1
|
Manoharan MM, Montes GC, Acquarone M, Swan KF, Pridjian GC, Nogueira Alencar AK, Bayer CL. Metabolic theory of preeclampsia: implications for maternal cardiovascular health. Am J Physiol Heart Circ Physiol 2024; 327:H582-H597. [PMID: 38968164 PMCID: PMC11442029 DOI: 10.1152/ajpheart.00170.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Preeclampsia (PE) is a multisystemic disorder of pregnancy that not only causes perinatal mortality and morbidity but also has a long-term toll on the maternal and fetal cardiovascular system. Women diagnosed with PE are at greater risk for the subsequent development of hypertension, ischemic heart disease, cardiomyopathy, cerebral edema, seizures, and end-stage renal disease. Although PE is considered heterogeneous, inefficient extravillous trophoblast (EVT) migration leading to deficient spiral artery remodeling and increased uteroplacental vascular resistance is the likely initiation of the disease. The principal pathophysiology is placental hypoxia, causing subsequent oxidative stress, leading to mitochondrial dysfunction, mitophagy, and immunological imbalance. The damage imposed on the placenta in turn results in the "stress response" categorized by the dysfunctional release of vasoactive components including oxidative stressors, proinflammatory factors, and cytokines into the maternal circulation. These bioactive factors have deleterious effects on systemic endothelial cells and coagulation leading to generalized vascular dysfunction and hypercoagulability. A better understanding of these metabolic factors may lead to novel therapeutic approaches to prevent and treat this multisystemic disorder. In this review, we connect the hypoxic-oxidative stress and inflammation involved in the pathophysiology of PE to the resulting persistent cardiovascular complications in patients with preeclampsia.
Collapse
Affiliation(s)
- Mistina M Manoharan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
| | - Guilherme C Montes
- Department of Pharmacology and Psychobiology, Roberto Alcântara Gomes Institute Biology (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Mariana Acquarone
- Department of Neurology, Tulane University, New Orleans, Louisiana, United States
| | - Kenneth F Swan
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | - Gabriella C Pridjian
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | | | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
2
|
Kose C, Ibanoglu MC, Erdogan K, Arslan B, Uzlu SE, Akpinar F, Karadeniz RS, Engin-Ustun Y. The effect of fetal hypoxia on myeloperoxidase levels in cord blood: a prospective study. Minerva Obstet Gynecol 2024; 76:1-6. [PMID: 35420291 DOI: 10.23736/s2724-606x.22.05090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND We aimed to compare myeloperoxidase (MPO) levels in cord blood samples of mothers with and without perinatal hypoxia, since fetal hypoxia results in decreased pH, base excess, and an increase in pCO2 and lactate levels. METHODS We enrolled 42 pregnant women to this cross-sectional analytic study if they had met following criteria: uneventful gestational follow-ups, no known chronic or pregnancy-associated diseases, a BMI of <29.9, a singleton pregnancy, those with pregnancy over 34 weeks. The exclusion criteria for the study and control groups were as follows: presence of multiple pregnancies, fetal abnormality, any disease diagnosed before or during antenatal follow-up e.g., diabetes, hypertension, thyroid dysfunction, uncontrolled endocrine disease or abnormal kidney function, autoimmune disease, chronic inflammatory diseases, IUGR, preeclampsia), maternal age below 18 or above 35, intrauterine exitus, pregnancy with assisted reproductive technique, alcohol or smoking addiction, and any chronic drug use. The subjects were 1:1 randomized to either hypoxic newborns (N.=21) and those in the control group (N.=21) and their myeloperoxidase levels were measured from cord blood samples. Results were expressed as U/L. Patient data regarding age, gestation, parity, birth weight, birth length, APGAR scores, and neonatal complications were collected. All the women signed written informed consent forms and accepted verbal consent before being included in the study. RESULTS The mean age of the study population was 26.9±5.3 years. The mean BMI was 28.3±3.5 kg/m2. For the hypoxic group, 21 newborns with cord blood below 7.25 were included in the study group. The bloods with pH above 7.25 formed the control group. Mean pH and five (5) minute APGAR scores were found to be significantly lower in the study group, while base excess (BE) was found to be significantly higher. In this study, we compared the MPO levels of hypoxic newborns and those in the control group, and we did not find a significant difference between the two groups (P=0.147). Pearson Correlation Analysis is at -0.566 with P value (0.008) showing significant negative correlation between MPO and pH in the study group. CONCLUSIONS We found that MPO values are negatively correlated with cord blood pH among newborns diagnosed with fetal hypoxia.
Collapse
Affiliation(s)
- Caner Kose
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - Mujde C Ibanoglu
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye -
| | - Kadriye Erdogan
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - Burak Arslan
- Department of Biochemistry, Ankara Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - Safiye E Uzlu
- Department of Neonatology, Ankara Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - Funda Akpinar
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - R Sinan Karadeniz
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| | - Yaprak Engin-Ustun
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health Training and Research Hospital, Ankara, Türkiye
| |
Collapse
|
3
|
Abstract
OBJECTIVE Shallow placental implantation (SPI) features placental maldistribution of extravillous trophoblasts and includes excessive amount of extravillous trophoblasts, chorionic microcysts in the membranes and chorionic disc, and decidual clusters of multinucleate trophoblasts. The histological lesions were previously and individually reported in association with various clinical and placental abnormalities. This retrospective statistical analysis of a large placental database from high-risk pregnancy statistically compares placentas with and without a composite group of features of SPI. STUDY DESIGN Twenty-four independent abnormal clinical and 44 other than SPI placental phenotypes were compared between 4,930 placentas without (group 1) and 1,283 placentas with one or more histological features of SPI (composite SPI group; group 2). Placentas were received for pathology examination at a discretion of obstetricians. Placental lesion terminology was consistent with the Amsterdam criteria, with addition of other lesions described more recently. RESULTS Cases of group 2 featured statistically and significantly (p < 0.001after Bonferroni's correction) more common than group 1 on the following measures: gestational hypertension, preeclampsia, oligohydramnios, polyhydramnios, abnormal Dopplers, induction of labor, cesarean section, perinatal mortality, fetal growth restriction, stay in neonatal intensive care unit (NICU), congenital malformation, deep meconium penetration, intravillous hemorrhage, villous infarction, membrane laminar necrosis, fetal blood erythroblastosis, decidual arteriopathy (hypertrophic and atherosis), chronic hypoxic injury (uterine and postuterine), intervillous thrombus, segmental and global fetal vascular malperfusion, various umbilical cord abnormalities, and basal plate myometrial fibers. CONCLUSION SPI placentas were statistically and significantly associated with 48% abnormal independent clinical and 51% independent abnormal placental phenotypes such as acute and chronic hypoxic lesions, fetal vascular malperfusion, umbilical cord abnormalities, and basal plate myometrial fibers among others. Therefore, SPI should be regarded as a category of placental lesions related to maternal vascular malperfusion and the "Great Obstetrical Syndromes." KEY POINTS · SPI reflects abnormal distribution of extravillous trophoblasts.. · SPI features abnormal clinical and placental phenotypes.. · SPI portends increased risk of complicated perinatal outcome..
Collapse
Affiliation(s)
- Jerzy Stanek
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
4
|
Huppertz B. Placental physioxia is based on spatial and temporal variations of placental oxygenation throughout pregnancy. J Reprod Immunol 2023; 158:103985. [PMID: 37406413 DOI: 10.1016/j.jri.2023.103985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
For obvious reasons, in vivo measurements of placental oxygenation are extremely rare and hence, scientists need to focus on the few studies that revealed at least some data on the topic. The scarcity of real in vivo data resulted in the development of hypotheses on placental oxygenation that blocked an objective view on the topic for decades. Only now, new hypotheses are emerging adding new views and ideas on the topic. Especially in the field of preeclampsia, hypotheses on placental oxygenation have mislead a whole generation of scientists. This review article displays the available in vivo placental oxygen data from 8 to 40 weeks of gestation. It also compares these physiological oxygen concentrations, called physioxia, with the situation in pre-placental hypoxia, i.e. pregnancies at high altitude. Finally, it summarizes what we know today about oxygen measurements in cases with preeclampsia. In early-onset preeclampsia cases, all in vivo data available today point to increased oxygen values in the intervillous space of the placenta. This is due to a reduced oxygen transfer of the placental barrier from maternal to fetal blood, resulting in hypoxia of fetal blood and the fetus.
Collapse
Affiliation(s)
- Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| |
Collapse
|
5
|
Arishe OO, McKenzie J, Dela Justina V, Dos Anjos Moraes R, Webb RC, Priviero F. Piezo1 channels mediate vasorelaxation of uterine arteries from pseudopregnant rats. Front Physiol 2023; 14:1140989. [PMID: 37324378 PMCID: PMC10267476 DOI: 10.3389/fphys.2023.1140989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: There is a great increase in uterine arterial blood flow during normal pregnancy, which is a result of the cardiovascular changes that occur in pregnancy to adapt the maternal vascular system to meet the increased metabolic needs of both the mother and the fetus. The cardiovascular changes include an increase in cardiac output and more importantly, dilation of the maternal uterine arteries. However, the exact mechanism for the vasodilation is not fully known. Piezo1 mechanosensitive channels are highly expressed in endothelial and vascular smooth muscle cells of small-diameter arteries and play a role in structural remodeling. In this study, we hypothesize that the mechanosensitive Piezo1 channel plays a role in the dilation of the uterine artery (UA) during pregnancy. Methods: For this, 14-week-old pseudopregnant and virgin Sprague Dawley rats were used. In isolated segments of UA and mesenteric resistance arteries (MRA) mounted in a wire myograph, we investigated the effects of chemical activation of Piezo1, using Yoda 1. The mechanism of Yoda 1 induced relaxation was assessed by incubating the vessels with either vehicle or some inhibitors or in the presence of a potassium-free physiological salt solution (K+-free PSS). Results: Our results show that concentration-dependent relaxation responses to Yoda 1 are greater in the UA of the pseudo-pregnant rats than in those from the virgin rats while no differences between groups were observed in the MRAs. In both vascular beds, either in virgin or in pseudopregnant, relaxation to Yoda 1 was at least in part nitric oxide dependent. Discussion: Piezo1 channel mediates nitric oxide dependent relaxation, and this channel seems to contribute to the greater dilation that occurs in the uterine arteries of pseudo-pregnant rats.
Collapse
Affiliation(s)
- Olufunke O. Arishe
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Jaine McKenzie
- Department of General Surgery, Vanderbilt University, Nashville, TN, United States
| | - Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goias, Goiânia, Goias, Brazil
| | - Raiana Dos Anjos Moraes
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States
- Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States
- Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, MO, United States
| | - Fernanda Priviero
- Department of Cell Biology and Anatomy—School of Medicine, University of South Carolina, Columbia, SC, United States
- Cardiovascular Translational Research Center—School of Medicine, University of South Carolina, Columbia, SC, United States
- College of Engineering and Computing, Biomedical Engineering Program, University of South Carolina, Columbia, MO, United States
| |
Collapse
|
6
|
Bueno-Sánchez JC, Gómez-Gutiérrez AM, Maldonado-Estrada JG, Quintana-Castillo JC. Expression of placental glycans and its role in regulating peripheral blood NK cells during preeclampsia: a perspective. Front Endocrinol (Lausanne) 2023; 14:1087845. [PMID: 37206444 PMCID: PMC10190602 DOI: 10.3389/fendo.2023.1087845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/03/2023] [Indexed: 05/21/2023] Open
Abstract
Preeclampsia is a pregnancy-related multisystem disorder characterized by altered trophoblast invasion, oxidative stress, exacerbation of systemic inflammatory response, and endothelial damage. The pathogenesis includes hypertension and mild-to-severe microangiopathy in the kidney, liver, placenta, and brain. The main mechanisms involved in its pathogenesis have been proposed to limit trophoblast invasion and increase the release of extracellular vesicles from the syncytiotrophoblast into the maternal circulation, exacerbating the systemic inflammatory response. The placenta expresses glycans as part of its development and maternal immune tolerance during gestation. The expression profile of glycans at the maternal-fetal interface may play a fundamental role in physiological pregnancy changes and disorders such as preeclampsia. It is unclear whether glycans and their lectin-like receptors are involved in the mechanisms of maternal-fetal recognition by immune cells during pregnancy homeostasis. The expression profile of glycans appears to be altered in hypertensive disorders of pregnancy, which could lead to alterations in the placental microenvironment and vascular endothelium in pregnancy conditions such as preeclampsia. Glycans with immunomodulatory properties at the maternal-fetal interface are altered in early-onset severe preeclampsia, implying that innate immune system components, such as NK cells, exacerbate the systemic inflammatory response observed in preeclampsia. In this article, we discuss the evidence for the role of glycans in gestational physiology and the perspective of glycobiology on the pathophysiology of hypertensive disorders in gestation.
Collapse
Affiliation(s)
- Julio C. Bueno-Sánchez
- Reproduction Group, Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Department of Obstetrics and Gynecology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Red Iberoamericana de Alteraciones Vasculares en Trastornos del Embarazo (RIVATREM), Chillan, Chile
| | - Alejandra M. Gómez-Gutiérrez
- Reproduction Group, Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Juan G. Maldonado-Estrada
- One Health and Veterinary Innovative Research & Development (OHVRI) Research Group, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
7
|
Hoch D, Majali-Martinez A, Bankoglu EE, Stopper H, Glasner A, Desoye G, Gauster M, Hiden U. Maternal Smoking in the First Trimester and its Consequence on the Early Placenta. J Transl Med 2023; 103:100059. [PMID: 36801640 DOI: 10.1016/j.labinv.2022.100059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Smoking during pregnancy increases the risk of adverse pregnancy outcomes, such as stillbirth and fetal growth restriction. This suggests impaired placental function and restricted nutrient and oxygen supply. Studies investigating placental tissue at the end of pregnancy have revealed increased DNA damage as a potential underlying cause, which is driven by various toxic smoke ingredients and oxidative stress induced by reactive oxygen species (ROS). However, in the first trimester, the placenta develops and differentiates, and many pregnancy pathologies associated with reduced placental function originate here. Therefore, we determined DNA damage in a cohort of first-trimester placental samples of verified smokers and nonsmokers. In fact, we observed an 80% increase in DNA breaks (P < .001) and shortened telomeres by 5.8% (P = .04) in placentas exposed to maternal smoking. Surprisingly, there was a decrease in ROS-mediated DNA damage, ie, 8-oxo-guanidine modifications, in placentas of the smoking group (-41%; P = .021), which paralleled the reduced expression of base excision DNA repair machinery, which restores oxidative DNA damage. Moreover, we observed that the increase in placental oxidant defense machinery expression, which usually occurs at the end of the first trimester in a healthy pregnancy as a result of the full onset of uteroplacental blood flow, was absent in the smoking group. Therefore, in early pregnancy, maternal smoking causes placental DNA damage, contributing to placental malfunction and increased risk of stillbirth and fetal growth restriction in pregnant women. Additionally, reduced ROS-mediated DNA damage along with no increase in antioxidant enzymes suggests a delay in the establishment of physiological uteroplacental blood flow at the end of the first trimester, which may further add to a disturbed placental development and function as a result of smoking in pregnancy.
Collapse
Affiliation(s)
- Denise Hoch
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | | | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Nacka-Aleksić M, Pirković A, Vilotić A, Bojić-Trbojević Ž, Jovanović Krivokuća M, Giampieri F, Battino M, Dekanski D. The Role of Dietary Polyphenols in Pregnancy and Pregnancy-Related Disorders. Nutrients 2022; 14:nu14245246. [PMID: 36558404 PMCID: PMC9782043 DOI: 10.3390/nu14245246] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are a group of phytochemicals with extensive biological functions and health-promoting potential. These compounds are present in most foods of plant origin and their increased widespread availability through the intake of nutritional supplements, fortified foods, and beverages, has also led to increased exposure throughout gestation. In this narrative review, we focus on the role of polyphenols in both healthy and pathological pregnancy. General information related to their classification and function is followed by an overview of their known effects in early-pregnancy events, including the current insights into molecular mechanisms involved. Further, we provide an overview of their involvement in some of the most common pregnancy-associated pathological conditions, such as preeclampsia and gestational diabetes mellitus. Additionally, we also discuss the estimated possible risk of polyphenol consumption on pregnancy outcomes. The consumption of dietary polyphenols during pregnancy needs particular attention considering the possible effects of polyphenols on the mechanisms involved in maternal adaptation and fetal development. Further studies are strongly needed to unravel the in vivo effects of polyphenol metabolites during pregnancy, as well as their role on advanced maternal age, prenatal nutrition, and metabolic risk of the offspring.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Aleksandra Vilotić
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maurizio Battino
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Dragana Dekanski
- Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
9
|
Wang Z, Wang D, Chen J, Long T, Zhong C, Li Y. Effects of glucose and osmotic pressure on the proliferation and cell cycle of human chorionic trophoblast cells. Open Life Sci 2022; 17:1418-1428. [DOI: 10.1515/biol-2022-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
This study investigated the effects of glucose and osmotic pressure on the proliferation and cell cycle of trophoblast cells. HTR8/SVneo cells were treated with 0 (no glucose), 1 (low glucose), 5 (normal), and 25 mmol/L (high glucose) glucose. In addition, the cells were treated with 5 mmol/L glucose (normal) and 5 mmol/L glucose + 20 mmol/L mannitol (mannitol). The cell morphology and proliferation were determined by microscopy and a cell counting kit-8 assay. The cell cycle and apoptosis were examined by flow cytometry. The cell number was relatively decreased and morphological changes were intermediate in the high-glucose group compared with the low-glucose groups. The proportion of cells in the G2/M phase was higher in the low-glucose group than in the other groups, and it was lower in the G1 phase and higher in the S phase in the high-glucose group than in the other groups. Compared with 24 h, cell proliferative activity was restored to a certain extent after 48 h in the high-glucose group. In summary, the blood glucose concentration might influence the proliferation of trophoblast cells. A high-glucose environment inhibited initial cell proliferation, which could be moderately restored after self-regulation. Furthermore, the proliferation of trophoblasts was not affected by the osmotic pressure.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , 510150 , China
- Guangzhou Medical Centre for Critical Pregnant Women , Guangzhou , 510150 , China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province , Guangzhou 510150 , China
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-sen University , Guangzhou 510120 , China
| | - Ding Wang
- Experimental Department of Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , 510150 , China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institute , Guangzhou, 510150 , China
| | - Jia Chen
- Department of Obstetrics, Foshan Women and Children Hospital , Foshan 528000 , China
| | - Tuhong Long
- Department of Medical Affairs Section, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou 510150 , China
| | - Caijuan Zhong
- Department of Obstetrics, Maternal & Child Health Hospital of Guangdong , Guangzhou 510010 , China
| | - Yingtao Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , 510150 , China
- Guangzhou Medical Centre for Critical Pregnant Women , Guangzhou , 510150 , China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province , Guangzhou 510150 , China
| |
Collapse
|
10
|
Balahmar RM, Ranganathan B, Ebegboni V, Alamir J, Rajakumar A, Deepak V, Sivasubramaniam S. Analyses of selected tumour-associated factors expression in normotensive and preeclamptic placenta. Pregnancy Hypertens 2022; 29:36-45. [PMID: 35717832 DOI: 10.1016/j.preghy.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Human placenta is often considered a controlled-tumour because of shared properties such as invasion and angiogenesis. We assessed the status of a few selected tumour-associated factors (TAFs) in late onset pre-eclamptic (PE) and normotensive (NT) placentae, to understand their involvement in trophoblast invasion. These molecules include aldehyde dehydrogenase (ALDH3A1), aurora kinases (AURK-A/C), platelet derived growth factor receptor-α (PDGFRα), jagged-1 (JAG1) and twist related protein-1 (TWIST1). METHODS The expression of TAF was compared in 13 NT and 11 PE (late onset) placentae using immunoblotting/immunohistochemistry. We then used a novel spheroidal cell model developed from transformed human first trimester trophoblast cell lines HTR8/SVneo and TEV-1 to determine the expression and localization of these six factors during invasion. We also compared the expression of these TAFs during migration and invasion. RESULTS Our results suggest that expressions of ALDH3A1, AURK-A, PDGFRα, and TWIST1 are significantly upregulated in PE placentae (p < 0.05) when compared to NT placentae, whereas AURK-C and JAG1 are down-regulated (p < 0.05). The protein expression pattern of all the six factors were found to be similar in spheroids in comparison to their parental counterparts. The invasive potential of the spheroids was also enhanced when compared with the parental cells. DISCUSSION Collectively, data from our present study suggests that these TAFs are involved in placental invasion and their altered expressions may be regarded as a compensatory mechanism against reduced invasion.
Collapse
Affiliation(s)
- Reham M Balahmar
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Bhuvaneshwari Ranganathan
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Vernon Ebegboni
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Jumanah Alamir
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Augustine Rajakumar
- Department of Gynecology & Obstetrics(3), Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Venkataraman Deepak
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| | - Shiva Sivasubramaniam
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| |
Collapse
|
11
|
Krstic J, Deutsch A, Fuchs J, Gauster M, Gorsek Sparovec T, Hiden U, Krappinger JC, Moser G, Pansy K, Szmyra M, Gold D, Feichtinger J, Huppertz B. (Dis)similarities between the Decidual and Tumor Microenvironment. Biomedicines 2022; 10:1065. [PMID: 35625802 PMCID: PMC9138511 DOI: 10.3390/biomedicines10051065] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by an abetting microenvironment, which influences invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of the abetting microenvironments.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Alexander Deutsch
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Tina Gorsek Sparovec
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julian Christopher Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Daniela Gold
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| |
Collapse
|
12
|
Serrano M, Espinosa G, Serrano A, Cervera R. Antigens and Antibodies of the Antiphospholipid Syndrome as New Allies in the Pathogenesis of COVID-19 Coagulopathy. Int J Mol Sci 2022; 23:ijms23094946. [PMID: 35563337 PMCID: PMC9102661 DOI: 10.3390/ijms23094946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
High prevalence of both criteria and extra-criteria antiphospholipid antibodies (aPL) has been reported in COVID-19 patients. However, the differences in aPL prevalence decreased when an age-matched control group was included. The association of aPL with thrombotic events in COVID-19 is very heterogeneous. This could be influenced by the fact that most of the studies carried out were conducted on small populations enriched with elderly patients in which aPL was measured only at a single point and they were performed with non-standardized assays. The few studies that confirmed aPL in a second measurement showed that aPL levels hardly changed, with the exception of the lupus anticoagulant that commonly reduced. COVID-19 coagulopathy is an aPL-independent phenomenon closely associated with the onset of the disease. Thrombosis occurs later in patients with aPL presence, which is likely an additional prothrombotic factor. B2-glycoprotein deficiency (mainly aPL antigen caused both by low production and consumption) is very common during the SARS-CoV2 infection and has been associated with a greater predisposition to COVID-19 complications. This could be a new prothrombotic mechanism that may be caused by the blockage of its physiological functions, the anticoagulant state being the most important.
Collapse
Affiliation(s)
- Manuel Serrano
- Department of Immunology, Healthcare Research Institute I+12, Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Gerard Espinosa
- Department of Autoimmune Diseases, Hospital Clínic, Insititut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (G.E.); (R.C.)
| | - Antonio Serrano
- Department of Immunology, Healthcare Research Institute I+12, Hospital 12 de Octubre, 28041 Madrid, Spain;
- Correspondence: or
| | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clínic, Insititut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036 Barcelona, Spain; (G.E.); (R.C.)
| |
Collapse
|
13
|
SARS- CoV-2 infection and oxidative stress in early-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166321. [PMID: 34920081 PMCID: PMC8668602 DOI: 10.1016/j.bbadis.2021.166321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) also in pregnant women. Infection in pregnancy leads to maternal and placental functional alterations. Pregnant women with vascular defects such as preeclampsia show high susceptibility to SARS-CoV-2 infection by undefined mechanisms. Pregnant women infected with SARS-CoV-2 show higher rates of preterm birth and caesarean delivery, and their placentas show signs of vasculopathy and inflammation. It is still unclear whether the foetus is affected by the maternal infection with this virus and whether maternal infection associates with postnatal affections. The SARS-CoV-2 infection causes oxidative stress and activation of the immune system leading to cytokine storm and next tissue damage as seen in the lung. The angiotensin-converting-enzyme 2 expression is determinant for these alterations in the lung. Since this enzyme is expressed in the human placenta, SARS-CoV-2 could infect the placenta tissue, although reported to be of low frequency compared with maternal lung tissue. Early-onset preeclampsia (eoPE) shows higher expression of ADAM17 (a disintegrin and metalloproteinase 17) causing an imbalanced renin-angiotensin system and endothelial dysfunction. A similar mechanism seems to potentially account for SARS-CoV-2 infection. This review highlights the potentially common characteristics of pregnant women with eoPE with those with COVID-19. A better understanding of the mechanisms of SARS-CoV-2 infection and its impact on the placenta function is determinant since eoPE/COVID-19 association may result in maternal metabolic alterations that might lead to a potential worsening of the foetal programming of diseases in the neonate, young, and adult.
Collapse
|
14
|
Ahmed FA, Klausen C, Zhu H, Leung PCK. Myostatin increases human trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 Signaling. Biol Reprod 2022; 106:1267-1277. [PMID: 35020826 DOI: 10.1093/biolre/ioab238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/14/2022] Open
Abstract
Placental insufficiency disorders are major obstetric complications that share a common phenomenon of poor placental trophoblast cell invasion and remodeling of uterine tissues. Myostatin is a transforming growth factor (TGF)-β superfamily member well-known for its important role in muscle growth control. Myostatin is also produced in the placenta and has been shown to regulate some trophoblast functions. However, its roles in placental development are still poorly understood. In this study, we tested the hypothesis that myostatin increases trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling. Primary and immortalized (HTR8/SVneo) trophoblast cells were used as study models. Matrigel-coated transwell invasion assays were used to study the effects of recombinant human myostatin on trophoblast cell invasion. RT-qPCR and Western blot were used to measure myostatin effects on N-cadherin mRNA and protein levels, respectively. Small inhibitor molecules as well as siRNA-mediated knockdown were used to block myostatin receptor and downstream signaling, respectively. Data were analyzed either by unpaired Student T test or one-way ANOVA followed by Newman Keuls test for multiple group comparisons. Myostatin significantly increased primary and HTR8/SVneo trophoblast cell invasion. Moreover, myostatin upregulated N-cadherin mRNA and protein levels in a time dependent manner in both study models. These effects were blocked by inhibition of TGF-β type I receptors as well as siRNA-mediated knockdown of SMAD2/3 combined or common SMAD4. Importantly, myostatin-induced trophoblast cell invasion was abolished by knockdown of N-cadherin, SMAD2/3 or SMAD4. Myostatin may increase human trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling.
Collapse
Affiliation(s)
- Faten AbdelHafez Ahmed
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Forstner D, Guettler J, Gauster M. Changes in Maternal Platelet Physiology during Gestation and Their Interaction with Trophoblasts. Int J Mol Sci 2021; 22:10732. [PMID: 34639070 PMCID: PMC8509324 DOI: 10.3390/ijms221910732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/06/2023] Open
Abstract
Upon activation, maternal platelets provide a source of proinflammatory mediators in the intervillous space of the placenta. Therefore, platelet-derived factors may interfere with different trophoblast subtypes of the developing human placenta and might cause altered hormone secretion and placental dysfunction later on in pregnancy. Increased platelet activation, and the subsequent occurrence of placental fibrinoid deposition, are linked to placenta pathologies such as preeclampsia. The composition and release of platelet-derived factors change over gestation and provide a potential source of predicting biomarkers for the developing fetus and the mother. This review indicates possible mechanisms of platelet-trophoblast interactions and discusses the effect of increased platelet activation on placenta development.
Collapse
Affiliation(s)
- Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (J.G.); (M.G.)
| | | | | |
Collapse
|
16
|
The Preeclamptic Environment Promotes the Activation of Transcription Factor Kappa B by P53/RSK1 Complex in a HTR8/SVneo Trophoblastic Cell Line. Int J Mol Sci 2021; 22:ijms221910200. [PMID: 34638542 PMCID: PMC8508006 DOI: 10.3390/ijms221910200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Preeclampsia is a pregnancy disorder associated with shallow placentation, forcing placental cells to live in hypoxic conditions. This activates the transcription factor kappa B (NFκB) in maternal and placental cells. Although the role of NFκB in preeclampsia is well documented, its mechanism of activation in trophoblastic cells has been never studied. This study investigates the mechanism of NFκB activation in a first trimester trophoblastic cell line (HTR8/SVneo) stimulated by a medium containing serum from preeclamptic (PE) or normotensive (C) women in hypoxic (2% O2) or normoxic (8% O2) conditions. The results indicate that in HTR8/SVneo cells, the most widely studied NFκB pathways, i.e., canonical, non-canonical and atypical, are downregulated in environment PE 2% O2 in comparison to C 8% O2. Therefore, other pathways may be responsible for NFκB activation. One such pathway depends on the activation of NFκB by the p53/RSK1 complex through its phosphorylation at Serine 536 (pNFκB Ser536). The data generated by our study show that inhibition of the p53/RSK1 pathway by p53-targeted siRNA results in a depletion of pNFκB Ser536 in the nucleus, but only in cells incubated with PE serum at 2% O2. Thus, the p53/RSK1 complex might play a critical role in the activation of NFκB in trophoblastic cells and preeclamptic placentas.
Collapse
|
17
|
Perlman BE, Merriam AA, Lemenze A, Zhao Q, Begum S, Nair M, Wu T, Wapner RJ, Kitajewski JK, Shawber CJ, Douglas NC. Implications for preeclampsia: hypoxia-induced Notch promotes trophoblast migration. Reproduction 2021; 161:681-696. [PMID: 33784241 PMCID: PMC8403268 DOI: 10.1530/rep-20-0483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/30/2021] [Indexed: 01/15/2023]
Abstract
In the first trimester of human pregnancy, low oxygen tension or hypoxia is essential for proper placentation and placenta function. Low oxygen levels and activation of signaling pathways have been implicated as critical mediators in the promotion of trophoblast differentiation, migration, and invasion with inappropriate changes in oxygen tension and aberrant Notch signaling both individually reported as causative to abnormal placentation. Despite crosstalk between hypoxia and Notch signaling in multiple cell types, the relationship between hypoxia and Notch in first trimester trophoblast function is not understood. To determine how a low oxygen environment impacts Notch signaling and cellular motility, we utilized the human first trimester trophoblast cell line, HTR-8/SVneo. Gene set enrichment and ontology analyses identified pathways involved in angiogenesis, Notch and cellular migration as upregulated in HTR-8/SVneo cells exposed to hypoxic conditions. DAPT, a γ-secretase inhibitor that inhibits Notch activation, was used to interrogate the crosstalk between Notch and hypoxia pathways in HTR-8/SVneo cells. We found that hypoxia requires Notch activation to mediate HTR-8/SVneo cell migration, but not invasion. To determine if our in vitro findings were associated with preeclampsia, we analyzed the second trimester chorionic villous sampling (CVS) samples and third trimester placentas. We found a significant decrease in expression of migration and invasion genes in CVS from preeclamptic pregnancies and significantly lower levels of JAG1 in placentas from pregnancies with early-onset preeclampsia with severe features. Our data support a role for Notch in mediating hypoxia-induced trophoblast migration, which may contribute to preeclampsia development.
Collapse
Affiliation(s)
- Barry E Perlman
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Audrey A. Merriam
- Department of Obstetrics, Gynecology and Reproductive Sciences Yale University, New Haven, CT, USA
| | - Alexander Lemenze
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Qingshi Zhao
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Salma Begum
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Mohan Nair
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tracy Wu
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Ronald J. Wapner
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Jan K. Kitajewski
- Department of Physiology & Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | - Carrie J. Shawber
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
18
|
de Alwis N, Beard S, Binder NK, Pritchard N, Kaitu'u-Lino TJ, Walker SP, Stock O, Groom K, Petersen S, Henry A, Said JM, Seeho S, Kane SC, Hui L, Tong S, Hannan NJ. DAAM2 is elevated in the circulation and placenta in pregnancies complicated by fetal growth restriction and is regulated by hypoxia. Sci Rep 2021; 11:5540. [PMID: 33692394 PMCID: PMC7946951 DOI: 10.1038/s41598-021-84785-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Previously, we identified increased maternal circulating DAAM2 mRNA in pregnancies complicated by preterm fetal growth restriction (FGR). Here, we assessed whether circulating DAAM2 mRNA could detect FGR, and whether the DAAM2 gene, known to play roles in the Wnt signalling pathway is expressed in human placenta and associated with dysfunction and FGR. We performed linear regression analysis to calculate area under the ROC curve (AUC) for DAAM2 mRNA expression in the maternal circulation of pregnancies complicated by preterm FGR. DAAM2 mRNA expression was assessed across gestation by qPCR. DAAM2 protein and mRNA expression was assessed in preterm FGR placenta using western blot and qPCR. DAAM2 expression was assessed in term cytotrophoblasts and placental explant tissue cultured under hypoxic and normoxic conditions by qPCR. Small interfering RNAs were used to silence DAAM2 in term primary cytotrophoblasts. Expression of growth, apoptosis and oxidative stress genes were assessed by qPCR. Circulating DAAM2 mRNA was elevated in pregnancies complicated by preterm FGR [p < 0.0001, AUC = 0.83 (0.78–0.89)]. Placental DAAM2 mRNA was detectable across gestation, with highest expression at term. DAAM2 protein was increased in preterm FGR placentas but demonstrated no change in mRNA expression. DAAM2 mRNA expression was increased in cytotrophoblasts and placental explants under hypoxia. Silencing DAAM2 under hypoxia decreased expression of pro-survival gene, BCL2 and oxidative stress marker, NOX4, whilst increasing expression of antioxidant enzyme, HMOX-1. The increased DAAM2 associated with FGR and hypoxia implicates a potential role in placental dysfunction. Decreasing DAAM2 may have cytoprotective effects, but further research is required to elucidate its role in healthy and dysfunctional placentas.
Collapse
Affiliation(s)
- Natasha de Alwis
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Northern Health, Epping, VIC, 3076, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Northern Health, Epping, VIC, 3076, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Natalie K Binder
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Natasha Pritchard
- Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Susan P Walker
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Owen Stock
- Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Katie Groom
- Liggins Institute, University of Auckland, Auckland, 1023, New Zealand
| | - Scott Petersen
- Centre for Maternal Fetal Medicine, Mater Mothers' Hospital, South Brisbane, QLD, 4101, Australia
| | - Amanda Henry
- School of Women's and Children's Health, UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Joanne M Said
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Maternal Fetal Medicine, Joan Kirner Women's & Children's Sunshine Hospital, St Albans, VIC, 3021, Australia
| | - Sean Seeho
- The University of Sydney Northern Clinical School, Women and Babies Research, St Leonards, NSW, 2065, Australia
| | - Stefan C Kane
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Department of Maternal Fetal Medicine, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Lisa Hui
- Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Northern Health, Epping, VIC, 3076, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen Tong
- Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia. .,Translational Obstetrics Group, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia. .,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia. .,Northern Health, Epping, VIC, 3076, Australia. .,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Todd N, McNally R, Alqudah A, Jerotic D, Suvakov S, Obradovic D, Hoch D, Hombrebueno JR, Campos GL, Watson CJ, Gojnic-Dugalic M, Simic TP, Krasnodembskaya A, Desoye G, Eastwood KA, Hunter AJ, Holmes VA, McCance DR, Young IS, Grieve DJ, Kenny LC, Garovic VD, Robson T, McClements L. Role of A Novel Angiogenesis FKBPL-CD44 Pathway in Preeclampsia Risk Stratification and Mesenchymal Stem Cell Treatment. J Clin Endocrinol Metab 2021; 106:26-41. [PMID: 32617576 PMCID: PMC7765643 DOI: 10.1210/clinem/dgaa403] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 02/07/2023]
Abstract
CONTEXT Preeclampsia is a leading cardiovascular complication in pregnancy lacking effective diagnostic and treatment strategies. OBJECTIVE To investigate the diagnostic and therapeutic target potential of the angiogenesis proteins, FK506-binding protein like (FKBPL) and CD44. DESIGN AND INTERVENTION FKBPL and CD44 plasma concentration or placental expression were determined in women pre- or postdiagnosis of preeclampsia. Trophoblast and endothelial cell function was assessed following mesenchymal stem cell (MSC) treatment and in the context of FKBPL signaling. SETTINGS AND PARTICIPANTS Human samples prediagnosis (15 and 20 weeks of gestation; n ≥ 57), or postdiagnosis (n = 18 for plasma; n = 4 for placenta) of preeclampsia were used to determine FKBPL and CD44 levels, compared to healthy controls. Trophoblast or endothelial cells were exposed to low/high oxygen, and treated with MSC-conditioned media (MSC-CM) or a FKBPL overexpression plasmid. MAIN OUTCOME MEASURES Preeclampsia risk stratification and diagnostic potential of FKBPL and CD44 were investigated. MSC treatment effects and FKBPL-CD44 signaling in trophoblast and endothelial cells were assessed. RESULTS The CD44/FKBPL ratio was reduced in placenta and plasma following clinical diagnosis of preeclampsia. At 20 weeks of gestation, a high plasma CD44/FKBPL ratio was independently associated with the 2.3-fold increased risk of preeclampsia (odds ratio = 2.3, 95% confidence interval [CI] 1.03-5.23, P = 0.04). In combination with high mean arterial blood pressure (>82.5 mmHg), the risk further increased to 3.9-fold (95% CI 1.30-11.84, P = 0.016). Both hypoxia and MSC-based therapy inhibited FKBPL-CD44 signaling, enhancing cell angiogenesis. CONCLUSIONS The FKBPL-CD44 pathway appears to have a central role in the pathogenesis of preeclampsia, showing promising utilities for early diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Naomi Todd
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Ross McNally
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Abdelrahim Alqudah
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- The School of Pharmacy, The Hashemite University, Amman, Jordan
| | | | - Sonja Suvakov
- Medical Faculty, University of Belgrade, Belgrade, Serbia
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, US
| | | | - Denise Hoch
- Department of Gynaecology and Obstetrics, Medical University Graz, Graz, Austria
| | - Jose R Hombrebueno
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Guillermo Lopez Campos
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Chris J Watson
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | | | | | - Anna Krasnodembskaya
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Gernot Desoye
- Department of Gynaecology and Obstetrics, Medical University Graz, Graz, Austria
| | - Kelly-Ann Eastwood
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- Royal Jubilee Maternity Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - Alyson J Hunter
- Royal Jubilee Maternity Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - Valerie A Holmes
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - David R McCance
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - Ian S Young
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland, UK
| | - David J Grieve
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
| | - Louise C Kenny
- The Irish Centre for Foetal and Neonatal Translational Research (INFANT) and Department of Obstetrics and Gynaecology, University College Cork, Cork, Republic of Ireland
- Department of Women’s and Children’s Health, Institute of Translational Research, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Vesna D Garovic
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, US
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland (RCSI), Dublin, Republic of Ireland
| | - Lana McClements
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, UK
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia
- Correspondence and Reprint Requests: Lana McClements, School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, NSW, 2007, Australia. E-mail:
| |
Collapse
|
20
|
Alqudah A, Eastwood KA, Jerotic D, Todd N, Hoch D, McNally R, Obradovic D, Dugalic S, Hunter AJ, Holmes VA, McCance DR, Young IS, Watson CJ, Robson T, Desoye G, Grieve DJ, McClements L. FKBPL and SIRT-1 Are Downregulated by Diabetes in Pregnancy Impacting on Angiogenesis and Endothelial Function. Front Endocrinol (Lausanne) 2021; 12:650328. [PMID: 34149611 PMCID: PMC8206806 DOI: 10.3389/fendo.2021.650328] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes in pregnancy is associated with adverse pregnancy outcomes including preterm birth. Although the mechanisms leading to these pregnancy complications are still poorly understood, aberrant angiogenesis and endothelial dysfunction play a key role. FKBPL and SIRT-1 are critical regulators of angiogenesis, however, their roles in pregnancies affected by diabetes have not been examined before in detail. Hence, this study aimed to investigate the role of FKBPL and SIRT-1 in pre-gestational (type 1 diabetes mellitus, T1D) and gestational diabetes mellitus (GDM). Placental protein expression of important angiogenesis proteins, FKBPL, SIRT-1, PlGF and VEGF-R1, was determined from pregnant women with GDM or T1D, and in the first trimester trophoblast cells exposed to high glucose (25 mM) and varying oxygen concentrations [21%, 6.5%, 2.5% (ACH-3Ps)]. Endothelial cell function was assessed in high glucose conditions (30 mM) and following FKBPL overexpression. Placental FKBPL protein expression was downregulated in T1D (FKBPL; p<0.05) whereas PlGF/VEGF-R1 were upregulated (p<0.05); correlations adjusted for gestational age were also significant. In the presence of GDM, only SIRT-1 was significantly downregulated (p<0.05) even when adjusted for gestational age (r=-0.92, p=0.001). Both FKBPL and SIRT-1 protein expression was reduced in ACH-3P cells in high glucose conditions associated with 6.5%/2.5% oxygen concentrations compared to experimental normoxia (21%; p<0.05). FKBPL overexpression in endothelial cells (HUVECs) exacerbated reduction in tubule formation compared to empty vector control, in high glucose conditions (junctions; p<0.01, branches; p<0.05). In conclusion, FKBPL and/or SIRT-1 downregulation in response to diabetic pregnancies may have a key role in the development of vascular dysfunction and associated complications affected by impaired placental angiogenesis.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Kelly-Ann Eastwood
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
- Royal Jubilee Maternity Hospital, Belfast Health and Social Care Trust, Northern Ireland, United Kingdom
| | | | - Naomi Todd
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Denise Hoch
- Department of Gynaecology and Obstetrics, Medical University of Graz, Graz, Austria
| | - Ross McNally
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | | | - Stefan Dugalic
- Clinic of Obstetrics and Gynecology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Alyson J. Hunter
- Royal Jubilee Maternity Hospital, Belfast Health and Social Care Trust, Northern Ireland, United Kingdom
| | - Valerie A. Holmes
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - David R. McCance
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland, United Kingdom
| | - Ian S. Young
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
- Royal Victoria Hospital, Belfast Health and Social Care Trust, Northern Ireland, United Kingdom
| | - Chris J. Watson
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gernot Desoye
- Department of Gynaecology and Obstetrics, Medical University of Graz, Graz, Austria
| | - David J. Grieve
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lana McClements
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Lana McClements,
| |
Collapse
|
21
|
Placenta Creta: A Spectrum of Lesions Associated with Shallow Placental Implantation. Obstet Gynecol Int 2020; 2020:4230451. [PMID: 33299422 PMCID: PMC7707967 DOI: 10.1155/2020/4230451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 01/02/2023] Open
Abstract
Background On placental histology, placenta creta (PC) ranges from clinical placenta percreta through placenta increta and accreta (clinical and occult) to myometrial fibers with intervening decidua. This retrospective study aimed to investigate the clinicopathologic correlations of these lesions. Methods A total of 169 recent consecutive cases with PC (group 1) were compared with 1661 cases without PC examined during the same period (group 2). The frequencies of 25 independent clinical and 40 placental phenotypes were statistically compared between the groups using chi-square test or analysis of variance where appropriate. Results Group 1 placentas, as compared with group 2 placentas, were statistically significantly (p < 0.05) associated with caesarean sections (11.2% vs. 7.5%), antepartum hemorrhage (17.7% vs 11.6.%), gestational hypertension (11.2% vs 4.3%), preeclampsia (11.8% vs 2.6%), complicated third stage of labor (18.9% vs 6.4%), villous infarction (14.2% vs 8.9%), chronic hypoxic patterns of placental injury, particularly the uterine pattern (14.8%, vs 9.6%), massive perivillous fibrin deposition (9.5% vs 5.3%), chorionic disc chorionic microcysts (21.9% vs 15.9%), clusters of maternal floor multinucleate trophoblasts (27.8% vs 21.2%), excessive trophoblasts of chorionic disc (24.3% vs 17.3%), segmental fetal vascular malperfusion (27.8% vs 19.9%), and fetal vascular ectasia (26.2% vs 15.2%). Conclusion Because of the association of PC with gestational hypertensive diseases, acute and chronic placental hypoxic lesions, increased extravillous trophoblasts in the chorionic disc, chorionic microcysts, and maternal floor trophoblastic giant cells, PC should be regarded as a lesion of abnormal placental implantation and abnormal trophoblast invasion rather than decidual deficiency only.
Collapse
|
22
|
Spiral artery blood flow during pregnancy: a systematic review and meta-analysis. BMC Pregnancy Childbirth 2020; 20:680. [PMID: 33176723 PMCID: PMC7656690 DOI: 10.1186/s12884-020-03150-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/31/2020] [Indexed: 11/10/2022] Open
Abstract
Background Downstream remodeling of the spiral arteries (SpA) decreases utero-placental resistance drastically, allowing sustained and increased blood flow to the placenta under all circumstances. We systematically evaluated available reports to visualize adaptation of spiral arteries throughout pregnancy by ultra-sonographic measurements and evaluated when this process is completed. Methods A systematic review and meta-analysis of spiral artery flow (pulsatility index (PI), resistance index (RI) and peak systolic velocity (PSV)) was performed. English written articles were obtained from Pubmed, EMBASE and Cochrane Library and included articles were assessed on quality and risk of bias. Weighted means of Doppler indices were calculated using a random-effects model. Results In healthy pregnancies, PI and RI decreased from 0.80 (95% CI: 0.70–0.89) and 0.50 (95% CI: 0.47–0.54) in the first trimester to 0.50 (95% CI: 0.45–0.55, p < 0.001) and 0.39 (95% CI: 0.37–0.42, p < 0.001) in the second trimester and to 0.49 (95% CI: 0.44–0.53, p = 0.752) and 0.36 (95% CI: 0.35–0.38, p = 0.037) in the third trimester, respectively. In parallel, PSV altered from 0.22 m/s (95% CI: 0.13–0.30 m/s) to 0.28 m/s (95% CI: 0.17–0.40 m/s, p = 0.377) and to 0.25 m/s (95% CI: 0.20–0.30 m/s, p = 0.560) in the three trimesters. In absence of second and third trimester Doppler data in complicated gestation, only a difference in PI was observed between complicated and healthy pregnancies during the first trimester (1.49 vs 0.80, p < 0.001). Although individual studies have identified differences in PI between SpA located in the central part of the placental bed versus those located at its periphery, this meta-analysis could not confirm this (p = 0.349). Conclusions This review and meta-analysis concludes that an observed decrease of SpA PI and RI from the first towards the second trimester parallels the physiological trophoblast invasion converting SpA during early gestation, a process completed in the midst of the second trimester. Higher PI was found in SpA of complicated pregnancies compared to healthy pregnancies, possibly reflecting suboptimal utero-placental circulation. Longitudinal studies examining comprehensively the predictive value of spiral artery Doppler for complicated pregnancies are yet to be carried out.
Collapse
|
23
|
Jia L, Liu Q, Hou H, Guo G, Zhang T, Fan S, Wang L. Association of Ambient air Pollution with risk of preeclampsia during pregnancy: a retrospective cohort study. BMC Public Health 2020; 20:1663. [PMID: 33153479 PMCID: PMC7643463 DOI: 10.1186/s12889-020-09719-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/15/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Ambient air pollution is becoming a serious environmental problem in China. The results were inconsistent on that air pollution was a risk factor of preeclampsia in pregnancy. METHODS Total 116,042 pregnant women were enrolled from 22 hospitals in 10 cities of Hebei Province, China from January 1, 2015 to December 31, 2017. The parturients were divided into preeclampsia group (PE group) and non-preeclampsia group (non-PE group). The data of air pollutants, namely, particulate matter (PM)2.5, PM10, NO2, SO2, CO, O3 were collected from China Environmental Inspection Station. RESULTS Among the 116,042 pregnant women, 2988 (2.57%) pregnant women were diagnosed with preeclampsia. The concentrations of exposed PM2.5, PM10, NO2 and O3 in the PE group were significantly higher than those in the non-PE group, and they were risk factors of the PE group in the first and second trimester of pregnancy respectively. The concentrations of exposed SO2 and CO in PE patients and non-PE women were not different, but high concentration of these air pollutants were risk factors to PE in the second trimester. CONCLUSION The exposure to PM2.5, PM10, NO2, O3 were risk factors for preeclampsia in the first and second trimester of pregnancy, while only at high level, SO2 and CO were risk factors for preeclampsia in the second trimester of pregnancy.
Collapse
Affiliation(s)
- Lu Jia
- Department of Obstetrics and Gynecology, Hebei General Hospital, Hebei Medical University, No. 348 Heping Road, Shijiazhuang, 050051, Hebei, China
| | - Qing Liu
- Zibo Maternal and Child Health Hospital, No. 66, North Tianjin Road, Zibo, 255000, Shandong, China
| | - Huiqing Hou
- Department of Obstetrics and Gynecology, Hebei General Hospital, Hebei Medical University, No. 348 Heping Road, Shijiazhuang, 050051, Hebei, China
| | - Guangli Guo
- Department of Obstetrics and Gynecology, Hebei General Hospital, Hebei Medical University, No. 348 Heping Road, Shijiazhuang, 050051, Hebei, China
| | - Ting Zhang
- Department of Obstetrics and Gynecology, Hebei General Hospital, Hebei Medical University, No. 348 Heping Road, Shijiazhuang, 050051, Hebei, China
| | - Songli Fan
- Hebei Women and Children's Health Center, No. 147, Jianhua Street, Shijiazhuang, 050000, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Hebei General Hospital, Hebei Medical University, No. 348 Heping Road, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
24
|
Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165961. [PMID: 32916282 DOI: 10.1016/j.bbadis.2020.165961] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia is a pregnancy-specific syndrome with multisystem involvement which leads to foetal, neonatal, and maternal morbidity and mortality. This syndrome is characterized by the onset of clinical signs and symptoms and delivery before (early-onset preeclampsia, eoPE), or after (late-onset preeclampsia, loPE), the 34 weeks of gestation. Preeclampsia is a mitochondrial disorder where its differential involvement in eoPE and loPE is unclear. Mitochondria regulate cell metabolism and are a significant source of reactive oxygen species (ROS). The syncytiotrophoblast in eoPE and loPE show altered mitochondrial structure and function resulting in ROS overproduction, oxidative stress, and cell damage and death. Mitochondrial dysfunction in eoPE may result from altered expression of several molecules, including dynamin-related protein 1 and mitofusins, compared with loPE where these factors are either reduced or unaltered. Equally, mitochondrial fusion/fission dynamics seem differentially modulated in eoPE and loPE. It is unclear whether the electron transport chain and oxidative phosphorylation are differentially altered in these two subgroups of preeclampsia. However, the activity of complex IV (cytochrome c oxidase) and the expression of essential proteins involved in the electron transport chain are reduced, leading to lower oxidative phosphorylation and mitochondrial respiration in the preeclamptic placenta. Interventional studies in patients with preeclampsia using the coenzyme Q10, a key molecule in the electron transport chain, suggest that agents that increase the antioxidative capacity of the placenta may be protective against preeclampsia development. In this review, the mitochondrial dysfunction in both eoPE and loPE is summarized. Therapeutic approaches are discussed in the context of contributing to the understanding of mitochondrial dysfunction in eoPE and loPE.
Collapse
|
25
|
Baik AH, Jain IH. Turning the Oxygen Dial: Balancing the Highs and Lows. Trends Cell Biol 2020; 30:516-536. [PMID: 32386878 PMCID: PMC7391449 DOI: 10.1016/j.tcb.2020.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Oxygen is both vital and toxic to life. Molecular oxygen is the most used substrate in the human body and is required for several hundred diverse biochemical reactions. The discovery of the PHD-HIF-pVHL system revolutionized our fundamental understanding of oxygen sensing and cellular adaptations to hypoxia. It deepened our knowledge of the biochemical underpinnings of numerous diseases, ranging from anemia to cancer. Cellular dysfunction and tissue pathology can result from a mismatch of oxygen supply and demand. Recent work has shown that mitochondrial disease models display tissue hyperoxia and that disease pathology can be reversed by normalization of excess oxygen, suggesting that certain disease states can potentially be treated by modulating oxygen levels. In this review, we describe cellular and organismal mechanisms of oxygen sensing and adaptation. We provide a revitalized framework for understanding pathologies of too little or too much oxygen.
Collapse
Affiliation(s)
- Alan H Baik
- Department of Physiology, University of California, San Francisco, CA 94158, USA; Department of Medicine, Division of Cardiology, University of California, San Francisco, CA 94143, USA.
| | - Isha H Jain
- Department of Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Brugger BA, Guettler J, Gauster M. Go with the Flow-Trophoblasts in Flow Culture. Int J Mol Sci 2020; 21:ijms21134666. [PMID: 32630006 PMCID: PMC7369846 DOI: 10.3390/ijms21134666] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 01/20/2023] Open
Abstract
With establishment of uteroplacental blood flow, the perfused fetal chorionic tissue has to deal with fluid shear stress that is produced by hemodynamic forces across different trophoblast subtypes. Amongst many other cell types, trophoblasts are able to sense fluid shear stress through mechanotransduction. Failure in the adaption of trophoblasts to fluid shear stress is suggested to contribute to pregnancy disorders. Thus, in the past twenty years, a significant body of work has been devoted to human- and animal-derived trophoblast culture under microfluidic conditions, using a rather broad range of different fluid shear stress values as well as various different flow systems, ranging from commercially 2D to customized 3D flow culture systems. The great variations in the experimental setup reflect the general heterogeneity in blood flow through different segments of the uteroplacental circulation. While fluid shear stress is moderate in invaded uterine spiral arteries, it drastically declines after entrance of the maternal blood into the wide cavity of the intervillous space. Here, we provide an overview of the increasing body of evidence that substantiates an important influence of maternal blood flow on several aspects of trophoblast physiology, including cellular turnover and differentiation, trophoblast metabolism, as well as endocrine activity, and motility. Future trends in trophoblast flow culture will incorporate the physiological low oxygen conditions in human placental tissue and pulsatile blood flow in the experimental setup. Investigation of trophoblast mechanotransduction and development of mechanosome modulators will be another intriguing future direction.
Collapse
Affiliation(s)
| | | | - Martin Gauster
- Correspondence: ; Tel.: +43-316-385-71896; Fax: +43-316-385-79612
| |
Collapse
|
27
|
Li M, Wu X, An P, Dang H, Liu Y, Liu R. Effects of resveratrol on autophagy and the expression of inflammasomes in a placental trophoblast oxidative stress model. Life Sci 2020; 256:117890. [PMID: 32497634 DOI: 10.1016/j.lfs.2020.117890] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We aim to investigate whether there is activation of NLRP1 and autophagy in trophoblast oxidative stress model. Resveratrol was taken to clarify its role in oxidative damage of placental trophoblasts. METHODS H2O2 was added to HTR-8/SVneo cell for 3 h, then the ROS level and apoptosis panel was performed. The levels of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 were detected. Resveratrol was added after 8 h, the ROS level and apoptosis rate were detected, the expression of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 were detected. RESULTS 300 μmol/L H2O2 for 3 h is the optimum combination in establishing the oxidative stress injury model (P < 0.01). LDH, ROS and MDA level was increased, the activity of SOD, CAT were declined (P < 0.01). Apoptosis rate increased (P < 0.01). The expression of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 protein was higher (P < .01). Resveratrol (50 μmol/L) treatment for 8 h could improve the changes caused by H2O2, increase the survival rate of cells (P < 0.01), reduce the release of LDH, decrease the level of MDA, increase the level of SOD and CAT (P < 0.01). The expression of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 protein decreased (P < 0.01). CONCLUSION Trophoblast oxidative damage model can be established under 300 μmol/L H2O2 for 3 h, the expression of NLRP1and autophagy after H2O2 treatment were detected. Resveratrol reduces apoptotic cells, thus ensuring the normal biological functions of trophoblasts. CAPSULE H2O2-induced oxidative stress damage model in HTR-8/SVneo cells can be successfully established under 300 μmol/L H2O2 for 3 h, resveratrol alleviates of H2O2-induced damage by its antioxidant and autophagy regulation function.
Collapse
Affiliation(s)
- Meihe Li
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, China
| | - Peng An
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Yanqiao Liu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Runxia Liu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
28
|
Oxidative stress: Normal pregnancy versus preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165354. [DOI: 10.1016/j.bbadis.2018.12.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 02/03/2023]
|
29
|
Arishe OO, Ebeigbe AB, Webb RC. Mechanotransduction and Uterine Blood Flow in Preeclampsia: The Role of Mechanosensing Piezo 1 Ion Channels. Am J Hypertens 2020; 33:1-9. [PMID: 31545339 PMCID: PMC7768673 DOI: 10.1093/ajh/hpz158] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
There is a large increase in uterine arterial blood flow during normal pregnancy. Structural and cellular adjustments occur in the uterine vasculature during pregnancy to accommodate this increased blood flow through a complex adaptive process that is dependent on multiple coordinated and interactive influences and this process is known as "vascular remodeling." The etiology of preeclampsia involves aberrant placentation and vascular remodeling leading to reduced uteroplacental perfusion. The placental ischemia leads to development of hypertension and proteinuria in the mother, intrauterine growth restriction, and perinatal death in the fetus. However, the underlying source of the deficient vascular remodeling and the subsequent development of preeclampsia remain to be fully understood. Mechanoreceptors in the vascular system convert mechanical force (shear stress) to biochemical signals and feedback mechanisms. This review focuses on the Piezo 1 channel, a mechanosensitive channel that is sensitive to shear stress in the endothelium; it induces Ca2+ entry which is linked to endothelial nitric oxide synthase (eNOS) activation as the mechanoreceptor responsible for uterine vascular dilatation during pregnancy. Here we describe the downstream signaling pathways involved in this process and the possibility of a deficiency in expression of Piezo 1 in preeclampsia leading to the abnormal vascular dysfunction responsible for the pathophysiology of the disease. The Piezo 1 ion channel is expressed in the endothelium and vascular smooth muscle cells (VSMCs) of small-diameter arteries. It plays a role in the structural remodeling of arteries and is involved in mechanotransduction of hemodynamic shear stress by endothelial cells (ECs).
Collapse
Affiliation(s)
- Olufunke O Arishe
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Anthony B Ebeigbe
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - R Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
30
|
Abi Nahed R, Reynaud D, Lemaitre N, Lartigue S, Roelants C, Vaiman D, Benharouga M, Cochet C, Filhol O, Alfaidy N. Protein kinase CK2 contributes to placental development: physiological and pathological implications. J Mol Med (Berl) 2019; 98:123-133. [PMID: 31832700 DOI: 10.1007/s00109-019-01855-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
Preeclampsia (PE) is the most threatening pathology of human pregnancy. Its development is thought to be due to a failure in the invasion of trophoblast cells that establish the feto-maternal circulation. Protein kinase CK2 is a ubiquitous enzyme reported to be involved in the control of cell invasion. CK2 consists of two subunits, a catalytic subunit, CK2α, and a regulatory subunit, CK2β. To date, no data exist regarding the expression and role of this enzyme in normal and PE pregnancies. We performed studies, at the clinical level using distinctive cohorts from early pregnancy (n = 24) and from PE (n = 23) and age-matched controls (n = 28); in vitro, using trophoblast cell lines; ex vivo, using placental explants; and in vivo, using PE mouse models. We demonstrated that (i) CK2 is more expressed during the late first trimester of pregnancy and is mainly localized in differentiated trophoblast cells, (ii) the inhibition of its enzymatic activity decreased the proliferation, migration, invasion, and syncytialization of trophoblast cells, both in 2D and 3D culture systems, and (iii) CK2 activity and the CK2α/CK2β protein ratio were increased in PE human placentas. The pattern and profile of CK2 expression were confirmed in gravid mice along with an increase in the PE mouse models. Altogether, our results demonstrate that CK2 plays an essential role in the establishment of the feto-maternal circulation and that its deregulation is associated with PE development. The increase in CK2 activity in PE might constitute a compensatory mechanism to ensure proper pregnancy progress.
Collapse
Affiliation(s)
- Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France. .,Université Grenoble-Alpes, 38000, Grenoble, France. .,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France.
| | - Deborah Reynaud
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| | - Solene Lartigue
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| | - Caroline Roelants
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France.,Inovarion, Paris, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm- UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Mohamed Benharouga
- Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France.,Laboratoire de Chimie et Biologie des Métaux, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5249, Grenoble, France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| | - Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Unité, 1036, Grenoble, France.,Université Grenoble-Alpes, 38000, Grenoble, France.,Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institure of Grenoble (IRIG), Grenoble, France
| |
Collapse
|
31
|
Interaction of Pregnancy-Specific Glycoprotein 1 With Integrin Α5β1 Is a Modulator of Extravillous Trophoblast Functions. Cells 2019; 8:cells8111369. [PMID: 31683744 PMCID: PMC6912793 DOI: 10.3390/cells8111369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/23/2023] Open
Abstract
Human pregnancy-specific glycoproteins (PSGs) serve immunomodulatory and pro-angiogenic functions during pregnancy and are mainly expressed by syncytiotrophoblast cells. While PSG mRNA expression in extravillous trophoblasts (EVTs) was reported, the proteins were not previously detected. By immunohistochemistry and immunoblotting, we show that PSGs are expressed by invasive EVTs and co-localize with integrin 5. In addition, we determined that native and recombinant PSG1, the most highly expressed member of the family, binds to 51 and induces the formation of focal adhesion structures resulting in adhesion of primary EVTs and EVT-like cell lines under 21% oxygen and 1% oxygen conditions. Furthermore, we found that PSG1 can simultaneously bind to heparan sulfate in the extracellular matrix and to 51 on the cell membrane. Wound healing assays and single-cell movement tracking showed that immobilized PSG1 enhances EVT migration. Although PSG1 did not affect EVT invasion in the in vitro assays employed, we found that the serum PSG1 concentration is lower in African-American women diagnosed with early-onset and late-onset preeclampsia, a pregnancy pathology characterized by shallow trophoblast invasion, than in their respective healthy controls only when the fetus was a male; therefore, the reduced expression of this molecule should be considered in the context of preeclampsia as a potential therapy.
Collapse
|
32
|
Milovanov AP. [Cytotrophoblastic invasion is the most important mechanism of placentation and pregnancy progression]. Arkh Patol 2019; 81:5-10. [PMID: 31407711 DOI: 10.17116/patol2019810415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper presents new Russian and foreign materials on cytotrophoblastic invasion, the most important mechanism of interaction between the placenta, fetus, and mother during the progression of physiological pregnancy. The original classification of placental cell development has been published; the initial wave of invasion, the main and additional ways of its implementation in the second trimester, and the formation of cytotrophoblastic plugs in the spiral arteries, and the fate of multinucleated giant cells have been characterized. Additional sources of invasive cells in the second trimester are presented. A general concept of cytotrophoblastic invasion as a regulator and main mechanism of transition from the histotrophic to more effective hemochorial type of fetal nutrition has been made. The modern definition of an invasive process is given. This information is important for obstetricians and pathologists who analyze the causes of obstetric complications.
Collapse
Affiliation(s)
- A P Milovanov
- Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
33
|
Hoch D, Gauster M, Hauguel-de Mouzon S, Desoye G. Diabesity-associated oxidative and inflammatory stress signalling in the early human placenta. Mol Aspects Med 2019; 66:21-30. [DOI: 10.1016/j.mam.2018.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
34
|
Abi Nahed R, Reynaud D, Borg AJ, Traboulsi W, Wetzel A, Sapin V, Brouillet S, Dieudonné MN, Dakouane-Giudicelli M, Benharouga M, Murthi P, Alfaidy N. NLRP7 is increased in human idiopathic fetal growth restriction and plays a critical role in trophoblast differentiation. J Mol Med (Berl) 2019; 97:355-367. [PMID: 30617930 DOI: 10.1007/s00109-018-01737-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Fetal growth restriction (FGR) the leading cause of perinatal mortality and morbidity is highly related to abnormal placental development, and placentas from FGR pregnancies are often characterized by increased inflammation. However, the mechanisms of FGR-associated inflammation are far from being understood. NLRP7, a member of a family of receptors involved in the innate immune responses, has been shown to be associated with gestational trophoblastic diseases. Here, we characterized the expression and the functional role of NLRP7 in the placenta and investigated its involvement in the pathogenesis of FGR. We used primary trophoblasts and placental explants that were collected during early pregnancy, and established trophoblast-derived cell lines, human placental villi, and serum samples from early pregnancy (n = 38) and from FGR (n = 40) and age-matched controls (n = 32). Our results show that NLRP7 (i) is predominantly expressed in the trophoblasts during the hypoxic period of placental development and its expression is upregulated by hypoxia and (ii) increases trophoblast proliferation ([3H]-thymidine) and controls the precocious differentiation of trophoblasts towards syncytium (syncytin 1 and 2 and β-hCG production and xCELLigence analysis) and towards invasive extravillous trophoblast (2D and 3D cultures). We have also demonstrated that NLRP7 inflammasome activation in trophoblast cells increases IL-1β, but not IL-18 secretion. In relation to the FGR, we demonstrated that major components of NLRP7 inflammasome machinery are increased and that IL-1β but not IL-18 circulating levels are increased in FGR. Altogether, our results identified NLRP7 as a critical placental factor and provided evidence for its deregulation in FGR. NLRP7 inflammasome is abundantly expressed by trophoblast cells. It is regulated by a key parameter of placental development, hypoxia. It controls trophoblast proliferation, migration, and invasion and exhibits anti-apoptotic role. NLRP7 machinery is deregulated in FGR pregnancies. KEY MESSAGES: NLRP7 inflammasome is abundantly expressed by trophoblast cells. It is regulated by a key parameter of placental development, hypoxia. It controls trophoblast proliferation, migration, and invasion and exhibits anti-apoptotic role. NLRP7 machinery is deregulated in FGR pregnancies.
Collapse
Affiliation(s)
- R Abi Nahed
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France
- Université Grenoble-Alpes, 38000, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - D Reynaud
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France
- Université Grenoble-Alpes, 38000, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - A J Borg
- Department of Medicine, School of Clinical Sciences, Monash University and the Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - W Traboulsi
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France
- Université Grenoble-Alpes, 38000, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - A Wetzel
- Université Grenoble-Alpes, 38000, Grenoble, France
- Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation-CECOS, Centre Hospitalier Universitaire de Grenoble, 38700, La Tronche, France
| | - V Sapin
- GReD, UMR CNRS 6293 INSERM 1103 Université Clermont Auvergne, CRBC, UFR de Médecine et des Professions Paramédicales, 63000, Clermont-Ferrand, France
| | - S Brouillet
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France
- Université Grenoble-Alpes, 38000, Grenoble, France
- Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation-CECOS, Centre Hospitalier Universitaire de Grenoble, 38700, La Tronche, France
| | - M N Dieudonné
- GIG - EA 7404 Université de Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, Unité de Formation et de Recherche des Sciences de la Santé Simone Veil, Montigny-le-Bretonneux, France
| | - M Dakouane-Giudicelli
- Institut National de la Santé et de la Recherche Médicale, Unité 1179, Montigny-Le-Bretonneux, France
| | - M Benharouga
- Université Grenoble-Alpes, 38000, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
- Unité Mixte de Recherche 5249, Laboratoire de Chimie et Biologie des Métaux, Centre National de la Recherche Scientifique, Grenoble, France
| | - P Murthi
- Department of Medicine, School of Clinical Sciences, Monash University and the Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France.
- Université Grenoble-Alpes, 38000, Grenoble, France.
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France.
- Unité INSERM U1036, Laboratoire BCI -BIG, CEA Grenoble 17, rue des Martyrs, 38054, Grenoble cedex 9, France.
| |
Collapse
|
35
|
Haram K, Mortensen JH, Myking O, Roald B, Magann EF, Morrison JC. Early development of the human placenta and pregnancy complications. J Matern Fetal Neonatal Med 2019; 33:3538-3545. [PMID: 30810433 DOI: 10.1080/14767058.2019.1578745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An adequately sized placenta at a suitable site with appropriate depth and centripetal progression of implantation are the major factors for optimal fetal development. The cytotrophoblasts surround the blastocyst fuses at the site of the uterine attachment. This forms a second layer of multinucleated syncytiotrophoblasts that constitutes the inner epithelial boundary of the chorionic villous against the intervillous space. In a normal pregnancy, extravillous cytotrophoblasts (EVT) invade and obstruct the spiral arteries and remodel them. Vacuoles in the syncytial cell layer fuse and develop the intervillous space. The inner cell mass (embryoblast) gives rise to the umbilical cord and the mesenchyme in the chorionic villi. Vasculogenesis starts with the formation of hemangioblastic cords in this mesenchyme. The trophoblastic cell columns anchor the placenta. A variety of molecular pathways participate in the placentation process. Placental morphogenesis occurs mainly through complex cellular interactions between the chorionic villous and the extravillous cytotrophoblasts. The formation of the normal structure of the chorionic villi, syncytiotrophoblast layer and vasculature is essential for placental function, hormone production, and regulation of fetal growth. At each stage of placental development, genetic variants, exposure to infection, poor vascular function, oxidative stress, or failure of normal development can all lead to abnormal formation resulting in the clinical complications of pregnancy such as fetal growth disorders, neonatal neurologic abnormalities, placental adhesions, and inflammatory problems as well as maternal disease such as preeclampsia.
Collapse
Affiliation(s)
- Kjell Haram
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - Jan Helge Mortensen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.,Department of Public Health and Primary Health Care, University of Bergen, Bergen, Norway
| | - Ole Myking
- Department of Internal Medicine, Section of Endocrinology, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Bodil Roald
- Department of Pathology, Center for Pediatric and Pregnancy Related Pathology, Oslo University Hospital, Oslo, Norway
| | - Everett F Magann
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John C Morrison
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
36
|
Guo L, Liu Y, Guo Y, Yang Y, Chen B. MicroRNA-423-5p inhibits the progression of trophoblast cells via targeting IGF2BP1. Placenta 2018; 74:1-8. [PMID: 30587375 DOI: 10.1016/j.placenta.2018.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is one of the leading causes of maternal and fetal mortality globally. The imbalance of trophoblast homeostasis is closely linked with the pathogenesis of PE. MicroRNA-423-5p (miR-423-5p) has been reported to be abnormally expressed in placenta and blood plasma of pregnant women with PE. In the present study, miR-423-5p expression in blood plasma of pregnant women with PE and healthy pregnant women was detected. Also, the roles and molecular mechanisms of miR-423-5p in the development of trophoblast cells were further investigated. METHODS Expression of miR-423-5p and insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) mRNA was detected by RT-qPCR assay. Protein expression of IGF2BP1, Bcl-2 and Bax was determined using western blot assay. Cell migratory and invasive capacities were assessed by transwell migration and invasion assay. Cell apoptotic rate was determined using flow cytometry via the double-staining of Annexin V-FITC/Propidium Iodide. The interaction between miR-423-5p and IGF2BP1 was demonstrated by bioinformatics analysis and luciferase reporter assay. RESULTS MiR-423-5p was highly expressed in blood plasma of pregnant women with PE. MiR-423-5p inhibited migration, invasion and proliferation as well as induced apoptosis in HTR-8/SVneo cells. Further investigation revealed that IGF2BP1 was a target of miR-423-5p. Moreover, IGF2BP1 overexpression promoted migration, invasion and proliferation, suppressed apoptosis, and weakened miR-423-5p function in HTR-8/SVneo cells. DISCUSSION MiR-423-5p inhibited migration, invasion and proliferation as well as induced apoptosis by targeting IGF2BP1 in HTR-8/SVneo cells, presenting a novel molecular basis implicated in PE pathogenesis.
Collapse
Affiliation(s)
- Li Guo
- Department of Obstetrics and Gynecology, Xijing Hospital,the Military Medical University of PLA Airforce (Fourth Military Medical University), China; Department of Obstetrics, 215 Hospital of Shaanxi Nuclear Industry, China
| | - Yu Liu
- Department of Obstetrics and Gynecology, Xijing Hospital,the Military Medical University of PLA Airforce (Fourth Military Medical University), China
| | - Ying Guo
- Department of Obstetrics and Gynecology, Xijing Hospital,the Military Medical University of PLA Airforce (Fourth Military Medical University), China
| | - Yongkang Yang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Shaanxi University of Chinese Medicine, China.
| | - Biliang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital,the Military Medical University of PLA Airforce (Fourth Military Medical University), China.
| |
Collapse
|
37
|
Wie JH, Ko HS, Choi SK, Park IY, Kim A, Kim HS, Shin JC. Effects of Oncostatin M on Invasion of Primary Trophoblasts under Normoxia and Hypoxia Conditions. Yonsei Med J 2018; 59:879-886. [PMID: 30091322 PMCID: PMC6082983 DOI: 10.3349/ymj.2018.59.7.879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To investigate the effect of oncostatin M (OSM) on protein expression levels and enzymatic activities of matrix metalloprotainase (MMP)-2 and MMP-9 in primary trophoblasts and the invasiveness thereof under normoxia and hypoxia conditions. MATERIALS AND METHODS Protein expression levels and enzymatic activities of MMP-2 and MMP-9 in primary trophoblasts under normoxia and hypoxia conditions were examined by Western blot and zymography, respectively. Effects of exogenous OSM on the in vitro invasion activity of trophoblasts according to oxygen concentration were also determined. Signal transducer and activator of transcription 3 (STAT3) siRNA was used to determine whether STAT3 activation in primary trophoblasts was involved in the effect of OSM. RESULTS OSM enhanced protein expression levels and enzymatic activities of MMP-2 and MMP-9 in term trophoblasts under hypoxia condition, compared to normoxia control (p<0.05). OSM-induced MMP-2 and MMP-9 enzymatic activities were significantly suppressed by STAT3 siRNA silencing under normoxia and hypoxia conditions (p<0.05). Hypoxia alone or OSM alone did not significantly increase the invasiveness of term trophoblasts. However, the invasion activity of term trophoblasts was significantly increased by OSM under hypoxia, compared to that without OSM treatment under normoxia. CONCLUSION OSM might be involved in the invasiveness of extravillous trophoblasts under hypoxia conditions via increasing MMP-2 and MMP-9 enzymatic activities through STAT3 signaling. Increased MMP-9 activity by OSM seems to be more important in primary trophoblasts.
Collapse
Affiliation(s)
- Jeong Ha Wie
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Sun Ko
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sae Kyung Choi
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Yang Park
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ahyoung Kim
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ho Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Chul Shin
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
38
|
Banerjee P, Malik A, Malhotra SS, Gupta SK. Role of STAT signaling and autocrine action of chemokines during H 2 O 2 induced HTR-8/SVneo trophoblastic cells invasion. J Cell Physiol 2018; 234:1380-1397. [PMID: 30078219 DOI: 10.1002/jcp.26934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/13/2018] [Indexed: 01/20/2023]
Abstract
During pregnancy, regulated generation of reactive oxygen species (ROS) is important for activation of signaling pathways and placentation. In the current study, the effect of H2 O2 on invasion of HTR-8/SVneo cells, a human extravillous trophoblast cell line, is investigated. Treatment of HTR-8/SVneo cells for 24 hr with H 2 O2 (25 µM) leads to a significant increase in invasion without affecting cell proliferation, viability, and apoptosis. Concomitantly, a significant increase in the matrix metalloproteinase-9 (MMP-9)/tissue inhibitor of metalloproteinases-1 (TIMP-1) ratio is observed. Further, significant increase in phosphorylation of signal transducer and activator of transcription 1 (STAT-1) and STAT-3 (both at ser727 residue) is observed on treating HTR-8/SVneo cells with 25 µM of H2 O2 accompanied by an increase in the secretion of interleukin-8 (IL-8) and macrophage inflammatory protein-1β (MIP-1β). A significant decrease in H2 O2 -mediated invasion of HTR-8/SVneo cells and reduced expression of IL-8 and MIP-1β accompanied by decrease in MMP-9/TIMP-1 ratio are observed on inhibiting STAT-1 and STAT-3 by small interfering RNA (siRNA). Inhibition of STAT-1 activity by fludarabine and STAT-3 activity by Stattic also leads to a decrease in H2 O2 -mediated increase in HTR-8/SVneo cell invasion. Inhibition of IL-8 and MIP-1β by siRNA also leads to a significant decrease in both basal and H2 O2 -mediated invasion. Interestingly, inhibition of MIP-1β by siRNA leads to a significant reduction in H2 O2 -mediated increase in IL-8. However, no significant effect of IL-8 silencing on H2 O2 -mediated MIP-1β expression was observed. From the above results, it can be concluded that H2 O2 activates STAT signaling, MIP-1β & IL-8 secretion and increases MMP-9/TIMP-1 ratio leading to an increased invasion of HTR-8/SVneo cells without affecting their viability.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ankita Malik
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Sudha Saryu Malhotra
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
39
|
Fajersztajn L, Veras MM. Hypoxia: From Placental Development to Fetal Programming. Birth Defects Res 2018; 109:1377-1385. [PMID: 29105382 DOI: 10.1002/bdr2.1142] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Hypoxia may influence normal and different pathological processes. Low oxygenation activates a variety of responses, many of them regulated by hypoxia-inducible factor 1 complex, which is mostly involved in cellular control of O2 consumption and delivery, inhibition of growth and development, and promotion of anaerobic metabolism. Hypoxia plays a significant physiological role in fetal development; it is involved in different embryonic processes, for example, placentation, angiogenesis, and hematopoiesis. More recently, fetal hypoxia has been associated directly or indirectly with fetal programming of heart, brain, and kidney function and metabolism in adulthood. In this review, the role of hypoxia in fetal development, placentation, and fetal programming is summarized. Hypoxia is a basic mechanism involved in different pregnancy disorders and fetal health developmental complications. Although there are scientific data showing that hypoxia mediates changes in the growth trajectory of the fetus, modulates gene expression by epigenetic mechanisms, and determines the health status later in adulthood, more mechanistic studies are needed. Furthermore, if we consider that intrauterine hypoxia is not a rare event, and can be a consequence of unavoidable exposures to air pollution, nutritional deficiencies, obesity, and other very common conditions (drug addiction and stress), the health of future generations may be damaged and the incidence of some diseases will markedly increase as a consequence of disturbed fetal programming. Birth Defects Research 109:1377-1385, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lais Fajersztajn
- LIM 05 Departamento de Patologia, Hospital da Clinicas, Faculdade de Medicina Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| | - Mariana Matera Veras
- LIM 05 Departamento de Patologia, Hospital da Clinicas, Faculdade de Medicina Universidade de Sao Paulo, Sao Paulo, SP, Brasil
| |
Collapse
|
40
|
Soares MJ, Iqbal K, Kozai K. Hypoxia and Placental Development. Birth Defects Res 2018; 109:1309-1329. [PMID: 29105383 DOI: 10.1002/bdr2.1135] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022]
Abstract
Hemochorial placentation is orchestrated through highly regulated temporal and spatial decisions governing the fate of trophoblast stem/progenitor cells. Trophoblast cell acquisition of specializations facilitating invasion and uterine spiral artery remodeling is a labile process, sensitive to the environment, and represents a process that is vulnerable to dysmorphogenesis in pathologic states. Hypoxia is a signal guiding placental development, and molecular mechanisms directing cellular adaptations to low oxygen tension are integral to trophoblast cell differentiation and placentation. Hypoxia can also be used as an experimental tool to investigate regulatory processes controlling hemochorial placentation. These developmental processes are conserved in mouse, rat, and human placentation. Consequently, elements of these developmental events can be modeled and hypotheses tested in trophoblast stem cells and in genetically manipulated rodents. Hypoxia is also a consequence of a failed placenta, yielding pathologies that can adversely affect maternal adjustments to pregnancy, fetal health, and susceptibility to adult disease. The capacity of the placenta for adaptation to environmental challenges highlights the importance of its plasticity in safeguarding a healthy pregnancy. Birth Defects Research 109:1309-1329, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas.,Fetal Health Research, Children's Research Institute, Children's Mercy, Kansas City, Missouri
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
41
|
Na JY, Seok J, Park S, Kim JS, Kim GJ. Effects of selenium on the survival and invasion of trophoblasts. Clin Exp Reprod Med 2018; 45:10-16. [PMID: 29662820 PMCID: PMC5897242 DOI: 10.5653/cerm.2018.45.1.10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 11/29/2017] [Accepted: 01/23/2018] [Indexed: 01/29/2023] Open
Abstract
Objective Placental oxidative stress is known to be a factor that contributes to pregnancy failure. The aim of this study was to determine whether selenium could induce antioxidant gene expression and regulate invasive activity and mitochondrial activity in trophoblasts, which are a major cell type of the placenta. Methods To understand the effects of selenium on trophoblast cells exposed to hypoxia, the viability and invasive activity of trophoblasts were analyzed. The expression of antioxidant enzymes was assessed by reverse-transcription polymerase chain reaction. In addition, the effects of selenium treatment on mitochondrial activity were evaluated in terms of adenosine triphosphate production, mitochondrial membrane potential, and reactive oxygen species levels. Results Selenium showed positive effects on the viability and migration activity of trophoblast cells when exposed to hypoxia. Interestingly, the increased heme oxygenase 1 expression under hypoxic conditions was decreased by selenium treatment, whereas superoxide dismutase expression was increased in trophoblast cells by selenium treatment for 72 hours, regardless of hypoxia. Selenium-treated trophoblast cells showed increased mitochondrial membrane potential and decreased reactive oxygen species levels under hypoxic conditions for 72 hours. Conclusion These results will be used as basic data for understanding the mechanism of how trophoblast cells respond to oxidative stress and how selenium promotes the upregulation of related genes and improves the survival rate and invasive ability of trophoblasts through regulating mitochondrial activity. These results suggest that selenium may be used in reproductive medicine for purposes including infertility treatment.
Collapse
Affiliation(s)
- Jee Yoon Na
- Cheongshim International Academy, Gapyeong, Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam, Korea
| | | | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, Korea
| |
Collapse
|
42
|
Sava RI, March KL, Pepine CJ. Hypertension in pregnancy: Taking cues from pathophysiology for clinical practice. Clin Cardiol 2018; 41:220-227. [PMID: 29485737 PMCID: PMC6490052 DOI: 10.1002/clc.22892] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
Pregnancy-related hypertension (PHTN) syndromes are a frequent and potentially deadly complication of pregnancy, while also negatively impacting the lifelong health of the mother and child. PHTN appears in women likely to develop hypertension later in life, with the stress of pregnancy unmasking a subclinical hypertensive phenotype. However, distinguishing between PHTN and chronic hypertension is essential for optimal management. Preeclampsia (PE) is linked to potentially severe outcomes and lacks effective treatments due to poorly understood mechanisms. Inadequate remodeling of spiral uterine arteries (SUAs), the cornerstone of PE pathophysiology, leads to hypoperfusion of the developing placenta. In normal pregnancies, extravillous trophoblast (EVT) cells assume an invasive phenotype and invade SUAs, transforming them into large conduits. Decidual natural killer cells play an essential role, mediating materno-fetal immune tolerance, inducing early SUA remodeling and regulating EVT invasiveness. Notch signaling is important in EVT phenotypic switch and is dysregulated in PE. The hypoxic placenta releases antiangiogenic and proinflammatory factors that converge upon maternal endothelium, inducing endothelial dysfunction, hypertension, and organ damage. Hypoxia-inducible factor 1-α is upstream of such molecules, whereas endothelin-1 is a major effector. We also describe important genetic links and evidence of incomplete materno-fetal immune tolerance, with PE patients presenting with autoantibodies, lower Treg , and higher Th 17 cells. Thus, PE manifestations arise as a consequence of mal-placentation or/and because of a predisposition of the maternal vascular bed to excessively react to pathogenic molecules. From this pathophysiological basis, we provide current and propose future therapeutic directions for PE.
Collapse
Affiliation(s)
- Ruxandra I. Sava
- Center for Regenerative MedicineUniversity of FloridaGainesvilleFlorida
- “Elias” Emergency University Hospital“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Division of Cardiovascular MedicineUniversity of Florida College of MedicineGainesvilleFlorida
| | - Keith L. March
- Center for Regenerative MedicineUniversity of FloridaGainesvilleFlorida
- Division of Cardiovascular MedicineUniversity of Florida College of MedicineGainesvilleFlorida
| | - Carl J. Pepine
- Center for Regenerative MedicineUniversity of FloridaGainesvilleFlorida
- Division of Cardiovascular MedicineUniversity of Florida College of MedicineGainesvilleFlorida
| |
Collapse
|
43
|
In focus in HCB. Histochem Cell Biol 2017; 149:1-2. [PMID: 29218409 DOI: 10.1007/s00418-017-1625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
|
44
|
McNally R, Alqudah A, Obradovic D, McClements L. Elucidating the Pathogenesis of Pre-eclampsia Using In Vitro Models of Spiral Uterine Artery Remodelling. Curr Hypertens Rep 2017; 19:93. [PMID: 29063290 PMCID: PMC5653699 DOI: 10.1007/s11906-017-0786-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW The aim of the study is to perform a critical assessment of in vitro models of pre-eclampsia using complementary human and cell line-based studies. Molecular mechanisms involved in spiral uterine artery (SUA) remodelling and trophoblast functionality will also be discussed. RECENT FINDINGS A number of proteins and microRNAs have been implicated as key in SUA remodelling, which could be explored as early biomarkers or therapeutic targets for prevention of pre-eclampsia. Various 2D and 3D in vitro models involving trophoblast cells, endothelial cells, immune cells and placental tissue were discussed to elucidate the pathogenesis of pre-eclampsia. Nevertheless, pre-eclampsia is a multifactorial disease, and the mechanisms involved in its pathogenesis are complex and still largely unknown. Further studies are required to provide better understanding of the key processes leading to inappropriate placental development which is the root cause of pre-eclampsia. This new knowledge could identify novel biomarkers and treatment strategies.
Collapse
Affiliation(s)
- Ross McNally
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Abdelrahim Alqudah
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Danilo Obradovic
- Institute of Pathology, University of Belgrade, Belgrade, 11,000, Serbia
| | - Lana McClements
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
45
|
Expression of matrix metalloproteinase 12 is highly specific for non-proliferating invasive trophoblasts in the first trimester and temporally regulated by oxygen-dependent mechanisms including HIF-1A. Histochem Cell Biol 2017; 149:31-42. [PMID: 28990117 PMCID: PMC5767211 DOI: 10.1007/s00418-017-1608-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 01/12/2023]
Abstract
During first trimester pregnancy, trophoblast cells invade from the placenta into the maternal decidua where they anchor the placenta and remodel luminal structures like spiral arteries. This process depends on proteases secreted by invading trophoblasts, which degrade extracellular matrix (ECM). We here aimed to identify proteases particularly important for trophoblast invasion. We generated a list of proteases capable of degrading decidual ECM and trophoblast integrins using MEROPS database and compared expression of these proteases between primary trophoblasts isolated from first trimester placenta (FT, n = 3), representing an invasive phenotype, vs trophoblasts isolated from term pregnancy (TT, n = 3), representing a non-invasive trophoblast phenotype. Matrix metalloproteinase 12 (MMP12) revealed highest expression levels in FT, with absent expression in TT. In situ hybridisation and immunofluorescence localised MMP12 specifically to extravillous trophoblasts (evCT) whilst Ki67 co-staining revealed that proliferating trophoblasts of the cell columns were almost negative for MMP12. Quantification revealed a decline in MMP12 positive evCT at the end of first trimester, when oxygen levels start rising. MMP12 promoter analysis identified potential binding sites for hypoxia-inducible factor (HIF-1) and other oxygen-sensitive transcription factors. Moreover, MMP12 protein was increased by low oxygen in FT in vitro and by addition of a HIF-1α activator. Collectively, MMP12 is a highly expressed protease specific for invasive evCT during the first trimester. MMP12 down regulation by increasing oxygen concentration enables temporal expression control of MMP12 and involves several mechanisms including HIF-1α. These findings suggest MMP12 involved in trophoblast invasion during the first trimester.
Collapse
|
46
|
Vitamin D attenuates sphingosine-1-phosphate (S1P)-mediated inhibition of extravillous trophoblast migration. Placenta 2017; 60:1-8. [PMID: 29208234 PMCID: PMC5754325 DOI: 10.1016/j.placenta.2017.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/17/2017] [Accepted: 09/21/2017] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Failure of trophoblast invasion and remodelling of maternal blood vessels leads to the pregnancy complication pre-eclampsia (PE). In other systems, the sphingolipid, sphingosine-1-phosphate (S1P), controls cell migration therefore this study determined its effect on extravillous trophoblast (EVT) function. METHODS A transwell migration system was used to assess the behaviour of three trophoblast cell lines, Swan-71, SGHPL-4, and JEG3, and primary human trophoblasts in the presence or absence of S1P, S1P pathway inhibitors and 1,25(OH)2D3. QPCR and immunolocalisation were used to demonstrate EVT S1P receptor expression. RESULTS EVTs express S1P receptors 1, 2 and 3. S1P inhibited EVT migration. This effect was abolished in the presence of the specific S1PR2 inhibitor, JTE-013 (p < 0.05 versus S1P alone) whereas treatment with the S1R1/3 inhibitor, FTY720, had no effect. In other cell types S1PR2 is regulated by vitamin D; here we found that treatment with 1,25(OH)2D3 for 48 or 72 h reduces S1PR2 (4-fold; <0.05), but not R1 and R3, expression. Moreover, S1P did not inhibit the migration of cells exposed to 1,25(OH)2D3 (p < 0.05). DISCUSSION This study demonstrates that although EVT express three S1P receptor isoforms, S1P predominantly signals through S1PR2/Gα12/13 to activate Rho and thereby acts as potent inhibitor of EVT migration. Importantly, expression of S1PR2, and therefore S1P function, can be down-regulated by vitamin D. Our data suggest that vitamin D deficiency, which is known to be associated with PE, may contribute to the impaired trophoblast migration that underlies this condition.
Collapse
|
47
|
Novakovic B, Evain-Brion D, Murthi P, Fournier T, Saffery R. Variable DAXX gene methylation is a common feature of placental trophoblast differentiation, preeclampsia, and response to hypoxia. FASEB J 2017; 31:2380-2392. [PMID: 28223336 DOI: 10.1096/fj.201601189rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022]
Abstract
Placental functioning relies on the appropriate differentiation of progenitor villous cytotrophoblasts (CTBs) into extravillous cytotrophoblasts (EVCTs), including invasive EVCTs, and the multinucleated syncytiotrophoblast (ST) layer. This is accompanied by a general move away from a proliferative, immature phenotype. Genome-scale expression studies have provided valuable insight into genes that are associated with the shift to both an invasive EVCT and ST phenotype, whereas genome-scale DNA methylation analysis has shown that differentiation to ST involves widespread methylation shifts, which are counteracted by low oxygen. In the current study, we sought to identify DNA methylation variation that is associated with transition from CTB to ST in vitro and from a noninvasive to invasive EVCT phenotype after culture on Matrigel. Of the several hundred differentially methylated regions that were identified in each comparison, the majority showed a loss of methylation with differentiation. This included a large differentially methylated region (DMR) in the gene body of death domain-associated protein 6 (DAXX ), which lost methylation during both CTB syncytialization to ST and EVCT differentiation to invasive EVCT. Comparison to publicly available methylation array data identified the same DMR as among the most consistently differentially methylated genes in placental samples from preeclampsia pregnancies. Of interest, in vitro culture of CTB or ST in low oxygen increases methylation in the same region, which correlates with delayed differentiation. Analysis of combined epigenomics signatures confirmed DAXX DMR as a likely regulatory element, and direct gene expression analysis identified a positive association between methylation at this site and DAXX expression levels. The widespread dynamic nature of DAXX methylation in association with trophoblast differentiation and placenta-associated pathologies is consistent with an important role for this gene in proper placental development and function.-Novakovic, B., Evain-Brion, D., Murthi, P., Fournier, T., Saffery, R. Variable DAXX gene methylation is a common feature of placental trophoblast differentiation, preeclampsia, and response to hypoxia.
Collapse
Affiliation(s)
- Boris Novakovic
- Cancer and Disease Epigenetics, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Danièle Evain-Brion
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S1139, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,PremUp Foundation, Paris, France
| | - Padma Murthi
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia.,Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Thiery Fournier
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S1139, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,PremUp Foundation, Paris, France
| | - Richard Saffery
- Cancer and Disease Epigenetics, Murdoch Children's Research Institute, Parkville, Victoria, Australia; .,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
48
|
Weiss G, Sundl M, Glasner A, Huppertz B, Moser G. The trophoblast plug during early pregnancy: a deeper insight. Histochem Cell Biol 2016; 146:749-756. [PMID: 27510415 PMCID: PMC5101277 DOI: 10.1007/s00418-016-1474-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 11/24/2022]
Abstract
During the first trimester of pregnancy, foetal endovascular trophoblasts invade into maternal spiral arteries, accumulate and form plugs in the lumen of the vessels. These plugs only allow blood plasma to seep through. Hence, during the first trimester of pregnancy, a first flow of fluids through the placental intervillous space is established, resulting in a physiological oxygen gradient between mother and foetus. The trophoblast plugs block spiral arteries until the beginning of the second trimester (11-14 weeks). In parallel, uterine glands are invaded and opened by endoglandular trophoblasts towards the intervillous space of the placenta, without showing the formation of plugs (Moser et al. in Hum Reprod 25:1127-1136, 2010, Hum Reprod Oxf Engl 30:2747-2757, 2015). This enables histiotrophic nutrition of the embryo prior to onset of maternal blood flow into the placenta. Failure of these endovascular and endoglandular invasion processes may lead to miscarriage or pregnancy disorders such as intrauterine growth restriction (IUGR). After dissolution of the plugs, the onset of maternal blood flow allows maternal blood cells to enter the intervillous space and oxygen concentrations rise up. In this study, we demonstrate for the first time serial cross sections through a trophoblast plug in a first trimester placental bed specimen. Invaded and plugged arteries as well as invaded uterine glands in week 11 of gestation are visualized with specific immunohistochemical double staining techniques. We show that spiral artery plugs appear throughout the placental invasion zone and illustrate erythrocytes stowed due to trophoblast plugs. In addition, we give evidence of the presence of MMP-1 in plugs of invaded spiral arteries. The results reveal a better understanding and a closer insight into the morphological appearance of trophoblast plugs and the consequences for placental and uterine blood flow.
Collapse
Affiliation(s)
- Gregor Weiss
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010, Graz, Austria
| | - Monika Sundl
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010, Graz, Austria
| | | | - Berthold Huppertz
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010, Graz, Austria
| | - Gerit Moser
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010, Graz, Austria.
| |
Collapse
|
49
|
Thompson LP, Pence L, Pinkas G, Song H, Telugu BP. Placental Hypoxia During Early Pregnancy Causes Maternal Hypertension and Placental Insufficiency in the Hypoxic Guinea Pig Model. Biol Reprod 2016; 95:128. [PMID: 27806942 PMCID: PMC5315426 DOI: 10.1095/biolreprod.116.142273] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 12/25/2022] Open
Abstract
Chronic placental hypoxia is one of the root causes of placental insufficiencies that result in pre-eclampsia and maternal hypertension. Chronic hypoxia causes disruption of trophoblast (TB) development, invasion into maternal decidua, and remodeling of maternal spiral arteries. The pregnant guinea pig shares several characteristics with humans such as hemomonochorial placenta, villous subplacenta, deep TB invasion, and remodeling of maternal arteries, and is an ideal animal model to study placental development. We hypothesized that chronic placental hypoxia of the pregnant guinea pig inhibits TB invasion and alters spiral artery remodeling. Time-mated pregnant guinea pigs were exposed to either normoxia (NMX) or three levels of hypoxia (HPX: 16%, 12%, or 10.5% O2) from 20 day gestation until midterm (39-40 days) or term (60-65 days). At term, HPX (10.5% O2) increased maternal arterial blood pressure (HPX 57.9 ± 2.3 vs. NMX 40.4 ± 2.3, P < 0.001), decreased fetal weight by 16.1% (P < 0.05), and increased both absolute and relative placenta weights by 10.1% and 31.8%, respectively (P < 0.05). At midterm, there was a significant increase in TB proliferation in HPX placentas as confirmed by increased PCNA and KRT7 staining and elevated ESX1 (TB marker) gene expression (P < 0.05). Additionally, quantitative image analysis revealed decreased invasion of maternal blood vessels by TB cells. In summary, this animal model of placental HPX identifies several aspects of abnormal placental development, including increased TB proliferation and decreased migration and invasion of TBs into the spiral arteries, the consequences of which are associated with maternal hypertension and fetal growth restriction.
Collapse
Affiliation(s)
- Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, Maryland
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Laramie Pence
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland
- Animal and Avian Science, University of Maryland, College Park, Maryland
| | - Gerald Pinkas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, Maryland
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Hong Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, Maryland
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Bhanu P Telugu
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland
- Animal and Avian Science, University of Maryland, College Park, Maryland
| |
Collapse
|
50
|
Kweider N, Huppertz B, Rath W, Lambertz J, Caspers R, ElMoursi M, Pecks U, Kadyrov M, Fragoulis A, Pufe T, Wruck CJ. The effects of Nrf2 deletion on placental morphology and exchange capacity in the mouse. J Matern Fetal Neonatal Med 2016; 30:2068-2073. [PMID: 27633272 DOI: 10.1080/14767058.2016.1236251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Intrauterine growth restriction (IUGR) is defined as a pathological decreased fetal growth. Oxidative stress has been connected to the restriction in the fetal growth. The transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) is a potent activator of the cellular antioxidant response. The effect Nrf2 on fetal-placental development has not yet been sufficiently investigated. Here, we evaluated the placental and fetal growth in Nrf2 knockout (Nrf2-KO) and Nrf2-wild type mice (Nrf2-WT) throughout pregnancy. METHODS Heterozygote Nrf2 (Nrf2+/-) mice were paired to get Nrf2-KO and Nrf2-WT in the litters. Placentae and embryos from both genotypes were collected and weighed on days 13.5, 15.5 and 18.5 post coitum. The absolute volumes of the labyrinth zone and the total volume of the placenta were determined using the Cavalieri principle. RESULTS On E 18.5 the fetal weight in Nrf2-KO was significantly reduced versus Nrf2-WT indicating a decrease in placental efficiency. A significant reduction in both total and labyrinth-volume in the placenta of Nrf2-KO mice was observed. CONCLUSION This data points out the necessity of functional Nrf2 for fetal and placental growth. A deficiency in Nrf2 signaling may negatively affect nutrient transfer capacity which is then no longer able to meet fetal growth demands.
Collapse
Affiliation(s)
- Nisreen Kweider
- a Department of Anatomy and Cell Biology , RWTH Aachen University Hospital , Aachen , Germany
| | - Berthold Huppertz
- b Institute of Cell Biology, Histology & Embryology, Medical University of Graz , Graz , Austria
| | - Werner Rath
- c Faculty of Medicine , Gynecology and Obstetrics, RWTH Aachen University Hospital , Aachen , Germany
| | - Jessica Lambertz
- d Institut of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital , Aachen , Germany
| | - Rebecca Caspers
- e Department of Obstetrics and Gynecology , RWTH Aachen University Hospital , Aachen , Germany
| | - Mohamed ElMoursi
- f Section of Obstetrics and Gynecology, Leeds Institute of Biomedical and Clinical sciences, University of Leeds , Leeds , UK.,g Department of Obstetrics and Gynecology , Mansoura University Faculty of Medicine , Mansoura , Egypt
| | - Ulrich Pecks
- e Department of Obstetrics and Gynecology , RWTH Aachen University Hospital , Aachen , Germany.,h Department of Obstetrics and Gynecology , University Hospital Schleswig-Holstein , Kiel , Germany , and
| | - Mamed Kadyrov
- a Department of Anatomy and Cell Biology , RWTH Aachen University Hospital , Aachen , Germany.,i Department of Neurology Mittelbaden Klinikum Baden-Baden , Baden-Baden , Germany
| | - Athanassios Fragoulis
- a Department of Anatomy and Cell Biology , RWTH Aachen University Hospital , Aachen , Germany
| | - Thomas Pufe
- a Department of Anatomy and Cell Biology , RWTH Aachen University Hospital , Aachen , Germany
| | - Christoph Jan Wruck
- a Department of Anatomy and Cell Biology , RWTH Aachen University Hospital , Aachen , Germany
| |
Collapse
|