1
|
Rajamanickam A, Babu S. Unraveling the Dynamics of Human Filarial Infections: Immunological Responses, Host Manifestations, and Pathogen Biology. Pathogens 2025; 14:223. [PMID: 40137708 PMCID: PMC11945129 DOI: 10.3390/pathogens14030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Lymphatic filariasis (LF), or elephantiasis, is a neglected tropical disease caused by filarial worms, primarily Wuchereria bancrofti, transmitted through mosquito bites. It often begins in childhood but may not show symptoms until later, leaving many individuals asymptomatic for long periods. LF disrupts the lymphatic system, causing severe swelling in the limbs and genitals, leading to deformities and disabilities. The World Health Organization estimates that around 51 million people are affected globally, with 36 million suffering from chronic conditions like lymphedema and hydrocele. In 2021, approximately 882.5 million people in 44 countries required preventive chemotherapy, making LF the second leading parasitic cause of disability, significantly impacting socioeconomic status. The immune response to filarial parasites is complex, involving both innate and adaptive immune cells. A key feature of LF immunology is the antigen-specific Th2 response, expansion of IL-10-producing CD4+ T cells, and a muted Th1 response. This T cell hypo-responsiveness is crucial for sustaining long-term infections with high parasite densities. While the correlates of protective immunity are not fully understood-due in part to a lack of suitable animal models-T cells, particularly CD4+ Th2 cells, and B cells, play essential roles in immune protection. Moreover, host immune responses contribute to the disease's pathological manifestations. A failure to induce T cell hypo-responsiveness can lead to exaggerated inflammatory conditions such as lymphedema, hydrocele, and elephantiasis. Filarial infections also induce bystander effects on various immune responses, impacting responses to other infectious agents. This intricate immune interplay offers valuable insights into the regulation of immune responses to chronic infections. This review explores recent immunological research on lymphatic filarial worms, highlighting their effects on both innate and adaptive immune responses in humans and the mechanisms underlying this neglected tropical disease.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institute of Allergy and Infectious Diseases, National Institutes of Health—International Center for Excellence in Research, Chennai 600031, India;
| | - Subash Babu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health—International Center for Excellence in Research, Chennai 600031, India;
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Schatz C, Füßl M, Caf Y, Schmitz K, Kresse D, Ludwig W, Walochnik J, Knabl L. A Rare Case Report of a Human Dirofilaria repens Infection. Microorganisms 2025; 13:476. [PMID: 40142370 PMCID: PMC11946268 DOI: 10.3390/microorganisms13030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/28/2025] Open
Abstract
In June 2024, a 41 year-old woman presented to the infectious diseases outpatient clinic with a left inguinal mass progressing in size. The patient had previously been on vacation in Greece. When a tumor was initially suspected, the mass was surgically removed. Staining with Grocott methenamine silver and Alzian blue were inconspicuous, but histopathologic examination revealed a clear histiocytic demarcation, followed by a confirmation of the suspected diagnosis of dirofilariasis caused by Dirofilaria repens by PCR. Even though still a rare event in Austria, the number of human D. repens cases has been continuously increasing in recent years. This is partly due to the increased spread of the parasite due to climate change and globalization.
Collapse
Affiliation(s)
- Christoph Schatz
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511 Zams, Austria
| | - Magdalena Füßl
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511 Zams, Austria
| | - Yasemin Caf
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511 Zams, Austria
| | - Katja Schmitz
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511 Zams, Austria
| | - Daniela Kresse
- University Hospital for Inner Medicine II, Tirol Kliniken, Anichstraße 35, 6020 Innsbruck, Austria
| | - Wilhelm Ludwig
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Wien, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Wien, Austria
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511 Zams, Austria
| |
Collapse
|
3
|
Arndts K, Wiszniewsky A, Neumann AL, Wiszniewsky K, Katawa G, Hoerauf A, Layland-Heni LE, Ritter M, Hübner MP. Differences of in vitro immune responses between patent and pre-patent Litomosoides sigmodontis-infected mice are independent of the filarial antigenic stimulus used. Parasitol Res 2024; 123:358. [PMID: 39436444 PMCID: PMC11496330 DOI: 10.1007/s00436-024-08365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Lymphatic filariasis and onchocerciasis are neglected tropical diseases and cause significant public health problems in endemic countries, especially in sub-Saharan Africa. Since the human parasites are not viable in immune-competent mice, animal models have been developed, among them Litomosoides sigmodontis which permits a complete life cycle in BALB/c mice, including the development of patent infections with circulating microfilariae (Mf, the worm's offspring). To investigate the immunomodulatory properties of helminths in vitro, antigenic extracts can be prepared from different life cycle stages of the L. sigmodontis model, including adult worms, but the methods to prepare these antigens differ between research groups. This study analyzed whether different centrifugation methods during the preparation of an antigenic extract, the gender of used worms, or the different fractions (soluble or pellet) altered filarial-specific CD4+ T cell responses. These cells were isolated from pre-patent or patent/chronic infected mice, hence those without and those with Mf, respectively. Ex vivo immune responses were compared at these two different time points of the infection as well as the parasitic parameters. Worm burden and cell infiltration were elevated in the thoracic cavity (TC) and draining mediastinal lymph nodes at the pre-patent stage. Within the TC, eosinophils were significantly up-regulated at the earlier time point of infection which was further reflected by the eosinophil-related eotaxin-1 levels. Regarding the production of cytokines by re-stimulated CD4+ T cells in the presence of different antigen preparations, cytokine levels were comparable for all used extracts. Our data show that immune responses differ between pre-patent and patent filarial infection, but not in response to the different antigenic extracts themselves.
Collapse
Affiliation(s)
- Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany.
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany.
| | - Anna Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Katharina Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie Et Immunomodulation (UR2IM), Université de Lomé, Ecole Supérieure Des Techniques Biologiques Et Alimentaires (ESTBA), Lomé, Togo
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Laura E Layland-Heni
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
4
|
Voronin D, Tricoche N, Peguero R, Kaminska AM, Ghedin E, Sakanari JA, Lustigman S. Repurposed Drugs That Activate Autophagy in Filarial Worms Act as Effective Macrofilaricides. Pharmaceutics 2024; 16:256. [PMID: 38399310 PMCID: PMC10891619 DOI: 10.3390/pharmaceutics16020256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Onchocerciasis and lymphatic filariasis are two neglected tropical diseases caused by filarial nematodes that utilize insect vectors for transmission to their human hosts. Current control strategies are based on annual or biannual mass drug administration (MDA) of the drugs Ivermectin or Ivermectin plus Albendazole, respectively. These drug regimens kill the first-stage larvae of filarial worms (i.e., microfilariae) and interrupt the transmission of infections. MDA programs for these microfilaricidal drugs must be given over the lifetime of the filarial adult worms, which can reach 15 years in the case of Onchocerca volvulus. This is problematic because of suboptimal responses to ivermectin in various endemic regions and inefficient reduction of transmission even after decades of MDA. There is an urgent need for the development of novel alternative treatments to support the 2030 elimination goals of onchocerciasis and lymphatic filariasis. One successful approach has been to target Wolbachia, obligatory endosymbiotic bacteria on which filarial worms are dependent for their survival and reproduction within the human host. A 4-6-week antibiotic therapy with doxycycline, for example, resulted in the loss of Wolbachia that subsequently led to extensive apoptosis of somatic cells, germline, embryos, and microfilariae, as well as inhibition of fourth-stage larval development. However, this long-course regimen has limited use in MDA programs. As an alternative approach to the use of bacteriostatic antibiotics, in this study, we focused on autophagy-inducing compounds, which we hypothesized could disturb various pathways involved in the interdependency between Wolbachia and filarial worms. We demonstrated that several such compounds, including Niclosamide, an FDA-approved drug, Niclosamide ethanolamine (NEN), and Rottlerin, a natural product derived from Kamala trees, significantly reduced the levels of Wolbachia in vitro. Moreover, when these compounds were used in vivo to treat Brugia pahangi-infected gerbils, Niclosamide and NEN significantly decreased adult worm survival, reduced the release of microfilariae, and decreased embryonic development depending on the regimen and dose used. All three drugs given orally significantly reduced Wolbachia loads and induced an increase in levels of lysosome-associated membrane protein in worms from treated animals, suggesting that Niclosamide, NEN, and Rottlerin were effective in causing drug-induced autophagy in these filarial worms. These repurposed drugs provide a new avenue for the clearance of adult worms in filarial infections.
Collapse
Affiliation(s)
- Denis Voronin
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA;
| | - Nancy Tricoche
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Ricardo Peguero
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Anna Maria Kaminska
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA;
| | - Judy A. Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA;
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| |
Collapse
|
5
|
Freitas LT, Khan MA, Uddin A, Halder JB, Singh-Phulgenda S, Raja JD, Balakrishnan V, Harriss E, Rahi M, Brack M, Guérin PJ, Basáñez MG, Kumar A, Walker M, Srividya A. The lymphatic filariasis treatment study landscape: A systematic review of study characteristics and the case for an individual participant data platform. PLoS Negl Trop Dis 2024; 18:e0011882. [PMID: 38227595 PMCID: PMC10817204 DOI: 10.1371/journal.pntd.0011882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/26/2024] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Lymphatic filariasis (LF) is a neglected tropical disease (NTD) targeted by the World Health Organization for elimination as a public health problem (EPHP). Since 2000, more than 9 billion treatments of antifilarial medicines have been distributed through mass drug administration (MDA) programmes in 72 endemic countries and 17 countries have reached EPHP. Yet in 2021, nearly 900 million people still required MDA with combinations of albendazole, diethylcarbamazine and/or ivermectin. Despite the reliance on these drugs, there remain gaps in understanding of variation in responses to treatment. As demonstrated for other infectious diseases, some urgent questions could be addressed by conducting individual participant data (IPD) meta-analyses. Here, we present the results of a systematic literature review to estimate the abundance of IPD on pre- and post-intervention indicators of infection and/or morbidity and assess the feasibility of building a global data repository. METHODOLOGY We searched literature published between 1st January 2000 and 5th May 2023 in 15 databases to identify prospective studies assessing LF treatment and/or morbidity management and disease prevention (MMDP) approaches. We considered only studies where individual participants were diagnosed with LF infection or disease and were followed up on at least one occasion after receiving an intervention/treatment. PRINCIPAL FINDINGS We identified 138 eligible studies from 23 countries, having followed up an estimated 29,842 participants after intervention. We estimate 14,800 (49.6%) IPD on pre- and post-intervention infection indicators including microfilaraemia, circulating filarial antigen and/or ultrasound indicators measured before and after intervention using 8 drugs administered in various combinations. We identified 33 studies on MMDP, estimating 6,102 (20.4%) IPD on pre- and post-intervention clinical morbidity indicators only. A further 8,940 IPD cover a mixture of infection and morbidity outcomes measured with other diagnostics, from participants followed for adverse event outcomes only or recruited after initial intervention. CONCLUSIONS The LF treatment study landscape is heterogeneous, but the abundance of studies and related IPD suggest that establishing a global data repository to facilitate IPD meta-analyses would be feasible and useful to address unresolved questions on variation in treatment outcomes across geographies, demographics and in underrepresented groups. New studies using more standardized approaches should be initiated to address the scarcity and inconsistency of data on morbidity management.
Collapse
Affiliation(s)
- Luzia T. Freitas
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Infectious Diseases Data Observatory, University of Oxford, Oxford, United Kingdom
| | | | - Azhar Uddin
- ICMR-Vector Control Research Centre, Puducherry, India
| | - Julia B. Halder
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Infectious Diseases Data Observatory, University of Oxford, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Sauman Singh-Phulgenda
- Infectious Diseases Data Observatory, University of Oxford, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Eli Harriss
- The Knowledge Centre, Bodleian Health Care Libraries, University of Oxford, Oxford, United Kingdom
| | - Manju Rahi
- ICMR-Vector Control Research Centre, Puducherry, India
| | - Matthew Brack
- Infectious Diseases Data Observatory, University of Oxford, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philippe J. Guérin
- Infectious Diseases Data Observatory, University of Oxford, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maria-Gloria Basáñez
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Infectious Diseases Data Observatory, University of Oxford, Oxford, United Kingdom
| | - Ashwani Kumar
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Infectious Diseases Data Observatory, University of Oxford, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | | |
Collapse
|
6
|
Obame-Nkoghe J, Makanga BK, Zongo SB, Koumba AA, Komba P, Longo-Pendy NM, Mounioko F, Akone-Ella R, Nkoghe-Nkoghe LC, Ngangue-Salamba MF, Yangari P, Aboughe-Angone S, Fournet F, Kengne P, Paupy C. Urban Green Spaces and Vector-Borne Disease Risk in Africa: The Case of an Unclean Forested Park in Libreville (Gabon, Central Africa). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105774. [PMID: 37239503 DOI: 10.3390/ijerph20105774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023]
Abstract
In Africa, vector-borne diseases are a major public health issue, especially in cities. Urban greening is increasingly considered to promote inhabitants' well-being. However, the impact of urban green spaces on vector risk remains poorly investigated, particularly urban forests in poor hygienic conditions. Therefore, using larval sampling and human landing catches, this study investigated the mosquito diversity and the vector risk in a forest patch and its inhabited surroundings in Libreville, Gabon, central Africa. Among the 104 water containers explored, 94 (90.4%) were artificial (gutters, used tires, plastic bottles) and 10 (9.6%) were natural (puddles, streams, tree holes). In total, 770 mosquitoes belonging to 14 species were collected from such water containers (73.1% outside the forested area). The mosquito community was dominated by Aedes albopictus (33.5%), Culex quinquefasciatus (30.4%), and Lutzia tigripes (16.5%). Although mosquito diversity was almost double outside compared to inside the forest (Shannon diversity index: 1.3 vs. 0.7, respectively), the species relative abundance (Morisita-Horn index = 0.7) was similar. Ae. albopictus (86.1%) was the most aggressive species, putting people at risk of Aedes-borne viruses. This study highlights the importance of waste pollution in urban forested ecosystems as a potential driver of mosquito-borne diseases.
Collapse
Affiliation(s)
- Judicaël Obame-Nkoghe
- Laboratoire de Biologie Moléculaire et Cellulaire, Département de Biologie, Université des Sciences et Techniques de Masuku (USTM), Franceville BP 941, Gabon
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Boris Kevin Makanga
- Institut de Recherche en Écologie Tropicale (IRET/CENAREST), Libreville BP 13354, Gabon
| | - Sylvie Brizard Zongo
- Laboratoire de Biologie Moléculaire et Cellulaire, Département de Biologie, Université des Sciences et Techniques de Masuku (USTM), Franceville BP 941, Gabon
- Département Faune et Aires Protégées, École Nationale des Eaux et Forêts (ENEF), Libreville BP 3960, Gabon
| | - Aubin Armel Koumba
- Institut de Recherche en Écologie Tropicale (IRET/CENAREST), Libreville BP 13354, Gabon
| | - Prune Komba
- Unité de Recherche GéoHydrosystèmes Continentaux (UR GéHCo), Département Géosciences et Environnement, Université de Tours, 37000 Tours, France
| | - Neil-Michel Longo-Pendy
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Franck Mounioko
- Laboratoire de Biologie Moléculaire et Cellulaire, Département de Biologie, Université des Sciences et Techniques de Masuku (USTM), Franceville BP 941, Gabon
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Rodolphe Akone-Ella
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Lynda Chancelya Nkoghe-Nkoghe
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Marc-Flaubert Ngangue-Salamba
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Patrick Yangari
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
| | - Sophie Aboughe-Angone
- Institut de Pharmacopée et de Médecine Traditionnelle (IPHAMETRA), Libreville BP 1156, Gabon
| | - Florence Fournet
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), 34193 Montpellier, France
| | - Pierre Kengne
- Unité de Recherche en Écologie de la Santé, Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville BP 769, Gabon
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), 34193 Montpellier, France
| | - Christophe Paupy
- Unité Mixte de Recherche Maladies Infectieuses et Vecteurs, Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), 34193 Montpellier, France
| |
Collapse
|
7
|
Scheunemann JF, Risch F, Reichwald JJ, Lenz B, Neumann AL, Garbe S, Frohberger SJ, Koschel M, Ajendra J, Rothe M, Latz E, Coch C, Hartmann G, Schumak B, Hoerauf A, Hübner MP. Potential of Nucleic Acid Receptor Ligands to Improve Vaccination Efficacy against the Filarial Nematode Litomosoides sigmodontis. Vaccines (Basel) 2023; 11:vaccines11050966. [PMID: 37243070 DOI: 10.3390/vaccines11050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
More than two-hundred-million people are infected with filariae worldwide. However, there is no vaccine available that confers long-lasting protection against filarial infections. Previous studies indicated that vaccination with irradiated infective L3 larvae reduces the worm load. This present study investigated whether the additional activation of cytosolic nucleic acid receptors as an adjuvant improves the efficacy of vaccination with irradiated L3 larvae of the rodent filaria Litomosoides sigmodontis with the aim of identifying novel vaccination strategies for filarial infections. Subcutaneous injection of irradiated L3 larvae in combination with poly(I:C) or 3pRNA resulted in neutrophil recruitment to the skin, accompanied by higher IP-10/CXCL10 and IFN-β RNA levels. To investigate the impact on parasite clearance, BALB/c mice received three subcutaneous injections in 2-week intervals with irradiated L3 larvae in combination with poly(I:C) or 3pRNA prior to the challenge infection. Vaccination with irradiated L3 larvae in combination with poly(I:C) or 3pRNA led to a markedly greater reduction in adult-worm counts by 73% and 57%, respectively, compared to the immunization with irradiated L3 larvae alone (45%). In conclusion, activation of nucleic acid-sensing immune receptors boosts the protective immune response against L. sigmodontis and nucleic acid-receptor agonists as vaccine adjuvants represent a promising novel strategy to improve the efficacy of vaccines against filariae and potentially other helminths.
Collapse
Affiliation(s)
- Johanna F Scheunemann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julia J Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephan Garbe
- Clinic for Radiotherapy and Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Maximilian Rothe
- Institute for Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Eicke Latz
- Institute for Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Christoph Coch
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Nextevidence GmbH, 81541 Munich, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Beatrix Schumak
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| |
Collapse
|
8
|
Mills MK, McCabe LG, Rodrigue EM, Lechtreck KF, Starai VJ. Wbm0076, a candidate effector protein of the Wolbachia endosymbiont of Brugia malayi, disrupts eukaryotic actin dynamics. PLoS Pathog 2023; 19:e1010777. [PMID: 36800397 PMCID: PMC9980815 DOI: 10.1371/journal.ppat.1010777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/02/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Brugia malayi, a parasitic roundworm of humans, is colonized by the obligate intracellular bacterium, Wolbachia pipientis. The symbiosis between this nematode and bacterium is essential for nematode reproduction and long-term survival in a human host. Therefore, identifying molecular mechanisms required by Wolbachia to persist in and colonize B. malayi tissues will provide new essential information regarding the basic biology of this endosymbiosis. Wolbachia utilize a Type IV secretion system to translocate so-called "effector" proteins into the cytosol of B. malayi cells to promote colonization of the eukaryotic host. However, the characterization of these Wolbachia secreted proteins has remained elusive due to the genetic intractability of both organisms. Strikingly, expression of the candidate Wolbachia Type IV-secreted effector protein, Wbm0076, in the surrogate eukaryotic cell model, Saccharomyces cerevisiae, resulted in the disruption of the yeast actin cytoskeleton and inhibition of endocytosis. Genetic analyses show that Wbm0076 is a member of the family of Wiskott-Aldrich syndrome proteins (WAS [p]), a well-conserved eukaryotic protein family required for the organization of actin skeletal structures. Thus, Wbm0076 likely plays a central role in the active cell-to-cell movement of Wolbachia throughout B. malayi tissues during nematode development. As most Wolbachia isolates sequenced to date encode at least partial orthologs of wBm0076, we find it likely that the ability of Wolbachia to directly manipulate host actin dynamics is an essential requirement of all Wolbachia endosymbioses, independent of host cell species.
Collapse
Affiliation(s)
- Michael K. Mills
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Lindsey G. McCabe
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Eugenie M. Rodrigue
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Karl F. Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
9
|
Amambo GN, Innocentia N, Abong RA, Fombad FF, Njouendou AJ, Nietcho F, Ekanya R, Kien CA, Ebai R, Lenz B, Ritter M, Esum ME, Deribe K, Cho JF, Beng AA, Enyong PI, Li Z, Hübner MP, Pfarr K, Hoerauf A, Carlow C, Wanji S. Application of loop mediated isothermal amplification (LAMP) assays for the detection of Onchocerca volvulus, Loa loa and Mansonella perstans in humans and vectors. FRONTIERS IN TROPICAL DISEASES 2023; 3:1016176. [PMID: 36684508 PMCID: PMC7614089 DOI: 10.3389/fitd.2022.1016176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Conventional diagnosis of filarial infections is based on morphological identification of microfilariae using light microscopy and requires considerable expertise, is time-consuming, and can be subjective. Loop-mediated isothermal amplification (LAMP) has advantages over microscopy or PCR because of its operational simplicity, rapidity and versatility of readout options. LAMP assays represent a major step forward in improved filarial diagnostic tools suitable for low resource settings and field applicability. The study goal was to retrospectively evaluate the performance and suitability of the O-150, RF4, and Mp419 LAMP assays for diagnosing Onchocerca volvulus, Loa loa and Mansonella perstans infections, respectively, in humans and vectors under experimental and natural field conditions. Surveys were conducted in four health districts of Cameroon using skin snip and thick blood film methods to detect skin (O. volvulus) and blood (L. loa and M. perstans) dwelling microfilaria in humans. Engorged vectors (Simulium spp., Chrysops spp., and Culicoides spp.) were evaluated by LAMP. Dissected, wild-caught vectors were also analyzed. LAMP showed a prevalence of 40.4% (O. volvulus), 17.8% (L. loa) and 36.6% (M. perstans) versus 20.6% (O. volvulus), 17.4% (L. loa) and 33.8% (M. perstans) with microscopy. Simulium spp. were dissected for microscopy and pooled for LAMP. The O-150 LAMP assay infection rate was 4.3% versus 4.1% by microscopy. Chrysops spp. were dissected and analyzed individually in the LAMP assay. The RF4 LAMP assay infection rate was 23.5% versus 3.3% with microscopy. The RF4 LAMP assay also detected parasites in Chrysops spp. fed on low microfilaremic volunteers. The Mp419 LAMP assay infection rate was 0.2% for C. milnei and 0.04% for C. grahamii, while three other species were LAMP-negative. The sensitivity, species specificity, rapidity and ease of its use of these filarial LAMP assays, and validation of their performance in the field support use as alternatives to microscopy as diagnostic and surveillance tools in global health programs aimed to eliminate onchocerciasis.
Collapse
Affiliation(s)
- Glory Ngongeh Amambo
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Ngong Innocentia
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Raphael Awah Abong
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Fanny Fri Fombad
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Abdel Jelil Njouendou
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Department of Biomedical Science, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Franck Nietcho
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Relindis Ekanya
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Chi Anizette Kien
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Rene Ebai
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Benjamin Lenz
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Mathias Eyong Esum
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Kebede Deribe
- Global Health and Infection Department, Brighton and Sussex Medical School, Brighton, United Kingdom
- School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jerome Fru Cho
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Amuam Andrew Beng
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Peter Ivo Enyong
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Zhiru Li
- New England Biolabs, Ipswich, MA, United States
| | - Marc P. Hübner
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
| | | | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| |
Collapse
|
10
|
Saengsawang P, Desquesnes M, Yangtara S, Chalermwong P, Thongtip N, Jittapalapong S, Inpankaew T. Molecular detection of Loxodontofilaria spp. in Asian elephants (Elephas maximus) from elephant training camps in Thailand. Comp Immunol Microbiol Infect Dis 2023; 92:101910. [PMID: 36427455 DOI: 10.1016/j.cimid.2022.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022]
Abstract
Filarial infection is an important disease in human and animal medicine. Several filarial worms are of importance, especially nematodes in the Onchocercidae. The Asian elephant (Elephas maximus) is an endangered animal and is very important from several socio-economic and ecological aspects in Thailand. Various parasites can be found in elephants; however, data related to filarial infections in elephants is limited. The objective of this study was to detect filaria in the blood of Asian elephants in Thailand, based on a polymerase chain reaction (PCR) technique. Blood samples were collected from 208 Asian elephants and detected for filaria using PCR, targeting the region of the internal transcribed spacer 2 (ITS2), the cytochrome c oxidase subunit 1 (cox1), and the RNA polymerase II large subunit (rbp1). In total, 4.33% (9 out of 208) of the sampled elephants had Loxodontofilaria spp. DNA with 100% query coverage. In addition, the obtained cox1 and rbp1 sequences matched with Loxodontofilaria sp., Onchocerca sp., and Dirofilaria sp. There were no identified risk factors (sex, age, location, and packed cell volume) related to Loxodontofilaria infection in elephants. The analyses of the phylogeny of ITS2 sequences demonstrated that the Loxodotofilaria-positive sequences were closely related to Onchocerca dewittei japonica and Onchocerca dewittei dewittei with 100% query coverage. Notably, the concatenated phylogenetic trees of ITS2 and the cox1 and rbp1 genes were closely similar to Loxodontofilaria sp. To describe in detail the genomic DNA of Loxodontofilaria spp., other genes should be additionally studied using a more discriminatory technique, such as DNA barcoding or whole genome sequencing.
Collapse
Affiliation(s)
- Phirabhat Saengsawang
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Marc Desquesnes
- InterTryp, Univ Montpellier, CIRAD, IRD, Montpellier, France; Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Sarawut Yangtara
- Department of Companion Animal Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | | | - Nikorn Thongtip
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand
| | | | - Tawin Inpankaew
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
11
|
Ray S, Puente A, Steinmetz NF, Pokorski JK. Recent advancements in single dose slow-release devices for prophylactic vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1832. [PMID: 35850120 PMCID: PMC9840709 DOI: 10.1002/wnan.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 01/31/2023]
Abstract
Single dose slow-release vaccines herald a new era in vaccine administration. An ideal device for slow-release vaccine delivery would be minimally invasive and self-administered, making these approaches an attractive alternative for mass vaccination programs, particularly during the time of a pandemic. In this review article, we discuss the latest advances in this field, specifically for prophylactic vaccines able to prevent infectious diseases. Recent studies have found that slow-release vaccines elicit better immune responses and often do not require cold chain transportation and storage, thus drastically reducing the cost, streamlining distribution, and improving efficacy. This promise has attracted significant attention, especially when poor patient compliance of the standard multidose vaccine regimes is considered. Single dose slow-release vaccines are the next generation of vaccine tools that could overcome most of the shortcomings of present vaccination programs and be the next platform technology to combat future pandemics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Sayoni Ray
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
| | - Armando Puente
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
- Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA
- Department of Radiology, University of California-San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
- Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Step towards elimination of Wuchereria bancrofti in Southwest Tanzania 10 years after mass drug administration with Albendazole and Ivermectin. PLoS Negl Trop Dis 2022; 16:e0010044. [PMID: 35857778 PMCID: PMC9342735 DOI: 10.1371/journal.pntd.0010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/01/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Lymphatic filariasis is a mosquito transmitted parasitic infection in tropical regions. Annual mass treatment with ivermectin and albendazole is used for transmission control of Wuchereria bancrofti, the infective agent of lymphatic filariasis in many African countries, including Tanzania.
Methodology
In a general population study in Southwest Tanzania, individuals were tested for circulating filarial antigen, an indicator of W. bancrofti adult worm burden in 2009 before mass drug administration commenced in that area. Seven annual rounds with ivermectin and albendazole were given between 2009 and 2015 with a population coverage of over 70%. Participants of the previous study took part in a follow-up activity in 2019 to measure the effect of this governmental activity.
Findings
One thousand two hundred and ninety nine inhabitants of Kyela district in Southwest Tanzania aged 14 to 65 years who had participated in the study activities in 2009 were revisited in 2010/11 and 2019. Among this group, the prevalence of lymphatic filariasis of the 14–65 years olds in 2009 was 35.1%. A follow-up evaluation in 2010/11 had shown a reduction to 27.7%. In 2019, after 7 years of annual treatment and an additional three years of surveillance, the prevalence had dropped to 1.7%, demonstrating successful treatment by the national control programme. Risk factors for W. bancrofti-infection were the occupation as farmer, male sex, and older age. Most infected individuals in the 2019 follow-up study already had a positive test for filarial antigen in 2009 and/or 2010/11.
Conclusions
This data supports the findings of the Tanzanian Neglected Tropical Disease Control Programme (NTDCP), who conducted Transmission Assessment Surveys and found an impressive reduction in the prevalence of LF in children. Our results complement this data by showing a similar decrease in prevalence of LF in the adult population in the same area. The elimination of LF seems achievable in the near future.
Collapse
|
13
|
Geng X, Srinivasan RS. Molecular Mechanisms Driving Lymphedema and Other Lymphatic Anomalies. Cold Spring Harb Perspect Med 2022; 12:a041272. [PMID: 35817543 PMCID: PMC9341459 DOI: 10.1101/cshperspect.a041272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lymphatic vasculature regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood. Lymphatic vasculature is also critical for lipid absorption and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels, lymphatic valves, and lymphovenous valves. Defects in any of these structures could lead to lymphatic anomalies such as lymphedema, cystic lymphatic malformation, and Gorham-Stout disease. Basic research has led to a deeper understanding of the stepwise development of the lymphatic vasculature. VEGF-C and shear stress signaling pathways have evolved as critical regulators of lymphatic vascular development. Loss-of-function and gain-of-function mutations in genes that are involved in these signaling pathways are associated with lymphatic anomalies. Importantly, drugs that target these molecules are showing outstanding efficacy in treating certain lymphatic anomalies. In this article, we summarize these exciting developments and highlight the future challenges.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73013, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, USA
| |
Collapse
|
14
|
Bma-LAD-2, an Intestinal Cell Adhesion Protein, as a Potential Therapeutic Target for Lymphatic Filariasis. mBio 2022; 13:e0374221. [PMID: 35475643 PMCID: PMC9239158 DOI: 10.1128/mbio.03742-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lymphatic filariasis is a debilitating disease that afflicts over 70 million people worldwide. It is caused by the parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. Despite substantial success, efforts to eliminate LF will likely require more time and resources than predicted. Identifying new drug and vaccine targets in adult filariae could help elimination efforts. This study’s aim was to evaluate intestinal proteins in adult Brugia malayi worms as possible therapeutic targets. Using short interfering RNA (siRNA), we successfully targeted four candidate gene transcripts: Bma-Serpin, Bma-ShTK, Bma-Reprolysin, and Bma-LAD-2. Of those, Bma-LAD-2, an immunoglobulin superfamily cell adhesion molecule (IgSF CAM), was determined to be essential for adult worm survival. We observed a 70.42% knockdown in Bma-LAD-2 transcript levels 1 day post-siRNA incubation and an 87.02% reduction in protein expression 2 days post-siRNA incubation. This inhibition of Bma-LAD-2 expression resulted in an 80% decrease in worm motility over 6 days, a 93.43% reduction in microfilaria release (Mf) by day 6 post-siRNA incubation, and a dramatic decrease in (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Transmission electron microscopy revealed the loss of microvilli and unraveling of mitochondrial cristae in the intestinal epithelium of Bma-LAD-2 siRNA-treated worms. Strikingly, Bma-LAD-2 siRNA-treated worms exhibited an almost complete loss of pseudocoelomic fluid. A luciferase immunoprecipitation system assay did not detect anti-Bma-LAD-2 IgE in the serum of 30 LF patients, indicating that LF exposure does not result in IgE sensitization to this antigen. These results indicate that Bma-LAD-2 is an essential protein for adult Brugia malayi and may be an effective therapeutic target.
Collapse
|
15
|
Urine metabolites for the identification of Onchocerca volvulus infections in patients from Cameroon. Parasit Vectors 2021; 14:397. [PMID: 34380554 PMCID: PMC8359580 DOI: 10.1186/s13071-021-04893-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background The tropical disease onchocerciasis (river blindness), caused by Onchocerca volvulus filarial nematodes, is targeted for elimination by mass treatment with nematocidal and antimicrobial drugs. Diagnosis of O. volvulus infections is based on counts of skin-borne microfilariae, but additional diagnostic tools, e.g. worm- or host-derived small RNAs, proteins or metabolites, are required for high-throughput screening. N-acetyltyramine-O,β-glucuronide (NATOG) was suggested as a biomarker for onchocerciasis but its viability as diagnostic tool has been challenged. Methods We performed a screening program of urine samples from individuals from Cameroon infected with O. volvulus, Loa loa, Mansonella perstans or a combination thereof. Urine metabolites were measured by liquid chromatography–mass spectrometry (LC-MS). Principle component analysis (PCA) revealed that onchocerciasis causes complex changes of the urine metabolome. Results The mean NATOG content was elevated in urine of O. volvulus-infected compared with non-infected individuals, but NATOG levels showed considerable variation. However, 13.8% of all O. volvulus-infected individuals had high NATOG levels never reached by individuals without filarial infections or only infected with L. loa or M. perstans. Therefore, the identification of individuals with high NATOG levels might be used to screen for the elimination of onchocerciasis after mass drug application. Additional metabolites, including a compound identified as cinnamoylglycine, had high PC1/PC2 loadings in the data set. Mean levels of cinnamoylglycine were increased in O. volvulus-infected individuals, and 17.2% of all O. volvulus individuals had elevated cinnamoylglycine levels not reached by the controls. Conclusions On an individual level, NATOG alone had poor discriminative power distinguishing infected from non-infected individuals. However, 13.8% of all O. volvulus-infected individuals had NATOG levels never reached by individuals without filarial infections or infected with only L. loa or M. perstans. Discrimination of O. volvulus infections from controls or individuals suffering from multiple infections was improved by the measurement of additional metabolites, e.g. cinnamoylglycine. Thus, measuring a combination of urine metabolites may provide a way to assess onchocerciasis on the population level. This provides the possibility to design a strategy for large-scale onchocerciasis epidemiological screening programs based on urine rather than invasive techniques. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04893-1.
Collapse
|
16
|
Geng X, Ho YC, Srinivasan RS. Biochemical and mechanical signals in the lymphatic vasculature. Cell Mol Life Sci 2021; 78:5903-5923. [PMID: 34240226 PMCID: PMC11072415 DOI: 10.1007/s00018-021-03886-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Lymphatic vasculature is an integral part of the cardiovascular system where it maintains interstitial fluid balance. Additionally, lymphatic vasculature regulates lipid assimilation and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels and valves that function in synergy to absorb and transport fluid against gravitational and pressure gradients. Defects in lymphatic vessels or valves leads to fluid accumulation in tissues (lymphedema), chylous ascites, chylothorax, metabolic disorders and inflammation. The past three decades of research has identified numerous molecules that are necessary for the stepwise development of lymphatic vasculature. However, approaches to treat lymphatic disorders are still limited to massages and compression bandages. Hence, better understanding of the mechanisms that regulate lymphatic vascular development and function is urgently needed to develop efficient therapies. Recent research has linked mechanical signals such as shear stress and matrix stiffness with biochemical pathways that regulate lymphatic vessel growth, patterning and maturation and valve formation. The goal of this review article is to highlight these innovative developments and speculate on unanswered questions.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
17
|
Gangwar M, Jha R, Goyal M, Srivastava M. Biochemical characterization of Recombinase A from Wolbachia endosymbiont of filarial nematode Brugia malayi (wBmRecA). Int J Parasitol 2021; 51:841-853. [PMID: 34273392 DOI: 10.1016/j.ijpara.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022]
Abstract
Lymphatic filariasis is a debilitating disease that affects over 890 million people in 49 countries. A lack of vaccines, non-availability of adulticidal drugs, the threat of emerging drug resistance against available chemotherapeutics and an incomplete understanding of the immunobiology of the disease have sustained the problem. Characterization of Wolbachia proteins, the bacterial endosymbiont which helps in the growth and development of filarial worms, regulates fecundity in female worms and mediates immunopathogenesis of Lymphatic Filariasis, is an important approach to gain insights into the immunopathogenesis of the disease. In this study, we carried out extensive biochemical characterization of Recombinase A from Wolbachia of the filarial nematode Brugia malayi (wBmRecA) using an Electrophoretic Mobility Shift Assay, an ATP binding and hydrolysis assay, DNA strand exchange reactions, DAPI displacement assay and confocal microscopy, and evaluated anti-filarial activity of RecA inhibitors. Confocal studies showed that wBmRecA was expressed and localised within B. malayi microfilariae (Mf) and uteri and lateral chord of adult females. Recombinant wBmRecA was biochemically active and showed intrinsic binding capacity towards both single-stranded DNA and double-stranded DNA that were enhanced by ATP, suggesting ATP-induced cooperativity. wBmRecA promoted ATP hydrolysis and DNA strand exchange reactions in a concentration-dependent manner, and its binding to DNA was sensitive to temperature, pH and salt concentration. Importantly, the anti-parasitic drug Suramin, and Phthalocyanine tetrasulfonate (PcTs)-based inhibitors Fe-PcTs and 3,4-Cu-PcTs, inhibited wBmRecA activity and affected the motility and viability of Mf. The addition of Doxycycline further enhanced microfilaricidal activity of wBmRecA, suggesting potential synergism. Taken together, the omnipresence of wBmRecA in B. malayi life stages and the potent microfilaricidal activity of RecA inhibitors suggest an important role of wBmRecA in filarial pathogenesis.
Collapse
Affiliation(s)
- Mamta Gangwar
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ruchi Jha
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manish Goyal
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Mrigank Srivastava
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
18
|
Kwarteng A, Asiedu E, Sylverken A, Larbi A, Mubarik Y, Apprey C. In silico drug repurposing for filarial infection predicts nilotinib and paritaprevir as potential inhibitors of the Wolbachia 5'-aminolevulinic acid synthase. Sci Rep 2021; 11:8455. [PMID: 33875732 PMCID: PMC8055890 DOI: 10.1038/s41598-021-87976-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Filarial infections affect millions of individuals and are responsible for some notorious disabilities. Current treatment options involve repeated mass drug administrations, which have been met with several challenges despite some successes. Administration of doxycycline, an anti-Wolbachia agent, has shown clinical effectiveness but has several limitations, including long treatment durations and contraindications. We describe the use of an in silico drug repurposing approach to screening a library of over 3200 FDA-approved medications against the filarial endosymbiont, Wolbachia. We target the enzyme which catalyzes the first step of heme biosynthesis in the Wolbachia. This presents an opportunity to inhibit heme synthesis, which leads to depriving the filarial worm of heme, resulting in a subsequent macrofilaricidal effect. High throughput virtual screening, molecular docking and molecular simulations with binding energy calculations led to the identification of paritaprevir and nilotinib as potential anti-Wolbachia agents. Having higher binding affinities to the catalytic pocket than the natural substrate, these drugs have the structural potential to bind and engage active site residues of the wolbachia 5'-Aminolevulinic Acid Synthase. We hereby propose paritaprevir and nilotinib for experimental validations as anti-Wolbachia agents.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana. .,Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Augustina Sylverken
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Amma Larbi
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Yusif Mubarik
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Charles Apprey
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
19
|
Yadav S, Sharma P, Sharma A, Ganga L, Saxena JK, Srivastava M. Immunization with Brugia malayi Calreticulin Protein Generates Robust Antiparasitic Immunity and Offers Protection during Experimental Lymphatic Filariasis. ACS Infect Dis 2021; 7:790-799. [PMID: 33667079 DOI: 10.1021/acsinfecdis.0c00565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lymphatic filariasis causes permanent and long-term disability worldwide. Lack of potent adulticidal drugs, the emergence of drug resistance, and the nonavailability of effective vaccines are the major drawbacks toward LF elimination. However, immunomodulatory proteins present in the parasite secretome are capable of providing good protection against LF and thus offer hope in designing new vaccines against LF. Here, we evaluated the immunogenicity and protective efficacy of B. malayi calreticulin protein (BmCRT) using in vitro and in vivo approaches. Stimulation with recombinant BmCRT (rBmCRT) significantly upregulated Th1 cytokine production in mouse splenocytes, mesenteric lymph nodes (mLNs), and splenic and peritoneal macrophages (PMΦs). Heightened NO release, ROS generation, increased lymphocyte proliferation, and increased antigen uptake were also observed after rBmCRT exposure. Mice immunized with rBmCRT responded with increased Th1 and Th2 cytokine secretion and exhibited highly elevated titers of anti-BmCRT specific IgG at day 14 and day 28 postimmunization while splenocytes and mLNs from immunized mice showed a robust recall response on restimulation with rBmCRT. Infective larvae (L3) challenge and protection studies undertaken in Mastomys coucha, a permissive model for LF, showed that rBmCRT-immunized animals mounted a robust humoral immune response as evident by elevated levels of total IgG, IgG1, IgG2a, IgG2b, and IgG3 in their serum even 150 days after L3 challenge, which led to significantly reduced microfilariae and worm burden in infected animals. BmCRT is highly immunogenic and generates robust antiparasitic immunity in immunized animals and should therefore be explored further as a putative vaccine candidate against LF.
Collapse
Affiliation(s)
| | | | - Aditi Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | | - Mrigank Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Tyagi R, Bulman CA, Cho-Ngwa F, Fischer C, Marcellino C, Arkin MR, McKerrow JH, McNamara CW, Mahoney M, Tricoche N, Jawahar S, Janetka JW, Lustigman S, Sakanari J, Mitreva M. An Integrated Approach to Identify New Anti-Filarial Leads to Treat River Blindness, a Neglected Tropical Disease. Pathogens 2021; 10:71. [PMID: 33466870 PMCID: PMC7830784 DOI: 10.3390/pathogens10010071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Filarial worms cause multiple debilitating diseases in millions of people worldwide, including river blindness. Currently available drugs reduce transmission by killing larvae (microfilariae), but there are no effective cures targeting the adult parasites (macrofilaricides) which survive and reproduce in the host for very long periods. To identify effective macrofilaricides, we carried out phenotypic screening of a library of 2121 approved drugs for clinical use against adult Brugia pahangi and prioritized the hits for further studies by integrating those results with a computational prioritization of drugs and associated targets. This resulted in the identification of 18 hits with anti-macrofilaricidal activity, of which two classes, azoles and aspartic protease inhibitors, were further expanded upon. Follow up screening against Onchocerca spp. (adult Onchocerca ochengi and pre-adult O. volvulus) confirmed activity for 13 drugs (the majority having IC50 < 10 μM), and a counter screen of a subset against L. loa microfilariae showed the potential to identify selective drugs that prevent adverse events when co-infected individuals are treated. Stage specific activity was also observed. Many of these drugs are amenable to structural optimization, and also have known canonical targets, making them promising candidates for further optimization that can lead to identifying and characterizing novel anti-macrofilarial drugs.
Collapse
Affiliation(s)
- Rahul Tyagi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
| | - Christina A. Bulman
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Fidelis Cho-Ngwa
- ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, Buea CM-00237, Cameroon;
| | - Chelsea Fischer
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Chris Marcellino
- Division of Neurocritical Care and Hospital Neurology, Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA;
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA;
| | - Case W. McNamara
- Calibr, a Division of The Scripps Research Institute, 11119 Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Matthew Mahoney
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Nancy Tricoche
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Shabnam Jawahar
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; (M.M.); (J.W.J.)
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York City, NY 10065, USA; (N.T.); (S.J.); (S.L.)
| | - Judy Sakanari
- Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA; (C.A.B.); (C.F.); (M.R.A.)
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO 63110, USA;
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., St. Louis, MO 63108, USA
| |
Collapse
|
21
|
Schiefer A, Hübner MP, Krome A, Lämmer C, Ehrens A, Aden T, Koschel M, Neufeld H, Chaverra-Muñoz L, Jansen R, Kehraus S, König GM, Pogorevc D, Müller R, Stadler M, Hüttel S, Hesterkamp T, Wagner K, Pfarr K, Hoerauf A. Corallopyronin A for short-course anti-wolbachial, macrofilaricidal treatment of filarial infections. PLoS Negl Trop Dis 2020; 14:e0008930. [PMID: 33284808 PMCID: PMC7746275 DOI: 10.1371/journal.pntd.0008930] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/17/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal–adult-worm killing–treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4–5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti-Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti-Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti-Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug. Infections with filarial roundworms can cause the disfiguring human neglected tropical diseases onchocerciasis and lymphatic filariasis. Treatment of these diseases is limited, as there is no well-tolerated treatment available that kills the adult worms after a short-term regimen. Thus, mass drug administrations (MDA) are performed with drugs that temporarily clear the microfilariae, the filarial offspring, to inhibit the transmission of the disease. As these MDA treatments have to be given 1–2 times per year for many years, the goal to eliminate onchocerciasis and lymphatic filariasis is hampered. In the present study we investigated a novel preclinical candidate for the treatment of filariasis. Corallopyronin A (CorA) is a natural compound that clears the essential Wolbachia endobacteria of filariae. Using the Litomosoides sigmodontis rodent model of filariasis we demonstrated that 2 weeks of CorA treatment clears Wolbachia endosymbionts in vivo, leading to a maintained clearance of microfilariae by inhibition of filarial embryogenesis. Combination therapy of CorA with the MDA drug albendazole allowed lower CorA doses and shortened treatment to 7 days. More importantly, it also led to the death of the adult filariae. Portfolios (Target Product Profiles) of new drugs against filariae should show adult killing efficacy like CorA.
Collapse
Affiliation(s)
- Andrea Schiefer
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Anna Krome
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Christine Lämmer
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Tilman Aden
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Helene Neufeld
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | | | - Rolf Jansen
- Department Microbial Drugs, Helmholtz Center for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Gabriele M. König
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Domen Pogorevc
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Rolf Müller
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Center for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Stephan Hüttel
- Department Microbial Drugs, Helmholtz Center for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Thomas Hesterkamp
- Translational Project Management Office (TPMO), German Center for Infection Research, Braunschweig, Germany
| | - Karl Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
- * E-mail:
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
22
|
Silva SF, Klippel AH, Ramos PZ, Santiago ADS, Valentini SR, Bengtson MH, Massirer KB, Bilsland E, Couñago RM, Zanelli CF. Structural features and development of an assay platform of the parasite target deoxyhypusine synthase of Brugia malayi and Leishmania major. PLoS Negl Trop Dis 2020; 14:e0008762. [PMID: 33044977 PMCID: PMC7581365 DOI: 10.1371/journal.pntd.0008762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/22/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023] Open
Abstract
Deoxyhypusine synthase (DHS) catalyzes the first step of the post-translational modification of eukaryotic translation factor 5A (eIF5A), which is the only known protein containing the amino acid hypusine. Both proteins are essential for eukaryotic cell viability, and DHS has been suggested as a good candidate target for small molecule-based therapies against eukaryotic pathogens. In this work, we focused on the DHS enzymes from Brugia malayi and Leishmania major, the causative agents of lymphatic filariasis and cutaneous leishmaniasis, respectively. To enable B. malayi (Bm)DHS for future target-based drug discovery programs, we determined its crystal structure bound to cofactor NAD+. We also reported an in vitro biochemical assay for this enzyme that is amenable to a high-throughput screening format. The L. major genome encodes two DHS paralogs, and attempts to produce them recombinantly in bacterial cells were not successful. Nevertheless, we showed that ectopic expression of both LmDHS paralogs can rescue yeast cells lacking the endogenous DHS-encoding gene (dys1). Thus, functionally complemented dys1Δ yeast mutants can be used to screen for new inhibitors of the L. major enzyme. We used the known human DHS inhibitor GC7 to validate both in vitro and yeast-based DHS assays. Our results show that BmDHS is a homotetrameric enzyme that shares many features with its human homologue, whereas LmDHS paralogs are likely to form a heterotetrameric complex and have a distinct regulatory mechanism. We expect our work to facilitate the identification and development of new DHS inhibitors that can be used to validate these enzymes as vulnerable targets for therapeutic interventions against B. malayi and L. major infections. Target-based drug discovery strategies hold the promise to discover safer and more effective treatments for Neglected Tropical Diseases (NTDs). Genetic manipulation techniques have been used to successfully identify essential genes in eukaryotic parasites. Unfortunately, the fact that a gene is essential under controlled laboratory conditions does not automatically make the corresponding gene-product vulnerable to pharmacological intervention in a clinical setting within the human host. To allow the discovery and development of small molecule tool compounds that can be used to validate pharmacologically vulnerable targets, one must first establish compound screening assays and obtain structural information for the candidate target. Eukaryotic cells lacking deoxyhypusine synthase (DHS) function are not viable. DHS catalyzes the first step in a post-translational modification that is critical for the function of eIF5A. Presence of mature eIF5A is also essential for eukaryotic cell viability. Here we reported compound screening assays (yeast-based for Brugia malayi and Leishmania major; in vitro for B. malayi only) and provided further regulatory and structural insights we hope will aid in the identification and development of inhibitors for the DHS enzymes from two NTD-causing organisms—B. malayi, the causative agent of lymphatic filariasis and L. major, the causative agent of cutaneous leishmaniasis.
Collapse
Affiliation(s)
| | | | - Priscila Zonzini Ramos
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - André da Silva Santiago
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | | | - Mario Henrique Bengtson
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Katlin Brauer Massirer
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Elizabeth Bilsland
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas—UNICAMP, Campinas, SP, Brazil
| | - Rafael Miguez Couñago
- Molecular Biology and Genetic Engineering Center (CBMEG), Medicinal Chemistry Center (CQMED), Structural Genomics Consortium (SGC-UNICAMP), University of Campinas-UNICAMP, Campinas, SP, Brazil
- * E-mail: (RMC); (CFZ)
| | - Cleslei Fernando Zanelli
- School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara, SP, Brazil
- * E-mail: (RMC); (CFZ)
| |
Collapse
|
23
|
Grau-Bové X, Tomlinson S, O’Reilly AO, Harding NJ, Miles A, Kwiatkowski D, Donnelly MJ, Weetman D. Evolution of the Insecticide Target Rdl in African Anopheles Is Driven by Interspecific and Interkaryotypic Introgression. Mol Biol Evol 2020; 37:2900-2917. [PMID: 32449755 PMCID: PMC7530614 DOI: 10.1093/molbev/msaa128] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The evolution of insecticide resistance mechanisms in natural populations of Anopheles malaria vectors is a major public health concern across Africa. Using genome sequence data, we study the evolution of resistance mutations in the resistance to dieldrin locus (Rdl), a GABA receptor targeted by several insecticides, but most notably by the long-discontinued cyclodiene, dieldrin. The two Rdl resistance mutations (296G and 296S) spread across West and Central African Anopheles via two independent hard selective sweeps that included likely compensatory nearby mutations, and were followed by a rare combination of introgression across species (from A. gambiae and A. arabiensis to A. coluzzii) and across nonconcordant karyotypes of the 2La chromosomal inversion. Rdl resistance evolved in the 1950s as the first known adaptation to a large-scale insecticide-based intervention, but the evolutionary lessons from this system highlight contemporary and future dangers for management strategies designed to combat development of resistance in malaria vectors.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sean Tomlinson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Health Informatics, Computing and Statistics, Lancaster University, Lancaster, United Kingdom
| | - Andrias O O’Reilly
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Nicholas J Harding
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Alistair Miles
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Dominic Kwiatkowski
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
24
|
Archer J, O’Halloran L, Al-Shehri H, Summers S, Bhattacharyya T, Kabaterine NB, Atuhaire A, Adriko M, Arianaitwe M, Stewart M, LaCourse EJ, Webster BL, Bustinduy AL, Stothard JR. Intestinal Schistosomiasis and Giardiasis Co-Infection in Sub-Saharan Africa: Can a One Health Approach Improve Control of Each Waterborne Parasite Simultaneously? Trop Med Infect Dis 2020; 5:E137. [PMID: 32854435 PMCID: PMC7558413 DOI: 10.3390/tropicalmed5030137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Both intestinal schistosomiasis and giardiasis are co-endemic throughout many areas of sub-Saharan Africa, significantly impacting the health of millions of children in endemic areas. While giardiasis is not considered a neglected tropical disease (NTD), intestinal schistosomiasis is formally grouped under the NTD umbrella and receives significant advocacy and financial support for large-scale control. Although there are differences in the epidemiology between these two diseases, there are also key similarities that might be exploited within potential integrated control strategies permitting tandem interventions. In this review, we highlight these similarities and discuss opportunities for integrated control of giardiasis in low and middle-income countries where intestinal schistosomiasis is co-endemic. By applying new, advanced methods of disease surveillance, and by improving the provision of water, sanitation and hygiene (WASH) initiatives, (co)infection with intestinal schistosomiasis and/or giardiasis could not only be more effectively controlled but also better understood. In this light, we appraise the suitability of a One Health approach targeting both intestinal schistosomiasis and giardiasis, for if adopted more broadly, transmission of both diseases could be reduced to gain improvements in health and wellbeing.
Collapse
Affiliation(s)
- John Archer
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK; (J.A.); (B.L.W.)
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.O.); (H.A.-S.); (M.S.); (E.J.L.)
| | - Lisa O’Halloran
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.O.); (H.A.-S.); (M.S.); (E.J.L.)
| | - Hajri Al-Shehri
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.O.); (H.A.-S.); (M.S.); (E.J.L.)
- Department of Tropical Infectious Diseases, Ministry of Health, Asir District, Abha 61411, Saudi Arabia
| | - Shannan Summers
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.S.); (T.B.); (A.L.B.)
| | - Tapan Bhattacharyya
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.S.); (T.B.); (A.L.B.)
| | - Narcis B. Kabaterine
- Vector Control Division, Ministry of Health, Kampala 759125, Uganda; (N.B.K.); (A.A.); (M.A.); (M.A.)
| | - Aaron Atuhaire
- Vector Control Division, Ministry of Health, Kampala 759125, Uganda; (N.B.K.); (A.A.); (M.A.); (M.A.)
| | - Moses Adriko
- Vector Control Division, Ministry of Health, Kampala 759125, Uganda; (N.B.K.); (A.A.); (M.A.); (M.A.)
| | - Moses Arianaitwe
- Vector Control Division, Ministry of Health, Kampala 759125, Uganda; (N.B.K.); (A.A.); (M.A.); (M.A.)
| | - Martyn Stewart
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.O.); (H.A.-S.); (M.S.); (E.J.L.)
| | - E. James LaCourse
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.O.); (H.A.-S.); (M.S.); (E.J.L.)
| | - Bonnie L. Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK; (J.A.); (B.L.W.)
| | - Amaya L. Bustinduy
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.S.); (T.B.); (A.L.B.)
| | - J. Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (L.O.); (H.A.-S.); (M.S.); (E.J.L.)
| |
Collapse
|
25
|
Oxfendazole mediates macrofilaricidal efficacy against the filarial nematode Litomosoides sigmodontis in vivo and inhibits Onchocerca spec. motility in vitro. PLoS Negl Trop Dis 2020; 14:e0008427. [PMID: 32628671 PMCID: PMC7365463 DOI: 10.1371/journal.pntd.0008427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/16/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
A major impediment to eliminate lymphatic filariasis and onchocerciasis is the lack of effective short-course macrofilaricidal drugs or regimens that are proven to be safe for both infections. In this study we tested oxfendazole, an anthelmintic shown to be well tolerated in phase 1 clinical trials. In vitro, oxfendazole exhibited modest to marginal motility inhibition of adult worms of Onchocerca gutturosa, pre-adult worms of Onchocerca volvulus and Onchocerca lienalis microfilariae. In vivo, five days of oral treatments provided sterile cure with up to 100% macrofilaricidal efficacy in the murine Litomosoides sigmodontis model of filariasis. In addition, 10 days of oral treatments with oxfendazole inhibited filarial embryogenesis in patent L. sigmodontis-infected jirds and subsequently led to a protracted but complete clearance of microfilaremia. The macrofilaricidal effect observed in vivo was selective, as treatment with oxfendazole of microfilariae-injected naïve mice was ineffective. Based on pharmacokinetic analysis, the driver of efficacy is the maintenance of a minimal efficacious concentration of approximately 100 ng/ml (based on subcutaneous treatment at 25 mg/kg in mice). From animal models, the human efficacious dose is predicted to range from 1.5 to 4.1 mg/kg. Such a dose has already been proven to be safe in phase 1 clinical trials. Oxfendazole therefore has potential to be efficacious for treatment of human filariasis without causing adverse reactions due to drug-induced microfilariae killing. Onchocerciasis and lymphatic filariasis represent two debilitating filarial diseases that belong to the neglected tropical diseases. The current efforts to eliminate those diseases is hampered by the lack of short-course macrofilaricidal drugs, i.e. drugs that kill the adult worms, or regimens that are proven to be safe for both diseases. In the present study we demonstrate that the anthelmintic drug oxfendazole, currently used in veterinary medicine against intestinal helminths, has excellent efficacy in the Litomosoides sigmodontis rodent model of filariasis. Oxfendazole caused complete clearance of adult filariae after a short oral regimen in vivo. Oxfendazole was not directly active against the circulating filarial progeny, the microfilariae, suggesting that drug-induced serious adverse events due to the clearance of microfilariae are unlikely. Human dose was predicted based on the efficacy in the rodent model, the calculation estimated a low efficacious dose, which has already been shown to be safe in phase 1 clinical trials. Thus, oxfendazole represents a promising drug candidate for the treatment of human filarial diseases such as onchocerciasis and lymphatic filariasis.
Collapse
|
26
|
Gunderson EL, Vogel I, Chappell L, Bulman CA, Lim KC, Luo M, Whitman JD, Franklin C, Choi YJ, Lefoulon E, Clark T, Beerntsen B, Slatko B, Mitreva M, Sullivan W, Sakanari JA. The endosymbiont Wolbachia rebounds following antibiotic treatment. PLoS Pathog 2020; 16:e1008623. [PMID: 32639986 PMCID: PMC7371230 DOI: 10.1371/journal.ppat.1008623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/20/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Antibiotic treatment has emerged as a promising strategy to sterilize and kill filarial nematodes due to their dependence on their endosymbiotic bacteria, Wolbachia. Several studies have shown that novel and FDA-approved antibiotics are efficacious at depleting the filarial nematodes of their endosymbiont, thus reducing female fecundity. However, it remains unclear if antibiotics can permanently deplete Wolbachia and cause sterility for the lifespan of the adult worms. Concerns about resistance arising from mass drug administration necessitate a careful exploration of potential Wolbachia recrudescence. In the present study, we investigated the long-term effects of the FDA-approved antibiotic, rifampicin, in the Brugia pahangi jird model of infection. Initially, rifampicin treatment depleted Wolbachia in adult worms and simultaneously impaired female worm fecundity. However, during an 8-month washout period, Wolbachia titers rebounded and embryogenesis returned to normal. Genome sequence analyses of Wolbachia revealed that despite the population bottleneck and recovery, no genetic changes occurred that could account for the rebound. Clusters of densely packed Wolbachia within the worm's ovarian tissues were observed by confocal microscopy and remained in worms treated with rifampicin, suggesting that they may serve as privileged sites that allow Wolbachia to persist in worms while treated with antibiotic. To our knowledge, these clusters have not been previously described and may be the source of the Wolbachia rebound.
Collapse
Affiliation(s)
- Emma L. Gunderson
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Ian Vogel
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Laura Chappell
- Dept. of Molecular, Cell and Developmental Biology; University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Christina A. Bulman
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - K. C. Lim
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Mona Luo
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Jeffrey D. Whitman
- Dept. of Laboratory Medicine; University of California, San Francisco; San Francisco, California, United States of America
| | - Chris Franklin
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Young-Jun Choi
- Division of Infectious Diseases; Washington University School of Medicine, St. Louis; St. Louis, Missouri, United States of America
| | - Emilie Lefoulon
- Molecular Parasitology Division; New England BioLabs; Ipswich, Massachusetts, United States of America
| | - Travis Clark
- Veterinary Pathobiology; University of Missouri-Columbia; Columbia, Missouri, United States of America
| | - Brenda Beerntsen
- Veterinary Pathobiology; University of Missouri-Columbia; Columbia, Missouri, United States of America
| | - Barton Slatko
- Molecular Parasitology Division; New England BioLabs; Ipswich, Massachusetts, United States of America
| | - Makedonka Mitreva
- Division of Infectious Diseases; Washington University School of Medicine, St. Louis; St. Louis, Missouri, United States of America
| | - William Sullivan
- Dept. of Molecular, Cell and Developmental Biology; University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Judy A. Sakanari
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| |
Collapse
|
27
|
Lechner AM, Gastager H, Kern JM, Wagner B, Tappe D. Case Report: Successful Treatment of a Patient with Microfilaremic Dirofilariasis Using Doxycycline. Am J Trop Med Hyg 2020; 102:844-846. [PMID: 32043447 PMCID: PMC7124902 DOI: 10.4269/ajtmh.19-0744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the case of a 56-year-old woman with microfilaremic dirofilariasis due to Dirofilaria repens, which is a very rare condition in humans. Of note, just one of six large-volume blood samples of this patient was positive for microfilariae. Polymerase chain reaction (PCR) and sequencing of the parasite gene determined the geographic origin of the causative helminth. The patient was treated successfully with doxycycline. This drug was chosen because of the patient's reluctance to the use of ivermectin and to provide an anthelmintic effect by targeting the bacterial endosymbiont Wolbachia present in most filarial species.
Collapse
Affiliation(s)
- Arno M Lechner
- Division Medizinische Mikrobiologie, Paracelsus Medizinische Privatuniversität Salzburg, Universitätsinstitut für Medizinisch-Chemische Labordiagnostik, Salzburg, Austria
| | | | - Jan Marco Kern
- Division Medizinische Mikrobiologie, Paracelsus Medizinische Privatuniversität Salzburg, Universitätsinstitut für Medizinisch-Chemische Labordiagnostik, Salzburg, Austria
| | - Birgit Wagner
- Abteilung für Medizinische Parasitologie, Institut für Spezifische Prophylaxe und Tropenmedizin, Zentrum für Pathophysiologie, Infektiologie und Immunologie, Medizinische Universität Wien, Wien, Vienna, Austria
| | - Dennis Tappe
- Nationales Referenzzentrum für Tropische Infektionserreger, Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Germany
| |
Collapse
|
28
|
Alvar J, Alves F, Bucheton B, Burrows L, Büscher P, Carrillo E, Felger I, Hübner MP, Moreno J, Pinazo MJ, Ribeiro I, Sosa-Estani S, Specht S, Tarral A, Wourgaft NS, Bilbe G. Implications of asymptomatic infection for the natural history of selected parasitic tropical diseases. Semin Immunopathol 2020; 42:231-246. [PMID: 32189034 PMCID: PMC7299918 DOI: 10.1007/s00281-020-00796-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Progress has been made in the control or elimination of tropical diseases, with a significant reduction of incidence. However, there is a risk of re-emergence if the factors fueling transmission are not dealt with. Although it is essential to understand these underlying factors for each disease, asymptomatic carriers are a common element that may promote resurgence; their impact in terms of proportion in the population and role in transmission needs to be determined. In this paper, we review the current evidence on whether or not to treat asymptomatic carriers given the relevance of their role in the transmission of a specific disease, the efficacy and toxicity of existing drugs, the Public Health interest, and the benefit at an individual level, for example, in Chagas disease, to prevent irreversible organ damage. In the absence of other control tools such as vaccines, there is a need for safer drugs with good risk/benefit profiles in order to change the paradigm so that it addresses the complete infectious process beyond manifest disease to include treatment of non-symptomatic infected persons.
Collapse
Affiliation(s)
- Jorge Alvar
- Drugs for Neglected Diseases initiative, Geneva, Switzerland.
| | - Fabiana Alves
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Bruno Bucheton
- Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Louise Burrows
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | | | - Eugenia Carrillo
- WHO Collaborating Cenre for Leishmaniasis, Instituto de Sakud Carlos III, Madrid, Spain
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Javier Moreno
- WHO Collaborating Cenre for Leishmaniasis, Instituto de Sakud Carlos III, Madrid, Spain
| | | | - Isabela Ribeiro
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Sergio Sosa-Estani
- Drugs for Neglected Diseases initiative, Centro de Investigación de Epidemiología y Salud Pública (CIESP-IECS), CONICET, Buenos Aires, Argentina
| | - Sabine Specht
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Antoine Tarral
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | | | - Graeme Bilbe
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| |
Collapse
|
29
|
Prevalence and Correlates of Lymphatic Filariasis Infection and Its Morbidity Following Mass Ivermectin and Albendazole Administration in Mkinga District, North-Eastern Tanzania. J Clin Med 2020; 9:jcm9051550. [PMID: 32455556 PMCID: PMC7290598 DOI: 10.3390/jcm9051550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022] Open
Abstract
Lymphatic filariasis (LF) is a neglected tropical disease targeted for elimination as public health problem through morbidity management and preventive annual mass drug administration (MDA). This cross-sectional community-based surveillance assessed the prevalence and correlates of LF infection in Mkinga district, Tanga-region, Tanzania. A total of 4115 individuals (49.7% males, 35.2% children) were screened for circulating filarial antigens (CFA), microfilaremia (mf) and disease manifestations in 15 villages between November 2018 and January 2019. MDA uptake in the previous year was assessed. Overall prevalence of CFA-positivity was 5.8% (239/4115; 95% CI: 5.1–6.6), with significant heterogeneity between villages (range 1.2% to 13.5%). CFA-positivity was higher in males (8.8%) than females (3.3%), and correlated with increasing age (p < 0.001). Prevalence of mf among CFA-positives was 5.2%. Only 60% of eligible inhabitants in the study area took MDA in the previous year, and CFA-positivity was 2-fold higher in those who missed MDA (p < 0.0001). Prevalence of scrotal enlargement, hydrocele, arms or legs swelling, lymphoedema and lymphadenopathy was 6.4%, 3.7%, 1.35%, 1.2% and 0.32%, respectively. Compared to baseline data, 16 years of MDA intervention significantly reduced LF transmission and morbidity, although the intended elimination target of <1% mf and <2% antigenemia to level where recrudescence is unlikely to occur by the year 2020 may not be attained. The finding of hotspots with ongoing transmission calls for intensified control measures.
Collapse
|
30
|
Padidam S, Trinh H, Lin X, Boss JD. Nonsurgical management of photoaversive ocular and systemic loiasis in Michigan. GMS OPHTHALMOLOGY CASES 2020; 10:Doc22. [PMID: 32676267 PMCID: PMC7332719 DOI: 10.3205/oc000149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective: Ocular loasis refers to ocular conditions such as pain and redness caused by the movement of the Loa loa nematode through the subconjuctival space of the eye. It is a tropical disease that is very rarely seen in North America. We report the case of a 32-year-old male who was recently diagnosed with ocular loasis in the Midwestern region of the United States. Methods: He presented to the emergency department with left eye pain after seeing a "worm in his eye" the previous night. He had emigrated from Cameroon 7 years prior. Anterior segment examination revealed a translucent, motile worm in the subconjunctival space of his left eye. Results: Prior to the patient's scheduled follow-up for surgical removal of the worm, it migrated into the lower eyelid subdermal space. Serum testing confirmed the presence of Loa loa microfilariae at a concentration of >17,000 mf/mL. Conclusion: The patient was treated at the National Institute of Health (NIH) with pheresis followed by diethylcarbamazine and reported symptomatic improvement 1 month after treatment. This case report demonstrates the importance of being able to recognize and properly manage vector-borne parasites in nonendemic areas due to increased travel and climate change.
Collapse
Affiliation(s)
- Sneha Padidam
- Kresge Eye Institute/Wayne State University School of Medicine, Detroit, USA,*To whom correspondence should be addressed: Sneha Padidam, Kresge Eye Institute, 4717 St. Antoine Street, Detroit, USA, Phone: +1 267 638 8612, E-mail:
| | | | - Xihui Lin
- Kresge Eye Institute/Wayne State University School of Medicine, Detroit, USA
| | | |
Collapse
|
31
|
Filarial infections in California sea lions vary spatially within the Gulf of California, Mexico. Parasitol Res 2020; 119:1281-1290. [PMID: 32166425 DOI: 10.1007/s00436-020-06638-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
At least two species of filarial worms, Dirofilaria immitis and Acanthocheilonema (Dipetalonema) odendhali, infect otariid pinnipeds, including the California sea lion (Zalophus californianus). To date, evidence of infection in sea lions has come from dead or captive animals, and little is known about filariasis in free-living populations. We sampled 45 California sea lion adults and 197 pups captured at 12 rookeries from different ecological regions within the Gulf of California and detected and quantified D. immitis and A. odendhali microfilariae in blood smears. We investigated differences in prevalence and parasite load (intensity of infection) among ecological regions. Microfilariae were detected in the blood of 35 of the 45 (77.78%) adult females and in 1 of the 197 (0.51%) pups examined. The average burden of A. odendhali per microlitre of blood was nearly twice that of D. immitis. Prevalence and intensity of infection differed significantly among regions, being highest for colonies within the northern and northcentral regions and lowest in the southern region. Dirofilaria immitis and A. odendhali infections displayed a similar spatial pattern of prevalence. Colony density inversely predicted the prevalence of microfilariae. Based on the clinical parameters typically associated with filarial infections in carnivores and physical examinations, none of the sea lions appeared to have evidence of disease. This is a first approximation to investigate the prevalence of microfilaria infections in free-ranging California sea lions and to explore their relevance to population health.
Collapse
|
32
|
Short-course quinazoline drug treatments are effective in the Litomosoides sigmodontis and Brugia pahangi jird models. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 12:18-27. [PMID: 31869759 PMCID: PMC6931063 DOI: 10.1016/j.ijpddr.2019.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022]
Abstract
The quinazolines CBR417 and CBR490 were previously shown to be potent anti-wolbachials that deplete Wolbachia endosymbionts of filarial nematodes and present promising pre-clinical candidates for human filarial diseases such as onchocerciasis. In the present study we tested both candidates in two models of chronic filarial infection, namely the Litomosoides sigmodontis and Brugia pahangi jird model and assessed their long-term effect on Wolbachia depletion, microfilariae counts and filarial embryogenesis 16−18 weeks after treatment initiation (wpt). Once per day (QD) oral treatment with CBR417 (50 mg/kg) for 4 days or twice per day (BID) with CBR490 (25 mg/kg) for 7 days during patent L. sigmodontis infection reduced the Wolbachia load by >99% and completely cleared peripheral microfilaremia from 10–14 wpt. Similarly, 7 days of QD treatments (40 mg/kg) with CBR417 or CBR490 cleared >99% of Wolbachia from B. pahangi and reduced peritoneal microfilariae counts by 93% in the case of CBR417 treatment. Transmission electron microscopy analysis indicated intensive damage to the B. pahangi ovaries following CBR417 treatment and in accordance filarial embryogenesis was inhibited in both models after CBR417 or CBR490 treatment. Suboptimal treatment regimens of CBR417 or CBR490 did not lead to a maintained reduction of the microfilariae and Wolbachia load. In conclusion, CBR417 or CBR490 are pre-clinical candidates for filarial diseases, which achieve long-term clearance of Wolbachia endosymbionts of filarial nematodes, inhibit filarial embryogenesis and clear microfilaremia with treatments as short as 7 days. CBR417 and CBR490 provide long-term effects in 2 chronic filaria jird models. CBR417 and CBR490 deplete >99% Wolbachia in B. pahangi and L. sigmodontis filariae. CBR417 and CBR490 clear L. sigmodontis microfilariae after 10–14 weeks. CBR417 and CBR490 inhibit filarial embryogenesis in both models. Suboptimal doses do not maintain reduction of microfilariae and Wolbachia.
Collapse
|
33
|
Buell KG, Whittaker C, Chesnais CB, Jewell PD, Pion SDS, Walker M, Basáñez MG, Boussinesq M. Atypical Clinical Manifestations of Loiasis and Their Relevance for Endemic Populations. Open Forum Infect Dis 2019; 6:ofz417. [PMID: 31696139 PMCID: PMC6824532 DOI: 10.1093/ofid/ofz417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/08/2019] [Indexed: 01/02/2023] Open
Abstract
Background Loiasis is mostly considered a relatively benign infection when compared with other filarial and parasitic diseases, with Calabar swellings and eyeworm being the most common signs. Yet, there are numerous reports in the literature of more serious sequelae. Establishing the relationship between infection and disease is a crucial first step toward estimating the burden of loiasis. Methods We conducted a systematic review of case reports containing 329 individuals and detailing clinical manifestations of loiasis with a focus on nonclassical, atypical presentations. Results Results indicate a high proportion (47%) of atypical presentations in the case reports identified, encompassing a wide range of cardiac, respiratory, gastrointestinal, renal, neurological, ophthalmological, and dermatological pathologies. Individuals with high microfilarial densities and residing in an endemic country were at greater risk of suffering from atypical manifestations. Conclusions Our findings have important implications for understanding the clinical spectrum of conditions associated with Loa loa infection, which extends well beyond the classical eyeworm and Calabar swellings. As case reports may overestimate the true rate of atypical manifestations in endemic populations, large-scale, longitudinal clinico-epidemiological studies will be required to refine our estimates and demonstrate causality between loiasis and the breadth of clinical manifestations reported. Even if the rates of atypical presentations were found to be lower, given that residents of loiasis-endemic areas are both numerous and the group most at risk of severe atypical manifestations, our conclusions support the recognition of loiasis as a significant public health burden across Central Africa.
Collapse
Affiliation(s)
- Kevin G Buell
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research and MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine (St Mary's Campus), Imperial College London, London, UK
| | - Charles Whittaker
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research and MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine (St Mary's Campus), Imperial College London, London, UK
| | - Cédric B Chesnais
- Institut de Recherche pour le Développement (IRD), UMI 233-INSERM U1175-Montpellier University, Montpellier, France
| | - Paul D Jewell
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research and MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine (St Mary's Campus), Imperial College London, London, UK
| | - Sébastien D S Pion
- Institut de Recherche pour le Développement (IRD), UMI 233-INSERM U1175-Montpellier University, Montpellier, France
| | - Martin Walker
- Department of Pathobiology and Population Sciences, London Centre for Neglected Tropical Disease Research, Royal Veterinary College, Hatfield, UK
| | - Maria-Gloria Basáñez
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research and MRC Centre for Global Infectious Disease Analysis, Faculty of Medicine (St Mary's Campus), Imperial College London, London, UK
| | - Michel Boussinesq
- Institut de Recherche pour le Développement (IRD), UMI 233-INSERM U1175-Montpellier University, Montpellier, France
| |
Collapse
|
34
|
Voronin D, Schnall E, Grote A, Jawahar S, Ali W, Unnasch TR, Ghedin E, Lustigman S. Pyruvate produced by Brugia spp. via glycolysis is essential for maintaining the mutualistic association between the parasite and its endosymbiont, Wolbachia. PLoS Pathog 2019; 15:e1008085. [PMID: 31568486 PMCID: PMC6791551 DOI: 10.1371/journal.ppat.1008085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023] Open
Abstract
Human parasitic nematodes are the causative agents of lymphatic filariasis (elephantiasis) and onchocerciasis (river blindness), diseases that are endemic to more than 80 countries and that consistently rank in the top ten for the highest number of years lived with disability. These filarial nematodes have evolved an obligate mutualistic association with an intracellular bacterium, Wolbachia, a symbiont that is essential for the successful development, reproduction, and survival of adult filarial worms. Elimination of the bacteria causes adult worms to die, making Wolbachia a primary target for developing new interventional tools to combat filariases. To further explore Wolbachia as a promising indirect macrofilaricidal drug target, the essential cellular processes that define the symbiotic Wolbachia-host interactions need to be identified. Genomic analyses revealed that while filarial nematodes encode all the enzymes necessary for glycolysis, Wolbachia does not encode the genes for three glycolytic enzymes: hexokinase, 6-phosphofructokinase, and pyruvate kinase. These enzymes are necessary for converting glucose into pyruvate. Wolbachia, however, has the full complement of genes required for gluconeogenesis starting with pyruvate, and for energy metabolism via the tricarboxylic acid cycle. Therefore, we hypothesized that Wolbachia might depend on host glycolysis to maintain a mutualistic association with their parasitic host. We did conditional experiments in vitro that confirmed that glycolysis and its end-product, pyruvate, sustain this symbiotic relationship. Analysis of alternative sources of pyruvate within the worm indicated that the filarial lactate dehydrogenase could also regulate the local intracellular concentration of pyruvate in proximity to Wolbachia and thus help control bacterial growth via molecular interactions with the bacteria. Lastly, we have shown that the parasite's pyruvate kinase, the enzyme that performs the last step in glycolysis, could be a potential novel anti-filarial drug target. Establishing that glycolysis is an essential component of symbiosis in filarial worms could have a broader impact on research focused on other intracellular bacteria-host interactions where the role of glycolysis in supporting intracellular survival of bacteria has been reported.
Collapse
Affiliation(s)
- Denis Voronin
- Molecular Parasitology, New York Blood Center, New York, New York, United States of America
| | - Emily Schnall
- Molecular Parasitology, New York Blood Center, New York, New York, United States of America
| | - Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Shabnam Jawahar
- Molecular Parasitology, New York Blood Center, New York, New York, United States of America
| | - Waleed Ali
- Molecular Parasitology, New York Blood Center, New York, New York, United States of America
| | - Thomas R. Unnasch
- Center for Global Health Infectious Disease Research, University of South Florida, College of Public Health, Tampa, Florida, United States of America
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- College of Global Public Health, New York University, New York, New York, United States of America
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, New York, New York, United States of America
| |
Collapse
|
35
|
Gebrezgabiher G, Mekonnen Z, Yewhalaw D, Hailu A. Reaching the last mile: main challenges relating to and recommendations to accelerate onchocerciasis elimination in Africa. Infect Dis Poverty 2019; 8:60. [PMID: 31269966 PMCID: PMC6609392 DOI: 10.1186/s40249-019-0567-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Onchocerciasis (river blindness), caused by the filarial worm species Onchocerca volvulus, is a serious vector-borne neglected tropical disease (NTD) of public health and socioeconomic concern. It is transmitted through the bite of black flies of the genus Simulium, and manifested in dermal and ocular lesions. Ninety-nine percent of the total global risk and burden of onchocerciasis is in Africa. This scoping review examines the key challenges related to the elimination of onchocerciasis by 2020-2025 in Africa, and proposes recommendations to overcome the challenges and accelerate disease elimination. To find relevant articles published in peer-reviewed journals, a search of PubMed and Google Scholar databases was carried out. MAIN TEXT Rigorous regional interventions carried out to control and eliminate onchocerciasis in the past four decades in Africa have been effective in bringing the disease burden under control; it is currently not a public health problem in most endemic areas. Notably, transmission of the parasite is interrupted in some hyperendemic localities. Recently, there has been a policy shift from control to complete disease elimination by 2020 in selected countries and by 2025 in the majority of endemic African countries. The WHO has published guidelines for stopping mass drug administration (MDA) and verifying the interruption of transmission and elimination of human onchocerciasis. Therefore, countries have revised their plans, established a goal of disease elimination in line with an evidence based decision to stop MDA and verify elimination, and incorporated it into their NTDs national master plans. Nevertheless, challenges remain pertaining to the elimination of onchocerciasis in Africa. The challenge we review in this paper are: incomplete elimination mapping of all transmission zones, co-endemicity of onchocerciasis and loiasis, possible emergence of ivermectin resistance, uncoordinated cross-border elimination efforts, conflict and civil unrest, suboptimal program implementation, and technical and financial challenges. This paper also proposes recommendations to overcome the challenges and accelerate disease elimination. These are: a need for complete disease elimination mapping, a need for collaborative elimination activities between national programs, a need for a different drug distribution approach in conflict-affected areas, a need for routine monitoring and evaluation of MDA programs, a need for implementing alternative treatment strategies (ATSs) in areas with elimination anticipated beyond 2025, and a need for strong partnerships and continued funding. CONCLUSIONS National programs need to regularly monitor and evaluate the performance and progress of their interventions, while envisaging the complete elimination of onchocerciasis from their territory. Factors hindering the targeted goal of interruption of parasite transmission need to be identified and remedial actions should be taken. If possible and appropriate, ATSs need to be implemented to accelerate disease elimination by 2025.
Collapse
Affiliation(s)
- Gebremedhin Gebrezgabiher
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
- College of Veterinary Medicine, Samara University, Samara, Ethiopia
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
36
|
Badia-Rius X, Betts H, Molyneux DH, Kelly-Hope LA. Environmental factors associated with the distribution of Loa loa vectors Chrysops spp. in Central and West Africa: seeing the forest for the trees. Parasit Vectors 2019; 12:72. [PMID: 30728063 PMCID: PMC6366063 DOI: 10.1186/s13071-019-3327-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Loiasis is caused by the filarial parasite Loa loa, which is widespread through Central and West Africa and largely confined the tropical equatorial rainforests. The tabanid flies Chrysops silacea and Chrysops dimidiata are the main vectors driving transmission. This study aimed to better define the spatial distribution and ecological niche of the two vectors to help define spatial-temporal risk and target appropriate, timely intervention strategies for filariasis control and elimination programmes. METHODS Chrysops spp. distributions were determined by collating information from the published literature into a database, detailing the year, country, locality, latitude/longitude and species collected. Environmental factors including climate, elevation and tree canopy characteristics were summarised for each vector from data obtained from satellite modelled data or imagery, which were also used to identify areas with overt landcover changes. The presence of each Chrysops vector was predicted using a maximum entropy species distribution modelling (MaxEnt) method. RESULTS A total of 313 location-specific data points from 59 published articles were identified across seven loiasis endemic countries. Of these, 186 sites were included in the climate and elevation analysis, and due to overt landcover changes, 83 sites included in tree canopy analysis and MaxEnt model. Overall, C. silacea and C. dimidiata were found to have similar ranges; annual mean temperature (24.6 °C and 24.1 °C, respectively), annual precipitation (1848.6 mm and 1868.8 mm), elevation (368.8 m and 400.6 m), tree canopy cover (61.4% and 66.9%) and tree canopy height (22.4 m and 25.1 m). MaxEnt models found tree canopy coverage was a significant environmental variable for both vectors. CONCLUSIONS The Chrysops spp. database and large-scale environmental analysis provides insights into the spatial and ecological parameters of the L. loa vectors driving transmission. These may be used to further delineate loiasis risk, which will be important for implementing filariasis control and elimination programmes in the equatorial rainforest region of Central and West Africa.
Collapse
Affiliation(s)
- Xavier Badia-Rius
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hannah Betts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David H. Molyneux
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Louise A. Kelly-Hope
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
37
|
Hübner MP, Ehrens A, Koschel M, Dubben B, Lenz F, Frohberger SJ, Specht S, Quirynen L, Lachau-Durand S, Tekle F, Baeten B, Engelen M, Mackenzie CD, Hoerauf A. Macrofilaricidal efficacy of single and repeated oral and subcutaneous doses of flubendazole in Litomosoides sigmodontis infected jirds. PLoS Negl Trop Dis 2019; 13:e0006320. [PMID: 30650105 PMCID: PMC6334906 DOI: 10.1371/journal.pntd.0006320] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 12/31/2022] Open
Abstract
Flubendazole (FBZ) is highly efficacious against filarial nematodes after parenteral administration and presents a promising macrofilaricidal drug candidate for the elimination of onchocerciasis and other filariae. In the present study the efficacy of a newly developed bioavailable amorphous solid dispersion (ASD) oral formulation of FBZ was investigated in the Litomosoides sigmodontis jird model. FBZ was administered to chronically infected, microfilariae-positive jirds by single (40mg/kg), repeated (2, 6 or 15mg/kg for 5 or 10 days) oral (OR) doses or single subcutaneous (SC) injections (2 or 10mg/kg). Jirds treated with 5 SC injections at 10mg/kg served as positive controls, with untreated animals used as negative controls. After OR doses, FBZ is rapidly absorbed and cleared and the exposures increased dose proportionally. SC administered FBZ was slowly released from the injection site and plasma levels remained constant up to necropsy eight weeks after treatment end. Increasing single SC doses caused less than dose-proportional exposures. At necropsy, all animals receiving 1x or 5x 10mg/kg SC FBZ had cleared all adult worms and the 1x 2mg/kg SC treatment had reduced the adult worm burden by 98%. 10x 15mg/kg OR FBZ reduced the adult worm burden by 95%, whereas 1x 40mg/kg and 5x 15mg/kg OR reduced the worm burden by 85 and 84%, respectively. Microfilaremia was completely cleared at necropsy in all animals of the SC treatment regimens, while all oral FBZ treatment regimens reduced the microfilaremia by >90% in a dose and duration dependent manner. In accordance, embryograms from female worms revealed a FBZ dose and duration dependent inhibition of embryogenesis. Histological analysis of the remaining female adult worms showed that FBZ had damaged the body wall, intestine and most prominently the uterus and uterine content. Results of this study demonstrate that single and repeated SC injections and repeated oral administrations of FBZ have an excellent macrofilaricidal effect. Onchocerciasis and lymphatic filariasis are debilitating human diseases that are caused by filarial nematodes leading to blindness and severe dermatitis (onchocerciasis) or lymphedema (elephantiasis) and hydroceles. Current mass drug administration (MDA) programs are restricted to the use of drugs that target the filarial offspring, the microfilariae, and lead to a temporary sterilization of the female adult worms that requires annual to bi-annual MDA for the life span of the fertile adult worms. With lower endemicity, the cost-effectiveness of community-directed MDA is reduced, requiring alternative treatment strategies to ultimately eliminate these filarial infections. Therefore, new drugs targeting the adult worms are required for achieving elimination of those filarial diseases, to provide options in areas of drug resistance, and as an approach in areas of Loa loa co-endemicity, where life-threatening severe adverse events may occur through the use of microfilaricidal drugs. Such new drugs should have a macrofilaricidal effect, i.e. kill the adult worms or lead to a permanent sterilization. Furthermore, these drugs should be preferably administered as an oral formulation or by a single parenteral administration. In the current study we tested a new oral formulation of flubendazole using the rodent filarial nematode Litomosoides sigmodontis, and have demonstrated excellent macrofilaricidal efficacy.
Collapse
Affiliation(s)
- Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- * E-mail:
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Bettina Dubben
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Franziska Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Stefan J. Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | | | | | - Fetene Tekle
- Janssen R&D, Janssen Pharmaceutica, Beerse, Belgium
| | - Benny Baeten
- Janssen R&D, Janssen Pharmaceutica, Beerse, Belgium
| | - Marc Engelen
- Janssen R&D, Janssen Pharmaceutica, Beerse, Belgium
| | - Charles D. Mackenzie
- Neglected Tropical Disease Support Center, Task Force for Global Health, Atlanta, GA, United States of America
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
38
|
Gangwar M, Jha R, Goyal M, Srivastava M. Immunogenicity and protective efficacy of Recombinase A from Wolbachia endosymbiont of filarial nematode Brugia malayi (wBmRecA). Vaccine 2019; 37:571-580. [DOI: 10.1016/j.vaccine.2018.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/13/2018] [Indexed: 01/20/2023]
|
39
|
Fischer C, Ibiricu Urriza I, Bulman CA, Lim KC, Gut J, Lachau-Durand S, Engelen M, Quirynen L, Tekle F, Baeten B, Beerntsen B, Lustigman S, Sakanari J. Efficacy of subcutaneous doses and a new oral amorphous solid dispersion formulation of flubendazole on male jirds (Meriones unguiculatus) infected with the filarial nematode Brugia pahangi. PLoS Negl Trop Dis 2019; 13:e0006787. [PMID: 30650084 PMCID: PMC6334909 DOI: 10.1371/journal.pntd.0006787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022] Open
Abstract
River blindness and lymphatic filariasis are two filarial diseases that globally affect millions of people mostly in impoverished countries. Current mass drug administration programs rely on drugs that primarily target the microfilariae, which are released from adult female worms. The female worms can live for several years, releasing millions of microfilariae throughout the course of infection. Thus, to stop transmission of infection and shorten the time to elimination of these diseases, a safe and effective drug that kills the adult stage is needed. The benzimidazole anthelmintic flubendazole (FBZ) is 100% efficacious as a macrofilaricide in experimental filarial rodent models but it must be administered subcutaneously (SC) due to its low oral bioavailability. Studies were undertaken to assess the efficacy of a new oral amorphous solid dispersion (ASD) formulation of FBZ on Brugia pahangi infected jirds (Meriones unguiculatus) and compare it to a single or multiple doses of FBZ given subcutaneously. Results showed that worm burden was not significantly decreased in animals given oral doses of ASD FBZ (0.2-15 mg/kg). Regardless, doses as low as 1.5 mg/kg caused extensive ultrastructural damage to developing embryos and microfilariae (mf). SC injections of FBZ in suspension (10 mg/kg) given for 5 days however, eliminated all worms in all animals, and a single SC injection reduced worm burden by 63% compared to the control group. In summary, oral doses of ASD formulated FBZ did not significantly reduce total worm burden but longer treatments, extended takedown times or a second dosing regimen, may decrease female fecundity and the number of mf shed by female worms.
Collapse
Affiliation(s)
- Chelsea Fischer
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Iosune Ibiricu Urriza
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Christina A. Bulman
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - KC Lim
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Jiri Gut
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | | | - Marc Engelen
- Janssen R&D, Janssen Pharmaceutica, Beerse, Belgium
| | | | - Fetene Tekle
- Janssen R&D, Janssen Pharmaceutica, Beerse, Belgium
| | - Benny Baeten
- Janssen R&D, Janssen Pharmaceutica, Beerse, Belgium
| | - Brenda Beerntsen
- Veterinary Pathobiology, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Judy Sakanari
- Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
40
|
De Rycker M, Baragaña B, Duce SL, Gilbert IH. Challenges and recent progress in drug discovery for tropical diseases. Nature 2018; 559:498-506. [PMID: 30046073 PMCID: PMC6129172 DOI: 10.1038/s41586-018-0327-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Infectious tropical diseases have a huge effect in terms of mortality and morbidity, and impose a heavy economic burden on affected countries. These diseases predominantly affect the world's poorest people. Currently available drugs are inadequate for the majority of these diseases, and there is an urgent need for new treatments. This Review discusses some of the challenges involved in developing new drugs to treat these diseases and highlights recent progress. While there have been notable successes, there is still a long way to go.
Collapse
Affiliation(s)
- Manu De Rycker
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Beatriz Baragaña
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Suzanne L Duce
- Medicines Monitoring Unit (MEMO), Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
41
|
Mischlinger J, Veletzky L, Tazemda-Kuitsouc GB, Pitzinger P, Matsegui PB, Gmeiner M, Lagler H, Gebru T, Held J, Mordmüller B, Ramharter M. Behavioural and clinical predictors for Loiasis. J Glob Health 2018; 8:010413. [PMID: 29497506 PMCID: PMC5827628 DOI: 10.7189/jogh.08.010413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Loiasis is a vector-borne disease in Central and West Africa. While there is still uncertainty to what extent loiasis is responsible for population morbidity, individuals having both loiasis and onchocerciasis have a high risk of fatal encephalopathy when treatment (ie, ivermectin) for onchocerciasis is given. Therefore it is current policy that communities of high loiasis-burden are excluded from mass drug administration programmes of ivermectin. To address this treatment gap we present diagnostic scores, based on clinical and behavioural predictors that may help to rapidly identify sub-groups with loiasis within high-burden communities. Methods A cross-sectional survey was performed in the province of la Ngounie, Gabon between December 2015 and Februrary 2016 and 947 participants of all ages were recruited. Clinical parameters and behavioural exposure factors were ascertained by questionnaire-based interviews. Parasitological analysis of blood samples was performed for L. loa detection. Diagnostic scores consisting of clinical and behavioural factors were modelled to predict loiasis in sub-groups residing in endemic regions. Results Increasing sylvan exposure was identified as important risk factor for loiasis with adjusted odds ratios of 5.1 (95% confidence interval CI 2.6-9.9) for occasional forest exposure, 11.1 (95% CI 5.4-22.6) for frequent forest exposure and 25.7 (95% CI 12.5-52.9) for intensive forest exposure. Individuals with loiasis were 7.7 (95% CI 5.4-11.0) times more likely to report recurrent pruritus than those without loiasis. Reporting of regular daily exposure to the deep rain forest and recurrent pruritus was 9-fold (positive likelihood ratio 9.18; 95% CI: 6.39-13.18) more prevalent in individuals with loiasis than in controls. Concordantly, the absence of regular weekly forest exposure was associated with extremely low disease-likelihood (negative likelihood ratio 0.09; 95% CI 0.05-0.16). Conclusions These composite scores may serve as a simple tool to rapidly identify both those most and those least at risk of disease and may simplify loiasis control activities as well as screening procedures for studies on loiasis. Further, they may aid policy-makers to tailor the delivery of ivermectin mass drug administration for onchocerciasis control programmes more effectively and safely in regions of high loiasis-burden.
Collapse
Affiliation(s)
- Johannes Mischlinger
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, and German Center for Infection Research, partner site Tübingen, Tübingen, Germany.,Bernhard Nocht Hospital for Tropical Diseases, Bernhard Nocht Institute for Tropical Medicine and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luzia Veletzky
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Bernhard Nocht Hospital for Tropical Diseases, Bernhard Nocht Institute for Tropical Medicine and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Paul Pitzinger
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Pierre B Matsegui
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, and German Center for Infection Research, partner site Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de la Ngounié, Fougamou, Gabon
| | - Markus Gmeiner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, and German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| | - Heimo Lagler
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Tamirat Gebru
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, and German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| | - Jana Held
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, and German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, and German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| | - Michael Ramharter
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, and German Center for Infection Research, partner site Tübingen, Tübingen, Germany.,Bernhard Nocht Hospital for Tropical Diseases, Bernhard Nocht Institute for Tropical Medicine and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
Whittaker C, Walker M, Pion SD, Chesnais CB, Boussinesq M, Basáñez MG. The Population Biology and Transmission Dynamics of Loa loa. Trends Parasitol 2018; 34:335-350. [DOI: 10.1016/j.pt.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 11/27/2022]
|
43
|
Application of optimal control to the onchocerciasis transmission model with treatment. Math Biosci 2018; 297:43-57. [DOI: 10.1016/j.mbs.2017.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/28/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022]
|
44
|
Single nucleotide polymorphisms in the angiogenic and lymphangiogenic pathways are associated with lymphedema caused by Wuchereria bancrofti. Hum Genomics 2017; 11:26. [PMID: 29122006 PMCID: PMC5679374 DOI: 10.1186/s40246-017-0121-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023] Open
Abstract
Background Lymphedema (LE) is a chronic clinical manifestation of filarial nematode infections characterized by lymphatic dysfunction and subsequent accumulation of protein-rich fluid in the interstitial space—lymphatic filariasis. A number of studies have identified single nucleotide polymorphisms (SNPs) associated with primary and secondary LE. To assess SNPs associated with LE caused by lymphatic filariasis, a cross-sectional study of unrelated Ghanaian volunteers was designed to genotype SNPs in 285 LE patients as cases and 682 infected patients without pathology as controls. One hundred thirty-one SNPs in 64 genes were genotyped. The genes were selected based on their roles in inflammatory processes, angiogenesis/lymphangiogenesis, and cell differentiation during tumorigenesis. Results Genetic associations with nominal significance were identified for five SNPs in three genes: vascular endothelial growth factor receptor-3 (VEGFR-3) rs75614493, two SNPs in matrix metalloprotease-2 (MMP-2) rs1030868 and rs2241145, and two SNPs in carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM-1) rs8110904 and rs8111171. Pathway analysis revealed an interplay of genes in the angiogenic/lymphangiogenic pathways. Plasma levels of both MMP-2 and CEACAM-1 were significantly higher in LE cases compared to controls. Functional characterization of the associated SNPs identified genotype GG of CEACAM-1 as the variant influencing the expression of plasma concentration, a novel finding observed in this study. Conclusion The SNP associations found in the MMP-2, CEACAM-1, and VEGFR-3 genes indicate that angiogenic/lymphangiogenic pathways are important in LE clinical development. Electronic supplementary material The online version of this article (10.1186/s40246-017-0121-7) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Wewer V, Makepeace BL, Tanya VN, Peisker H, Pfarr K, Hoerauf A, Dörmann P. Lipid profiling of the filarial nematodes Onchocerca volvulus, Onchocerca ochengi and Litomosoides sigmodontis reveals the accumulation of nematode-specific ether phospholipids in the host. Int J Parasitol 2017; 47:903-912. [PMID: 28743489 PMCID: PMC5716430 DOI: 10.1016/j.ijpara.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/21/2023]
Abstract
Onchocerciasis is an infectious disease caused by filarial nematodes. Three different filarial nematodes infecting cattle, humans and jirds were studied. Phospholipids in nematodes and hosts were determined by mass spectrometry. Filaria-specific ether phosphatidylethanolamine (PE) lipids accumulate in the host. These ether PE lipids could serve as potential biomarkers for onchocerciasis.
Onchocerciasis, a neglected tropical disease prevalent in western and central Africa, is a major health problem and has been targeted for elimination. The causative agent for this disease is the human parasite Onchocerca volvulus. Onchocerca ochengi and Litomosoides sigmodontis, infectious agents of cattle and rodents, respectively, serve as model organisms to study filarial nematode infections. Biomarkers to determine infection without the use of painful skin biopsies and microscopic identification of larval worms are needed and their discovery is facilitated by an improved knowledge of parasite-specific metabolites. In addition to proteins and nucleic acids, lipids may be suitable candidates for filarial biomarkers that are currently underexplored. To fill this gap, we present the phospholipid profile of the filarial nematodes O. ochengi, O. volvulus and L. sigmodontis. Direct infusion quadrupole time-of-flight (Q-TOF) mass spectrometry was employed to analyze the composition of phospholipids and their molecular species in the three nematode species. Analysis of the phospholipid profiles of plasma or serum of uninfected and infected hosts showed that nematode-specific phospholipids were below detection limits. However, several phospholipids, in particular ether lipids of phosphatidylethanolamine (PE), were abundant in O. ochengi worms and in bovine nodule fluid, suggesting that these phospholipids might be released from O. ochengi into the host, and could serve as potential biomarkers.
Collapse
Affiliation(s)
- Vera Wewer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Benjamin L Makepeace
- Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Vincent N Tanya
- Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Helga Peisker
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany..
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany..
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany.
| |
Collapse
|
46
|
Central and Peripheral Nervous System Disorders Following Ivermectin Mass Administration: A Descriptive Study Based on the Democratic Republic of Congo Pharmacovigilance System. Drugs Real World Outcomes 2017; 4:151-158. [PMID: 28600751 PMCID: PMC5567455 DOI: 10.1007/s40801-017-0110-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction The mainstay of onchocerciasis control currently is mass administration of ivermectin; however, this may be associated with serious adverse events, including deaths, when administered in areas where onchocerciasis and loiasis are co-endemic. Objectives The objective of the current study was to describe the central and peripheral nervous system disorders that occurred after mass administration of ivermectin in Democratic Republic of Congo (DRC). Methods This is a retrospective descriptive study involving a review of data on adverse events related to mass administration of ivermectin. Data on reported serious adverse events following mass administration of ivermectin in the DRC were extracted from the World Health Organization (WHO) Global individual case safety report (ICSR) database (VigiBase). The review covered the period 2009–2013 and focused on central and peripheral nervous system disorders. Relevant demographic, clinical, and parasitological data, including age, sex, area of residence, adverse events, and parasite density were extracted. Descriptive statistics were analyzed using Stata 12. Results A total of 52 ICSRs related to ivermectin intake were available in VigiBase, with 51 (98.1%) from the Province of Equateur. All patients had central and peripheral nervous system disorders; 25 (48.1%) had altered mental status. Of these, 23 (92.0%) satisfied the criteria for “probable/possible Loa loa encephalopathy temporally related to mectizan®” (PLERM). The most frequent nervous system disorders among patients with PLERM were coma (74%), stupor (30%), headache (22%), and abnormal gait (22%). There were, on average, 2149.1 microfilariae per ml (mf/ml) in peripheral blood [95% confidence interval (CI) 463.6–3834.6; n = 23]. Post-treatment, 61% of PLERM cases had <1000 L. loa mf/ml of blood. One patient had microfilariae in the cerebrospinal fluid rather than the peripheral blood. We found 21.4% co-infection with Plasmodium falciparum and 4% mortality. Conclusion PLERM may occur at even low peripheral blood concentrations of microfilaria.
Collapse
|
47
|
Surendar J, Indulekha K, Hoerauf A, Hübner MP. Immunomodulation by helminths: Similar impact on type 1 and type 2 diabetes? Parasite Immunol 2017; 39. [PMID: 27862000 DOI: 10.1111/pim.12401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 12/19/2022]
Abstract
The incidence of both type 1 (T1D) and type 2 diabetes (T2D) is drastically increasing, and it is predicted that the global prevalence of diabetes will reach almost 600 million cases by 2035. Even though the pathogenesis of both types of diabetes is distinct, the immune system is actively involved in both forms of the disease. Genetic and environmental factors determine the risk to develop T1D. On the other hand, sedentary life style, surplus of food intake and other lifestyle changes contribute to the increase of T2D incidence. Improved sanitation with high-quality medical treatment is such an environmental factor that has led to a continuous reduction of infectious diseases including helminth infections over the past decades. Recently, a growing body of evidence has implicated a negative association between helminth infections and diabetes in humans as well as animal models. In this review, we discuss studies that have provided evidence for the beneficial impact of helminth infections on T1D and T2D. Possible mechanisms are presented by which helminths prevent T1D onset by mitigating pancreatic inflammation and confer protection against T2D by improving insulin sensitivity, alleviating inflammation, augmenting browning of adipose tissue and improving lipid metabolism and insulin signalling.
Collapse
Affiliation(s)
- J Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - K Indulekha
- LIMES Institute, Membrane Biology & Lipid Biochemistry, University of Bonn, Bonn, Germany
| | - A Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - M P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
48
|
OMONDI EVANSOTIENO, NYABADZA FARAI, BONYAH EBENEZER, BADU KINGSLEY. MODELING THE INFECTION DYNAMICS OF ONCHOCERCIASIS AND ITS TREATMENT. J BIOL SYST 2017. [DOI: 10.1142/s0218339017500139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Onchocerciasis is one of the neglected tropical diseases caused by Onchocerca volvulus. Ivermectin is known to be effective in the treatment of onchocerciasis because it suppresses the production of microfilariae by the adult female worms for a few months following treatment thus reducing transmission. In this study, a deterministic model is developed to assess the effect of mass treatment of onchocerciasis with ivermectin. The basic reproduction number, [Formula: see text], of the model system is determined and it is observed that the model exhibits backward bifurcation for some parameters implying the existence of multiple endemic equilibria when [Formula: see text]. The existence of multiple equilibria emphasizes the fact that [Formula: see text] is not sufficient to eradicate the disease and the need is to lower [Formula: see text] much below one to make the disease-free equilibrium globally stable. Numerical simulations are done and conclusions drawn with respect to the known treatment protocols in endemic areas. The study results suggest that the mass treatment of the disease with ivermectin should cover a higher proportion of the population to control the disease and eventually eliminate it from the population.
Collapse
Affiliation(s)
- EVANS OTIENO OMONDI
- DST/NRF South African Centre for Epidemiological Modeling and Analysis (SACEMA), University of Stellenbosch, Stellenbosch, South Africa
- Department of Mathematical Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - FARAI NYABADZA
- Department of Mathematical Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - EBENEZER BONYAH
- Department of Mathematics and Statistics, Kumasi Technical University, Kumasi, Ghana
| | - KINGSLEY BADU
- Department of Theoretical and Applied Biology, Kwame Nkurumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
49
|
Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq. PLoS Negl Trop Dis 2017; 11:e0005357. [PMID: 28358880 PMCID: PMC5373514 DOI: 10.1371/journal.pntd.0005357] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Background Filarial nematodes currently infect up to 54 million people worldwide, with millions more at risk for infection, representing the leading cause of disability in the developing world. Brugia malayi is one of the causative agents of lymphatic filariasis and remains the only human filarial parasite that can be maintained in small laboratory animals. Many filarial nematode species, including B. malayi, carry an obligate endosymbiont, the alpha-proteobacteria Wolbachia, which can be eliminated through antibiotic treatment. Elimination of the endosymbiont interferes with development, reproduction, and survival of the worms within the mamalian host, a clear indicator that the Wolbachia are crucial for survival of the parasite. Little is understood about the mechanism underlying this symbiosis. Methodology/ Principle findings To better understand the molecular interplay between these two organisms we profiled the transcriptomes of B. malayi and Wolbachia by dual RNA-seq across the life cycle of the parasite. This helped identify functional pathways involved in this essential symbiotic relationship provided by the co-expression of nematode and bacterial genes. We have identified significant stage-specific and gender-specific differential expression in Wolbachia during the nematode’s development. For example, during female worm development we find that Wolbachia upregulate genes involved in ATP production and purine biosynthesis, as well as genes involved in the oxidative stress response. Conclusions/ Significance This global transcriptional analysis has highlighted specific pathways to which both Wolbachia and B. malayi contribute concurrently over the life cycle of the parasite, paving the way for the development of novel intervention strategies. Filarial nematodes currently infect millions of people worldwide and represent a leading cause of disability. Currently available medications are insufficient in reaching elimination of these parasites. Many filarial nematodes, including Brugia malayi, have an Achilles heel of sorts—that is their obligate symbiotic relationship with the bacteria Wolbachia. While it is known that the nematode and the bacteria are co-dependent, the molecular basis of this relationship remains poorly understood. Using deep sequencing, we profiled the transcriptomes of B. malayi and Wolbachia across the life cycle of the parasite to determine the functional pathways necessary for parasite survival provided by the co-expression of nematode and bacterial genes. Defining the mechanisms of endosymbiosis between these two organisms will allow for the exploitation of this relationship for the development of new intervention strategies.
Collapse
|
50
|
Aljayyoussi G, Tyrer HE, Ford L, Sjoberg H, Pionnier N, Waterhouse D, Davies J, Gamble J, Metuge H, Cook DAN, Steven A, Sharma R, Guimaraes AF, Clare RH, Cassidy A, Johnston KL, Myhill L, Hayward L, Wanji S, Turner JD, Taylor MJ, Ward SA. Short-Course, High-Dose Rifampicin Achieves Wolbachia Depletion Predictive of Curative Outcomes in Preclinical Models of Lymphatic Filariasis and Onchocerciasis. Sci Rep 2017; 7:210. [PMID: 28303006 PMCID: PMC5428297 DOI: 10.1038/s41598-017-00322-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/21/2017] [Indexed: 12/29/2022] Open
Abstract
Lymphatic filariasis (LF) and onchocerciasis are priority neglected tropical diseases targeted for elimination. The only safe drug treatment with substantial curative activity against the filarial nematodes responsible for LF (Brugia malayi, Wuchereria bancrofti) or onchocerciasis (Onchocerca volvulus) is doxycycline. The target of doxycycline is the essential endosymbiont, Wolbachia. Four to six weeks doxycycline therapy achieves >90% depletion of Wolbachia in worm tissues leading to blockade of embryogenesis, adult sterility and premature death 18-24 months post-treatment. Long treatment length and contraindications in children and pregnancy are obstacles to implementing doxycycline as a public health strategy. Here we determine, via preclinical infection models of Brugia malayi or Onchocerca ochengi that elevated exposures of orally-administered rifampicin can lead to Wolbachia depletions from filariae more rapidly than those achieved by doxycycline. Dose escalation of rifampicin achieves >90% Wolbachia depletion in time periods of 7 days in B. malayi and 14 days in O. ochengi. Using pharmacokinetic-pharmacodynamic modelling and mouse-human bridging analysis, we conclude that clinically relevant dose elevations of rifampicin, which have recently been determined as safe in humans, could be administered as short courses to filariasis target populations with potential to reduce anti-Wolbachia curative therapy times to between one and two weeks.
Collapse
Affiliation(s)
- Ghaith Aljayyoussi
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Hayley E Tyrer
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Louise Ford
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Hanna Sjoberg
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nicolas Pionnier
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David Waterhouse
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jill Davies
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Joanne Gamble
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Haelly Metuge
- Research Foundation in Tropical Medicine and the Environment, Buea, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Darren A N Cook
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Andrew Steven
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Raman Sharma
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Ana F Guimaraes
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Rachel H Clare
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Andrew Cassidy
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Kelly L Johnston
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Laura Myhill
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Laura Hayward
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Samuel Wanji
- Research Foundation in Tropical Medicine and the Environment, Buea, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Joseph D Turner
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Mark J Taylor
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Stephen A Ward
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|