1
|
Choi JY, Ha NG, Lee WJ, Boo YC. Synthetic and Natural Agents Targeting Advanced Glycation End-Products for Skin Anti-Aging: A Comprehensive Review of Experimental and Clinical Studies. Antioxidants (Basel) 2025; 14:498. [PMID: 40298870 DOI: 10.3390/antiox14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Advanced glycation end-products (AGEs) cause blood vessel damage and induce diabetic complications in various organs, such as the eyes, kidneys, nerves, and skin. As glycation stress causes aesthetic, physical, and functional changes in the skin, glycation-targeting skin anti-aging strategies are attracting attention in cosmetology and dermatology. The primary goal of this review is to understand the significance of glycation-induced skin aging and to examine the therapeutic potential of glycation-targeting strategies. This study covers experimental and clinical studies exploring various interventions to attenuate glycation-induced skin aging. Glycation stress decreases the viability of cells in culture media, the cell-mediated contraction of collagen lattices in reconstructed skin models, and the expression of fibrillin-1 at the dermo-epidermal junction in the skin explants. It also increases cross-links in tail tendon collagen in animals, prolonging its breakdown time. However, these changes are attenuated by several synthetic and natural agents. Animal and clinical studies have shown that dietary or topical administration of agents with antiglycation or antioxidant activity can attenuate changes in AGE levels (measured by skin autofluorescence) and skin aging parameters (e.g., skin color, wrinkles, elasticity, hydration, dermal density) induced by chronological aging, diabetes, high-carbohydrate diets, ultraviolet radiation, or oxidative stress. Therefore, the accumulating experimental and clinical evidence supports that dietary supplements or topical formulations containing one or more synthetic and natural antiglycation agents may help mitigate skin aging induced by AGEs.
Collapse
Affiliation(s)
- Joon Yong Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Nam Gyoung Ha
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Weon Ju Lee
- Department of Dermatology, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yong Chool Boo
- Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Khalid M, Farooq M, Adnan M, Kobe S, Mayakrishnan G, Kim IS. Green and Sustainable Electrospun Poly(vinyl alcohol)/Eggshell Nanofiber Membrane with Lemon-Honey for Facial Mask Development. ACS OMEGA 2025; 10:12972-12982. [PMID: 40224462 PMCID: PMC11983336 DOI: 10.1021/acsomega.4c09385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 04/15/2025]
Abstract
Facial masks contain additives such as thickeners and preservatives that have adverse effects on the skin, and there is growing demand for organic products. Inspired by this, we developed a poly(vinyl alcohol) (PVA) nanofibrous facial mask that contains all-natural ingredients such as honey and an eggshell membrane (ESM) by a green solvent-based electrospinning technique. Various analyses, including SEM, XRD, FT-IR, and TGA measurements, and tests for water solubility, wettability, water absorption and retention, antioxidant activity, and antibacterial properties were performed. SEM analysis showed average diameters from 257 to 325 nm. XRD results indicated decreased crystallinity after cross-linking. FT-IR measurements confirmed ester and acetal cross-link formation. TGA demonstrated enhanced thermal stability in cross-linked samples, especially PVA10%_lemon/esm10/honey20-H. Water solubility tests showed that heated samples were more stable. Water absorption rates exceeded 400%, with PVA10%_lemon/esm10/honey20-H having the highest retention rate. Wettability analysis showed significant changes in contact angles after heating. Antioxidant assays revealed that PVA10%_lemon had the highest DPPH activity (71.2%) among unheated samples, decreasing after cross-linking. Antibacterial tests showed significant activity only in PVA10%_lemon/esm10/honey20, against both Escherichia coli and Bacillus subtilis bacteria. Active ingredients can be added directly to this facial mask. This facial mask is gentler on the skin, and its ingredients have antiaging and anti-inflammatory properties. This mask can avoid the use of preservatives. This prepared facial mask has potential to be used in the organic skincare product industry and can also help the chemical industry toward sustainable and healthy practices.
Collapse
Affiliation(s)
- Maira Khalid
- Graduate
School of Medicine, Science, and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| | - Muhammad Farooq
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| | - Muhammad Adnan
- Graduate
School of Medicine, Science, and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| | - Shoki Kobe
- Graduate
School of Medicine, Science, and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| | - Gopiraman Mayakrishnan
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| | - Ick Soo Kim
- Graduate
School of Medicine, Science, and Technology, Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
- Nano
Fusion
Technology Research Group, Institute for Fiber Engineering and Science
(IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano386-8567, Japan
| |
Collapse
|
3
|
Kircik L, Tan J, Lain E(T, Beleznay K, Chavda R, Lachmann N, Brinkhuizen T, Baldwin H, Layton AM. One Acne™: A holistic management approach to improve overall skin quality and treatment outcomes in acne with or without sensitive skin. Int J Dermatol 2025; 64:637-646. [PMID: 39551973 PMCID: PMC11931094 DOI: 10.1111/ijd.17546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024]
Abstract
Acne and sensitive skin can take a profound toll on patients' well-being, which can be exacerbated if the conditions are experienced together. This narrative review aims to identify appropriate treatments to facilitate a holistic management approach to acne (One Acne™), sensitive skin, and acne-induced sequelae and describe the role of treatments in improving skin quality. Topical retinoids are considered the preferred first-line option for acne treatment by dermatologists, either as monotherapy or in combination with other treatments, because of their ability to target various aspects of the disease. Tretinoin, trifarotene, adapalene, and tazarotene have all been assessed in clinical studies for managing acne-associated scarring, with varying success, with the latter three reported to improve skin quality. Moreover, some corrective procedures, e.g., injectable non-animal stabilized hyaluronic acid (NASHA) fillers, have proven effective for treating acne scarring. Both treatment types may complement each other to provide optimal treatment outcomes and patient satisfaction, as observed in several patients receiving concomitant treatment with NASHA fillers/topical trifarotene. Adjunctive use of cleansers, moisturizers, and photoprotection-containing ingredients such as vitamin B3, glycerin, or pro-vitamin B3 may also complement drug/corrective treatments to reduce skin irritation and risk of scarring, as well as improve skin hydration, tone, and overall appearance. This narrative review highlights that comprehensive skincare regimens should be used throughout acne patients' journeys to reduce treatment-related irritation, improve treatment outcomes, adherence, and satisfaction, and enhance overall skin quality. Patients with sensitive skin should choose tailored skincare products to maintain skin barrier integrity and restore skin function.
Collapse
Affiliation(s)
- Leon Kircik
- Department of DermatologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Jerry Tan
- University of Western OntarioWindsorONCanada
- Windsor Clinical Research IncWindsorONCanada
| | | | - Katie Beleznay
- Department of Dermatology and Skin ScienceUniversity of British ColumbiaVancouverBCCanada
| | | | | | - Tjinta Brinkhuizen
- Department of Dermatology, Catharina Hospital EindhovenMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Hilary Baldwin
- Robert Wood Johnson Medical CenterNew BrunswickNJUSA
- The Acne Treatment and Research CenterBrooklynNYUSA
| | - Alison M. Layton
- Skin Research CentreUniversity of YorkYorkUK
- Department of DermatologyHarrogate and District NHS TrustHarrogateUK
| |
Collapse
|
4
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2025; 145:749-765.e8. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
5
|
Choi YJ, Wu X, Lee S, Pyo JS, Cho J, Cao S, Kang KS. Protective effects of methylnissolin and methylnissolin-3-O-β-d-glucopyranoside on TNF-α-induced inflammation in human dermal fibroblasts. Toxicol In Vitro 2025; 104:106005. [PMID: 39746385 DOI: 10.1016/j.tiv.2024.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Methylnissolin-3-O-β-d-glucopyranoside (MNG) and methylnissolin (MN) are pterocarpan derivatives that are found in plants, such as Astragalus membranaceus. There are limited existing studies on the potential health benefits of MNG, and currently there is no evidence to suggest that MNG has any impact on skin-aging. Tumor necrosis factor-alpha (TNF-α) plays a significant role in skin aging by promoting chronic inflammation, damaging skin cells, and impairing the skin's natural repair mechanisms. Targeting TNF-α or its downstream signaling pathways may be a promising strategy for preventing or reversing skin-aging. We tested the effect of MNG and MN on skin-aging by inducing cell inflammation and oxidative stress with TNF-α in HDFs. MNG and MN significantly reduced the TNF-α-induced secretion of matrix metalloproteinase-1 (MMP-1). However, MNG has more beneficial compound for oral administration than MN in pharmacokinetics analysis. The mechanism underlying the anti-skin-aging effect of MNG is related to the suppression of TNF-α-induced reactive oxygen species (ROS) generation and mitogen-activated protein kinase (MAPKs) phosphorylation. Our results suggest that MNG is a potential candidate for preventing skin-aging induced by TNF-α.
Collapse
Affiliation(s)
- Yea Jung Choi
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, United States
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Jae Sung Pyo
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea; Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan 48434, Republic of Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry Seoul national University, Seoul, Republic of Korea
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, United States; Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, United States.
| | - Ki Sung Kang
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
6
|
He N, Li C, Liu J, Zhang X, Li L, Dai C. Variation of Structures and Blood Vessels of Visual Nervous System With Age. JOURNAL OF BIOPHOTONICS 2025:e70009. [PMID: 40103320 DOI: 10.1002/jbio.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/12/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Aging is a process of progressive functional decline associated with increasing age. The process and mechanism of aging have long been widely concerned, but long-term in vivo evaluations of the visual nervous system have not been previously reported. In this study, naturally aging mouse models were used for long-term serial evaluation, and the changes in structure and blood flow of the retina and cerebral cortex were systematically analyzed. Optical Coherence Tomography (OCT) and Optical Coherence Tomography Angiography (OCTA) were performed on mice at 3, 6, 9, and 12 months of age, respectively. Structural and vascular changes with age were quantitatively evaluated. Results show that the reduction of structural thickness and vascular density of the retinal and cerebral cortex is observed. A significant correlation is also found between structural and vascular changes in the retina and cerebral cortex, indicating a consistent impact of aging on the visual nervous system.
Collapse
Affiliation(s)
- Ni He
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Chenrui Li
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| | - Jiali Liu
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Xiaolong Zhang
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| | - Liming Li
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| | - Cuixia Dai
- Shanghai Institute of Technology, College of Sciences, Shanghai, China
| |
Collapse
|
7
|
Dondero L, De Negri Atanasio G, Tardanico F, Lertora E, Boggia R, Capra V, Cometto A, Costamagna M, Fi L S E, Feletti M, Garibaldi F, Grasso F, Jenssen M, Lanteri L, Lian K, Monti M, Perucca M, Pinto C, Poncini I, Robino F, Rombi JV, Ahsan SS, Shirmohammadi N, Tiso M, Turrini F, Zaccone M, Zanotti-Russo M, Demori I, Ferrari PF, Grasselli E. Unlocking the Potential of Marine Sidestreams in the Blue Economy: Lessons Learned from the EcoeFISHent Project on Fish Collagen. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:63. [PMID: 40080223 PMCID: PMC11906597 DOI: 10.1007/s10126-025-10438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025]
Abstract
This review provides a general overview of collagen structure, biosynthesis, and biological properties, with a particular focus on marine collagen sources, especially fisheries discards and by-catches. Additionally, well-documented applications of collagen are presented, with special emphasis not only on its final use but also on the processes enabling sustainable and safe recovery from materials that would otherwise go to waste. Particular attention is given to the extraction process, highlighting key aspects essential for the industrialization of fish sidestreams, such as hygiene standards, adherence to good manufacturing practices, and ensuring minimal environmental impact. In this context, the EcoeFISHent projects have provided valuable insights, aiming to create replicable, systemic, and sustainable territorial clusters based on a multi-circular economy and industrial symbiosis. The main goal of this project is to increase the monetary income of certain categories, such as fishery and aquaculture activities, through the valorization of underutilized biomass.
Collapse
Affiliation(s)
- Lorenzo Dondero
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Giulia De Negri Atanasio
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Francesca Tardanico
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Erica Lertora
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
- Angel Consulting, Via San Senatore 14, 20122, Milan, Italy
| | - Raffaella Boggia
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Vittorio Capra
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Agnese Cometto
- Ticass S.C.R.L.- Tecnologie Innovative Per Il Controllo Ambientale E Lo Sviluppo Sostenibile, Via Domenico Fiasella, 3/16, 16121, Genoa, Italy
| | | | - Fi L S E
- Filse S.p.A., Piazza De Ferrari 1, 16121, Genoa, Italy
| | - Mirvana Feletti
- Regione Liguria - Direzione Generale Turismo, Agricoltura E Aree Interne Settore Politiche Agricole E Della Pesca , Viale Brigate Partigiane, 2, 16100, Genoa, Italy
| | - Fulvio Garibaldi
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Federica Grasso
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Marte Jenssen
- Department of Marine Biotechnology, Nofima AS, Muninbakken 9-13, 9291, Tromsø, Norway
| | - Luca Lanteri
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Kjersti Lian
- Department of Marine Biotechnology, Nofima AS, Muninbakken 9-13, 9291, Tromsø, Norway
| | - Marco Monti
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | - Massimo Perucca
- Project HUB-360, Corso Laghi 22, 10051, Avigliana, TO, Italy
| | - Cecilia Pinto
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Ilaria Poncini
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | | | - Junio Valerio Rombi
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Syed Saad Ahsan
- Project HUB-360, Corso Laghi 22, 10051, Avigliana, TO, Italy
| | - Nikta Shirmohammadi
- Ticass S.C.R.L.- Tecnologie Innovative Per Il Controllo Ambientale E Lo Sviluppo Sostenibile, Via Domenico Fiasella, 3/16, 16121, Genoa, Italy
| | - Micaela Tiso
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Federica Turrini
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121, Naples, Italy
| | - Marta Zaccone
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | | | - Ilaria Demori
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia, 15, 16145, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Elena Grasselli
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy.
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121, Naples, Italy.
| |
Collapse
|
8
|
Pakkiyam S, Marimuthu M, Kumar J, Ganesh V, Veerapandian M. Microbial crosstalk with dermal immune system: A review on emerging analytical methods for macromolecular detection and therapeutics. Int J Biol Macromol 2025; 293:139369. [PMID: 39743089 DOI: 10.1016/j.ijbiomac.2024.139369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
According to global health metrics, clinical symptoms such as cellulitis and pyoderma associated with skin diseases are a significant burden worldwide, affecting 2.2 million disability-adjusted life years in 2020. There is a strong correlation between the commensal bacteria and the host immune system. Classical methods deployed in dermal biofilm crosstalk studies often hamper many individuals from early diagnosis and rationalized therapy. Herein, the present report aims to study the role of skin microbiota and mechanisms of microbial crosstalk with host immune system. The emerging analytical tools devised for sensor/biosensor platforms, including molecularly imprinted polymers, microarrays, aptamers, CRISPR-cas9, and optical/electrochemical approaches, are discussed as alternative methods for important biomarker analysis. Further, the types and characteristics of microorganism-derived macromolecules and the recent skin organoid toward personalized therapy are highlighted. This information will largely benefit researchers involved in the pathophysiology of skin disease, wound dressing materials, including diagnostic and healing patch designs, in addition to biological macromolecules devoted to wound repair.
Collapse
Affiliation(s)
- Sangavi Pakkiyam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohana Marimuthu
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology Tiruchirappalli Campus, Trichy 621 105, Tamil Nadu, India; Innovaspark STEM Edutainment Centre, Karaikudi 630 003, Tamil Nadu, India
| | - Jitendra Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| | - V Ganesh
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
9
|
Abuyousif HS, Porcello A, Cerrano M, Marques C, Scaletta C, Lourenço K, Abdel-Sayed P, Chemali M, Raffoul W, Hirt-Burri N, Applegate LA, Laurent AE. In Vitro Evaluation and Clinical Effects of a Regenerative Complex with Non-Cross-Linked Hyaluronic Acid and a High-Molecular-Weight Polynucleotide for Periorbital Treatment. Polymers (Basel) 2025; 17:638. [PMID: 40076130 PMCID: PMC11902836 DOI: 10.3390/polym17050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Skin aging is a complex and multifactorial process influenced by both intrinsic and extrinsic factors. The periorbital area of the face is particularly susceptible to premature aging signs due to its delicate skin structure, and is a major concern for many individuals. While hyaluronic acid (HA)-based dermal filler products are commonly used for periorbital rejuvenation, novel approaches to effectively locally address the visible signs of aging are available. This study aimed to investigate Innovyal Regenerative Action (IRA), an injectable polynucleotide-HA (PN-HA) regenerative complex designed for periocular prejuvenation. Firstly, PN-HA was compared to other commercially available HA-based dermbooster products (Profhilo®, Suisselle Cellbooster® Glow, and NCTF® 135 HA) in terms of rheological properties, in vitro antioxidant capacity, and total collagen production stimulation in human fibroblasts. Secondly, the clinical effects of the IRA PN-HA complex were evaluated in two case reports (monotherapy for periorbital prejuvenation). It was shown that the PN-HA complex outperformed its comparators in terms of relative rheological behavior (biophysical attributes normalized to polymer contents), intrinsic antioxidant activity (CUPRAC, FRAP, and ORAC assays), as well as total collagen level induction (72-h in vitro dermal fibroblast induction model). Generally, the results of this study provided mechanistic and preliminary clinical insights into the potential benefits of the IRA PN-HA complex for periocular cutaneous treatment. Overall, it was underscored that combining the structural support and regenerative properties of PN with the hydrating and volumizing effects of HA bares tangible potential for multifactorial skin quality enhancement and for periocular prejuvenation in particular.
Collapse
Affiliation(s)
| | - Alexandre Porcello
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (A.P.); (C.M.); (K.L.)
| | - Marco Cerrano
- Aesthetic Surgery Department, Clinique Entourage, CH-1003 Lausanne, Switzerland;
| | - Cíntia Marques
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (A.P.); (C.M.); (K.L.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
| | - Kelly Lourenço
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (A.P.); (C.M.); (K.L.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Michèle Chemali
- Plastic and Aesthetic Surgery Service, Centre Médical Lausanne Ouest, CH-1008 Prilly, Switzerland;
| | - Wassim Raffoul
- Plastic and Reconstructive Surgery Service, Ensemble Hospitalier de la Côte, CH-1110 Morges, Switzerland;
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Alexis E. Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.); (L.A.A.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| |
Collapse
|
10
|
Quan T, Li R, Gao T. Role of Mitochondrial Dynamics in Skin Homeostasis: An Update. Int J Mol Sci 2025; 26:1803. [PMID: 40076431 PMCID: PMC11898645 DOI: 10.3390/ijms26051803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025] Open
Abstract
Skin aging is the most prominent phenotype of host aging and is the consequence of a combination of genes and environment. Improving skin aging is essential for maintaining the healthy physiological function of the skin and the mental health of the human body. Mitochondria are vital organelles that play important roles in cellular mechanisms, including energy production and free radical balance. However, mitochondrial metabolism, mitochondrial dynamics, biogenesis, and degradation processes vary greatly in various cells in the skin. It is well known that mitochondrial dysfunction can promote the aging and its associated diseases of the skin, resulting in the damage of skin physiology and the occurrence of skin pathology. In this review, we summarize the important role of mitochondria in various skin cells, review the cellular responses to vital steps in mitochondrial quality regulation, mitochondrial dynamics, mitochondrial biogenesis, and mitochondrial phagocytosis, and describe their importance and specific pathways in skin aging.
Collapse
Affiliation(s)
| | | | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (T.Q.); (R.L.)
| |
Collapse
|
11
|
Wang W, Flament F, Wang H, Ye C, Jiang R, Houghton J, Liu W. Grading facial aging: Comparing the clinical assessments made by three dermatologists with those obtained by an AI-based scoring system that analyses selfie pictures. A focus on Chinese subjects of both genders. Int J Cosmet Sci 2025; 47:113-122. [PMID: 39219096 DOI: 10.1111/ics.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The objective of this study is to assess the correspondence, in live conditions, between clinical gradings of facial aging signs by three dermatologists and those afforded by an automatic AI-based algorithm that analyses smartphones' selfie images of Chinese subjects. METHODS In total, 125 Chinese subjects of both genders, aged 18-62y, took a selfie using their own smartphones and were immediately viewed by three dermatologists. The latter graded the severity of 15 facial signs in women and 9 in men, using the standardized values afforded by a Skin Aging Atlas referential dedicated to Asian skin. The data issued by both methodologies were then statistically compared. RESULTS The absolute gradings of the automatic system were found highly correlated with clinical assessments, with lower values in most cases. In women, large differences in absolute values were found on the gradings for size of isolated spot, cheek fold, spread macules, and texture of mouth contour women. Analysis of the Mean Absolute Errors (M.A.E) revealed that these rarely exceed 0.6 grading units in women and to a lesser extent in men. CONCLUSION The present study confirmed the value of the automatic system towards an extended use towards large human cohorts as a surrogate of clinical evaluations and allowed to detect the points where improvements must be brought to the system.
Collapse
Affiliation(s)
- Wenna Wang
- L'Oréal Research and Innovation, Shanghai, China
| | | | - Hequn Wang
- L'Oréal Research and Innovation, Shanghai, China
| | - Chengda Ye
- L'Oréal Research and Innovation, Shanghai, China
| | - Ruowei Jiang
- ModiFace - A L'Oréal Group Company, Toronto, Canada
| | | | - Wei Liu
- Department of Dermatology, The General Hospital of air Force PLA, Beijing, China
| |
Collapse
|
12
|
Davies C, Miron RJ. Autolougous platelet concentrates in esthetic medicine. Periodontol 2000 2025; 97:363-419. [PMID: 39086171 PMCID: PMC11808453 DOI: 10.1111/prd.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 08/02/2024]
Abstract
This narrative review summarizes current knowledge on the use of autologous platelet concentrates (APCs) in esthetic medicine, with the goal of providing clinicians with reliable information for clinical practice. APCs contain platelets that release various growth factors with potential applications in facial and dermatologic treatments. This review examines several facial esthetic applications of APCs, including acne scarring, skin rejuvenation, melasma, vitiligo, stretchmarks, peri-orbital rejuvenation, peri-oral rejuvenation, hair regeneration and the volumizing effects of APC gels. A systematic review of literature databases (PubMed/MEDLINE) was conducted up to October 2023 to identify randomized controlled trials (RCTs) in the English language on APCs for facial rejuvenation and dermatology. A total of 96 articles were selected including those on platelet rich plasma (PRP), plasma-rich in growth factors (PRGF), and platelet-rich fibrin (PRF). Clinical recommendations gained from the reviews are provided. In summary, the use of APCs in facial esthetics is a promising yet relatively recent treatment approach. Overall, the majority of studies have focused on the use of PRP with positive outcomes. Only few studies have compared PRP versus PRF with all demonstrating superior outcomes using PRF. The existing studies have limitations including small sample sizes and lack of standardized assessment criteria. Future research should utilize well-designed RCTs, incorporating appropriate controls, such as split-face comparisons, and standardized protocols for APC usage, including optimal number of sessions, interval between sessions, and objective improvement scores. Nevertheless, the most recent formulations of platelet concentrates offer clinicians an ability to improve various clinical parameters and esthetic concerns.
Collapse
Affiliation(s)
- Catherine Davies
- ZD Hair ClinicJohannesburgSouth Africa
- Advanced PRF EducationVeniceFloridaUSA
| | - Richard J. Miron
- Advanced PRF EducationVeniceFloridaUSA
- Department of PeriodontologyUniversity of BernBernSwitzerland
| |
Collapse
|
13
|
Hussein RS, Bin Dayel S, Abahussein O, El‐Sherbiny AA. Influences on Skin and Intrinsic Aging: Biological, Environmental, and Therapeutic Insights. J Cosmet Dermatol 2025; 24:e16688. [PMID: 39604792 PMCID: PMC11845971 DOI: 10.1111/jocd.16688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND/AIM Aging involves a progressive deterioration in physiological functions and increased disease susceptibility, impacting all organs and tissues, especially the skin. Skin aging is driven by intrinsic factors (genetics, cellular metabolism) and extrinsic factors (environment, lifestyle). Understanding these mechanisms is vital for promoting healthy aging and mitigating skin aging effects. This review aims to summarize the key factors influencing skin and intrinsic aging, providing a comprehensive understanding of the underlying mechanisms and contributing elements. METHODS A comprehensive literature review was conducted, focusing on peer-reviewed journals, clinical studies, and scientific reviews published within the last two decades. The inclusion criteria prioritized studies that addressed intrinsic and extrinsic mechanisms of skin aging. To ensure the relevance and quality of the selected sources, a systematic approach was used to assess study design, sample size, methodology, and the significance of the findings in the context of skin aging. FINDINGS The review identifies major internal factors, such as cellular senescence, genetic predisposition, telomere shortening, oxidative stress, hormonal changes, metabolic processes, and immune system decline, as pivotal contributors to intrinsic aging. External factors, including UV radiation, pollution, lifestyle choices (diet, smoking, alcohol consumption, and sleep patterns), and skincare practices, significantly influence extrinsic skin aging. The interplay between these factors accelerates aging processes, leading to various clinical manifestations like wrinkles, loss of skin elasticity, pigmentation changes, and texture alterations. CONCLUSION A comprehensive understanding of both extrinsic and intrinsic factors contributing to skin aging is essential for developing effective prevention and intervention strategies. The insights gained from this review highlight the importance of a multifaceted approach, incorporating lifestyle modifications, advanced skincare routines, and emerging therapeutic technologies, to mitigate the effects of aging and promote healthier, more resilient skin.
Collapse
Affiliation(s)
- Ramadan S. Hussein
- Dermatology Unit, Department of Internal Medicine, College of MedicinePrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Salman Bin Dayel
- Dermatology Unit, Department of Internal Medicine, College of MedicinePrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Othman Abahussein
- Dermatology Unit, Department of Internal Medicine, College of MedicinePrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Abeer Ali El‐Sherbiny
- Department of Medical Laboratory, College of Applied Medical SciencesPrince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| |
Collapse
|
14
|
Yang J, Qiao P, Wang G, Dang E. The Role of Aryl Hydrocarbon Receptor in Skin Homeostasis: Implications for Therapeutic Strategies in Skin Disorders. Cell Biochem Funct 2025; 43:e70047. [PMID: 39866071 DOI: 10.1002/cbf.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is extensively expressed in diverse human organs and plays a pivotal role in mediating the onset, progression, and severity of numerous diseases. Recent research has explored the substantial impact of AhR on skin homeostasis and related pathologies. As a multi-layered organ, the skin comprises multiple cell populations that express AhR. In this review, we introduce the role of AhR in various skin cells and its impact on skin barrier function. Furthermore, we explore the involvement of AhR in the development of various skin diseases, highlighting its potential as a therapeutic target for skin disorders. By targeting AhR, we may open new avenues for the development of novel and efficient skin disease treatments.
Collapse
Affiliation(s)
- Jundan Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Mambwe B, Mellody KT, Kiss O, O'Connor C, Bell M, Watson REB, Langton AK. Cosmetic retinoid use in photoaged skin: A review of the compounds, their use and mechanisms of action. Int J Cosmet Sci 2025; 47:45-57. [PMID: 39128883 PMCID: PMC11788006 DOI: 10.1111/ics.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
The inevitable attrition of skin due to ultraviolet radiation, termed photoaging, can be partially restored by treatment with retinoid compounds. Photoaged skin in lightly pigmented individuals, clinically presents with the appearance of wrinkles, increased laxity, and hyper- and hypopigmentation. Underlying these visible signs of ageing are histological features such as epidermal thinning, dermal-epidermal junction flattening, solar elastosis and loss of the dermal fibrillin microfibrillar network, fibrillar collagen and glycosaminoglycans. Retinoid compounds are comprised of three main generations with the first generation (all-trans retinoic acid, retinol, retinaldehyde and retinyl esters) primarily used for the clinical and cosmetic treatment of photoaging, with varying degrees of efficacy, tolerance and stability. All-trans retinoic acid is considered the 'gold standard' for skin rejuvenation; however, it is a prescription-only product largely confined to clinical use. Therefore, retinoid derivatives are readily incorporated into cosmeceutical formulations. The literature reported in this review suggests that retinol, retinyl esters and retinaldehyde that are used in many cosmeceutical products, are efficacious, safe and well-tolerated. Once in the skin, retinoids utilize a complex signalling pathway that promotes remodelling of photoaged epidermis and dermis and leads to the improvement of the cutaneous signs of photoaging.
Collapse
Affiliation(s)
- Bezaleel Mambwe
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Kieran T. Mellody
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Orsolya Kiss
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Clare O'Connor
- No7 Beauty Company, Walgreens Boots AllianceNottinghamUK
| | - Mike Bell
- No7 Beauty Company, Walgreens Boots AllianceNottinghamUK
| | - Rachel E. B. Watson
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Abigail K. Langton
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| |
Collapse
|
16
|
Lee W, Cho J, Yoo SY, Park E. Combination of ferulic acid and exercise alleviates menopause symptoms and skin remodeling in ovariectomized rats. Nutr Res Pract 2025; 19:30-40. [PMID: 39959753 PMCID: PMC11821775 DOI: 10.4162/nrp.2025.19.1.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND/OBJECTIVES Estrogen regulates certain biological functions, including bone health, maintenance of skin components, and cardiovascular and brain protection. Estrogen deficiency manifests as hot flashes, wrinkles, skin dryness, reduced bone mineral density (BMD), sleep disorders, and cardiovascular diseases. This study aimed to investigate the effects of aerobic exercise combined with ferulic acid (FA) in ovariectomized rats. MATERIALS/METHODS Female Sprague-Dawley rats were classified into control (N), ovariectomy (OV), ovariectomy and exercise (OV+EX), and ovariectomy and exercise with ferulic acid (OV+EX+F) groups. Following ovariectomy at 22 weeks of age, the rats were tower climbing exercise at gradually increase the load (3 days/week for 12 weeks) with or without FA (5 g/kg diet) administration. RESULTS Estrogen deficiency in female rats (OV group) resulted in increased body weight, increased blood triglyceride (TG) levels, and decreased BMD following ovariectomy. Interestingly, compared with the rats in the OV group, the rats in the OV+EX+F group exhibited reduced body weight and blood TG levels and maintained BMD following ovariectomy, similar to those in the N group. Histological analysis of the skin of estrogen-deficient rats (OV group) revealed significantly decreased skin thickness with fewer dermal cells and distorted subcutaneous fat layers, similar to the aging phenotype. Interestingly, the rats in the OV+EX+F group exhibited rescued skin phenotypes compared with those in the OV and OV+EX groups. The skin of rats from all groups was analyzed for the expression of DNA damage and repair proteins. The OV+EX+F and OV+EX groups exhibited enhanced protein levels of pCHK1 (S345), an initiator of DNA repair signaling, and p53, indicating increased cellular DNA damage because of ovariectomy and ultimately an underlying DNA repair process. CONCLUSION Exercise with FA had beneficial effects on lipid profiles, BMD, and skin remodeling during menopause.
Collapse
Affiliation(s)
- Wonyoung Lee
- Department of Food and Nutrition, School of Life Science and Nano-Technology, Hannam University, Daejeon 34054, Korea
| | - Jinkyung Cho
- College of Sport Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Seung-Yeon Yoo
- Department of Nursing, School of Life Science and Nano-Technology, Hannam University, Daejeon 34054, Korea
| | - Eunmi Park
- Department of Food and Nutrition, School of Life Science and Nano-Technology, Hannam University, Daejeon 34054, Korea
| |
Collapse
|
17
|
Wang F, Yi C, Zhong Y, Zhou L, Meng X, Mao R, Guo Y, Xie H, Zhang Y, Huang Y, Li J. Downregulated TFPI2 Accelerates Skin Aging by Repressing the Cell Cycle through Phosphoinositide 3-Kinase/Protein Kinase B/CDC6 Pathway. J Invest Dermatol 2025:S0022-202X(25)00033-8. [PMID: 39848565 DOI: 10.1016/j.jid.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/25/2025]
Abstract
TFPI2 is known to regulate the proliferation of various cell types and tumor tissues; however, its role in the process of skin aging has not been elucidated. In this study, we identified TFPI2 as a potential antagonist of aging. Our findings indicate that TFPI2 expression is downregulated in aging skin tissues and senescent human dermal fibroblasts and that the depletion of TFPI2 accelerates the senescence of human dermal fibroblasts and skin aging. RNA-sequencing analysis revealed that CDC6, a protein associated with cell cycle, is a downstream target of TFPI2. Further liquid chromatography-mass spectrometry analysis confirmed that TFPI2 interacts with p85β to activate the phosphoinositide 3-kinase/protein kinase B pathway. Subsequent experiments revealed that the activation of the phosphoinositide 3-kinase/protein kinase B pathway alleviates senescence in human dermal fibroblasts by promoting CDC6 expression and facilitating cell cycle progression. Collectively, these findings underscore the crucial role of the TFPI2/phosphoinositide 3-kinase/protein kinase B/CDC6 pathway in skin aging and highlight its potential for the development of antiaging interventions.
Collapse
Affiliation(s)
- Fan Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Caitan Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Zhong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zhou
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; Department of Dermatology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
18
|
Chang S, Zhao M, Gao W, Cao J, He B. Engineered collagen/PLLA composite fillers to induce rapid and long-term collagen regeneration. J Mater Chem B 2025; 13:904-917. [PMID: 39659187 DOI: 10.1039/d4tb02159b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Injectable subcutaneous fillers are used in medical aesthetics primarily to correct skin wrinkles. The limitations of collagen fillers include rapid degradation, lack of collagen regeneration effects and high-frequency injections. The regenerative filler of Sculptra (Aesthetic) offers prolonged regenerative effects; however, the slow collagen regeneration results in prolonged waiting time for the filling effects. Herein, we report a facile strategy to fabricate dermal fillers with rapid collagen regeneration. Crosslinked collagen was swollen in a weak acidic solution and coated onto the surface of poly(L-lactic acid) (PLLA) microspheres. The collagen@PLLA composite microspheres (Col@PLLA) were dispersed in an aqueous solution of sodium carboxymethyl cellulose (CMC) to form a porous sponge after lyophilization. In vitro studies verified the good safety and fibroblast affinity of the Col@PLLA fillers. The fillers were subcutaneously injected to evaluate the effects of collagen regeneration in vivo. Compared to the single collagen and PLLA microspheres, the Col@PLLA composite fillers showed significant collagen regeneration after injecting for 5 days. The regenerated type III and type I collagens of Col@PLLA maintained high levels after 4 months post-implantation. The inflammation response further validated the regenerative mechanism and long-lasting potential of this product. The Col@PLLA fillers achieved a significant enhancement in collagen regeneration.
Collapse
Affiliation(s)
- Shuhua Chang
- National Engineering Research center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Miaoran Zhao
- National Engineering Research center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Wenxia Gao
- School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Jun Cao
- National Engineering Research center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Bin He
- National Engineering Research center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
19
|
Kuang X, Lin C, Fu Y, Wang Y, Gong J, Chen Y, Liu Y, Yi F. A comprehensive classification and analysis of oily sensitive facial skin: a cross-sectional study of young Chinese women. Sci Rep 2025; 15:1633. [PMID: 39794411 PMCID: PMC11724097 DOI: 10.1038/s41598-024-85000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Oily sensitive skin is complex and requires accurate identification and personalized care. However, the current classification method relies on subjective assessment. This study aimed to classify skin type and subtype using objective biophysical parameters to investigate differences in skin characteristics across anatomical and morphological regions. This study involved 200 Chinese women aged 17-34 years. Noninvasive capture of biophysical measures and image analysis yielded 104 parameters. Key classification parameters were identified through mechanisms and characteristics, with thresholds set via statistical methods. This study identified the optimal ternary value classification method for dividing skin types into dry, neutral, and oily types based on tertiles of biophysical parameters and, further, into barrier-sensitive, neurosensitive, and inflammatory-sensitive types. Oily sensitive skin shows increased sebum, follicular orifices, redness, dullness, wrinkles, and porphyrins, along with a tendency for oiliness and early acne. Subtypes exhibited specific characteristics: barrier-sensitive skin was rough with a high pH and prone to acne; neurosensitive skin had increased TEWL (Transepidermal Water Loss) and sensitivity; and inflammatory-sensitive skin exhibited a darker tone, with low elasticity and uneven redness. This study established an objective classification system for skin types and subtypes using noninvasive parameters, clarifying the need for care for oily sensitive skin and supporting personalized skincare.
Collapse
Affiliation(s)
- Xinjue Kuang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, China
| | - Caini Lin
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, China
| | - Yuanyuan Fu
- Beijing Uproven Medical Technology Co. LTD, Beijing, China
| | - Yuhui Wang
- Beijing Uproven Medical Technology Co. LTD, Beijing, China
| | - Junhua Gong
- Beijing Uproven Medical Technology Co. LTD, Beijing, China
| | - Yong Chen
- Beijing Uproven Medical Technology Co. LTD, Beijing, China
- Beijing Uproven Institute of Dermatology, Beijing, China
| | - Youting Liu
- Beijing Uproven Medical Technology Co. LTD, Beijing, China.
- Beijing Uproven Institute of Dermatology, Beijing, China.
- Beijing Uproven Institute of Dermatology, Room 1109, 11th Floor, Building 13, No. 5 Tianhua Street, Daxing District, Beijing, 102600, China.
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, China.
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, China.
- Beijing Technology and Business University, No.11/33, Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
20
|
Zonari A, Brace LE, Li F, Harder NHO, Harker C, Jacob C, Kaufman J, Chilukuri S, Oliveira CR, Boroni M, Carvalho JL. Clinical efficacy of OS-01 peptide formulation in reducing the signs of periorbital skin aging. Int J Cosmet Sci 2025. [PMID: 39788697 DOI: 10.1111/ics.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The aging of the skin, particularly around the periorbital region, is a complex process characterized by the accumulation of senescent cells, decreased collagen production, and reduced skin elasticity, leading to visible signs such as fine lines, wrinkles, and sagging. OBJECTIVE This study investigates the efficacy of a novel topical formulation, OS-01 EYE, containing the senomorphic peptide, OS-01, along with other active ingredients, in improving the skin around the eyes. METHODS A 12-week clinical study was conducted with 22 participants who applied OS-01 EYE twice daily. Assessments included bioinstrumental measurements of skin hydration, barrier function, firmness, and elasticity, as well as expert photographs grading fine lines, wrinkles, under-eye puffiness, and dark circles. RESULTS After 12 weeks of product use, transepidermal water loss (TEWL) decreased by 17.33%, hydration increased by 32.49%, skin firmness improved by 10.19%, and elasticity increased by 25.58%, compared to baseline, which was all statistically significant. Expert grading revealed a decrease in fine lines and wrinkles, under-eye puffiness, and dark circles over the study period. Furthermore, subjective assessments showed that 95.46% of participants reported improvements in overall appearance. CONCLUSION The OS-01 EYE formulation was found to be safe and effective in mitigating the visible signs of aging in the periorbital region, making it a potent treatment option for enhancing periorbital skin health, function, and appearance.
Collapse
Affiliation(s)
| | | | - Fanghua Li
- OneSkin, Inc., San Francisco, California, USA
| | | | | | - Carolyn Jacob
- Chicago Cosmetic and Dermatologic Research PLLC, Chicago, Illinois, USA
| | | | | | | | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana L Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, Federal District, Brazil
- Laboratory of Interdisciplinary Biosciences, Faculty of Medicine, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
21
|
Szabó K, Balogh F, Romhányi D, Erdei L, Toldi B, Gyulai R, Kemény L, Groma G. Epigenetic Regulatory Processes Involved in the Establishment and Maintenance of Skin Homeostasis-The Role of Microbiota. Int J Mol Sci 2025; 26:438. [PMID: 39859154 PMCID: PMC11764776 DOI: 10.3390/ijms26020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Epigenetic mechanisms are central to the regulation of all biological processes. This manuscript reviews the current understanding of diverse epigenetic modifications and their role in the establishment and maintenance of normal skin functions. In healthy skin, these mechanisms allow for the precise control of gene expression, facilitating the dynamic balance between cell proliferation and differentiation necessary for effective barrier function. Furthermore, as the skin ages, alterations in epigenetic marks can lead to impaired regenerative capacity and increased susceptibility to environmental stressors. The interaction between skin microbiota and epigenetic regulation will also be explored, highlighting how microbial communities can influence skin health by modulating the host gene expression. Future research should focus on the development of targeted interventions to promote skin development, resilience, and longevity, even in an ever-changing environment. This underscores the need for integrative approaches to study these complex regulatory networks.
Collapse
Affiliation(s)
- Kornélia Szabó
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Fanni Balogh
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Dóra Romhányi
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lilla Erdei
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Blanka Toldi
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
| | - Rolland Gyulai
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Lajos Kemény
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- HCEMM-USZ Skin Research Group, 6720 Szeged, Hungary
| | - Gergely Groma
- HUN-REN-SZTE Dermatological Research Group, 6720 Szeged, Hungary (L.K.); (G.G.)
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
22
|
Wen SY, Ng SC, Noriega L, Chen TJ, Chen CJ, Lee SD, Huang CY, Kuo WW. Echinacoside promotes collagen synthesis and survival via activation of IGF-1 signaling to alleviate UVB-induced dermal fibroblast photoaging. Biofactors 2025; 51:e2152. [PMID: 39780317 DOI: 10.1002/biof.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Ultraviolet (UV) irradiation is a major factor contributing to skin photoaging, including the formation of reactive oxygen species (ROS), collagen breakdown, and overall skin damage. Insulin-like growth factor-I (IGF-1) is a polypeptide hormone that regulates dermal survival and collagen synthesis. Echinacoside (Ech), a natural phenylethanoid glycoside, is the most abundant active compound in Cistanches. However, its potential benefits for the skin and the underlying molecular mechanisms remain unclear. The objective of this research is to investigate the protective effect of Ech on human dermal fibroblast cells (HDFs) against UVB-induced skin photodamage. In this study, we demonstrated that Ech promotes IGF-1/IGF-1R/ERK-mediated collagen synthesis and IGF-1/IGF-1R/PI3K-mediated survival pathways, as well as induces IGF-1 secretion to counteract UVB-induced aging in HDFs. Furthermore, UVB-induced accumulation of SA-β-gal-positive cells, ROS, and impaired collagen synthesis were attenuated following Ech treatment. However, the protective effects of Ech were significantly diminished when IGF-1 and IGF-1R expression was silenced using small interfering RNA, indicating that Ech exerts its antiaging effects primarily by activating the IGF-1/IGF-1R signaling pathway. Our findings provide evidence of the antiaging effects of Ech on UVB-induced skin photodamage and suggest its potential development as a supplement in cosmetic dermal protective products.
Collapse
Affiliation(s)
- Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan, ROC
- Department of Cosmetic Applications and Management, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC
- Department of Health and Welfare, University of Taipei, Taipei, Taiwan, ROC
| | - Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Lloyd Noriega
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Tzu-Jung Chen
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Chih-Jung Chen
- Surgical Department, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan, ROC
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
- PhD Program in Healthcare Science, College of Healthcare Science, China Medical University, Taiwan, ROC
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan, ROC
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan, ROC
- School of pharmacy, China Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
23
|
Todorov SD, Tagg J, Algburi A, Tiwari SK, Popov I, Weeks R, Mitrokhin OV, Kudryashov IA, Kraskevich DA, Chikindas ML. The Hygienic Significance of Microbiota and Probiotics for Human Wellbeing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10419-9. [PMID: 39688648 DOI: 10.1007/s12602-024-10419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
The human body can be viewed as a combination of ecological niches inhabited by trillions of bacteria, viruses, fungi, and parasites, all united by the microbiota concept. Human health largely depends on the nature of these relationships and how they are built and maintained. However, personal hygiene practices have historically been focused on the wholesale elimination of pathogens and "hygiene-challenging microorganisms" without considering the collateral damage to beneficial and commensal species. The microbiota can vary significantly in terms of the qualitative and quantitative composition both between different people and within one person during life, and the influence of various environmental factors, including age, nutrition, bad habits, genetic factors, physical activity, medication, and hygienic practices, facilitates these changes. Disturbance of the microbiota is a predisposing factor for the development of diseases and also greatly influences the course and severity of potential complications. Therefore, studying the composition of the microbiota of the different body systems and its appropriate correction is an urgent problem in the modern world. The application of personal hygiene products or probiotics must not compromise health through disruption of the healthy microbiota. Where changes in the composition or metabolic functions of the microbiome may occur, they must be carefully evaluated to ensure that essential biological functions are unaffected. As such, the purpose of this review is to consider the microbiota of each of the "ecological niches" of the human body and highlight the importance of the microbiota in maintaining a healthy body as well as the possibility of its modulation through the use of probiotics for the prevention and treatment of certain human diseases.
Collapse
Affiliation(s)
- Svetoslav D Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - John Tagg
- Blis Technologies, South Dunedin, 9012, New Zealand
| | - Ammar Algburi
- Department of Microbiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpijskij Ave., 1, Federal Territory Sirius, Sirius, 354340, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Villafloraweg, 1, 5928 SZ, Venlo, The Netherlands
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Oleg V Mitrokhin
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Ilya A Kudryashov
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Denis A Kraskevich
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia.
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia.
| |
Collapse
|
24
|
Yepuri G, Kancharla K, Perfetti R, Shendelman S, Wasmuth A, Ramasamy R. The aldose reductase inhibitors AT-001, AT-003 and AT-007 attenuate human keratinocyte senescence. FRONTIERS IN AGING 2024; 5:1466281. [PMID: 39741583 PMCID: PMC11685203 DOI: 10.3389/fragi.2024.1466281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025]
Abstract
Human skin plays an important role protecting the body from both extrinsic and intrinsic factors. Skin aging at cellular level, which is a consequence of accumulation of irreparable senescent keratinocytes is associated with chronological aging. However, cell senescence may occur independent of chronological aging and it may be accelerated by various pathological conditions. Recent studies have shown that oxidative stress driven keratinocyte senescence is linked to the rate limiting polyol pathway enzyme aldose reductase (AR). Here we investigated the role of three novel synthetic AR inhibitors (ARIs) AT-001, AT-003 and AT-007 in attenuating induced skin cell senescence, in primary normal human keratinocytes (NHK cells), using three different senescence inducing agents: high glucose (HG), hydrogen peroxide (H2O2) and mitomycin-c (MMC). To understand the efficacy of ARIs in reducing senescence, we have assessed markers of senescence, including SA-β-galactosidase activity, γ-H2AX foci, gene expression of CDKN1A, TP53 and SERPINE1, reactive oxygen species generation and senescence associated secretory phenotypes (SASP). Strikingly, all three ARIs significantly inhibited the assessed senescent markers, after senescence induction. Our data confirms the potential role of ARIs in reducing NHK cell senescence and paves the way for preclinical and clinical testing of these ARIs in attenuating cell aging and aging associated diseases.
Collapse
Affiliation(s)
- Gautham Yepuri
- Diabetes Research Program, Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Kushie Kancharla
- Diabetes Research Program, Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | | | | | | | - Ravichandran Ramasamy
- Diabetes Research Program, Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
25
|
Zheng XQ, Zhang XH, Gao HQ, Huang LY, Ye JJ, Ye JH, Lu JL, Ma SC, Liang YR. Green Tea Catechins and Skin Health. Antioxidants (Basel) 2024; 13:1506. [PMID: 39765834 PMCID: PMC11673495 DOI: 10.3390/antiox13121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Green tea catechins (GTCs) are a group of bioactive polyphenolic compounds found in fresh tea leaves (Camellia sinensis (L.) O. Kuntze). They have garnered significant attention due to their diverse health benefits and potential therapeutic applications, including as antioxidant and sunscreen agents. Human skin serves as the primary barrier against various external aggressors, including pathogens, pollutants, and harmful ultraviolet radiation (UVR). Skin aging is a complex biological process influenced by intrinsic factors such as genetics and hormonal changes, as well as extrinsic factors like environmental stressors, among which UVR plays a pivotal role in accelerating skin aging and contributing to various dermatological conditions. Research has demonstrated that GTCs possess potent antioxidant properties that help neutralize free radicals generated by oxidative stress. This action not only mitigates cellular damage but also supports the repair mechanisms inherent in human skin. Furthermore, GTCs exhibit anti-carcinogenic effects by inhibiting pathways involved in tumor promotion and progression. GTCs have been shown to exert anti-inflammatory effects through modulation of inflammatory signaling pathways. Chronic inflammation is known to contribute significantly to both premature aging and various dermatological diseases such as psoriasis or eczema. By regulating these pathways effectively, GTCs may alleviate symptoms associated with inflammatory conditions. GTCs can enhance wound healing processes by stimulating angiogenesis. They also facilitate DNA repair mechanisms within dermal fibroblasts exposed to damaging agents. The photoprotective properties attributed to GTCs further underscore their relevance in skincare formulations aimed at preventing sun-induced damage. Their ability to screen UV light helps shield underlying tissues from harmful rays. This review paper aims to comprehensively examine the beneficial effects of GTCs on skin health through an analysis encompassing in vivo and in vitro studies alongside insights into molecular mechanisms underpinning these effects. Such knowledge could pave the way for the development of innovative strategies focused on harnessing natural compounds like GTCs for improved skincare solutions tailored to combat environmental stresses faced by the human epidermis.
Collapse
Affiliation(s)
- Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Xue-Han Zhang
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Han-Qing Gao
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Lan-Ying Huang
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Jing-Jing Ye
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| | - Shi-Cheng Ma
- Wuzhou Liubao Tea Research Association, #18, Sanlong Avenue, Changzhou District, Wuzhou 543001, China;
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China; (X.-Q.Z.); (X.-H.Z.); (H.-Q.G.); (L.-Y.H.); (J.-J.Y.); (J.-H.Y.); (J.-L.L.)
| |
Collapse
|
26
|
Fink B, Campiche R, Shackelford TK, Voegeli R. Age-dependent changes in skin features and perceived facial appearance in women of five ethnic groups. Int J Cosmet Sci 2024; 46:1017-1034. [PMID: 39051099 DOI: 10.1111/ics.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Research documents effects of skin features on assessments of age, health and attractiveness of female faces. Ethnic variation also has been reported for the impact of age-related changes in skin features on face assessments. Here, we investigate women's self-ratings across age cohorts and ethnic groups and discrepancies with (non-expert) assessor ratings of facial appearance together with age-dependent changes in skin features. METHODS Faces of women 20-65 years from five ethnic groups (each n = 36) were imaged. Participants provided self-ratings of age, health and attractiveness, and were judged on these attributes by members of the same ethnic group (each n = 120). Digital image analysis was used to quantify skin gloss, tone evenness, wrinkling and sagging. Age-dependent changes in ratings and skin features within and between ethnic groups were assessed by comparing information from 10-year cohorts. We also tested whether menopausal status could be predicted by self-ratings, assessor ratings and image-based skin features. RESULTS Women of all ethnic groups judged themselves younger and higher in attractiveness and health compared to third-party assessors, with the largest discrepancies for age in French women and for attractiveness and health in South African women. In Indian and South African women, specular gloss and skin tone evenness were lower compared to other participants, and sagging was higher in Indian, Japanese and South African women compared to Chinese and French women. Women's menopausal status could be predicted from assessor ratings and image-based skin features but not from self-ratings. CONCLUSION There are differences between women's self-ratings and assessor ratings of facial appearance. These discrepancies vary with female age and ethnicity. Age and ethnicity effects also are evident in age-dependent changes in skin features within and across ethnic groups, which together with assessor (but not self-) ratings of facial appearance predict menopausal status.
Collapse
Affiliation(s)
- Bernhard Fink
- Biosocial Science Information, Biedermannsdorf, Austria
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
27
|
He X, Li P, Zhao S, Liu H, Tang W, Xie J, Tang J. Kunzea Ericoides (Kanuka) Leaf Extracts Show Moisturisation, Antioxidant, and UV Protection Effects in HaCaT Cells and Anti-melanogenesis Effects in B16F10 Cells. Appl Biochem Biotechnol 2024; 196:8892-8906. [PMID: 39009952 DOI: 10.1007/s12010-024-04989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
Kunzea ericoides (kanuka) products are well-known for their potent medicinal values in antioxidant and anti-inflammatory applications. The present study identified various compounds, such as chlorogenic acid, gallic acid, quercetin, and (E)-ferulic acid in the kanuka leaf extract, showing its potential use in maintaining skin health. The influence of kanuka leaf extract upon epidermal cells concerning cytotoxicity and in vitro activities of moisturisation, antioxidation, UV protection, and anti-melanogenesis effects were explored in the study. Kanuka leaf extract demonstrated significant promotion in the proliferation of HaCaT and B16F10 cells. After incubation with kanuka leaf extract, the content of ROS and DPPH in HaCaT was significantly decreased; at the same time, more SOD was produced. Furthermore, hyaluronidase-1 (HYAL-1) and HYAL-4 expressions were inhibited, while the aquaporin 3 (AQP-3) content was significantly increased in HaCaT. Kanuka leaf extract also inhibited the expressions of matrix metalloproteinases-1 (MMP-1) and MMP-14 in UV-induced HaCaT cells. In the B16F10 cell line, melanin and tyrosinase production were decreased under the presence of kanuka leaf extract, and the expressions of microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TYRP-1), and TYRP-2 were also inhibited. The study validated kanuka leaf extract as an effective natural product against photoaging and melanogenesis.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Peishan Li
- Department of Dermatology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, People's Republic of China
| | - Shixin Zhao
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Hengdeng Liu
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Weijian Tang
- Shanghai Urganic Bio-Technology Co., Ltd, Shanghai, 200000, People's Republic of China
| | - Julin Xie
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Jinming Tang
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
28
|
Notari L, Pieri L, Cialdai F, Fusco I, Risaliti C, Madeddu F, Bacci S, Zingoni T, Monici M. Laser Emission at 675 nm: Molecular Counteraction of the Aging Process. Biomedicines 2024; 12:2713. [PMID: 39767620 PMCID: PMC11673938 DOI: 10.3390/biomedicines12122713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Many lasers applied in skin rejuvenation protocols show emissions with wavelengths falling in the red or near-infrared (NIR) bands. To obtain further in vitro data on the potential therapeutic benefits regarding rejuvenation, we employed a 675 nm laser wavelength on cultured human dermal fibroblasts to understand the mechanisms involved in the skin rejuvenation process's signaling pathways by analyzing cytoskeletal proteins, extracellular matrix (ECM) components, and membrane integrins. METHODS Normal human dermal fibroblasts (NHDFs) were irradiated with a 675 nm laser 24 h after seeding, and immunofluorescence microscopy and Western blotting were applied. RESULTS The results demonstrate that the laser treatment induces significant changes in human dermal fibroblasts, affecting cytoskeleton organization and the production and reorganization of ECM molecules. The cell response to the treatment appears to predominantly involve paxillin-mediated signaling pathways. CONCLUSIONS These changes suggest that laser treatment can potentially improve the structure and function of skin tissue, with interesting implications for treating skin aging.
Collapse
Affiliation(s)
- Lorenzo Notari
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.N.); (F.C.); (C.R.); (M.M.)
| | - Laura Pieri
- El.En. Group, 50041 Calenzano, Italy; (L.P.); (F.M.); (T.Z.)
| | - Francesca Cialdai
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.N.); (F.C.); (C.R.); (M.M.)
| | - Irene Fusco
- El.En. Group, 50041 Calenzano, Italy; (L.P.); (F.M.); (T.Z.)
| | - Chiara Risaliti
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.N.); (F.C.); (C.R.); (M.M.)
| | | | - Stefano Bacci
- Research Unit of Histology and Embryology, Department of Biology, University of Florence, 50121 Florence, Italy;
| | - Tiziano Zingoni
- El.En. Group, 50041 Calenzano, Italy; (L.P.); (F.M.); (T.Z.)
| | - Monica Monici
- ASA Campus Joint Laboratory, ASA Research Division, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.N.); (F.C.); (C.R.); (M.M.)
| |
Collapse
|
29
|
Oizumi R, Shibata R. Association between lifestyle and skin moisturizing function in community-dwelling older adults. Dermatol Reports 2024; 16:9964. [PMID: 39669882 PMCID: PMC11632451 DOI: 10.4081/dr.2024.9964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 12/14/2024] Open
Abstract
The skin's moisturizing function declines with age, resulting in skin dryness in around 40% of older people. Various lifestyle habits may affect the skin moisturizing function, however it is not clear which ones are particularly relevant. A cross-sectional study was conducted between September and December 2023, involving individuals aged 65 years and over. Self-administered questionnaires were employed to collect information on lifestyle habits. Stratum corneum hydration (SC hydration), as an indicator of skin hydration, was measured and analyzed using multiple regression. A total of 124 individuals participated in the study, with a mean age of 83.6 years. Daily use of moisturizer (p=0.024) and exercise level (p=0.002) demonstrated significant associations with increased SC hydration. Although not statistically significant, smoking exhibited a trend towards decreased SC hydration (p=0.173). The findings of this study suggest that, among various lifestyle habits, exercise and daily moisturizing contribute to enhanced SC hydration. These results indicate that lifestyle modifications may improve the skin moisturizing function of the elderly.
Collapse
Affiliation(s)
- Ryosuke Oizumi
- Faculty of Nursing, Shijonawate Gakuen University, Osaka, Japan
| | | |
Collapse
|
30
|
He H, Huang W, Xiong L, Ma C, Wang Y, Sun P, Shi D, Li L, Yan H, Wu Y. FUNDC1-mediated mitophagy regulates photodamage independently of the PINK1/Parkin-dependent pathway. Free Radic Biol Med 2024; 225:630-640. [PMID: 39389212 DOI: 10.1016/j.freeradbiomed.2024.10.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Ultraviolet B(UVB) triggers a pro-survival response through mitophagy, but the role of FUNDC1-mediated mitophagy in photodamaged skin remains unexplored. OBJECTIVES To clarify the function of mitophagy in UVB-induced photodamaged skin. METHODS To investigate the role of FUNDC1-mediated mitophagy in UVB-induced mitochondrial damage and cell apoptosis, FUNDC1 knockdown in C57BL/6 mice was performed using adeno-associated virus. Additionally, FUNDC1 overexpression and knockdown in HaCaT cells were conducted using lentivirus. A comprehensive analysis was conducted on a panel of human sun-exposed skin samples, alongside control samples, to assess the expression levels of FUNDC1. RESULTS In UVB-induced C57BL/6 mice, the dorsal skin showed photodamage including erythema, scaling, erosion, and scabs. The expression levels of PINK1, Parkin, and BNIP3 did not show significant changes, while FUNDC1 expression consistently declined along with LC3B. Cytochrome C, Bax, and cleaved-caspase3 were upregulated, while Bcl2 was downregulated. UVB-induced HaCaT cells showed mitochondrial damage, accompanied by FUNDC1 downregulation and BNIP3 upregulation, while PINK1 and Parkin showed no significant changes. FUNDC1 overexpression led to an increase in mtROS and a decrease in mitochondrial membrane potential and ATP levels, indicating complete mitochondrial clearance and exacerbated cell death. FUNDC1 knockdown protected against UVB-induced photodamage in mice and mitigated mitochondrial damage and apoptosis in HaCaT cells by activating compensatory PINK1/Parkin-dependent mitophagy, which was evidenced by upregulation of PINK1 and Bcl2 and downregulation of Bax. In human sun-exposed skin samples, there was a decrease in the number of FUNDC1+ cells compared with non-sun-exposed controls. CONCLUSIONS FUNDC1-mediated mitophagy regulates skin photodamage and provides a novel mechanism for resisting photodamage, presenting a potential target for future therapeutic interventions.
Collapse
Affiliation(s)
- Hailun He
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China; Department of Medical Aesthetics, The Third People's Hospital of Chengdu, Southwest Jiaotong University, Chengdu, China
| | - Wenyue Huang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Lidan Xiong
- Evaluation Center for Cosmetics Safety and Efficacy, West China Hospital, Sichuan University, Chengdu, China
| | - Cong Ma
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China; Department of Dermatology, The Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, China
| | - Yichong Wang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Peihong Sun
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Dongxin Shi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Liangman Li
- Orthopedics Department, The First Hospital of China Medical University, Shenyang, China
| | - Hongwei Yan
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China; Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
31
|
Somji M, Solomon T. Use of a fractional 1570-nm diode laser scanner for nonablative face and neck rejuvenation. J COSMET LASER THER 2024; 26:143-149. [PMID: 39745250 DOI: 10.1080/14764172.2024.2441702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/10/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND The use of non-ablative fractionated lasers for skin rejuvenation has been proven to be effective in improving skin texture, and has become popular due to minimal wounding, significantly shorter recovery times and decreased adverse effects. OBJECTIVE To retrospectively analyze improvement in skin texture in healthy women aged over 18 years with Fitzpatrick skin type II-IV. METHODS Participants received 3 facial and/or neck treatments with the 1570-nm fractional scanning diode laser at one-month intervals. Three months after the last treatment session two blinded evaluators assessed skin improvement using before and after photos. Pain and patient satisfaction were recorded. RESULTS Sixteen women with a mean age of 45.4 ± 4.1 years (range 35-50 years) and skin type II-IV were included in the analysis. All 16 participants received facial treatments and seven (43.8%) also received neck treatments. Three months follow-up evaluation showed that the majority of participants had at least a visible change in the treated areas. Mean pain score was low and decreased with each treatment session. CONCLUSION Skin treatment using fractional scanning 1570-nm diode laser improves skin laxity in women with skin types II-IV. Larger studies are warranted to further clarify the efficacy and safety of this modality.
Collapse
|
32
|
Mady MS, Elsayed HE, Tawfik NF, Moharram FA. Volatiles extracted from Melaleuca Rugulosa (Link) Craven leaves: comparative profiling, bioactivity screening, and metabolomic analysis. BMC Complement Med Ther 2024; 24:394. [PMID: 39538246 PMCID: PMC11562704 DOI: 10.1186/s12906-024-04683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Melaleuca species (family Myrtaceae) are characterized by their wide-ranging applications as antimicrobials and in skin-related conditions. Herein, we estimated the volatile profile and biological significance of M. rugulosa (Link) leaves for the first time supported by a dereplication protocol. MATERIALS AND METHODS Volatile components were extracted using hydrodistillation (HD), supercritical fluid (SF), and headspace (HS) techniques and identified using GC/MS. The variations among the three extracts were assessed using principal component analysis and orthogonal partial least square discriminant analysis (OPLS-DA). The extracted volatiles were tested for radical scavenging activity, anti-aging, and anti-hyperpigmentation potential. Finally, disc diffusion and broth microdilution assays were implemented to explore the antibacterial capacity against Streptococcus pyogenes, Staphylococcus aureus, Clostridium perfringens, and Pseudomonas aeruginosa. RESULTS The yield of the SF technique (0.8%) was three times higher than HD. GC/MS analysis revealed that the oxygenated compounds are the most proponents in the three extracts being 95.93% (HD), 80.94% (HS), and 48.4% (SF). Moreover, eucalyptol (1,8-cineol) represents the major component in the HD-EO (89.60%) and HS (73.13%) volatiles, while dl-α-tocopherol (16.27%) and α-terpineol (11.89%) represent the highest percentage in SF extract. Regarding the bioactivity profile, the HD-EO and SF-extract showed antioxidant potential in terms of oxygen radical absorbance capacity, and β- carotene assays, while exerting weak activity towards DPPH. In addition, they displayed potent anti-elastase and moderate anti-collagenase activities. The HD-EO exhibited potent anti-tyrosinase activity, while the SF extract showed a moderate level compared to tested controls. OPLS-DA and dereplication studies predicted that the selective antibacterial activity of HD-EO to S. aureus was related to eucalyptol, while SF extract to C. perfringens was related to α-tocopherol. CONCLUSIONS M. rugulosa leaves are considered a vital source of bioactive volatile components that are promoted for controlling skin aging and infection. However, further safety and clinical studies are recommended.
Collapse
Affiliation(s)
- Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| | - Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Nashwa F Tawfik
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
33
|
Camargo C, Tim C, Martignago CCS, Renno ACM, Silva PCE, Andrade ALMDE, Pichara J, Morato ECP, Souza JRDE, Assis L. Clinical evaluation of combined autologous Platelet-Rich Plasma and Volume-Controlled Ozone Therapy in Facial Rejuvenation: A randomized controlled Pilot Study. AN ACAD BRAS CIENC 2024; 96:e20240402. [PMID: 39504084 DOI: 10.1590/0001-3765202420240402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/26/2024] [Indexed: 11/08/2024] Open
Abstract
Platelet rich plasma and ozone therapy have been suggested in the clinical setting as promising and adjuvant therapies for managing the symptoms related to the facial aging. However, there is a lack of evidence about the effects of combining both therapies on rejuvenation. Thus, the aim of the present study was to evaluate and to compare the safety and efficacy of both therapies in facial aging. A single-center prospective pilot study was conducted. Female participants, aged 40 to 60 years, were randomized into 2 groups: participants received the platelet rich plasma treatment (PRP); participants received the therapy with platelet rich plasma associated with ozone therapy (PRPOT). Interventions were performed using the facial intradermal technique in 42 pre-established points, for 4 sessions with an interval of 15 days between them. After analyses performed using photographic records, assessment of frontal, periorbital, nasolabial and marionette wrinkles (Wrinkle Assessment Scale), self-esteem assessment (Brazilian Version of Rosenberg's Self-Esteem Scale) and assessment of patient satisfaction (FACE-Q) can be suggested that the platelet rich plasma protocol performed in the present study, as well as its association with volume-controlled ozone therapy, proved to be safe and potentially promising modalities in the treatment of facial aging.
Collapse
Affiliation(s)
- Carla Camargo
- Universidade Brasil, Rua Carolina Fonseca, 584, Itaquera, 08230-030 São Paulo, SP, Brazil
| | - Carla Tim
- Universidade Brasil, Rua Carolina Fonseca, 584, Itaquera, 08230-030 São Paulo, SP, Brazil
| | | | - Ana Claudia M Renno
- Universidade Federal de São Paulo, Rua Silva Jardim, 136, Vila Mathias, 11015-020 Santos, SP, Brazil
| | - Paula Cassanelli E Silva
- Universidade Federal de São Paulo, Rua Silva Jardim, 136, Vila Mathias, 11015-020 Santos, SP, Brazil
| | - Ana Laura M DE Andrade
- Universidade Brasil, Rua Carolina Fonseca, 584, Itaquera, 08230-030 São Paulo, SP, Brazil
| | - Jynani Pichara
- Universidade Brasil, Rua Carolina Fonseca, 584, Itaquera, 08230-030 São Paulo, SP, Brazil
| | - Eliana Claudia P Morato
- Universidade Santa Cecília, Santos, Rua Oswaldo Cruz, 277, Boqueirão, 11045-907 Santos, SP, Brazil
| | - José Ricardo DE Souza
- Industria Brasileira de Equipamentos Médicos (Ibramed), Avenida Dr. Carlos Burgos, 2800, Jardim Italia, 13901-080 Amparo, SP, Brazil
| | - Lívia Assis
- Universidade Brasil, Rua Carolina Fonseca, 584, Itaquera, 08230-030 São Paulo, SP, Brazil
| |
Collapse
|
34
|
Faria AVS, Andrade SS. Decoding the impact of ageing and environment stressors on skin cell communication. Biogerontology 2024; 26:3. [PMID: 39470857 DOI: 10.1007/s10522-024-10145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 11/01/2024]
Abstract
The integumentary system serves as a crucial protective barrier and is subject to complex signaling pathways that regulate its physiological functions. As the body's first line of defense, the skin is continuously exposed to environmental stressors, necessitating a robust network of signaling molecules to maintain homeostasis. Considering the main cellular components to be keratinocytes, melanocytes, fibroblasts, and fibrous components, collagen of various types, this review explores the intricate signaling mechanisms that govern skin integrity, focusing on key pathways involved in impacts of ageing and environment factors on skin health. The role of growth factors, cytokines, hormones and other molecular mediators in these processes is examined. Specially for women, decrease of estrogen is determinant to alter signaling and to compromise skin structure, especially the dermis. Environmental factors, such as ultraviolet rays and pollution alongside the impact of ageing on signaling pathways, especially TGF-β and proteases (metalloproteinases and cathepsins). Furthermore, with advancing age, the skin's capacity to shelter microbiome challenges diminishes, leading to alterations in signal transduction and subsequent functional decline. Understanding these age-related changes is essential for developing targeted therapies aimed at enhancing skin health and resilience, but also offers a promising avenue for the treatment of skin disorders and the promotion of healthy ageing.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | | |
Collapse
|
35
|
Zhang J, Wu F, Wang J, Qin Y, Pan Y. Unveiling the Metabolomic Profile of Oily Sensitive Skin: A Non-Invasive Approach. Int J Mol Sci 2024; 25:11033. [PMID: 39456816 PMCID: PMC11507585 DOI: 10.3390/ijms252011033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Skin barrier impairment is becoming increasingly common due to changes in lifestyle and modern living environments. Oily sensitive skin (OSS) is a condition that is characterized by an impaired skin barrier. Thus, examining the differences between OSS and healthy skin will enable a more objective evaluation of the characteristics of OSS and facilitate investigations of potential treatments. Initially, a self-assessment questionnaire was used to identify patients with OSS. Biophysical measurements and LAST scores were used to determine whether skin barrier function was impaired. Epidermal biophysical properties, including skin hydration, transepidermal water loss (TEWL), sebum content, erythema index (EI), and a* value, were measured with noninvasive instruments. We subsequently devised a noninvasive D-square sampling technique to identify changes in the skin metabolome in conjunction with an untargeted metabolomics analysis with an Orbitrap Q ExactiveTM series mass spectrometer. In the stratum corneum of 47 subjects, 516 skin metabolites were identified. In subjects with OSS, there was an increase in the abundance of 15 metabolites and a decrease in the abundance of 48 metabolites. The participants with OSS were found to have the greatest disruptions in sphingolipid and amino acid metabolism. The results revealed that an impaired skin barrier is present in patients with OSS and offers a molecular target for screening for skin barrier damage.
Collapse
Affiliation(s)
| | | | | | | | - Yao Pan
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (F.W.); (J.W.); (Y.Q.)
| |
Collapse
|
36
|
Superti F, Russo R. Alpha-Lipoic Acid: Biological Mechanisms and Health Benefits. Antioxidants (Basel) 2024; 13:1228. [PMID: 39456481 PMCID: PMC11505271 DOI: 10.3390/antiox13101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a bioactive molecule with significant health effects. The biological action of ALA has been ascribed to the characteristic antioxidant properties of the oxidized form (ALA) and its reduced counterpart the dihydrolipoic acid (DHLA) system. The ALA/DHLA combination represents an ideal antioxidant since it can quench radicals, is able to chelate metals, is amphiphilic, and has no major adverse effects. This unique system is able to scavenge reactive oxygen species, exerting a major effect on tissue levels of reduced forms of other antioxidants, including glutathione. For this reason, ALA is also known as the "antioxidant of antioxidants". This review analyzes the antioxidant, anti-inflammatory, and neuroprotective effects of ALA and discusses its applications as an ameliorative tool for chronic diseases and those associated with oxidative stress. Results from in vitro and in vivo studies demonstrated that ALA modulates various oxidative stress pathways suggesting its application, alone or in combination with other functional substances, as a useful support in numerous conditions, in which the balance oxidant-antioxidant is disrupted, such as neurodegenerative disorders. Based on several successful clinical studies, it has been also established that oral ALA supplements are clinically useful in relieving the complications of diabetes and other disorders including cardiovascular diseases and nerve discomforts suggesting that ALA can be considered a useful approach to improving our health.
Collapse
Affiliation(s)
- Fabiana Superti
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, RM, Italy;
- Association for Research on Integrative Oncology Therapies, (ARTOI) Foundation, Via Ludovico Micara, 73, 00165 Rome, RM, Italy
| | - Rosario Russo
- Giellepi S.p.A., Via G. Verdi, 41/Q, 20831 Seregno, MB, Italy
| |
Collapse
|
37
|
Peng X, Liu N, Zeng B, Bai Y, Xu Y, Chen Y, Chen L, Xia L. High salt diet accelerates skin aging in wistar rats: an 8-week investigation of cell cycle inhibitors, SASP markers, and oxidative stress. Front Bioeng Biotechnol 2024; 12:1450626. [PMID: 39465002 PMCID: PMC11502324 DOI: 10.3389/fbioe.2024.1450626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Background Recent studies have shown that the high salt diet (HSD) is linked to increased dermal pro-inflammatory status and reduced extracellular matrix (ECM) expression in inflamed skin of mice. Decreased ECM content is a known aging phenotype of the skin, and alterations in ECM composition and organization significantly contribute to skin aging. This study aimed to determine whether a high salt diet accelerates skin aging and to identify the time point at which this effect becomes apparent. Methods Wistar rats were randomly divided into normal diet and high salt diet groups and fed continuously for 8 weeks. Skin samples were collected at weeks 7 and week 8. Skin pathological sections were evaluated and levels of cell cycle inhibitors, senescence-associated secretory phenotype (SASP), oxidative stress and vascular regulatory factors (VRFs) were examined. Correlation analyses were performed to reveal the effect of a high salt diet as an extrinsic factor on skin aging and to analyse the correlation between a high salt diet and intrinsic aging and blood flow status. Results At week 8, HSD rats exhibited thickened epidermis, thinned dermis, and atrophied hair follicles. The expression of cell cycle inhibitors and oxidative stress levels were significantly elevated in the skin of HSD rats at both week 7 and week 8. At week 7, some SASPs, including TGF-β and PAI-1, were elevated, but others (IL-1, IL-6, IL-8, NO) were not significantly changed. By week 8, inflammatory molecules (IL-1, IL-6, TGF-β), chemokines (IL-8), proteases (PAI-1), and non-protein molecules (NO) were significantly increased. Notably, despite elevated PAI-1 levels suggesting possible blood hypercoagulation, the ET-1/NO ratio was reduced in the HSD group at week 8. Conclusion The data suggest that a high salt diet causes skin aging by week 8. The effect of a high salt diet on skin aging is related to the level of oxidative stress and the expression of cell cycle inhibitors. Additionally, a potential protective mechanism may be at play, as evidenced by the reduced ET-1/NO ratio, which could help counteract the hypercoagulable state and support nutrient delivery to aging skin.
Collapse
Affiliation(s)
- Xile Peng
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Nannan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Baihan Zeng
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Yilin Bai
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Yang Xu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Yixiao Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Li Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| | - Lina Xia
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Traditional Chinese Medicine Regimen and Health of Sichuan Province, Chengdu, China
| |
Collapse
|
38
|
Zhang Y, Liu L, Yue L, Huang Y, Wang B, Liu P. Uncovering key mechanisms and intervention therapies in aging skin. Cytokine Growth Factor Rev 2024; 79:66-80. [PMID: 39198086 DOI: 10.1016/j.cytogfr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Advancements in understanding skin aging mechanisms, which encompass both external and internal aging processes, have spurred the development of innovative treatments primarily aimed at improving cosmetic appearance. These findings offer the potential for the development of novel therapeutic strategies aimed at achieving long-term, non-therapy-dependent clinical benefits, including the reversal of aging and the mitigation of associated health conditions. Realizing this goal requires further research to establish the safety and efficacy of targeting aging-related skin changes, such as pigmentation, wrinkling, and collagen loss. Systematic investigation is needed to identify the most effective interventions and determine optimal anti-aging treatment strategies. These reviews highlight the features and possible mechanisms of skin aging, as well as the latest progress and future direction of skin aging research, to provide a theoretical basis for new practical anti-skin aging strategies.
Collapse
Affiliation(s)
- Yuqin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lin Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China
| | - Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, PR China.
| |
Collapse
|
39
|
Ahn SY, Kim KA, Lee S, Kim KH. Potential skin anti-aging effects of main phenolic compounds, tremulacin and tremuloidin from Salix chaenomeloides leaves on TNF-α-stimulated human dermal fibroblasts. Chem Biol Interact 2024; 402:111192. [PMID: 39127184 DOI: 10.1016/j.cbi.2024.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The genus Salix spp. has long been recognized as a healing herb for its use in treating fever, inflammation, and pain relief, as well as a food source for its nutritional value. In this study, we aimed to explore the potential bioactive natural products in the leaves of Salix chaenomeloides, commonly known as Korean pussy willow, for their protective effects against skin damage, including aging. Utilizing LC/MS-guided chemical analysis of the ethanol extract of S. chaenomeloides leaves, with a focus on major compounds, we successfully isolated two main phenolic compounds, tremulacin (1) and tremuloidin (2). Subsequently, we investigated the protective effects of tremulacin (1) and tremuloidin (2) in TNF-α-stimulated human dermal fibroblasts (HDFs). The results revealed that both tremulacin (1) and tremuloidin (2) inhibited TNF-α-stimulation-induced ROS, suppressed matrix metalloproteinase-1 (MMP-1) expression, and enhanced collagen secretion. This implies that both tremulacin (1) and tremuloidin (2) hold promise as preventive agents against photoaging-induced skin aging. Furthermore, we assessed the activity of mitogen-activated protein kinases (MAPKs), cyclooxygenase-2 (COX-2), and heme oxygenase 1 (HO-1) to elucidate the mechanism of photoaging inhibition by tremuloidin (2), which exhibited superior efficacy. We found that tremuloidin (2) inhibited ERK and p38 phosphorylation and notably suppressed COX-2 expression while significantly upregulating HO-1 expression. These findings suggest potent anti-inflammatory and antioxidant properties of tremuloidin (2), positioning it as a potential candidate for combating photoaging-induced skin aging.
Collapse
Affiliation(s)
- Si-Young Ahn
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kyung Ah Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
40
|
Ruiz N, Lopez RM, Marques R, Fontenete S. The Redefinition and Volumization of the Lip Area with Hyaluronic Acid: A Case Series. J Clin Med 2024; 13:5705. [PMID: 39407764 PMCID: PMC11477425 DOI: 10.3390/jcm13195705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Background: The increasing popularity of non-surgical cosmetic enhancements for the lower face and perioral area, particularly through hyaluronic acid (HA) fillers, reflects the growing desire for improved lip volume and definition. This study showcases the effects of a specific HA filler on lip fullness, shape, and overall perioral rejuvenation. Methods: We conducted a retrospective single-site observational analysis of adult female patients treated with Genefill Soft Fill HA injections in the lips and perioral areas. Both patient and physician satisfaction were evaluated using the Likert scale and Global Aesthetic Improvement Scale (GAIS), respectively. The outcomes for natural appearance, volume, and durability were assessed using a five-point scale. The patients were followed up with for up to six months to monitor any adverse events. Results: The cohort included thirteen female patients with an average age of 55.3 ± 8.3 years. Approximately 1.2 ± 0.4 mL of filler was used per patient. The results indicate high satisfaction, with scores above 4 for naturalness, volume, and durability. Over 92% of patients reported a significant improvement in appearance. No moderate or severe adverse events were reported. Conclusions: Genefill Soft Fill HA filler is both effective and safe for enhancing lip esthetics, with high satisfaction rates among recipients and no significant adverse events observed.
Collapse
Affiliation(s)
| | | | - Rubén Marques
- Medical Department, BioScience GmbH, 28008 Madrid, Spain; (R.M.); (S.F.)
- Institute of Biomedicine (IBIOMED), University of Leon, 24071 León, Spain
| | - Silvia Fontenete
- Medical Department, BioScience GmbH, 28008 Madrid, Spain; (R.M.); (S.F.)
| |
Collapse
|
41
|
Cordiano R, Gammeri L, Di Salvo E, Gangemi S, Minciullo PL. Pomegranate ( Punica granatum L.) Extract Effects on Inflammaging. Molecules 2024; 29:4174. [PMID: 39275022 PMCID: PMC11396831 DOI: 10.3390/molecules29174174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Pomegranate is a notable source of nutrients, containing a considerable proportion of organic acids, polysaccharides, vitamins, fatty acids, and polyphenols such as flavonoids, phenolic acids, and tannins. It is also rich in nutritionally important minerals and chemical elements such as K, P, Na, Ca, Mg, and N. The presence of several bioactive compounds and metabolites in pomegranate has led to its incorporation into the functional food category, where it is used for its numerous therapeutic properties. Pomegranate's bioactive compounds have shown antioxidant, anti-inflammatory, and anticancer effects. Aging is a process characterized by the chronic accumulation of damages, progressively compromising cells, tissues, and organs over time. Inflammaging is a chronic, subclinical, low-grade inflammation that occurs during the aging process and is linked to many age-related diseases. This review aims to summarize and discuss the evidence of the benefits of pomegranate extract and its compounds to slow the aging processes by intervening in the mechanisms underlying inflammaging. These studies mainly concern neurodegenerative and skin diseases, while studies in other fields of application need to be more practical. Furthermore, no human studies have demonstrated the anti-inflammaging effects of pomegranate. In the future, supplementation with pomegranate extracts, polyphenols, or urolithins could represent a valuable low-risk complementary therapy for patients with difficult-to-manage diseases, as well as a valid therapeutic alternative for the topical or systemic treatment of skin pathologies.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Luca Gammeri
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Eleonora Di Salvo
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
42
|
Shakel Z, Costa Lima SA, Reis S. Strategies to make human skin models based on cellular senescence for ageing research. Ageing Res Rev 2024; 100:102430. [PMID: 39032611 DOI: 10.1016/j.arr.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Human skin ageing is closely related to the ageing of the whole organism, and it's a continuous multisided process that is influenced not only by genetic and physiological factors but also by the cumulative impact of environmental factors. Currently, there is a scientific community need for developing skin models representing ageing processes to (i) enhance understanding on the mechanisms of ageing, (ii) discover new drugs for the treatment of age-related diseases, and (iii) develop effective dermo-cosmetics. Bioengineers worldwide are trying to reproduce skin ageing in the laboratory aiming to better comprehend and mitigate the senescence process. This review provides details on the main ageing molecular mechanisms and procedures to obtain in vitro aged skin models.
Collapse
Affiliation(s)
- Zinaida Shakel
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto, Portugal
| |
Collapse
|
43
|
Scarano A, Qorri E, Sbarbati A, Gehrke SA, Frisone A, Amuso D, Tari SR. The efficacy of hyaluronic acid fragments with amino acid in combating facial skin aging: an ultrasound and histological study. J Ultrasound 2024; 27:689-697. [PMID: 38913131 PMCID: PMC11333785 DOI: 10.1007/s40477-024-00925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Various techniques have been employed in aesthetic medicine to combat skin aging, in particular that of the facial region. Hyaluronic acid is utilized to enhance moisture levels and extracellular matrix molecules. This study aims to histologically assess the effects of low molecular weight hyaluronic acid fragments combined with amino acids (HAAM) on facial skin rejuvenation through intradermal microinjections. METHODS A total of twenty women, with an average age of 45 and ranging from 35 to 64 years old, participated in the study, including 8 in menopause and 12 in the childbearing age group. Mesotherapy was used to administer HAAM to the patients. Prior to and three months after the treatment, each patient underwent small circular punch biopsies. Ultrasound examinations were conducted using B-mode, capturing 2D images in longitudinal or transverse orientations with frequencies ranging from 5 to 13 Mega-hertz (MY LAB X8, ESAOTE, Genova, Italy). A total of 60 ultrasound examinations were taken, with 30 collected before treatment and 30 after treatment. RESULTS The histological analysis demonstrates an increase in fibroblast activity resulting in the production of Type III reticular collagen, as well as an increased number of blood vessels and epidermal thickness. However, the analysis of ultrasound data before and after treatment showed no statistical difference in skin thickness in malar area, chin and mandibular angle. CONCLUSIONS Histological assessments indicate that subcutaneous infiltration of HAAM has a substantial impact on the dermis of facial skin.
Collapse
Affiliation(s)
- Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy.
| | - E Qorri
- Department of Dentistry, Faculty of Medical Sciences, Albanian University, 1001, Tirana, Albania
| | - A Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - S A Gehrke
- Department of Research, Bioface/PgO/UCAM, Montevideo, Uruguay
| | - Alessio Frisone
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy
| | - D Amuso
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - Sergio Rexhep Tari
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy
| |
Collapse
|
44
|
Kumar P, Verma A, Ashique S, Bhowmick M, Mohanto S, Singh A, Gupta M, Gupta A, Haider T. Unlocking the role of herbal cosmeceutical in anti-ageing and skin ageing associated diseases. Cutan Ocul Toxicol 2024; 43:211-226. [PMID: 39024063 DOI: 10.1080/15569527.2024.2380326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The process of skin ageing is a natural biological phenomenon characterised by the emergence of wrinkles, age spots, sagging skin, and dryness over time. The increasing significance of skin in physical attractiveness has heightened skincare concerns. Anti-ageing cosmetics play a pivotal role in nurturing the skin, enhancing its quality, and promoting overall health. Today, cosmetics have evolved beyond mere aesthetics and are now integral to individual wellness. The contemporary quest for perpetual youth has intensified, prompting a deeper exploration into the skin ageing process. This comprehensive exploration delves into various elements involved in skin ageing, encompassing cells such as stem and endothelial cells, blood vessels, soft tissues, and signalling pathways. The molecular basis of skin ageing, including biochemical factors like reactive oxygen species, damaged DNA, free radicals, ions, and proteins (mRNA), is scrutinised alongside relevant animal models. The article critically analyzes the outcomes of utilising herbal components, emphasising their advantageous anti-ageing properties. The factors contributing to skin ageing, mechanistic perspectives, management approaches involving herbal cosmeceutical, and associated complications (especially cardiovascular diseases, Parkinson's, Alzheimer's, etc.) are succinctly addressed. In addition, the manuscript further summarises the recent patented innovations and toxicity of the herbal cosmeceuticals for anti-ageing and ageing associated disorders. Despite progress, further research is imperative to unlock the full potential of herbal components as anti-ageing agents.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM University Delhi-NCR Campus, Ghaziabad, UPttarpradesh, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UPttarpradesh, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Anita Singh
- Department of Pharmaceutical Sciences, Kumaun University Campus, Bhimtal, Uttarakhand, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Gupta
- Department of Pharmacognosy and phytochemistry, Hygia Institute of Pharmaceutical Education & Research, Lucknow, Uttar Pradesh, India
| | - Tanweer Haider
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| |
Collapse
|
45
|
Boismal F, Peltier S, Ly Ka So S, Chevreux G, Blondel L, Serror K, Setterblab N, Zuelgaray E, Boccara D, Mimoun M, Guere C, Benssussan A, Dorr M, Beauchef G, Vie K, Michel L. Proteomic and secretomic comparison of young and aged dermal fibroblasts highlights cytoskeleton as a key component during aging. Aging (Albany NY) 2024; 16:11776-11795. [PMID: 39197170 PMCID: PMC11386920 DOI: 10.18632/aging.206055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/29/2024] [Indexed: 08/30/2024]
Abstract
Crucial for skin homeostasis, synthesis and degradation of extracellular matrix components are orchestrated by dermal fibroblasts. During aging, alterations of component expression, such as collagens and enzymes, lead to reduction of the mechanical cutaneous tension and defects of skin wound healing. The aim of this study was to better understand the molecular alterations underwent by fibroblasts during aging by comparing secretomic and proteomic signatures of fibroblasts from young (<35years) and aged (>55years) skin donors, in quiescence or TGF-stimulated conditions, using HLPC/MS. The comparison of the secretome from young and aged fibroblasts revealed that 16 proteins in resting condition, and 11 proteins after a 24h-lasting TGF-β1-treatment, were expressed in significant different ways between the two cell groups (fold change>2, p-value <0.05), with a 77% decrease in the number of secreted proteins in aged cells. Proteome comparison between young and aged fibroblasts identified a significant change of 63 proteins in resting condition, and 73 proteins in TGF-β1-stimulated condition, with a 67% increase in the number of proteins in aged fibroblasts. The majority of the differentially-expressed molecules belongs to the cytoskeleton-associated proteins and aging was characterized by an increase in Coronin 1C (CORO1C), and Filamin B (FLNB) expression in fibroblasts together with a decrease in Cofilin (CFL1), and Actin alpha cardiac muscle 1 (ACTC1) detection in aged cells, these proteins being involved in actin-filament polymerization and sharing co-activity in cell motility. Our present data reinforce knowledge about an age-related alteration in the synthesis of major proteins linked to the migratory and contractile functions of dermal human fibroblasts.
Collapse
Affiliation(s)
- Françoise Boismal
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
| | - Sandy Peltier
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | - Sophie Ly Ka So
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | | | - Loïse Blondel
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
| | - Kévin Serror
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | | | | | - David Boccara
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Maurice Mimoun
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | | | - Armand Benssussan
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
| | | | | | | | - Laurence Michel
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris Cité, Paris, France
- Dermatology Department, Saint-Louis Hospital, Paris, France
| |
Collapse
|
46
|
Konstantinou E, Longange E, Kaya G. Mechanisms of Senescence and Anti-Senescence Strategies in the Skin. BIOLOGY 2024; 13:647. [PMID: 39336075 PMCID: PMC11428750 DOI: 10.3390/biology13090647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
The skin is the layer of tissue that covers the largest part of the body in vertebrates, and its main function is to act as a protective barrier against external environmental factors, such as microorganisms, ultraviolet light and mechanical damage. Due to its important function, investigating the factors that lead to skin aging and age-related diseases, as well as understanding the biology of this process, is of high importance. Indeed, it has been reported that several external and internal stressors contribute to skin aging, similar to the aging of other tissues. Moreover, during aging, senescent cells accumulate in the skin and express senescence-associated factors, which act in a paracrine manner on neighboring healthy cells and tissues. In this review, we will present the factors that lead to skin aging and cellular senescence, as well as ways to study senescence in vitro and in vivo. We will further discuss the adverse effects of the accumulation of chronic senescent cells and therapeutic agents and tools to selectively target and eliminate them.
Collapse
Affiliation(s)
- Evangelia Konstantinou
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Eliane Longange
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Gürkan Kaya
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
- Departments of Dermatology and Clinical Pathology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1205 Geneva, Switzerland
| |
Collapse
|
47
|
Chen C, Yu L, Li X, Yu Z, Song D, Wang S, Li F, Jiang S, Chen Y, Xu J, Fan J, Li B, Li L. Reducing Oxidative Stress Levels and Inhibiting Aging by l-Cysteine-Derived Carbon Dots with Highly Efficient Broad-Spectrum UV Absorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43189-43198. [PMID: 39121011 DOI: 10.1021/acsami.4c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Ultraviolet (UV) exposure causes damage to human skin and mucous membranes, resulting in oxidative stress, and can also lead to inflammation of human skin, skin aging, and even diseases such as squamous cell carcinoma and melanoma of the skin. The main means of protection against UV radiation is physical shielding and the use of sunscreen products. Carbon dots as a novel nanomaterial provide a new option for UV protection. In this article, we introduced sulfhydryl groups to synthesize l-cysteine-derived carbon dots (GLCDs) with UV resistance. GLCDs exhibit high-efficiency and excellent UV absorption, achieving 200-400 nm UV absorption (99% UVC, 97% UVB, and 86% UVA) at a low concentration of 0.5 mg/mL. Meanwhile, GLCDs can reduce apoptosis and UVB-induced oxidative damage, increase collagen type I gene expression, and inhibit skin aging in zebrafish. It also inhibits senescence caused by the senescence inducer 2,2'-azobis(2-methylpropionamidine) dihydrochloride and reduces oxidative damage. The above studies show that GLCDs possess efficient broad-spectrum UV absorption, antiphotoaging, and antiaging capabilities, which will have a broad application prospect in UV protection.
Collapse
Affiliation(s)
- Ce Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Lidong Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Xueting Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Zewen Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Danjie Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Siqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Fangshun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Shanshan Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Yajie Chen
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, PR China
| | - Jucai Xu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jianglin Fan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529000, PR China
| | - Bingsheng Li
- Key Laboratory of UV Light Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, PR China
| | - Li Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| |
Collapse
|
48
|
Machaliński B, Oszutowska-Mazurek D, Mazurek P, Parafiniuk M, Szumilas P, Zawiślak A, Zaremba M, Stecewicz I, Zawodny P, Wiszniewska B. Assessment of Extracellular Matrix Fibrous Elements in Male Dermal Aging: A Ten-Year Follow-Up Preliminary Case Study. BIOLOGY 2024; 13:636. [PMID: 39194575 DOI: 10.3390/biology13080636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Skin aging is a complex phenomenon influenced by multiple internal and external factors that can lead to significant changes in skin structure, particularly the degradation of key extracellular matrix (ECM) components such as collagen and elastic fibers in the dermis. In this study, we aimed to meticulously assess the morphological changes within these critical fibrous ECM elements in the dermis of the same volunteer at age 47 and 10 years later (2012 to 2022). Using advanced histological staining techniques, we examined the distribution and characteristics of ECM components, including type I collagen, type III collagen, and elastic fibers. Morphological analysis, facilitated by hematoxylin and eosin staining, allowed for an accurate assessment of fiber bundle thickness and a quantification of collagen and elastic fiber areas. In addition, we used the generalized Pareto distribution for histogram modeling to refine our statistical analyses. This research represents a pioneering effort to examine changes in ECM fiber material, specifically within the male dermis over a decade-long period. Our findings reveal substantial changes in the organization of type I collagen within the ECM, providing insight into the dynamic processes underlying skin aging.
Collapse
Affiliation(s)
- Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Dorota Oszutowska-Mazurek
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Przemyslaw Mazurek
- Department of Signal Processing and Multimedia Engineering, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland
| | - Mirosław Parafiniuk
- Department of Forensic Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Paweł Szumilas
- Department of Social Medicine and Public Health, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Alicja Zawiślak
- Department of Interdisciplinary Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Małgorzata Zaremba
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CBP), Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Iwona Stecewicz
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Piotr Zawodny
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
49
|
Badr OI, Anter A, Magdy I, Chukueggu M, Khorshid M, Darwish M, Farrag M, Elsayed M, Amr Y, Amgad Y, Mahmoud T, Kamal MM. Adipose-Derived Mesenchymal Stem Cells and Their Derived Epidermal Progenitor Cells Conditioned Media Ameliorate Skin Aging in Rats. Tissue Eng Regen Med 2024; 21:915-927. [PMID: 38913224 PMCID: PMC11286614 DOI: 10.1007/s13770-024-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Skin alterations are among the most prominent signs of aging, and they arise from both intrinsic and extrinsic factors that interact and mutually influence one another. The use of D-galactose as an aging model in animals has been widely employed in anti-aging research. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) are particularly promising for skin anti-aging therapy due to their capacity for effective re-epithelization and secretion of various growth factors essential for skin regeneration. Accordingly, we aimed to examine the potential utility of Ad-MSCs as a therapy for skin anti-aging. METHODS In this study, we isolated and characterized adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of male Sprague Dawley rats. We assessed the in vitro differentiation of Ad-MSCs into epidermal progenitor cells (EPCs) using ascorbic acid and hydrocoritsone. Additionally, we induced skin aging in female Sprague Dawley rats via daily intradermal injection of D-galactose over a period of 8 weeks. Then we evaluated the therapeutic potential of intradermal transplantation of Ad-MSCs and conditioned media (CM) derived from differentiated EPCs in the D-galactose-induced aging rats. Morphological assessments, antioxidant assays, and histopathological examinations were performed to investigate the effects of the treatments. RESULTS Our findings revealed the significant capability of Ad-MSCs to differentiate into EPCs. Notably, compared to the group that received CM treatment, the Ad-MSCs-treated group exhibited a marked improvement in morphological appearance, antioxidant levels and histological features. CONCLUSIONS These results underscore the effectiveness of Ad-MSCs in restoring skin aging as a potential therapy for skin aging.
Collapse
Affiliation(s)
- Omar I Badr
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aya Anter
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Ihab Magdy
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Marvellous Chukueggu
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Moamen Khorshid
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Darwish
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Farrag
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Menna Elsayed
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Youmna Amr
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Yomna Amgad
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Tasnim Mahmoud
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
- Drug Research and Development Group, Faculty of Pharmacy, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt.
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
50
|
Sirois JP, Heinz A. Matrikines in the skin: Origin, effects, and therapeutic potential. Pharmacol Ther 2024; 260:108682. [PMID: 38917886 DOI: 10.1016/j.pharmthera.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.
Collapse
Affiliation(s)
- Jonathan P Sirois
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|