 2.1, 95% CI 1.2-3.7; P = 0.013). Probability of an ordered relationship approached significance. Among Black participants, CVD incidence jumped 62% from 59.8/1000, among ≤ 2-times/wk, to 96.9/1000 among 3-6 times/wk consumers. Among White participants, CVD incidence increased from 37.6/1000, among ≤ 1.5-times/wk, to 41.1/1000, among 2 times/wk-once/d - a 9% increase. Hypertension was highest among Black daily HFCS sweetened beverage consumers. CONCLUSION The ubiquitous presence of HFCS over-the-past-40 years, at higher fructose-to-glucose ratios than generally-recognized-as-safe, may have contributed to CVD racial disparities, due to higher fructose-malabsorption prevalence among Black individuals, unpaired/excess-free-fructose induced gut dysbiosis and gut fructosylation of dietary peptides/incretins (GLP-1/GIP). These disturbances contribute to atherosclerotic plaque; promote incretin insufficiency/dysregulation/altered satiety/dysglycemia; decrease protective microbiota metabolites; and increase hypertension, CVD morbidity and mortality.
Collapse
Affiliation(s)
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
7
|
Petridi E, Karatzi K, Magriplis E, Charidemou E, Philippou E, Zampelas A. The impact of ultra-processed foods on obesity and cardiometabolic comorbidities in children and adolescents: a systematic review. Nutr Rev 2024; 82:913-928. [PMID: 37550263 DOI: 10.1093/nutrit/nuad095] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
CONTEXT Over the past few decades, traditional foods have been displaced by ultra-processed foods (UPFs), with the latter being associated with health problems. OBJECTIVE This scoping systematic review aimed to identify the relationship between UPF intake and overweight/obesity as well as other cardiometabolic risk factors during childhood and adolescence. DATA SOURCES The guidance for this protocol is the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P). A systematic search was undertaken on PubMed, Scopus, and Cochrane Library electronic databases based on prespecified inclusion and exclusion criteria up to 6 February 2022. DATA EXTRACTION A total of 17 observational studies-9 cross-sectional, 7 cohort-longitudinal, and 1 study reporting both cross-sectional and longitudinal outcomes-among children and adolescents aged ≤18 years were eligible for inclusion in this review. Fourteen studies evaluated the consumption of UPFs in association with overweight/obesity and 9 studies examined the association of UPF consumption and cardiometabolic-related risk factors. DATA ANALYSIS Most studies (14/17) showed that an increase in UPFs was associated with a higher prevalence of overweight/obesity and cardiometabolic comorbidities among children and adolescents, whereas 4 of 17 studies (3 cross-sectional and 1 cohort) found no association. Most cohort and cross-sectional studies showed good quality according to the National Institutes of Health and Newcastle-Ottawa quality assessment, respectively. CONCLUSION The positive association found between UPFs and overweight/obesity and cardiometabolic comorbidities among children and adolescents raises concerns for future health. Further investigation is recommended to explore the role of specific types of UPFs on cardiometabolic conditions and to identify the amount of daily intake that increase risk in order to shape appropriate public health policies. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022316432.
Collapse
Affiliation(s)
- Evgenia Petridi
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
| | - Kalliopi Karatzi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Emmanuella Magriplis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Evelina Charidemou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Elena Philippou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
- Department of Nutritional Sciences, King's College London, London, United Kingdom
| | - Antonis Zampelas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
8
|
Chen Y, Yang K, Xu M, Zhang Y, Weng X, Luo J, Li Y, Mao YH. Dietary Patterns, Gut Microbiota and Sports Performance in Athletes: A Narrative Review. Nutrients 2024; 16:1634. [PMID: 38892567 PMCID: PMC11175060 DOI: 10.3390/nu16111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The intestinal tract of humans harbors a dynamic and complex bacterial community known as the gut microbiota, which plays a crucial role in regulating functions such as metabolism and immunity in the human body. Numerous studies conducted in recent decades have also highlighted the significant potential of the gut microbiota in promoting human health. It is widely recognized that training and nutrition strategies are pivotal factors that allow athletes to achieve optimal performance. Consequently, there has been an increasing focus on whether training and dietary patterns influence sports performance through their impact on the gut microbiota. In this review, we aim to present the concept and primary functions of the gut microbiota, explore the relationship between exercise and the gut microbiota, and specifically examine the popular dietary patterns associated with athletes' sports performance while considering their interaction with the gut microbiota. Finally, we discuss the potential mechanisms by which dietary patterns affect sports performance from a nutritional perspective, aiming to elucidate the intricate interplay among dietary patterns, the gut microbiota, and sports performance. We have found that the precise application of specific dietary patterns (ketogenic diet, plant-based diet, high-protein diet, Mediterranean diet, and high intake of carbohydrate) can improve vascular function and reduce the risk of illness in health promotion, etc., as well as promoting recovery and controlling weight with regard to improving sports performance, etc. In conclusion, although it can be inferred that certain aspects of an athlete's ability may benefit from specific dietary patterns mediated by the gut microbiota to some extent, further high-quality clinical studies are warranted to substantiate these claims and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yonglin Chen
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Mingxin Xu
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510500, China;
| | - Yishuo Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Jiaji Luo
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Yanshuo Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou 510500, China
| |
Collapse
|
9
|
Sechovcová H, Mahayri TM, Mrázek J, Jarošíková R, Husáková J, Wosková V, Fejfarová V. Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiol (Praha) 2024; 69:259-282. [PMID: 38095802 DOI: 10.1007/s12223-023-01119-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/05/2023] [Indexed: 04/11/2024]
Abstract
Diabetes mellitus is a chronic disease affecting glucose metabolism. The pathophysiological reactions underpinning the disease can lead to the development of late diabetes complications. The gut microbiota plays important roles in weight regulation and the maintenance of a healthy digestive system. Obesity, diabetes mellitus, diabetic retinopathy, diabetic nephropathy and diabetic neuropathy are all associated with a microbial imbalance in the gut. Modern technical equipment and advanced diagnostic procedures, including xmolecular methods, are commonly used to detect both quantitative and qualitative changes in the gut microbiota. This review summarises collective knowledge on the role of the gut microbiota in both types of diabetes mellitus and their late complications, with a particular focus on diabetic foot syndrome.
Collapse
Affiliation(s)
- Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Prague, Czech Republic
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic.
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy.
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, Vídeňská, 1083, 142 20, Prague, Czech Republic
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Zuriaga E, Santander S, Lomba L, Izquierdo-García E, Luesma MJ. Descriptive Analysis of Carrier and Affected Hereditary Fructose Intolerance in Women during Pregnancy. Healthcare (Basel) 2024; 12:573. [PMID: 38470684 PMCID: PMC10930640 DOI: 10.3390/healthcare12050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
(1) Background: Hereditary fructose intolerance (HFI) is a rare autosomal recessive metabolic disorder resulting from aldolase B deficiency, requiring a fructose, sorbitol and sucrose (FSS)-free diet. Limited information exists on the relationship between pregnancy outcomes and HFI. This study aims to analyze pregnancy-related factors in a cohort of thirty Spanish women, with twenty-three being carriers and seven being HFI-affected (45 pregnancies). (2) Methods: A descriptive, cross-sectional and retrospective study utilized an anonymous questionnaire. (3) Results: Findings encompassed physical and emotional states, nutritional habits, pathology development and baby information. Notable results include improved physical and emotional states compared to the general population, with conventional analyses mostly within normal ranges. Persistent issues after pregnancy included hepatic steatosis, liver adenomas and hemangiomas. Carrier mothers' babies exhibited higher weight than those of patient mothers, while the weights of carrier children born with HFI were similar to disease-affected children. (4) Conclusions: Pregnant women with HFI did not significantly differ in physical and emotional states, except for nausea, vomiting, and cravings. Post-pregnancy, HFI patients and carriers exhibited persistent hepatic issues. Significantly, babies born to HFI-affected mothers had lower weights. This study sheds light on pregnancy outcomes in HFI, emphasizing potential complications and the need for ongoing monitoring and care.
Collapse
Affiliation(s)
- Estefanía Zuriaga
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego Zaragoza, Spain; (E.Z.); (L.L.)
| | - Sonia Santander
- Faculty of Health and Sports Sciences, University of Zaragoza, 22002 Huesca, Spain
| | - Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge, Campus Universitario, Autov A23 km 299, 50830 Villanueva de Gállego Zaragoza, Spain; (E.Z.); (L.L.)
| | | | - María José Luesma
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|
11
|
Álvarez-Herms J, González-Benito A, Corbi F, Odriozola A. What if gastrointestinal complications in endurance athletes were gut injuries in response to a high consumption of ultra-processed foods? Please take care of your bugs if you want to improve endurance performance: a narrative review. Eur J Appl Physiol 2024; 124:383-402. [PMID: 37839038 DOI: 10.1007/s00421-023-05331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
To improve performance and recovery faster, athletes are advised to eat more often than usual and consume higher doses of simple carbohydrates, during and after exercise. Sports energetic supplements contain food additives, such as artificial sweeteners, emulsifiers, acidity regulators, preservatives, and salts, which could be harmful to the gut microbiota and impair the intestinal barrier function. The intestinal barrier plays a critical function in bidirectionally regulation of the selective transfer of nutrients, water, and electrolytes, while preventing at the same time, the entrance of harmful substances (selective permeability). The gut microbiota helps to the host to regulate intestinal homeostasis through metabolic, protective, and immune functions. Globally, the gut health is essential to maintain systemic homeostasis in athletes, and to ensure proper digestion, metabolization, and substrate absorption. Gastrointestinal complaints are an important cause of underperformance and dropout during endurance events. These complications are directly related to the loss of gut equilibrium, mainly linked to microbiota dysbiosis and leaky gut. In summary, athletes must be cautious with the elevated intake of ultra-processed foods and specifically those contained on sports nutrition supplements. This review points out the specific nutritional interventions that should be implemented and/or discontinued depending on individual gut functionality.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Phymolab (Physiology and Molecular Laboratory), Collado Hermoso, Segovia, Spain.
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - A González-Benito
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - F Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Lleida (UdL), Lleida, Spain
| | - A Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
12
|
Vitale M, Costabile G, Testa R, D'Abbronzo G, Nettore IC, Macchia PE, Giacco R. Ultra-Processed Foods and Human Health: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Adv Nutr 2024; 15:100121. [PMID: 38245358 PMCID: PMC10831891 DOI: 10.1016/j.advnut.2023.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 01/22/2024] Open
Abstract
Evidence of associations between ultra-processed foods (UPF) and increased risk of cardiovascular disease is emerging, but it is unclear how much this is influenced by the methodology used to assess the UPF intake or by the level of consumption. We conducted a meta-analysis to evaluate 1) the association between UPF consumption and risk of diabetes, hypertension, dyslipidemia, and obesity, using prospective cohort studies; 2) the differential associations depending on the methodology used to assess UPF intake and the level of UPF consumption and 3) the quality of evidence using the NutriGrade scoring system. A systematic literature search was conducted in PubMed/MEDLINE, ISI Web of Science, and Scopus through 1 April, 2023, on studies conducted in humans providing data for the highest compared with the lowest UPF consumption categories. Summary relative ratios (RRs) and 95% confidence intervals (95% CI) were estimated using a random-effects model. Out of 4522 articles retrieved from the literature search, 25 reports met the criteria for inclusion in the meta-analysis, 7 for diabetes, 5 for hypertension, 3 for dyslipidemia, and 13 for obesity. A consistently positive association between high UPF intake and increased risk of developing diabetes (37%), hypertension (32%), hypertriglyceridemia (47%), low HDL cholesterol concentration (43%), and obesity (32%) was observed, even if the quality of evidence was not satisfying. However, these risks varied significantly depending on the methodology used to assess UPF consumption, with a difference of more than 50% between the methods. Based on the level of intake, we did not observe significant differences in the results. These findings show that UPF consumption is associated with higher risk of diabetes, hypertension, dyslipidemia, and obesity, but the level of risk consistently changes depending on the methodology used to assess UPF intake. Therefore, caution should be used when interpreting and extrapolating the results.
Collapse
Affiliation(s)
- Marilena Vitale
- Department of Clinical Medicine and Surgery, Diabetes, Nutrition and Metabolism Unit, Federico II University of Naples, Italy.
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Diabetes, Nutrition and Metabolism Unit, Federico II University of Naples, Italy
| | - Roberta Testa
- Department of Clinical Medicine and Surgery, Diabetes, Nutrition and Metabolism Unit, Federico II University of Naples, Italy
| | - Giovanna D'Abbronzo
- Department of Clinical Medicine and Surgery, Diabetes, Nutrition and Metabolism Unit, Federico II University of Naples, Italy
| | | | - Paolo Emidio Macchia
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Italy
| | - Rosalba Giacco
- Department of Clinical Medicine and Surgery, Diabetes, Nutrition and Metabolism Unit, Federico II University of Naples, Italy; Institute of Food Sciences, National Research Council, Avellino, Italy
| |
Collapse
|
13
|
Mokhtari P, Holzhausen EA, Chalifour BN, Schmidt KA, Babaei M, Machle CJ, Adise S, Alderete TL, Goran MI. Associations between Dietary Sugar and Fiber with Infant Gut Microbiome Colonization at 6 Mo of Age. J Nutr 2024; 154:152-162. [PMID: 37717629 PMCID: PMC10808822 DOI: 10.1016/j.tjnut.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND The taxonomic composition of the gut microbiome undergoes rapid development during the first 2-3 y of life. Poor diet during complementary feeding has been associated with alterations in infant growth and compromised bone, immune system, and neurodevelopment, but how it may affect gut microbial composition is unknown. OBJECTIVES This cross-sectional study aimed to examine the associations between early-life nutrition and the developing infant gut microbiota at 6 mo of age. METHODS Latino mother-infant pairs from the Mother's Milk Study (n = 105) were included. Infant gut microbiota and dietary intake were analyzed at 6 mo of age using 16S ribosomal RNA amplicon sequencing and 24-h dietary recalls, respectively. Poisson generalized linear regression analysis was performed to examine associations between dietary nutrients and microbial community abundance while adjusting for infants' mode of delivery, antibiotics, infant feeding type, time of introduction of solid foods, energy intake, and body weight. A P value of <0.05 was used to determine the statistical significance in the study. RESULTS Infants with higher consumption of total sugar exhibited a lower relative abundance of the genera Bacteroides (β = -0.01; 95% CI: -0.02, -0.00; P = 0.03) and genus Clostridium belonging to the Lachnospiraceae family (β = -0.02; 95% CI: -0.03, -0.00; P = 0.01). In addition, a higher intake of free sugar (which excludes sugar from milk, dairy, and whole fruit) was associated with several bacteria at the genus level, including Parabacteroides genus (β = 0.03; 95% CI: 0.01, 0.05; P = 0.001). Total insoluble fiber intake was associated with favorable bacteria at the genus level such as Faecalibacterium (β = 0.28; 95% CI: 0.03, 0.52; P = 0.02) and Coprococcus (β = 0.28; 95% CI: 0.02, 0.52; P = 0.03). CONCLUSION These findings demonstrate that early-life dietary intake at 6 mo impacts the developing gut microbiome associated with the presence of both unfavorable gut microbes and dietary fiber-associated commensal microbes.
Collapse
Affiliation(s)
- Pari Mokhtari
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Elizabeth A Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey A Schmidt
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Mahsa Babaei
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Christopher J Machle
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Shana Adise
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Michael I Goran
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
14
|
Zhang Y, Zheng T, Ma D, Shi P, Zhang H, Li J, Sun Z. Probiotics Bifidobacterium lactis M8 and Lactobacillus rhamnosus M9 prevent high blood pressure via modulating the gut microbiota composition and host metabolic products. mSystems 2023; 8:e0033123. [PMID: 37855616 PMCID: PMC10734487 DOI: 10.1128/msystems.00331-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Elevated blood pressure affects 40% of the adult population, which accounts for high cardiovascular disease risk and further high mortality yearly. The global understanding of the gut microbiome for hypertension may provide important insights into the prevention. Bifidobacterium lactis M8 and Lactobacillus rhamnosus M9 originated from human breast milk, were able to decrease blood pressure, and modified metabolites in a high fructose-induced elevated blood pressure mouse model. Moreover, we found there was a close relationship between unexplored gut microbes and elevated blood pressure. Also, subsequently, the cross-link was explored among gut microbes, metabolites, and some metabolic pathways in gut microbial environment through introducing novel prediction methodology and bioinformatic analysis. It allowed us to hypothesize that probiotics can prevent elevated blood pressure via gut microbiota and related metabolism.Thus, utilization of dietary strategies (such as probiotics) to maintain the blood pressure level is of crucial importance.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Tingting Zheng
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Da Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Peng Shi
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Jun Li
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
15
|
Nolte S, Krüger K, Lenz C, Zentgraf K. Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes. BIOLOGY 2023; 12:1491. [PMID: 38132317 PMCID: PMC10740793 DOI: 10.3390/biology12121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
The human gut microbiota can be compared to a fingerprint due to its uniqueness, hosting trillions of living organisms. Taking a sport-centric perspective, the gut microbiota might represent a physiological system that relates to health aspects as well as individualized performance in athletes. The athletes' physiology has adapted to their exceptional lifestyle over the years, including the diversity and taxonomy of the microbiota. The gut microbiota is influenced by several physiological parameters and requires a highly individual and complex approach to unravel the linkage between performance and the microbial community. This approach has been taken in this review, highlighting the functions that the microbial community performs in sports, naming gut-centered targets, and aiming for both a healthy and sustainable athlete and performance development. With this article, we try to consider whether initiating a microbiota analysis is practicable and could add value in elite sport, and what possibilities it holds when influenced through a variety of interventions. The aim is to support enabling a well-rounded and sustainable athlete and establish a new methodology in elite sport.
Collapse
Affiliation(s)
- Svenja Nolte
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Claudia Lenz
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany; (K.K.); (C.L.)
| | - Karen Zentgraf
- Department 5: Psychology & Sports Sciences, Institute for Sports Sciences, Goethe University Frankfurt, 60323 Frankfurt am Main, Germany;
| |
Collapse
|
16
|
Harvey HJ, Hendry AC, Chirico M, Archer DB, Avery SV. Adaptation to sorbic acid in low sugar promotes resistance of yeast to the preservative. Heliyon 2023; 9:e22057. [PMID: 38034742 PMCID: PMC10682675 DOI: 10.1016/j.heliyon.2023.e22057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
The weak acid sorbic acid is a common preservative used in soft drink beverages to control microbial spoilage. Consumers and industry are increasingly transitioning to low-sugar food formulations, but potential impacts of reduced sugar on sorbic acid efficacy are barely characterised. In this study, we report enhanced sorbic acid resistance of yeast in low-glucose conditions. We had anticipated that low glucose would induce respiratory metabolism, which was shown previously to be targeted by sorbic acid. However, a shift from respiratory to fermentative metabolism upon sorbic acid exposure of Saccharomyces cerevisiae was correlated with relative resistance to sorbic acid in low glucose. Fermentation-negative yeast species did not show the low-glucose resistance phenotype. Phenotypes observed for certain yeast deletion strains suggested roles for glucose signalling and repression pathways in the sorbic acid resistance at low glucose. This low-glucose induced sorbic acid resistance was reversed by supplementing yeast cultures with succinic acid, a metabolic intermediate of respiratory metabolism (and a food-safe additive) that promoted respiration. The results indicate that metabolic adaptation of yeast can promote sorbic acid resistance at low glucose, a consideration for the preservation of foodstuffs as both food producers and consumers move towards a reduced sugar landscape.
Collapse
Affiliation(s)
- Harry J. Harvey
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alex C. Hendry
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Marcella Chirico
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David B. Archer
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Simon V. Avery
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
17
|
Mora-Flores LP, Moreno-Terrazas Casildo R, Fuentes-Cabrera J, Pérez-Vicente HA, de Anda-Jáuregui G, Neri-Torres EE. The Role of Carbohydrate Intake on the Gut Microbiome: A Weight of Evidence Systematic Review. Microorganisms 2023; 11:1728. [PMID: 37512899 PMCID: PMC10385781 DOI: 10.3390/microorganisms11071728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Carbohydrates are the most important source of nutritional energy for the human body. Carbohydrate digestion, metabolism, and their role in the gut microbiota modulation are the focus of multiple studies. The objective of this weight of evidence systematic review is to investigate the potential relationship between ingested carbohydrates and the gut microbiota composition at different taxonomic levels. (2) Methods: Weight of evidence and information value techniques were used to evaluate the relationship between dietary carbohydrates and the relative abundance of different bacterial taxa in the gut microbiota. (3) Results: The obtained results show that the types of carbohydrates that have a high information value are: soluble fiber with Bacteroides increase, insoluble fiber with Bacteroides and Actinobacteria increase, and Firmicutes decrease. Oligosaccharides with Lactobacillus increase and Enterococcus decrease. Gelatinized starches with Prevotella increase. Starches and resistant starches with Blautia decrease and Firmicutes increase. (4) Conclusions: This work provides, for the first time, an integrative review of the subject by using statistical techniques that have not been previously employed in microbiota reviews.
Collapse
Affiliation(s)
- Lorena P Mora-Flores
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Rubén Moreno-Terrazas Casildo
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - José Fuentes-Cabrera
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Hugo Alexer Pérez-Vicente
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Ciudad de México 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Programa de Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico
| | - Elier Ekberg Neri-Torres
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| |
Collapse
|
18
|
Andersen SSH, Zhu R, Kjølbæk L, Raben A. Effect of Non- and Low-Caloric Sweeteners on Substrate Oxidation, Energy Expenditure, and Catecholamines in Humans-A Systematic Review. Nutrients 2023; 15:2711. [PMID: 37375615 DOI: 10.3390/nu15122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The use of non- and low-caloric sweetener(s) (NCS and LCS) as a means to prevent overweight and obesity is highly debated, as both NCS and LCS have been proposed to have a negative impact on energy homeostasis. This systematic review aimed to assess the impact of NCS and LCS on fasting and postprandial substrate oxidation, energy expenditure, and catecholamines, compared to caloric sweeteners or water, across different doses and types of NCS and LCS, acutely and in the longer-term. A total of 20 studies were eligible: 16 studies for substrate oxidation and energy expenditure and four studies for catecholamines. Most studies compared the acute effects of NCS or LCS with caloric sweeteners under non-isoenergetic conditions. These studies generally found higher fat oxidation and lower carbohydrate oxidation with NCS or LCS than with caloric sweeteners. Findings for energy expenditure were inconsistent. With the limited number of studies, no convincing pattern for the remaining outcomes and comparisons could be seen. In conclusion, drinks or meals with NCS or LCS resulted in higher fat and lower carbohydrate oxidation compared to caloric sweeteners. No other conclusions could be drawn due to insufficient or inconsistent results. Further studies in this research field are warranted.
Collapse
Affiliation(s)
- Sabina S H Andersen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Ruixin Zhu
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
- Clinical Research, Copenhagen University Hospital-Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
19
|
Sarkar P, Kandimalla R, Bhattacharya A, Wahengbam R, Dehingia M, Kalita MC, Talukdar NC, Talukdar R, Khan MR. Multi-Omics Analysis Demonstrates the Critical Role of Non-Ethanolic Components of Alcoholic Beverages in the Host Microbiome and Metabolome: A Human- and Animal-Based Study. Microorganisms 2023; 11:1501. [PMID: 37375003 DOI: 10.3390/microorganisms11061501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
It is known that alcoholic beverages alter the human gut microbiome. This study focused on the potential impact of non-ethanolic ingredients in whisky on the gut bacteriome. A pilot study was carried out on 15 whisky drinkers, 5 rice beer drinkers, and 9 non-drinkers to determine the effect of alcoholic beverages on the host microbiome and metabolome. Additionally, a mouse model was used to assess the differential impact of three whisky brands (each with an equal ethanol concentration). The results indicate that the non-ethanolic components have an impact on the gut microbiome, as well as on the metabolites in blood and feces. The amount of Prevotella copri, a typical core Indian gut bacterium, decreased in both the human and mouse groups of whisky type 1, but an increase in abundance of Helicobacteriaceae (p = 0.01) was noticed in both groups. Additionally, the alcohol-treated cohorts had lower levels of short-chain fatty acids (SCFAs), specifically butyric acid, and higher amounts of lipids and stress marker IL1-ß than the untreated groups (p = 0.04-0.01). Furthermore, two compounds, ethanal/acetaldehyde (found in all the whisky samples) and arabitol (unique to whisky type 1), were tested in the mice. Similar to the human subjects, the whisky type 1 treated mouse cohort and the arabitol-treated group showed decreased levels of Prevotella copri (p = 0.01) in their gut. The results showed that non-ethanolic compounds have a significant impact on host gut bacterial diversity and metabolite composition, which has a further vital impact on host health. Our work further emphasizes the need to study the impact of non-ethanolic ingredients of alcoholic beverages on host health.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Molecular Biology and Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Department of Science and Technology, Government of India, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
- Wellcome/DBT (Indian Alliance) Lab, Institute of Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad 500032, Telangana, India
| | | | - Anupam Bhattacharya
- Molecular Biology and Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Department of Science and Technology, Government of India, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | - Romi Wahengbam
- Centre for Infectious Diseases, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Madhusmita Dehingia
- Molecular Biology and Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Department of Science and Technology, Government of India, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | | | - Narayan Chandra Talukdar
- Molecular Biology and Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Department of Science and Technology, Government of India, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
- Faculty of Science, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| | - Rupjyoti Talukdar
- Wellcome/DBT (Indian Alliance) Lab, Institute of Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad 500032, Telangana, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Department of Science and Technology, Government of India, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| |
Collapse
|
20
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
21
|
Henney AE, Gillespie CS, Alam U, Hydes TJ, Cuthbertson DJ. Ultra-Processed Food Intake Is Associated with Non-Alcoholic Fatty Liver Disease in Adults: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:nu15102266. [PMID: 37242149 DOI: 10.3390/nu15102266] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with overweight/obesity, metabolic syndrome and type 2 diabetes (T2D) due to chronic caloric excess and physical inactivity. Previous meta-analyses have confirmed associations between ultra-processed food (UPF) intake and obesity and T2D. We aim to ascertain the contribution of UPF consumption to the risk of developing NAFLD. We performed a systematic review and meta-analysis (PROSPERO (CRD42022368763)). All records registered on Ovid Medline and Web of Science were searched from inception until December 2022. Studies that assessed UPF consumption in adults, determined according to the NOVA food classification system, and that reported NAFLD determined by surrogate (steatosis) scores, imaging or liver biopsy were included. The association between UPF consumption and NAFLD was assessed using random-effects meta-analysis methods. Study quality was assessed, and evidence credibility evaluated, using the Newcastle Ottawa Scale and NutriGrade systems, respectively. A total of 5454 records were screened, and 112 records underwent full text review. From these, 9 studies (3 cross-sectional, 3 case-control and 3 cohort), analysing 60,961 individuals, were included in the current review. Both moderate (vs. low) (pooled relative risk 1.03 (1.00-1.07) (p = 0.04) (I2 = 0%)) and high (vs. low) (1.42 (1.16-1.75) (<0.01) (I2 = 89%)) intake of UPF significantly increased the risk of NAFLD. Funnel plots demonstrate low risk of publication bias. Consumption of UPF is associated with NAFLD with a dose-response effect. Public health measures to reduce overconsumption of UPF are imperative to reduce the burden of NAFLD, and the related conditions, obesity and T2D.
Collapse
Affiliation(s)
- Alex E Henney
- Department of Cardiovascular & Metabolic Medicine, University of Liverpool, Liverpool L3 5TR, UK
- Metabolism & Nutrition Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Conor S Gillespie
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Uazman Alam
- Department of Cardiovascular & Metabolic Medicine, University of Liverpool, Liverpool L3 5TR, UK
- Metabolism & Nutrition Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Theresa J Hydes
- Department of Cardiovascular & Metabolic Medicine, University of Liverpool, Liverpool L3 5TR, UK
- Department of Gastroenterology and Hepatology, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| | - Daniel J Cuthbertson
- Department of Cardiovascular & Metabolic Medicine, University of Liverpool, Liverpool L3 5TR, UK
- Metabolism & Nutrition Research Group, Liverpool University Hospitals NHS Foundation Trust, Liverpool L7 8XP, UK
| |
Collapse
|
22
|
Tang H, Chen Z, Shao Y, Ju X, Li L. Development of an enzymatic cascade to systematically utilize lignocellulosic monosaccharide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1974-1980. [PMID: 36448581 DOI: 10.1002/jsfa.12364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The fermentation valorization of two main lignocellulosic monosaccharides, glucose and xylose, is extensively developed; however, it is restricted by limited yield and process complexity. An in vitro enzymatic cascade reaction can be an alternative approach. RESULTS In this study, a three-stage, five-enzyme cascade was developed to convert pretreated biomass to valuable chemicals. First, a ribose-5-phosphate isomerase B mutant isomerized xylose to d-xylulose with high substrate specificity, and a d-arabinose dehydrogenase continued to reduce d-xylulose to d-arabitol. Simultaneously, glucose was utilized for the coenzyme regeneration catalyzed by a glucose dehydrogenase, generating useful gluconic acid and achieving 73% of total conversion rate after 36 h. Then, six kinds of pretreated biomass lignocellulose were hydrolyzed by cellulase and hemicellulase, and corn cob was identified as the initial substrate for providing the highest monosaccharide content. A 65% conversion rate of the lignocellulosic xylose was obtained after 24 h. CONCLUSIONS This study presents a proof of concept to convert main lignocellulosic monosaccharides systematically by an enzymatic cascade at stoichiometric ratio. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hengtao Tang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| | - Zhi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| | - Yu Shao
- Engineering and Technology Centers of Transdermal Drug Delivery System of Jiangsu Province, Yunnan Baiyao Group Wuxi Pharmaceutical Co., Ltd, Wuxi, P. R. China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| |
Collapse
|
23
|
Shon WJ, Jung MH, Kim Y, Kang GH, Choi EY, Shin DM. Sugar-sweetened beverages exacerbate high-fat diet-induced inflammatory bowel disease by altering the gut microbiome. J Nutr Biochem 2023; 113:109254. [PMID: 36572070 DOI: 10.1016/j.jnutbio.2022.109254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
High-fat diets (HFDs) and frequent consumption of sugar-sweetened beverages (SSBs) are potential contributors to increasing inflammatory bowel disease (IBD) incidences. While HFDs have been implicated in mild intestinal inflammation, the role of sucrose in SSBs remains unclear. Therefore, we studied the role of SSBs in IBD pathogenesis in a mouse model and humans. C57BL6/J mice were given ad libitum access to a sucrose solution or plain water for 10 weeks, with or without an HFD. Interestingly, sucrose solution consumption alone did not induce gut inflammation in mice; however, when combined with an HFD, it dramatically increased the inflammation score, submucosal edema, and CD45+ cell infiltration. 16S ribosomal RNA gene-sequencing revealed that sucrose solution and HFD co-consumption significantly increased the relative abundance of IBD-related pathogenic bacteria when compared with HFD consumption. RNA sequencing and flow cytometry showed that co-consumption promoted pro-inflammatory cytokine and chemokine synthesis, dendritic-cell expansion, and IFN-γ+TNF-α+CD4+ and CD8+ T-cell activation. Fecal microbiota transplantation from HFD- and sucrose water-fed mice into gut-sterilized mice increased the susceptibility to dextran sulfate sodium-induced colitis in the recipient mice. Consistent herewith, high consumption of SSBs and animal fat-rich diets markedly increased systemic inflammation-associated IBD marker expression in humans. In conclusion, SSBs exacerbate HFD-induced colitis by triggering a shift of the gut microbiome into a pathobiome. Our findings provide new insights for the development of strategies aimed at preventing IBD.
Collapse
Affiliation(s)
- Woo-Jeong Shon
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Seoul, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Min Ho Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environment and Human Interface, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Seoul, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Risk Factors Associated with the Consumption of Sugar-Sweetened Beverages among Czech Adults: The Kardiovize Study. Nutrients 2022; 14:nu14245297. [PMID: 36558456 PMCID: PMC9781442 DOI: 10.3390/nu14245297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
High consumption of sugar-sweetened beverages (SSBs) is associated with a higher risk of cardiovascular disease (CVD). The last report on the prevalence of SSBs consumption in Czechia was 17 years ago, an updated analysis will enable the design of appropriate public health policies. This study aimed to determine the prevalence of SSBs consumption in a Czech city during 2020 and 2022, and its association with cardiometabolic biomarkers, behavioral risk factors, and socioeconomic determinants. A total of 730 participants (33 to 73 years) were assessed from a random population-based survey. SSBs consumption was evaluated using two methods: by calorie amount, with a 24 h dietary recall, and by frequency, with a food frequency questionnaire. By calorie amount, the prevalence of SSBs consumption was none: 52.5%, low: 30.0%, and moderate−high: 17.5%; by frequency was never: 16.0%, occasionally: 64.1%, and daily: 19.9%. SSBs intake was higher in men (p < 0.001) and younger participants (p = 0.001). Men consuming daily had higher waist circumference and visceral fat area compared to both occasional and never consumers. Higher SSBs consumption was associated with low household income, middle education level, and high total energy intake. In total, 20% drank SSBs daily and 17.5% of participants consumed moderate−high calorie amounts of SSBs. These results represent an increase in the prevalence of SSBs consumption in the last two decades. Public health policies should target men of younger age and people with low education and income.
Collapse
|
25
|
Lee-Ling C, Hui Yan T, Saupi N, Nazamid S, Sarbini SR. An in vitro study: prebiotic effects of edible palm hearts in batch human fecal fermentation system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7231-7238. [PMID: 35760587 DOI: 10.1002/jsfa.12088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Edible palm hearts (EPH), known as palmito, chonta or swamp cabbage in America or umbut in Malaysia, is a type of vegetable harvested from palm tree species. EPH is firm and smooth and described as having a flavor resembling artichoke. It has underlying prebiotic potential that selectively stimulates the growth and activity of beneficial colonic microbiota, thus enhancing the host's health. This study is the first to present results of EPH from local species such as oil palm (Elaeis guineensis), sago palm (Metroxylon sagu) and coconut (Cocos nucifera) using in vitro colonic fermentation with human fecal slurry. Samples obtained at 0, 6, 12 and 24 h were evaluated by bacterial enumeration using fluorescent in situ hybridization (FISH), and short-chain fatty acids (SCFA) were analyzed by high-performance liquid chromatography (HPLC). RESULTS All EPH samples revealed induction effects towards Bifidobacterium spp., Lactobacillus-Enterococcus and Bacteroidaceae/Prevotellaceae populations similar to those in inulin fermentation. A significant decrease (P ≤ 0.05) in pathogenic Clostridium histolyticum group was observed in the response of raw sago palm hearts. In general, all samples stimulate the production of SCFA. Particularly in the colonic fermentation of sago palm heart, acetate and propionate revealed the highest concentrations of 286.18 and 284.83 mmol L-1 in raw and cooked form, respectively. CONCLUSION This study concluded that edible palm hearts can be a potential prebiotic ingredient that promotes human gastrointestinal health, as well as discovering a new direction towards an alternative source of functional foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chai Lee-Ling
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Bintulu, Malaysia
| | - Tan Hui Yan
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Bintulu, Malaysia
| | - Noorasmah Saupi
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Bintulu, Malaysia
| | - Saari Nazamid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Bintulu, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
26
|
Impact of orange juice containing potentially prebiotic ingredients on human gut microbiota composition and its metabolites. Food Chem 2022; 405:134706. [DOI: 10.1016/j.foodchem.2022.134706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/21/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
27
|
Clemente-Suárez VJ, Mielgo-Ayuso J, Martín-Rodríguez A, Ramos-Campo DJ, Redondo-Flórez L, Tornero-Aguilera JF. The Burden of Carbohydrates in Health and Disease. Nutrients 2022; 14:3809. [PMID: 36145184 PMCID: PMC9505863 DOI: 10.3390/nu14183809] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Foods high in carbohydrates are an important part of a healthy diet, since they provide the body with glucose to support bodily functions and physical activity. However, the abusive consumption of refined, simple, and low-quality carbohydrates has a direct implication on the physical and mental pathophysiology. Then, carbohydrate consumption is postulated as a crucial factor in the development of the main Western diseases of the 21st century. We conducted this narrative critical review using MedLine (Pubmed), Cochrane (Wiley), Embase, and CinAhl databases with the MeSH-compliant keywords: carbohydrates and evolution, development, phylogenetic, GUT, microbiota, stress, metabolic health, consumption behaviors, metabolic disease, cardiovascular disease, mental disease, anxiety, depression, cancer, chronic kidney failure, allergies, and asthma in order to analyze the impact of carbohydrates on health. Evidence suggests that carbohydrates, especially fiber, are beneficial for the well-being and growth of gut microorganisms and consequently for the host in this symbiotic relationship, producing microbial alterations a negative effect on mental health and different organic systems. In addition, evidence suggests a negative impact of simple carbohydrates and refined carbohydrates on mood categories, including alertness and tiredness, reinforcing a vicious circle. Regarding physical health, sugar intake can affect the development and prognosis of metabolic disease, as an uncontrolled intake of refined carbohydrates puts individuals at risk of developing metabolic syndrome and subsequently developing metabolic disease.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | | | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28670 Madrid, Spain
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo, s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Jose Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Studies Centre in Applied Combat (CESCA), 45007 Toledo, Spain
| |
Collapse
|
28
|
Haghighatdoost F, Atefi M, Mohammadifard N, Daryabeygi-Khotbehsara R, Khosravi A, Mansourian M. The relationship between ultraprocessed food consumption and obesity indicators in Iranian adults. Nutr Metab Cardiovasc Dis 2022; 32:2074-2085. [PMID: 35843797 DOI: 10.1016/j.numecd.2022.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS Food processing changes the nature of foods, and it is growing globally due to its availability and affordability and its effects on the palatability of foods. Consumption of ultraprocessed foods (UPFs) may adversely affect weight gain. The purpose of the current study is to examine the association between UPFs consumption and adiposity among Iranian adults. METHODS AND RESULTS A cross-sectional study was conducted on 1459 Iranian adults (≥19 years). Dietary intakes were assessed using a validated 136-item food frequency questionnaire (FFQ), and foods were classified based on the NOVA system. Overweight, obesity, and abdominal obesity were defined as body mass index (BMI) ≥25 and < 30, ≥30, respectively, and waist circumference (WC) ≥91 for women and WC ≥ 89 for men. The odds of general and abdominal obesity across the quartiles of UPFs were assessed by binary logistic regression. UPFs consumption contributed to 20.17% of daily energy intake. After adjustment for potential confounders, UPFs consumption was not associated with general or abdominal obesity. However, in the fully adjusted model, men in the top quartile of UPFs were twice as likely to be overweight compared with those in the bottom quartile (OR = 2.06, 95% CI: 1.03, 4.10; P = 0.047). No association was found in women or stratified analysis by age. CONCLUSION The present findings suggest a sex-specific association between UPFs consumption and overweight. UPFs consumption might be associated with an increased risk of overweight in men, but no such association was found in women. Future cohort studies are required to confirm these results.
Collapse
Affiliation(s)
- F Haghighatdoost
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Atefi
- Food and Drug Deputy, Shahroud University of Medical Sciences, Shahroud, Iran
| | - N Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | - A Khosravi
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Mansourian
- Biostatistics and Epidemiology Department, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
29
|
Ma X, Nan F, Liang H, Shu P, Fan X, Song X, Hou Y, Zhang D. Excessive intake of sugar: An accomplice of inflammation. Front Immunol 2022; 13:988481. [PMID: 36119103 PMCID: PMC9471313 DOI: 10.3389/fimmu.2022.988481] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
High sugar intake has long been recognized as a potential environmental risk factor for increased incidence of many non-communicable diseases, including obesity, cardiovascular disease, metabolic syndrome, and type 2 diabetes (T2D). Dietary sugars are mainly hexoses, including glucose, fructose, sucrose and High Fructose Corn Syrup (HFCS). These sugars are primarily absorbed in the gut as fructose and glucose. The consumption of high sugar beverages and processed foods has increased significantly over the past 30 years. Here, we summarize the effects of consuming high levels of dietary hexose on rheumatoid arthritis (RA), multiple sclerosis (MS), psoriasis, inflammatory bowel disease (IBD) and low-grade chronic inflammation. Based on these reported findings, we emphasize that dietary sugars and mixed processed foods may be a key factor leading to the occurrence and aggravation of inflammation. We concluded that by revealing the roles that excessive intake of hexose has on the regulation of human inflammatory diseases are fundamental questions that need to be solved urgently. Moreover, close attention should also be paid to the combination of high glucose-mediated immune imbalance and tumor development, and strive to make substantial contributions to reverse tumor immune escape.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Nan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hantian Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Panyin Shu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinzou Fan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanfeng Hou
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong medicine and Health Key Laboratory of Rheumatism, Jinan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Mhd Omar NA, Dicksved J, Kruger J, Zamaratskaia G, Michaëlsson K, Wolk A, Frank J, Landberg R. Effect of a diet rich in galactose or fructose, with or without fructooligosaccharides, on gut microbiota composition in rats. Front Nutr 2022; 9:922336. [PMID: 36034892 PMCID: PMC9412906 DOI: 10.3389/fnut.2022.922336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that a diet rich in sugars significantly affects the gut microbiota. Adverse metabolic effects of sugars may partly be mediated by alterations of gut microbiota and gut health parameters, but experimental evidence is lacking. Therefore, we investigated the effects of high intake of fructose or galactose, with/without fructooligosaccharides (FOS), on gut microbiota composition in rats and explored the association between gut microbiota and low-grade systemic inflammation. Sprague-Dawley rats (n = 6/group) were fed the following isocaloric diets for 12 weeks (% of the dry weight of the sugars or FOS): (1) starch (control), (2) fructose (50%), (3) galactose (50%), (4) starch+FOS (15%) (FOS control), (5) fructose (50%)+FOS (15%), (6) galactose (50%)+FOS (15%), and (7) starch+olive (negative control). Microbiota composition in the large intestinal content was determined by sequencing amplicons from the 16S rRNA gene; 341F and 805R primers were used to generate amplicons from the V3 and V4 regions. Actinobacteria, Verrucomicrobia, Tenericutes, and Cyanobacteria composition differed between diets. Bifidobacterium was significantly higher in all diet groups where FOS was included. Modest associations between gut microbiota and metabolic factors as well as with gut permeability markers were observed, but no associations between gut microbiota and inflammation markers were observed. We found no coherent effect of galactose or fructose on gut microbiota composition. Added FOS increased Bifidobacterium but did not mitigate potential adverse metabolic effects induced by the sugars. However, gut microbiota composition was associated with several metabolic factors and gut permeability markers which warrant further investigations.
Collapse
Affiliation(s)
- Nor Adila Mhd Omar
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johanita Kruger
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karl Michaëlsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Rikard Landberg
- Department of Public Health and Clinical Medicine, Nutritional Research. Umeå University, Umeå, Sweden.,Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
31
|
Abstract
The consumption of fructose as sugar and high-fructose corn syrup has markedly increased during the past several decades. This trend coincides with the exponential rise of metabolic diseases, including obesity, nonalcoholic fatty liver disease, cardiovascular disease, and diabetes. While the biochemical pathways of fructose metabolism were elucidated in the early 1990s, organismal-level fructose metabolism and its whole-body pathophysiological impacts have been only recently investigated. In this review, we discuss the history of fructose consumption, biochemical and molecular pathways involved in fructose metabolism in different organs and gut microbiota, the role of fructose in the pathogenesis of metabolic diseases, and the remaining questions to treat such diseases.
Collapse
Affiliation(s)
- Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California, Irvine, California, USA
| | - Won-Suk Song
- Department of Biological Chemistry, University of California, Irvine, California, USA;,Institute of Bioengineering, Bio-MAX, Seoul National University, Seoul, South Korea
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, California, USA;,Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA,Center for Complex Biological Systems, University of California, Irvine, California, USA,Center for Epigenetics and Metabolism, University of California, Irvine, California, USA
| |
Collapse
|
32
|
Mariath AB, Machado AD, Ferreira LDNM, Ribeiro SML. The possible role of increased consumption of ultra-processed food products in the development of frailty: a threat for healthy ageing? Br J Nutr 2022; 128:461-466. [PMID: 34503590 DOI: 10.1017/s0007114521003470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Frailty, a multifactorial ageing-related syndrome characterised by reduced resistance to stressors and possibly associated with low-grade systemic inflammation, results in negative health outcomes and compromises healthy ageing. There is a growing body of evidence on the relationship between dietary habits, low-grade systemic inflammation and the risk of frailty. Consumption of dietary ultra-processed products (UPP) could negatively contribute to these conditions. In this article, we intend to (i) discuss the role that UPP might have on the development of frailty considering the inflammatory potential of this type of food and (ii) to raise awareness on deleterious effects of excess UPP intake in the development of adverse health outcomes, in particular, frailty and compromised healthy ageing. UPP are industrial formulations whose nutrient profile has been associated with inflammation and altered gut microbiota. Besides, diets with a greater presence of unprocessed foods and antioxidants have been linked to the reduction of oxidative stress and the expression of inflammatory biomarkers. Because inflammation is believed to be a contributing factor in the development of frailty, it is possible that UPP would contribute to the onset or increase of this condition. Importantly, the increasing consumption of UPP in younger populations might pose a greater risk to the development of compromised healthy ageing in the long term.
Collapse
Affiliation(s)
- Aline Brandão Mariath
- Graduate Program in Public Health Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Alisson Diego Machado
- Department of Nephrology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Sandra Maria Lima Ribeiro
- School of Public Health and School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Grace-Farfaglia P, Frazier H, Iversen MD. Essential Factors for a Healthy Microbiome: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8361. [PMID: 35886216 PMCID: PMC9315476 DOI: 10.3390/ijerph19148361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022]
Abstract
Recent discoveries of the purpose and potential of microbial interactions with humans have broad implications for our understanding of metabolism, immunity, the host−microbe genetic interactions. Bioavailability and bioaccessibility of phytonutrients in foods not only enrich microbial diversity in the lower human gastrointestinal tract (GIT) but also direct the functioning of the metagenome of the microbiota. Thus, healthy choices must include foods that contain nutrients that satisfy both the needs of humans and their microbes. Physical activity interventions at a moderate level of intensity have shown positive effects on metabolism and the microbiome, while intense training (>70% VO2max) reduces diversity in the short term. The microbiome of elite endurance athletes is a robust producer of short-chain fatty acids. A lifestyle lacking activity is associated with the development of chronic disease, and experimental conditions simulating weightlessness in humans demonstrate loss of muscle mass occurring in conjunction with a decline in gut short-chain fatty acid (SCFA) production and the microbes that produce them. This review summarizes evidence addressing the relationship between the intestinal microbiome, diet, and physical activity. Data from the studies reviewed suggest that food choices and physical fitness in developed countries promote a resource “curse” dilemma for the microbiome and our health.
Collapse
Affiliation(s)
- Patricia Grace-Farfaglia
- Health Sciences, College of Health Professions, Sacred Heart University, Fairfield, CT 06825, USA
| | - Heather Frazier
- Department of Nutrition, School of Mathematics, Science and Engineering, University of the Incarnate Word, San Antonio, TX 78209, USA;
| | - Maura Daly Iversen
- Public Health and Physical Therapy and Human Movement Sciences, College of Health Professions, Sacred Heart University, Fairfield, CT 06825, USA;
| |
Collapse
|
34
|
Portincasa P, Celano G, Serale N, Vitellio P, Calabrese FM, Chira A, David L, Dumitrascu DL, De Angelis M. Clinical and Metabolomic Effects of Lactiplantibacillus plantarum and Pediococcus acidilactici in Fructose Intolerant Patients. Nutrients 2022; 14:2488. [PMID: 35745219 PMCID: PMC9231202 DOI: 10.3390/nu14122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
Fructose intolerance (FI) is a widespread non-genetic condition in which the incomplete absorption of fructose leads to gastro-intestinal disorders. The crucial role of microbial dysbiosis on the onset of these intolerance symptoms together with their persistence under free fructose diets are driving the scientific community towards the use of probiotics as a novel therapeutic approach. In this study, we evaluated the prevalence of FI in a cohort composed of Romanian adults with Functional Grastrointestinal Disorders (FGIDs) and the effectiveness of treatment based on the probiotic formulation EQBIOTA® (Lactiplantibacillus plantarum CECT 7484 and 7485 and Pediococcus acidilactici CECT 7483). We evaluated the impact of a 30-day treatment both on FI subjects and healthy volunteers. The gastrointestinal symptoms and fecal volatile metabolome were evaluated. A statistically significant improvement of symptoms (i.e., bloating, and abdominal pain) was reported in FI patient after treatment. On the other hand, at the baseline, the content of volatile metabolites was heterogeneously distributed between the two study arms, whereas the treatment led differences to decrease. From our analysis, how some metabolomics compounds were correlated with the improvement and worsening of clinical symptoms clearly emerged. Preliminary observations suggested how the improvement of gastrointestinal symptoms could be induced by the increase of anti-inflammatory and protective substrates. A deeper investigation in a larger patient cohort subjected to a prolonged treatment would allow a more comprehensive evaluation of the probiotic treatment effects.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Nadia Serale
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Paola Vitellio
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Francesco Maria Calabrese
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Alexandra Chira
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Liliana David
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Dan L. Dumitrascu
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| |
Collapse
|
35
|
Mendoza-Martínez VM, Zavala-Solares MR, Espinosa-Flores AJ, León-Barrera KL, Alcántara-Suárez R, Carrillo-Ruíz JD, Escobedo G, Roldan-Valadez E, Esquivel-Velázquez M, Meléndez-Mier G, Bueno-Hernández N. Is a Non-Caloric Sweetener-Free Diet Good to Treat Functional Gastrointestinal Disorder Symptoms? A Randomized Controlled Trial. Nutrients 2022; 14:1095. [PMID: 35268070 PMCID: PMC8912523 DOI: 10.3390/nu14051095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Background: A diet containing non-caloric sweeteners (NCS) could reduce calorie intake; conversely, some animal studies suggest that NCS consumption may increase functional gastrointestinal disorder symptoms (FGDs). This study aimed to compare the effect of consuming a diet containing NCS (c-NCS) versus a non-caloric sweetener-free diet (NCS-f) on FGDs. Methods: We conducted a randomized, controlled, parallel-group study using two different diets for five weeks: the c-NCS diet contained 50−100 mg/day NCS, whereas the NCS-f diet had less than 10 mg/day NCS. At the beginning of the study (PreTx) and at the end (PostTx), we assessed FGDs, dietary intake, and NCS consumption. Results: The percentage of participants with diarrhea (PreTx = 19% vs. PstTx = 56%; p = 0.02), post-prandial discomfort (PreTx = 9% vs. PstTx = 39%; p = 0.02), constipation (PreTx = 30% vs. PostTx = 56%; p < 0.01), and burning (PreTx = 13% vs. PostTx = 33%; p < 0.01) increased in the c-NCS diet group. Conversely, abdominal pain (PreTx = 15% vs. PostTx = 3%; p = 0.04), post-prandial discomfort (PreTx = 26% vs. PostTx = 6%; p = 0.02), burning (PreTx = 15% vs. PostTx = 0%; p = 0.02), early satiety (PreTx = 18% vs. PostTx = 3%; p < 0.01), and epigastric pain (PreTx = 38% vs. PostTx = 3%; p < 0.01) decreased in the NCS-f diet group. Conclusion: A c-NCS diet is associated with increased FGDs, including diarrhea, post-prandial discomfort, constipation, and burning or retrosternal pain. The NCS-f diet also decreased FGDs, as well as abdominal pain, post-prandial discomfort, burning or retrosternal pain, early satiety, and epigastric pain.
Collapse
Affiliation(s)
- Viridiana Montsserrat Mendoza-Martínez
- Proteomics and Metabolomics Laboratory, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (V.M.M.-M.); (A.J.E.-F.); (K.L.L.-B.); (M.E.-V.)
| | | | - Aranza Jhosadara Espinosa-Flores
- Proteomics and Metabolomics Laboratory, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (V.M.M.-M.); (A.J.E.-F.); (K.L.L.-B.); (M.E.-V.)
| | - Karen Lorena León-Barrera
- Proteomics and Metabolomics Laboratory, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (V.M.M.-M.); (A.J.E.-F.); (K.L.L.-B.); (M.E.-V.)
| | - Raúl Alcántara-Suárez
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (R.A.-S.); (G.E.)
| | - José Damián Carrillo-Ruíz
- Neurology and Neurosurgery Unit, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico;
- Faculty of Health Sciences, Mexico Anahuac University, Huixquilucan 52786, Mexico
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (R.A.-S.); (G.E.)
| | - Ernesto Roldan-Valadez
- Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico;
| | - Marcela Esquivel-Velázquez
- Proteomics and Metabolomics Laboratory, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (V.M.M.-M.); (A.J.E.-F.); (K.L.L.-B.); (M.E.-V.)
| | - Guillermo Meléndez-Mier
- School of Public Health and Nutrition (FASPyN), Autonomous University of Nuevo Leon, Nuevo Leon 64460, Mexico
| | - Nallely Bueno-Hernández
- Proteomics and Metabolomics Laboratory, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico; (V.M.M.-M.); (A.J.E.-F.); (K.L.L.-B.); (M.E.-V.)
| |
Collapse
|
36
|
Foolchand A, Ghazi T, Chuturgoon AA. Malnutrition and Dietary Habits Alter the Immune System Which May Consequently Influence SARS-CoV-2 Virulence: A Review. Int J Mol Sci 2022; 23:2654. [PMID: 35269795 PMCID: PMC8910702 DOI: 10.3390/ijms23052654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19, resulting from the SARS-CoV-2 virus, is a major pandemic that the world is fighting. SARS-CoV-2 primarily causes lung infection by attaching to the ACE2 receptor on the alveolar epithelial cells. However, the ACE2 receptor is also present in intestinal epithelial cells, suggesting a link between nutrition, virulence and clinical outcomes of COVID-19. Respiratory viral infections perturb the gut microbiota. The gut microbiota is shaped by our diet; therefore, a healthy gut is important for optimal metabolism, immunology and protection of the host. Malnutrition causes diverse changes in the immune system by repressing immune responses and enhancing viral vulnerability. Thus, improving gut health with a high-quality, nutrient-filled diet will improve immunity against infections and diseases. This review emphasizes the significance of dietary choices and its subsequent effects on the immune system, which may potentially impact SARS-CoV-2 vulnerability.
Collapse
Affiliation(s)
| | | | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, Howard College Campus, University of Kwa-Zulu Natal, Durban 4041, South Africa; (A.F.); (T.G.)
| |
Collapse
|
37
|
Chen X, Wang F, Yu Q, Liu S, Wang W, Zhang Y, Wang Z, Yuan Z. One pot cascade biosynthesis of d-allulose from d-glucose and its kinetic modelling. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Alterations of the Gut Microbiome Associated to Methane Metabolism in Mexican Children with Obesity. CHILDREN 2022; 9:children9020148. [PMID: 35204867 PMCID: PMC8870140 DOI: 10.3390/children9020148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Gut microbiota is associated with the development of metabolic disorders. To study its association with childhood obesity, we performed a cross-sectional study with 46 children (6–12 years old). We collected fecal samples, food-frequency questionnaires (FFQs), and anthropometric measurements. Shotgun metagenomics were used to obtain the microbial taxonomic diversity and metabolic potential. We identified two dietary profiles characterized by complex carbohydrates and proteins (pattern 1) and saturated fat and simple carbohydrates (pattern 2). We classified each participant into normal weight (NW) or overweight and obese (OWOB) using their body mass index (BMI) z-score. The ratio of Firmicutes/Bacteroidetes and alpha diversity were not different between the BMI groups. Genera contributing to beta diversity between NW and OWOB groups included Bacteroides rodentium, B. intestinalis, B. eggerthii, Methanobrevibacter smithii, Eubacterium sp., and Roseburia sp. B. rodentium was associated with lower BMI and dietary pattern 1 intake. Eubacterium sp. and Roseburia sp. were associated with BMI increments and high consumption of dietary pattern 2. Methane and energy metabolism were found enriched in under-represented KEGG pathways of NW group compared to OWOB. Complex dietary and microbiome interaction leads to metabolic differences during childhood, which should be elucidated to prevent metabolic diseases in adolescence and adulthood.
Collapse
|
39
|
Makharia G, Gibson PR, Bai JC, Karakan T, Lee YY, Collins L, Muir J, Oruc N, Quigley E, Sanders DS, Tuck C, Yurdaydin C, Le Mair A. World Gastroenterology Organisation Global Guidelines: Diet and the Gut. J Clin Gastroenterol 2022; 56:1-15. [PMID: 34860201 DOI: 10.1097/mcg.0000000000001588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 05/22/2021] [Indexed: 12/10/2022]
Affiliation(s)
- Govind Makharia
- All India Institute of Medical Sciences, Gastroenterology, & Human Nutrition, New Delhi, Delhi, India
| | - Peter R Gibson
- Department of Gastroenterology, Monash University and Alfred Health
| | - Julio C Bai
- University of Salvador and Dr. C. Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina
| | | | - Yeong Yeh Lee
- University of Science, Malaysia, Kota Bharu, Malaysia
| | - Lyndal Collins
- Department of Gastroenterology, Monash University and Alfred Health
| | - Jane Muir
- Department of Gastroenterology, Monash University and Alfred Health
| | | | | | - David S Sanders
- Royal Hallamshire Hospital and University of Sheffield, Sheffield, UK
| | | | | | - Anton Le Mair
- Medical Guideline Development, ALM Consulting, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Danenberg AH. The etiology of gut dysbiosis and its role in chronic disease. MICROBIOME, IMMUNITY, DIGESTIVE HEALTH AND NUTRITION 2022:71-91. [DOI: 10.1016/b978-0-12-822238-6.00020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
Neri D, Martínez-Steele E, Khandpur N, Levy R. Associations between ultra-processed foods consumption and indicators of adiposity in US adolescents: cross-sectional analysis of the NHANES 2011–2016. J Acad Nutr Diet 2022; 122:1474-1487.e2. [DOI: 10.1016/j.jand.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
42
|
Hussein HM, Elyamany MF, Rashed LA, Sallam NA. Vitamin D mitigates diabetes-associated metabolic and cognitive dysfunction by modulating gut microbiota and colonic cannabinoid receptor 1. Eur J Pharm Sci 2021; 170:106105. [PMID: 34942358 DOI: 10.1016/j.ejps.2021.106105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obesity is associated with elevated endocannabinoid tone, gut dysbiosis, and inflammation predisposing to diabetes. The endocannabinoid system mediates the effects of gut microbiota and regulates the gut barrier integrity. We examined the effects of vitamin D (VD) on colonic cannabinoid receptor 1(CB1R), tight junction proteins, gut dysbiosis, metabolic and cognitive dysfunction in a model of type 2 diabetes compared with metformin. METHODS Rats received high-fat, high-sucrose diet (HFSD) and either VD (500 IU/kg/day; p.o.), or metformin (200 mg/kg/day; p.o.) for 8 weeks. After 6 weeks, streptozotocin (STZ) (40 mg/kg; i.p) was injected. Behavioral, cognitive, and metabolic assessments were carried out. Finally, fecal, blood, and tissue samples were collected to examine Bacteroidetes/Firmicutes ratio, colonic CB1R, zonula occludens-1 (ZO-1), occludin, and Toll-like receptor 4 (TLR4); serum lipopolysaccharides (LPS), peptidoglycan (PGN), tumor necrosis factor-alpha (TNF-ɑ), glucagon-like peptide-1 (GLP-1), lipids, and VD; hippocampal brain-derived neurotrophic factor (BDNF) and inflammatory markers. RESULTS VD ameliorated HFSD/STZ-induced dysbiosis/gut barrier dysfunction as indicated by lower circulating LPS, PGN and TNF-ɑ levels, likely by downregulating colonic CB1R and upregulating ZO-1 and occludin expressions. Additionally, VD suppressed HFSD/STZ-induced hyperglycemia, hyperinsulinemia, dyslipidemia, and hippocampal neuroinflammation. These changes culminated in improved glycemic control and cognitive function. VD was more effective than metformin in decreasing serum LPS and TNF-ɑ levels; whereas metformin resulted in better glycemic control. CONCLUSION Targeting gut microbiota by VD could be a successful strategy in the treatment of diabetes and associated cognitive deficit. The crosstalk between VD axis and the endocannabinoid system needs further exploration.
Collapse
Affiliation(s)
- Hebatallah M Hussein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Mohammed F Elyamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
43
|
Hughes RL, Holscher HD. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv Nutr 2021; 12:2190-2215. [PMID: 34229348 PMCID: PMC8634498 DOI: 10.1093/advances/nmab077] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The athlete's goal is to optimize their performance. Towards this end, nutrition has been used to improve the health of athletes' brains, bones, muscles, and cardiovascular system. However, recent research suggests that the gut and its resident microbiota may also play a role in athlete health and performance. Therefore, athletes should consider dietary strategies in the context of their potential effects on the gut microbiota, including the impact of sports-centric dietary strategies (e.g., protein supplements, carbohydrate loading) on the gut microbiota as well as the effects of gut-centric dietary strategies (e.g., probiotics, prebiotics) on performance. This review provides an overview of the interaction between diet, exercise, and the gut microbiota, focusing on dietary strategies that may impact both the gut microbiota and athletic performance. Current evidence suggests that the gut microbiota could, in theory, contribute to the effects of dietary intake on athletic performance by influencing microbial metabolite production, gastrointestinal physiology, and immune modulation. Common dietary strategies such as high protein and simple carbohydrate intake, low fiber intake, and food avoidance may adversely impact the gut microbiota and, in turn, performance. Conversely, intake of adequate dietary fiber, a variety of protein sources, and emphasis on unsaturated fats, especially omega-3 (ɷ-3) fatty acids, in addition to consumption of prebiotics, probiotics, and synbiotics, have shown promising results in optimizing athlete health and performance. Ultimately, while this is an emerging and promising area of research, more studies are needed that incorporate, control, and manipulate all 3 of these elements (i.e., diet, exercise, and gut microbiome) to provide recommendations for athletes on how to "fuel their microbes."
Collapse
Affiliation(s)
- Riley L Hughes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
44
|
Ertuglu LA, Afsar B, Yildiz AB, Demiray A, Ortiz A, Covic A, Kanbay M. Substitution of Sugar-Sweetened Beverages for Other Beverages: Can It Be the Next Step Towards Healthy Aging? Curr Nutr Rep 2021; 10:399-412. [PMID: 34595722 DOI: 10.1007/s13668-021-00372-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW With the prolongation of life expectancy, the gap between lifespan and "health span," the disease-free lifespan, has been widening due to the massive burden of age-related chronic diseases and research on healthy aging has been gaining momentum. A growing body of evidence suggests that diet is a strong determinant of healthy aging and consumption of sugar-sweetened beverages (SSB), a major source of added sugars, predicts poor health outcomes in the aging population, including cardiovascular disease, diabetes, and cancer. Evidence further supports a link between sugar-sweetened beverages-triggered pathological processes and biologic factors of aging, including inflammaging, oxidative stress, and alterations in intestinal microbiota. At present, substitution of sugar-sweetened beverages with healthier alternative beverage remains the most robust strategy to limit the deleterious effects of sugar-sweetened beverages on health worldwide and may help achieve healthy longevity. The purpose of this review is to provide an overview of mechanisms by which sugar-sweetened beverages consumption may impact the physiological aging process and how a simple intervention of beverage replacement may promote healthy aging. RECENT FINDINGS Recent findings indicate that SSB are associated with accelerated aging phenotype and activate various adverse biological processes such as chronic inflammation, oxidative stress, insulin resistance, and gut dysbiosis. Replacing SSB with healthier beverages may be a reasonable option to reduce the burden of chronic disease in the aging population and even prolong life and healthspan.
Collapse
Affiliation(s)
- Lale A Ertuglu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey.
| | - Abdullah B Yildiz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alberto Ortiz
- Department of Medicine, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
45
|
Bonsembiante L, Targher G, Maffeis C. Type 2 Diabetes and Dietary Carbohydrate Intake of Adolescents and Young Adults: What Is the Impact of Different Choices? Nutrients 2021; 13:3344. [PMID: 34684345 PMCID: PMC8537173 DOI: 10.3390/nu13103344] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/05/2022] Open
Abstract
Type 2 diabetes mellitus has a high prevalence worldwide, with a rapidly increasing incidence even in youth. Nutrition, dietary macronutrient composition, and in particular dietary carbohydrates play a major role in the development of type 2 diabetes. The aim of this narrative review is to discuss the current evidence on the role of dietary carbohydrates in the prevention and management of type 2 diabetes. The digestibility or availability of carbohydrates and their glycemic index (and glycemic load) markedly influence the glycemic response. High consumption of dietary fiber is beneficial for management of type 2 diabetes, whereas high consumption of both glycemic starch and sugars may have a harmful effect on glucose metabolism, thereby increasing the risk of developing type 2 diabetes in the presence of genetic predisposition or making its glycemic control more difficult to achieve in people with established T2D. Therefore, the same dietary macronutrient may have harmful or beneficial effects on type 2 diabetes mainly depending on the subtypes consumed. Some other factors are involved in glucose metabolism, such as meal composition, gut microbiota and genetics. For this reason, the glycemic response after carbohydrate consumption is not easy to predict in the single individual. Nutrition suggested to subjects with known type 2 diabetes should be always person-centered, considering the individual features of each subject.
Collapse
Affiliation(s)
- Luisa Bonsembiante
- Section of Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgical Sciences, Dentistry, Paediatrics and Gynaecology, Azienda Ospedaliera Universitaria Integrata of Verona, Piazzale A. Stefani, 1, 37126 Verona, Italy;
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Piazzale A. Stefani, 1, 37126 Verona, Italy;
| | - Claudio Maffeis
- Section of Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgical Sciences, Dentistry, Paediatrics and Gynaecology, Azienda Ospedaliera Universitaria Integrata of Verona, Piazzale A. Stefani, 1, 37126 Verona, Italy;
| |
Collapse
|
46
|
Dwivedi M, Powali S, Rastogi S, Singh A, Gupta DK. Microbial community in human gut: a therapeutic prospect and implication in health and diseases. Lett Appl Microbiol 2021; 73:553-568. [PMID: 34365651 DOI: 10.1111/lam.13549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
The interest in the working and functionality of the human gut microbiome has increased drastically over the years. Though the existence of gut microbes has long been speculated for long over the last few decades, a lot of research has sprung up in studying and understanding the role of gut microbes in the human digestive tract. The microbes present in the gut are highly instrumental in maintaining the metabolism in the body. Further research is going on in this field to understand how gut microbes can be employed as potential sources of novel therapeutics; moreover, probiotics have also elucidated their significant place in this direction. As regards the clinical perspective, microbes can be engineered to afford defence mechanisms while interacting with foreign pathogenic bodies. More investigations in this field may assist us to evaluate and understand how these cells communicate with human cells and promote immune interactions. Here we elaborate on the possible implication of human gut microbiota into the immune system as well as explore the probiotics in the various human ailments. Comprehensive information on the human gut microbiome at the same platform may contribute effectively to our understanding of the human microbiome and possible mechanisms of associated human diseases.
Collapse
Affiliation(s)
- M Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - S Powali
- Maulana Abdul Kalam Azad University of Technology, Kolkatta, India
| | - S Rastogi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - A Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - D K Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
47
|
Huang W, Yin H, Yang Y, Jin L, Lu G, Dang Z. Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: Simulation in vitro with human cell Caco-2 and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146264. [PMID: 33725607 DOI: 10.1016/j.scitotenv.2021.146264] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/20/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) pollution becomes an emergent threat to the ecosystem, and its joint effect with organic contaminants will cause more severe consequences. Recently, MPs has been observed in human feces, suggesting that we are exposed to an uncertain danger. In this study, the joint effect of polyethylene microplastics particles (PEMPs) and Tetrabromobisphenol A (TBBPA) on human gut was explored through the simulation experiment in vitro with human cell Caco-2 and gut microbiota. The toxicity of TBBPA and PEMPs on Caco-2 human cells was considered by physiological and biochemical indexes such as cell proliferation, cell cycle, reactive oxygen species, lactate dehydrogenase release, and mitochondrial membrane potential. Besides, microbial community diversity, community structure, and function changes of gut microbiota were investigated using Illumina 16S rRNA gene MiSeq sequencing to reveal the influence of TBBPA and PEMPs on human gut microbiota. The results indicated that both PEMPs and TBBPA would deteriorate the status of Caco-2 cells, and TBBPA played a major role in it; meanwhile, PEMPs affected Caco-2 cells at high concentrations. Particularly, TBBPA and PEMPs exhibited a joint effect on Caco-2 cells to a certain degree. TBBPA selectivity inhibited the growth of gram-positive bacteria such as Enterococcus and Lactobacillus, contributing to the thriving of gram-negative bacteria such as Escherichia and Bacteroides. The existence of PEMPs would enhance the proportion of Clostridium, Bacteroides, and Escherichia. Community composition changed dramatically with the interference of PEMPs and TBBPA; this was undesirable to the healthy homeostasis of the human gut. PICRUSt analysis determined both PEMPs and TBBPA interfered with the metabolism pathways of gut microbiota. Hence, the threat of MPs and TBBPA to humans should arouse vigilance.
Collapse
Affiliation(s)
- Wantang Huang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Yuanyu Yang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Lizhu Jin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
48
|
Effects of Potential Probiotic Strains on the Fecal Microbiota and Metabolites of D-Galactose-Induced Aging Rats Fed with High-Fat Diet. Probiotics Antimicrob Proteins 2021; 12:545-562. [PMID: 31301059 DOI: 10.1007/s12602-019-09545-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both aging and diet play an important role in influencing the gut ecosystem. Using premature senescent rats induced by D-galactose and fed with high-fat diet, this study aims to investigate the effects of different potential probiotic strains on the dynamic changes of fecal microbiome and metabolites. In this study, male Sprague-Dawley rats were fed with high-fat diet and injected with D-galactose for 12 weeks to induce aging. The effect of Lactobacillus plantarum DR7, L. fermentum DR9, and L. reuteri 8513d administration on the fecal microbiota profile, short-chain fatty acids, and water-soluble compounds were analyzed. It was found that the administration of the selected strains altered the gut microbiota diversity and composition, even at the phylum level. The fecal short-chain fatty acid content was also higher in groups that were administered with the potential probiotic strains. Analysis of the fecal water-soluble metabolites revealed that administration of L. plantarum DR7 and L. reuteri 8513d led to higher fecal content of compounds related to amino acid metabolism such as tryptophan, leucine, tyrosine, cysteine, methionine, valine, and lysine; while administration of L. fermentum DR9 led to higher prevalence of compounds related to carbohydrate metabolism such as erythritol, xylitol, and arabitol. In conclusion, it was observed that different strains of lactobacilli can cause difference alteration in the gut microbiota and the metabolites, suggesting the urgency to explore the specific metabolic impact of specific strains on the host.
Collapse
|
49
|
Abstract
Bile acids (BAs) are a family of hydroxylated steroids secreted by the liver that aid in the breakdown and absorption of dietary fats. BAs also function as nutrient and inflammatory signaling molecules, acting through cognate receptors, to coordinate host metabolism. Commensal bacteria in the gastrointestinal tract are functional modifiers of the BA pool, affecting composition and abundance. Deconjugation of host BAs creates a molecular network that inextricably links gut microtia with their host. In this review we highlight the roles of BAs in mediating this mutualistic relationship with a focus on those events that impact host physiology and metabolism.
Collapse
Affiliation(s)
- James C Poland
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
50
|
Martínez-Cuesta MC, Del Campo R, Garriga-García M, Peláez C, Requena T. Taxonomic Characterization and Short-Chain Fatty Acids Production of the Obese Microbiota. Front Cell Infect Microbiol 2021; 11:598093. [PMID: 34222034 PMCID: PMC8242951 DOI: 10.3389/fcimb.2021.598093] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal microbiota seems to play a key role in obesity. The impact of the composition and/or functionality of the obesity-associated microbiota have yet to be fully characterized. This work assessed the significance of the taxonomic composition and/or metabolic activity of obese- microbiota by massive 16S rRNA gene sequencing of the fecal microbiome of obese and normoweight individuals. The obese metabolic activity was also assessed by in vitro incubation of obese and normoweight microbiotas in nutritive mediums with different energy content. We found that the microbiome richness and diversity of the two groups did not differ significantly, except for Chao1 index, significantly higher in normoweight individuals. At phylum level, neither the abundance of Firmicutes or Bacteroidetes nor their ratio was associated with the body mass index. Besides, the relative proportions in Collinsella, Clostridium XIVa, and Catenibacterium were significantly enriched in obese participants, while Alistipes, Clostridium sensu stricto, Romboutsia, and Oscillibacter were significantly diminished. In regard to metabolic activity, short-chain fatty acids content was significant higher in obese individuals, with acetate being the most abundant followed by propionate and butyrate. Acetate and butyrate production was also higher when incubating obese microbiota in mediums mimicking diets with different energy content; interestingly, a reduced capability of propionate production was associated to the obese microbiome. In spite of the large interindividual variability, the obese phenotype seems to be defined more by the abundance and/or the absence of distinct communities of microorganism rather than by the presence of a specific population.
Collapse
Affiliation(s)
- M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Madrid, Spain
| | - Rosa Del Campo
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Carmen Peláez
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Madrid, Spain
| | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Madrid, Spain
| |
Collapse
|