1
|
Sancho M, Klug NR, Mughal A, Koide M, Huerta de la Cruz S, Heppner TJ, Bonev AD, Hill-Eubanks D, Nelson MT. Adenosine signaling activates ATP-sensitive K + channels in endothelial cells and pericytes in CNS capillaries. Sci Signal 2022; 15:eabl5405. [PMID: 35349300 DOI: 10.1126/scisignal.abl5405] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The dense network of capillaries composed of capillary endothelial cells (cECs) and pericytes lies in close proximity to all neurons, ideally positioning it to sense neuron- and glial-derived compounds that enhance regional and global cerebral perfusion. The membrane potential (VM) of vascular cells serves as the physiological bridge that translates brain activity into vascular function. In other beds, the ATP-sensitive K+ (KATP) channel regulates VM in vascular smooth muscle, which is absent in the capillary network. Here, with transgenic mice that expressed a dominant-negative mutant of the pore-forming Kir6.1 subunit specifically in brain cECs or pericytes, we demonstrated that KATP channels were present in both cell types and robustly controlled VM. We further showed that the signaling nucleotide adenosine acted through A2A receptors and the Gαs/cAMP/PKA pathway to activate capillary KATP channels. Moreover, KATP channel stimulation in vivo increased cerebral blood flow (CBF), an effect that was blunted by expression of the dominant-negative Kir6.1 mutant in either capillary cell type. These findings establish an important role for KATP channels in cECs and pericytes in the regulation of CBF.
Collapse
Affiliation(s)
- Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT 05405-0068, USA
| | - Nicholas R Klug
- Department of Pharmacology, University of Vermont, Burlington, VT 05405-0068, USA
| | - Amreen Mughal
- Department of Pharmacology, University of Vermont, Burlington, VT 05405-0068, USA
| | - Masayo Koide
- Department of Pharmacology, University of Vermont, Burlington, VT 05405-0068, USA.,Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT 05405-0068, USA
| | | | - Thomas J Heppner
- Department of Pharmacology, University of Vermont, Burlington, VT 05405-0068, USA
| | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, Burlington, VT 05405-0068, USA
| | - David Hill-Eubanks
- Department of Pharmacology, University of Vermont, Burlington, VT 05405-0068, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT 05405-0068, USA.,Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine, University of Vermont, Burlington, VT 05405-0068, USA.,Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
2
|
Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules 2022; 12:biom12040484. [PMID: 35454073 PMCID: PMC9031742 DOI: 10.3390/biom12040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis. Ion channels are key regulators of vasoconstriction and proliferative/apoptotic phenotypes; however, they are poorly studied at the endothelial level. The current review will describe and categorize different expression, functions, regulation, and remodeling of endothelial ion channels (K+, Ca2+, Na+, and Cl− channels) in PAH. We will focus on the potential pathogenic role of ion channel deregulation in the onset and progression of endothelial dysfunction during the development of PAH and its potential therapeutic role.
Collapse
|
3
|
Hermann C, Treder A, Näher M, Geiseler R, Gudermann T, Mederos Y Schnitzler M, Storch U. The normalized slope conductance as a tool for quantitative analysis of current-voltage relations. Biophys J 2022; 121:1435-1448. [PMID: 35300969 PMCID: PMC9072577 DOI: 10.1016/j.bpj.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/02/2021] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
The patch-clamp method which was rewarded with the Nobel Prize in 1991 is a well-established and indispensable method to study ion channels in living cells and to biophysically characterize non-voltage-gated ion channels that comprise about 70% of all ion channels in the human genome. To investigate the biophysical properties of non-voltage-gated ion channels, whole-cell measurements with application of continuous voltage-ramps are routinely conducted to obtain current-voltage (IV) relationships. However, adequate tools for detailed and quantitative analysis of IV curves are still missing. We use the example of the transient receptor potential classical (TRPC) channel family to elucidate whether the normalized slope conductance (NSC) is an appropriate tool for a reliable discrimination of the IV curves of diverse TRPC channels that differ in their individual curve progression. We provide a robust calculation method for the NSC, and by applying this method we find that TRPC channel activators and modulators can evoke different NSC progressions independent from their expression levels which is pointing to distinguishable active channel states. TRPC6 mutations of patients suffering from focal segmental glomerulosclerosis (FSGS) resulted in distinct NSC progressions suggesting that the NSC is suitable to investigate structure-function relations and might help unravel the unknown pathomechanisms leading to FSGS. Altogether, the NCS represents an effective algorithm for extended biophysical characterization of non-voltage-gated ion channels.
Collapse
Affiliation(s)
- Christian Hermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Aaron Treder
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marius Näher
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Roman Geiseler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany;; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Michael Mederos Y Schnitzler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany;; DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany.
| | - Ursula Storch
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, 80336 Munich, Germany;; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, 80336 Munich, Germany.
| |
Collapse
|
4
|
The Potential Role of Creatine in Vascular Health. Nutrients 2021; 13:nu13030857. [PMID: 33807747 PMCID: PMC7999364 DOI: 10.3390/nu13030857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Creatine is an organic compound, consumed exogenously in the diet and synthesized endogenously via an intricate inter-organ process. Functioning in conjunction with creatine kinase, creatine has long been known for its pivotal role in cellular energy provision and energy shuttling. In addition to the abundance of evidence supporting the ergogenic benefits of creatine supplementation, recent evidence suggests a far broader application for creatine within various myopathies, neurodegenerative diseases, and other pathologies. Furthermore, creatine has been found to exhibit non-energy related properties, contributing as a possible direct and in-direct antioxidant and eliciting anti-inflammatory effects. In spite of the new clinical success of supplemental creatine, there is little scientific insight into the potential effects of creatine on cardiovascular disease (CVD), the leading cause of mortality. Taking into consideration the non-energy related actions of creatine, highlighted in this review, it can be speculated that creatine supplementation may serve as an adjuvant therapy for the management of vascular health in at-risk populations. This review, therefore, not only aims to summarize the current literature surrounding creatine and vascular health, but to also shed light onto the potential mechanisms in which creatine may be able to serve as a beneficial supplement capable of imparting vascular-protective properties and promoting vascular health.
Collapse
|
5
|
Zhao G, Kaplan A, Greiser M, Lederer WJ. The surprising complexity of KATP channel biology and of genetic diseases. J Clin Invest 2020; 130:1112-1115. [PMID: 32065592 DOI: 10.1172/jci135759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ATP-sensitive K+ channel (KATP) is formed by the association of four inwardly rectifying K+ channel (Kir6.x) pore subunits with four sulphonylurea receptor (SUR) regulatory subunits. Kir6.x or SUR mutations result in KATP channelopathies, which reflect the physiological roles of these channels, including but not limited to insulin secretion, cardiac protection, and blood flow regulation. In this issue of the JCI, McClenaghan et al. explored one of the channelopathies, namely Cantu syndrome (CS), which is a result of one kind of KATP channel mutation. Using a knockin mouse model, the authors demonstrated that gain-of-function KATP mutations in vascular smooth muscle resulted in cardiac remodeling. Moreover, they were able to reverse the cardiovascular phenotypes by administering the KATP channel blocker glibenclamide. These results exemplify how genetic mutations can have an impact on developmental trajectories, and provide a therapeutic approach to mitigate cardiac hypertrophy in cases of CS.
Collapse
Affiliation(s)
- Guiling Zhao
- Center for Biomedical Engineering and Technology and Department of Physiology
| | - Aaron Kaplan
- Center for Biomedical Engineering and Technology and Department of Physiology.,Department of Medicine and Division of Cardiology, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland, USA
| | - Maura Greiser
- Center for Biomedical Engineering and Technology and Department of Physiology
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology and Department of Physiology
| |
Collapse
|
6
|
Li Y, Aziz Q, Anderson N, Ojake L, Tinker A. Endothelial ATP-Sensitive Potassium Channel Protects Against the Development of Hypertension and Atherosclerosis. Hypertension 2020; 76:776-784. [PMID: 32654556 PMCID: PMC7418932 DOI: 10.1161/hypertensionaha.120.15355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 06/19/2020] [Indexed: 12/28/2022]
Abstract
In the endothelium, ATP-sensitive potassium (KATP) channels are thought to couple cellular metabolism with membrane excitability, calcium entry, and endothelial mediator release. We hypothesized that endothelial KATP channels have a broad role protecting against high blood pressure and atherosclerosis. Endothelial-specific Kir6.1 KO mice (eKO) and eKO mice on an apolipoprotein E KO background were generated (A-eKO) to investigate the role of KATP channels in the endothelium. Basal blood pressure was not elevated in eKO mice. However, when challenged with a high-salt diet and the eNOS inhibitor L-NAME, eKO mice became more hypertensive than their littermate controls. In aorta, NO release at least partly contributes to the endothelium-dependent vasorelaxation induced by pinacidil. In A-eKO mice atherosclerotic plaque density was significantly greater than in their littermate controls when challenged with a high-fat diet, particularly in the aortic arch region. Levels of endothelial dysfunction markers were higher in eKO compared with WT mice; however, these were not significant for A-eKO mice compared with their littermate controls. Furthermore, decreased vascular reactivity was observed in the mesenteric arteries of A-eKO mice, but not in aorta when on a high-fat diet. Our data support a role for endothelial Kir6.1-containing KATP channels in the endothelial protection against environmental stressors: the maintenance of blood pressure homeostasis in response to high salt and endothelial integrity when challenged with a high-fat diet.
Collapse
Affiliation(s)
- Yiwen Li
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Qadeer Aziz
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Naomi Anderson
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Leona Ojake
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Andrew Tinker
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
7
|
Garcia DCG, Longden TA. Ion channels in capillary endothelium. CURRENT TOPICS IN MEMBRANES 2020; 85:261-300. [PMID: 32402642 DOI: 10.1016/bs.ctm.2020.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vascular beds are anatomically and functionally compartmentalized into arteries, capillaries, and veins. The bulk of the vasculature consists of the dense, anastomosing capillary network, composed of capillary endothelial cells (cECs) that are intimately associated with the parenchyma. Despite their abundance, the ion channel expression and function and Ca2+ signaling behaviors of capillaries have only recently begun to be explored in detail. Here, we discuss the established and emerging roles of ion channels and Ca2+ signaling in cECs. By mining a publicly available RNA-seq dataset, we outline the wide variety of ion channel genes that are expressed in these cells, which potentially imbue capillaries with a broad range of sensing and signal transduction capabilities. We also underscore subtle but critical differences between cEC and arteriolar EC ion channel expression that likely underlie key functional differences in ECs at these different levels of the vascular tree. We focus our discussion on the cerebral vasculature, but the findings and principles being elucidated in this area likely generalize to other vascular beds.
Collapse
Affiliation(s)
- Daniela C G Garcia
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States.
| |
Collapse
|
8
|
ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proc Natl Acad Sci U S A 2020; 117:7461-7470. [PMID: 32170008 DOI: 10.1073/pnas.1922095117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local control of blood flow in the heart is important yet poorly understood. Here we show that ATP-sensitive K+ channels (KATP), hugely abundant in cardiac ventricular myocytes, sense the local myocyte metabolic state and communicate a negative feedback signal-correction upstream electrically. This electro-metabolic voltage signal is transmitted instantaneously to cellular elements in the neighboring microvascular network through gap junctions, where it regulates contractile pericytes and smooth muscle cells and thus blood flow. As myocyte ATP is consumed in excess of production, [ATP]i decreases to increase the openings of KATP channels, which biases the electrically active myocytes in the hyperpolarization (negative) direction. This change leads to relative hyperpolarization of the electrically connected cells that include capillary endothelial cells, pericytes, and vascular smooth muscle cells. Such hyperpolarization decreases pericyte and vascular smooth muscle [Ca2+]i levels, thereby relaxing the contractile cells to increase local blood flow and delivery of nutrients to the local cardiac myocytes and to augment ATP production by their mitochondria. Our findings demonstrate the pivotal roles of local cardiac myocyte metabolism and KATP channels and the minor role of inward rectifier K+ (Kir2.1) channels in regulating blood flow in the heart. These findings establish a conceptually new framework for understanding the hugely reliable and incredibly robust local electro-metabolic microvascular regulation of blood flow in heart.
Collapse
|
9
|
Huang Y, Hu D, Huang C, Nichols CG. Genetic Discovery of ATP-Sensitive K + Channels in Cardiovascular Diseases. Circ Arrhythm Electrophysiol 2019; 12:e007322. [PMID: 31030551 PMCID: PMC6494091 DOI: 10.1161/circep.119.007322] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ATP-sensitive K+ (KATP) channels are hetero-octameric protein complexes comprising 4 pore-forming (Kir6.x) subunits and 4 regulatory sulfonylurea receptor (SURx) subunits. They are prominent in myocytes, pancreatic β cells, and neurons and link cellular metabolism with membrane excitability. Using genetically modified animals and genomic analysis in patients, recent studies have implicated certain ATP-sensitive K+ channel subtypes in physiological and pathological processes in a variety of cardiovascular diseases. In this review, we focus on the causal relationship between ATP-sensitive K+ channel activity and pathophysiology in the cardiovascular system, particularly from the perspective of genetic changes in human and animal models.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
10
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Aziz Q, Li Y, Anderson N, Ojake L, Tsisanova E, Tinker A. Molecular and functional characterization of the endothelial ATP-sensitive potassium channel. J Biol Chem 2017; 292:17587-17597. [PMID: 28893911 DOI: 10.1074/jbc.m117.810325] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Indexed: 01/29/2023] Open
Abstract
ATP-sensitive potassium (KATP) channels are widely expressed in the cardiovascular system, where they regulate a range of biological activities by linking cellular metabolism with membrane excitability. KATP channels in vascular smooth muscle have a well-defined role in regulating vascular tone. KATP channels are also thought to be expressed in vascular endothelial cells, but their presence and function in this context are less clear. As a result, we aimed to investigate the molecular composition and physiological role of endothelial KATP channels. We first generated mice with an endothelial specific deletion of the channel subunit Kir6.1 (eKO) using cre-loxP technology. Data from qRT-PCR, patch clamp, ex vivo coronary perfusion Langendorff heart experiments, and endothelial cell Ca2+ imaging comparing eKO and wild-type mice show that Kir6.1-containing KATP channels are indeed present in vascular endothelium. An increase in intracellular [Ca2+], which is central to changes in endothelial function such as mediator release, at least partly contributes to the endothelium-dependent vasorelaxation induced by the KATP channel opener pinacidil. The absence of Kir6.1 did not elevate basal coronary perfusion pressure in eKO mice. However, vasorelaxation was impaired during hypoxia in the coronary circulation, and this resulted in greater cardiac injury during ischemia-reperfusion. The response to adenosine receptor stimulation was impaired in eKO mice in single cells in patch clamp recordings and in the intact coronary circulation. Our data support the existence of an endothelial KATP channel that contains Kir6.1, is involved in vascular reactivity in the coronary circulation, and has a protective role in ischemia reperfusion.
Collapse
Affiliation(s)
- Qadeer Aziz
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Yiwen Li
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Naomi Anderson
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Leona Ojake
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Elena Tsisanova
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Andrew Tinker
- From the Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| |
Collapse
|
12
|
Yang HQ, Subbotina E, Ramasamy R, Coetzee WA. Cardiovascular K ATP channels and advanced aging. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:32517. [PMID: 27733235 PMCID: PMC5061878 DOI: 10.3402/pba.v6.32517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022]
Abstract
With advanced aging, there is a decline in innate cardiovascular function. This decline is not general in nature. Instead, specific changes occur that impact the basic cardiovascular function, which include alterations in biochemical pathways and ion channel function. This review focuses on a particular ion channel that couple the latter two processes, namely the KATP channel, which opening is promoted by alterations in intracellular energy metabolism. We show that the intrinsic properties of the KATP channel changes with advanced aging and argue that the channel can be further modulated by biochemical changes. The importance is widespread, given the ubiquitous nature of the KATP channel in the cardiovascular system where it can regulate processes as diverse as cardiac function, blood flow and protection mechanisms against superimposed stress, such as cardiac ischemia. We highlight questions that remain to be answered before the KATP channel can be considered as a viable target for therapeutic intervention.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Department of Pediatrics, NYU School of Medicine, New York, NY, USA
| | | | - Ravichandran Ramasamy
- Department of Medicine, NYU School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA.,Department of Physiology & Neuroscience, NYU School of Medicine, New York, NY, USA;
| |
Collapse
|
13
|
A generative modeling approach to connectivity-Electrical conduction in vascular networks. J Theor Biol 2016; 399:1-12. [PMID: 27038666 DOI: 10.1016/j.jtbi.2016.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/07/2016] [Accepted: 03/18/2016] [Indexed: 12/26/2022]
Abstract
The physiology of biological structures is inherently dynamic and emerges from the interaction and assembly of large collections of small entities. The extent of coupled entities complicates modeling and increases computational load. Here, microvascular networks are used to present a novel generative approach to connectivity based on the observation that biological organization is hierarchical and composed of a limited set of building blocks, i.e. a vascular network consists of blood vessels which in turn are composed by one or more cell types. Fast electrical communication is crucial to synchronize vessel tone across the vast distances within a network. We hypothesize that electrical conduction capacity is delimited by the size of vascular structures and connectivity of the network. Generation and simulation of series of dynamical models of electrical spread within vascular networks of different size and composition showed that (1) Conduction is enhanced in models harboring long and thin endothelial cells that couple preferentially along the longitudinal axis. (2) Conduction across a branch point depends on endothelial connectivity between branches. (3) Low connectivity sub-networks are more sensitive to electrical perturbations. In summary, the capacity for electrical signaling in microvascular networks is strongly shaped by the morphology and connectivity of vascular (particularly endothelial) cells. While the presented software can be used by itself or as a starting point for more sophisticated models of vascular dynamics, the generative approach can be applied to other biological systems, e.g. nervous tissue, the lymphatics, or the biliary system.
Collapse
|
14
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
15
|
Zaitseva II, Berggren PO, Zaitsev SV. Insulinotropic compounds decrease endothelial cell survival. Toxicol In Vitro 2016; 33:1-8. [PMID: 26883446 DOI: 10.1016/j.tiv.2016.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/05/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Hyperglycemia induces damage of vascular endothelial cells leading to diabetic complications. We investigated the effects of insulinotropic compounds and elevated glucose on endothelial cells in the absence or presence of vascular endothelial growth factor (VEGF). RESULTS Human umbilical vein endothelial cells (HUVECs) were treated with glibenclamide, repaglinide and insulinotropic imidazolines at high glucose concentration in the presence or absence of VEGF and viability, proliferation and nitric oxide production were measured. Hyperglycemia inhibited pro-survival effects of VEGF on endothelial cells. Glibenclamide and repaglinide decreased HUVEC viability at elevated glucose concentration in the absence but not in the presence of VEGF, without affecting HUVEC proliferation. Repaglinide also had some positive influence on HUVEC function elevating NO production in the presence of VEGF. Imidazolines showed different activities on endothelial cell survival. Efaroxan diminished HUVEC viability at elevated glucose concentration in the presence, however not in the absence of VEGF, while RX871024 decreased HUVEC survival regardless of the presence of VEGF. SIGNIFICANCE OF THE STUDY Our data demonstrate an important interplay between the actual insulinotropic compounds, VEGF and ambient glucose concentration affecting the survival of the vascular endothelial cells. Consequently, this interplay needs to be taken into consideration when designing novel oral antidiabetic compounds.
Collapse
Affiliation(s)
- Irina I Zaitseva
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Per-Olof Berggren
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Sergei V Zaitsev
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden; Lomonosov Moscow State University, Belozersky Institute of Physico-chemical Biology, Faculty of Bioengineering and Bioinformatics, Moscow 119992, Russia.
| |
Collapse
|
16
|
Umaru B, Pyriochou A, Kotsikoris V, Papapetropoulos A, Topouzis S. ATP-sensitive potassium channel activation induces angiogenesis in vitro and in vivo. J Pharmacol Exp Ther 2015; 354:79-87. [PMID: 25977483 DOI: 10.1124/jpet.114.222000] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
Intense research is conducted to identify new molecular mechanisms of angiogenesis. Previous studies have shown that the angiogenic effects of hydrogen sulfide (H2S) depend on the activation of ATP-sensitive potassium channels (KATP) and that C-type natriuretic peptide (CNP), which can act through KATP, promotes endothelial cell growth. We therefore investigated whether direct KATP activation induces angiogenic responses and whether it is required for the endothelial responses to CNP or vascular endothelial growth factor (VEGF). Chick chorioallantoic membrane (CAM) angiogenesis was similarly enhanced by the direct KATP channel activator 2-nicotinamidoethyl acetate (SG-209) and by CNP or VEGF. The KATP inhibitors glibenclamide and 5-hydroxydecanoate (5-HD) reduced basal and abolished CNP-induced CAM angiogenesis. In vitro, the direct KATP openers nicorandil and SG-209 and the polypeptides VEGF and CNP increased proliferation and migration in bEnd.3 mouse endothelial cells. In addition, VEGF and CNP induced cord-like formation on Matrigel by human umbilical vein endothelial cells (HUVECs). All these in vitro endothelial responses were effectively abrogated by glibenclamide or 5-HD. In HUVECs, a small-interfering RNA-mediated decrease in the expression of the inwardly rectifying potassium channel (Kir) 6.1 subunit impaired cell migration and network morphogenesis in response to either SG-209 or CNP. We conclude that 1) direct pharmacologic activation of KATP induces angiogenic effects in vitro and in vivo, 2) angiogenic responses to CNP and VEGF depend on KATP activation and require the expression of the Kir6.1 KATP subunit, and 3) KATP activation may underpin angiogenesis to a variety of vasoactive stimuli, including H2S, VEGF, and CNP.
Collapse
Affiliation(s)
- Bukar Umaru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Rio-Patras, Greece (B.U., A.Py., V.K., S.T.); and Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (A.Pa.)
| | - Anastasia Pyriochou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Rio-Patras, Greece (B.U., A.Py., V.K., S.T.); and Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (A.Pa.)
| | - Vasileios Kotsikoris
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Rio-Patras, Greece (B.U., A.Py., V.K., S.T.); and Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (A.Pa.)
| | - Andreas Papapetropoulos
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Rio-Patras, Greece (B.U., A.Py., V.K., S.T.); and Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (A.Pa.)
| | - Stavros Topouzis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Rio-Patras, Greece (B.U., A.Py., V.K., S.T.); and Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (A.Pa.)
| |
Collapse
|
17
|
Yang Q, Yu CM, He GW, Underwood MJ. Protection of coronary endothelial function during cardiac surgery: potential of targeting endothelial ion channels in cardioprotection. BIOMED RESEARCH INTERNATIONAL 2014; 2014:324364. [PMID: 25126553 PMCID: PMC4122001 DOI: 10.1155/2014/324364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
Abstract
Vascular endothelium plays a critical role in the control of blood flow by producing vasoactive factors to regulate vascular tone. Ion channels, in particular, K(+) channels and Ca(2+)-permeable channels in endothelial cells, are essential to the production and function of endothelium-derived vasoactive factors. Impairment of coronary endothelial function occurs in open heart surgery that may result in reduction of coronary blood flow and thus in an inadequate myocardial perfusion. Hyperkalemic exposure and concurrent ischemia-reperfusion during cardioplegic intervention compromise NO and EDHF-mediated function and the impairment involves alterations of K(+) channels, that is, KATP and KCa, and Ca(2+)-permeable TRP channels in endothelial cells. Pharmacological modulation of these channels during ischemia-reperfusion and hyperkalemic exposure show promising results on the preservation of NO and EDHF-mediated endothelial function, which suggests the potential of targeting endothelial K(+) and TRP channels for myocardial protection during cardiac surgery.
Collapse
Affiliation(s)
- Qin Yang
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, and Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- TEDA International Cardiovascular Hospital, Tianjin 300457, China
| | - Cheuk-Man Yu
- Division of Cardiology, Department of Medicine and Therapeutics, Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, and Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Guo-Wei He
- TEDA International Cardiovascular Hospital, Tianjin 300457, China
- The Affiliated Hospital of Hangzhou Normal University and Zhejiang University, Hangzhou, Zhejiang 310015, China
| | - Malcolm John Underwood
- Division of Cardiothoracic Surgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
18
|
Billman GE. Cardiac chamber ATP-sensitive potassium channel subtype heterogeneity: another mouse trap. Heart Rhythm 2013; 10:1584-5. [PMID: 23911430 DOI: 10.1016/j.hrthm.2013.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Indexed: 10/26/2022]
Affiliation(s)
- George E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
19
|
Coetzee WA. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther 2013; 140:167-75. [PMID: 23792087 DOI: 10.1016/j.pharmthera.2013.06.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 02/02/2023]
Abstract
Diazoxide has been identified over the past 50years to have a number of physiological effects, including lowering the blood pressure and rectifying hypoglycemia. Today it is used clinically to treat these conditions. More recently, another important mode of action emerged: diazoxide has powerful protective properties against cardiac ischemia. The heart has intrinsic protective mechanisms against ischemia injury; one of which is ischemic preconditioning. Diazoxide mimics ischemic preconditioning. The purpose of this treatise is to review the literature in an attempt to identify the many effectors of diazoxide and discuss how they may contribute to diazoxide's cardioprotective properties. Particular emphasis is placed on the concentration ranges in which diazoxide affects its different targets and how this compares with the concentrations commonly used to study cardioprotection. It is concluded that diazoxide may have several potential effectors that may potentially contribute to cardioprotection, including KATP channels in the pancreas, smooth muscle, endothelium, neurons and the mitochondrial inner membrane. Diazoxide may also affect other ion channels and ATPases and may directly regulate mitochondrial energetics. It is possible that the success of diazoxide lies in this promiscuity and that the compound acts to rebalance multiple physiological processes during cardiac ischemia.
Collapse
Affiliation(s)
- William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY 10016, United States; Department of Physiology & Neuroscience, NYU School of Medicine, New York, NY 10016, United States; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
20
|
Smith KJ, Chadburn AJ, Adomaviciene A, Minoretti P, Vignali L, Emanuele E, Tammaro P. Coronary spasm and acute myocardial infarction due to a mutation (V734I) in the nucleotide binding domain 1 of ABCC9. Int J Cardiol 2013; 168:3506-13. [PMID: 23739550 DOI: 10.1016/j.ijcard.2013.04.210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/09/2013] [Accepted: 04/26/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Alterations in coronary vasomotor tone may participate in the pathogenesis of acute myocardial infarction (AMI). Vascular ATP-sensitive K(+) (KATP) channels, formed by Kir6.x/SUR2B, are key regulators of coronary tone and mutations in cardiac (Kir6.2/SUR2A) KATP channels result in heart disease. Here we explore the pathophysiological mechanism of a rare mutation (V734I) found in exon 17 of the ABCC9 gene, estimated to cause a 6.4-fold higher risk of AMI before the age of 60. METHODS AND RESULTS Eleven patients carrying the mutation were identified; they presented AMI of vasospastic origin associated with increased plasma levels of endothelin-1 and increased leukocyte ROCK activity. The effects of the mutation on the functional properties of the two splice variants of ABCC9 (SUR2A and SUR2B) were studied using patch-clamp electrophysiology. The mutation reduced the sensitivity to MgATP inhibition of Kir6.2/SUR2B channels but not of Kir6.2/SUR2A and Kir6.1/SUR2B channels. Furthermore, the stimulatory effects of MgNDP (MgADP, MgGDP and MgUDP) were unaltered in mutant Kir6.2/SUR2A and Kir6.1/SUR2B channels. In contrast, mutant channels composed of Kir6.2 and SUR2B were less sensitive to MgNDP activation, assessed in the presence of MgATP. The antianginal drug nicorandil activated Kir6.2/SUR2B-V734I channels, thus substituting for the loss of MgNDP stimulation, suggesting that this drug could be of therapeutic use in the treatment of AMI associated with V734I. CONCLUSIONS The 734I allele in ABCC9 may influence susceptibility to AMI by impairing the response of vascular, but not cardiac, KATP channels to intracellular nucleotides. This is the first human mutation in an ion channel gene to be implicated in AMI.
Collapse
Affiliation(s)
- Keith J Smith
- Faculty of Life Sciences, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
ATP-sensitive potassium (KATP) channels were first discovered in the heart 30 years ago. Reconstitution of KATP channel activity by coexpression of members of the pore-forming inward rectifier gene family (Kir6.1, KCNJ8, and Kir6.2 KCNJ11) with sulfonylurea receptors (SUR1, ABCC8, and SUR2, ABCC9) of the ABCC protein subfamily has led to the elucidation of many details of channel gating and pore properties. In addition, the essential roles of Kir6.x and SURx subunits in generating cardiac and vascular KATP(2) and the detrimental consequences of genetic deletions or mutations in mice have been recognized. However, despite this extensive body of knowledge, there has been a paucity of defined roles of KATP subunits in human cardiovascular diseases, although there are reports of association of a single Kir6.1 variant with the J-wave syndrome in the ECG, and 2 isolated studies have reported association of loss of function mutations in SUR2 with atrial fibrillation and heart failure. Two new studies convincingly demonstrate that mutations in the SUR2 gene are associated with Cantu syndrome, a complex multi-organ disorder characterized by hypertrichosis, craniofacial dysmorphology, osteochondrodysplasia, patent ductus arteriosus, cardiomegaly, pericardial effusion, and lymphoedema. This realization of previously unconsidered consequences provides significant insight into the roles of the KATP channel in the cardiovascular system and suggests novel therapeutic possibilities.
Collapse
Affiliation(s)
- Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
22
|
Yang JZ, Huang X, Zhao FF, Xu Q, Hu G. Iptakalim enhances adult mouse hippocampal neurogenesis via opening Kir6.1-composed K-ATP channels expressed in neural stem cells. CNS Neurosci Ther 2012; 18:737-44. [PMID: 22742873 DOI: 10.1111/j.1755-5949.2012.00359.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 04/19/2012] [Accepted: 04/27/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Emerging evidence indicates that stimulating adult neurogenesis provides novel strategies for central nervous system diseases. Iptakalim (Ipt), a novel ATP-sensitive potassium (K-ATP) channel opener, has been demonstrated to play multipotential neuroprotective effects in vivo and in vitro. However, it remains unknown whether Ipt could regulate the adult neurogenesis. METHODS AND RESULTS Based on the finding that adult neural stem cells (ANSCs) in hippocampus expressed Kir6.1/SUR1-composed K-ATP channel, Kir6.1 heterozygotic (Kir6.1(+/-) ) mice were used to investigate whether and how Ipt regulates adult hippocampal neurogenesis. We showed that administration of Ipt (10 mg/kg) or fluoxetine (Flx, 10 mg/kg) for 4 weeks significantly increased newborn ANSCs in subgranular zone (SGZ) of Kir6.1(+/+) mice but failed to affect those of Kir6.1(+/-) mice. Meanwhile, ANSCs in Kir6.1(+/-) mice exhibited decreased survival rate and impaired ability of differentiation into astrocytes. We further found that Kir6.1(+/-) mice showed lower level of brain-derived neurotrophic factor (BDNF) in hippocampus compared with Kir6.1(+/+) mice. Furthermore, Ipt increased the levels of BDNF and basic fibroblast growth factor (FGF-2) throughout the hippocampus in Kir6.1(+/+) mice but not in Kir6.1(+/-) mice. Moreover, Ipt and Flx enhanced the phosphorylation of Akt and CREB in the hippocampus of Kir6.1(+/+) mice. Notably, these effects were completely abolished in Kir6.1(+/-) mice. CONCLUSIONS Our findings demonstrate that Ipt stimulates the adult hippocampal neurogenesis via activation of Akt and CREB signal following the opening of Kir6.1-composed K-ATP channels, which gives us an insight into the therapeutic implication of Ipt in the diseases with adult neurogenesis deficiency, such as major depression.
Collapse
Affiliation(s)
- Jing-Zhe Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | | | | | | | | |
Collapse
|
23
|
Ran YH, Wang H. Iptakalim, an ATP-sensitive potassium channel opener, confers neuroprotection against cerebral ischemia/reperfusion injury in rats by protecting neurovascular unit cells. J Zhejiang Univ Sci B 2012; 12:835-45. [PMID: 21960347 DOI: 10.1631/jzus.b1100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the role of iptakalim, an ATP-sensitive potassium channel opener, in transient cerebral ischemia/reperfusion (I/R) injury and its involved mechanisms. METHODS Intraluminal occlusion of middle cerebral artery (MCAO) in a rat model was used to investigate the effect of iptakalim at different time points. Infarct volume was measured by staining with 2,3,5-triphenyltetrazolium chloride, and immunohistochemistry was used to evaluate the expressions of Bcl-2 and Bax. In vitro, neurovascular unit (NVU) cells, including rat primary cortical neurons, astrocytes, and cerebral microvascular endothelial cells, were cultured and underwent oxygen-glucose deprivation (OGD). The protective effect of iptakalim on NVU cells was investigated by cell viability and injury assessments, which were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and release of lactate dehydrogenase. Caspase-3, Bcl-2 and Bax mRNA expressions were evaluated by real-time polymerase chain reaction (PCR). RESULTS Administration of iptakalim 0 or 1 h after reperfusion significantly reduced infarct volumes, improved neurological scores, and attenuated brain edema after cerebral I/R injury. Iptakalim treatment (0 h after reperfusion) also reduced caspase-3 expression and increased the ratio of Bcl-2 to Bax by immunohistochemistry. Iptakalim inhibited OGD-induced cell death in cultured neurons and astrocytes, and lactate dehydrogenase release from cerebral microvascular endothelial cells. Iptakalim reduced mRNA expression of caspase-3 and increased the ratio of Bcl-2 to Bax in NVU cells. CONCLUSIONS Iptakalim confers neuroprotection against cerebral I/R injury by protecting NVU cells via inhibiting of apoptosis.
Collapse
Affiliation(s)
- Yu-hua Ran
- Institute of Health and Environmental Medicine, Academy of Military Medical Sciences, Beijing, China
| | | |
Collapse
|
24
|
Kefaloyianni E, Bao L, Rindler MJ, Hong M, Patel T, Taskin E, Coetzee WA. Measuring and evaluating the role of ATP-sensitive K+ channels in cardiac muscle. J Mol Cell Cardiol 2012; 52:596-607. [PMID: 22245446 DOI: 10.1016/j.yjmcc.2011.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/06/2011] [Accepted: 12/23/2011] [Indexed: 11/27/2022]
Abstract
Since ion channels move electrical charge during their activity, they have traditionally been studied using electrophysiological approaches. This was sometimes combined with mathematical models, for example with the description of the ionic mechanisms underlying the initiation and propagation of action potentials in the squid giant axon by Hodgkin and Huxley. The methods for studying ion channels also have strong roots in protein chemistry (limited proteolysis, the use of antibodies, etc.). The advent of the molecular cloning and the identification of genes coding for specific ion channel subunits in the late 1980s introduced a multitude of new techniques with which to study ion channels and the field has been rapidly expanding ever since (e.g. antibody development against specific peptide sequences, mutagenesis, the use of gene targeting in animal models, determination of their protein structures) and new methods are still in development. This review focuses on techniques commonly employed to examine ion channel function in an electrophysiological laboratory. The focus is on the K(ATP) channel, but many of the techniques described are also used to study other ion channels.
Collapse
|
25
|
Zong F, Zuo XR, Wang Q, Zhang SJ, Xie WP, Wang H. Iptakalim rescues human pulmonary artery endothelial cells from hypoxia-induced nitric oxide system dysfunction. Exp Ther Med 2011; 3:535-539. [PMID: 22969925 DOI: 10.3892/etm.2011.414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/22/2011] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to assess whether hypoxia inhibits endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) production, and whether iptakalim may rescue human pulmonary artery endothelial cells (HPAECs) from hypoxia-induced NO system dysfunction. HPAECs were cultured under hypoxic conditions in the absence or presence of 0.1, 10 and 1,000 μM iptakalim or the combination of 10 μM iptakalim and 1, 10 and 100 μM glibenclamide for 24 h, and the eNOS activity and NO levels were measured in the conditioned medium from the HPAEC cultures. The eNOS activity and NO levels were reduced significantly in the conditioned medium from HPAEC cultures under hypoxic conditions. Pre-treatment with 10 μM iptakalim normalized the reduction of the eNOS activity and NO levels caused by hypoxia in the conditioned medium from HPAEC cultures. Iptakalim raised the eNOS activity and NO levels under hypoxic conditions, but was blocked by the K(ATP) channel blocker, glibenclamide. Our results indicate that hypoxia impairs NO system function, whereas the ATP-sensitive K(+) channel opener, iptakalim, may rescue HPAECs from hypoxia-induced NO system dysfunction.
Collapse
|
26
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
|
28
|
Activation of SUR2B/Kir6.1 subtype of adenosine triphosphate-sensitive potassium channel improves pressure overload-induced cardiac remodeling via protecting endothelial function. J Cardiovasc Pharmacol 2011; 56:345-53. [PMID: 20505525 DOI: 10.1097/fjc.0b013e3181e6c7b8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We sought to explore new strategies targeting SUR2B/Kir6.1, a subtype of adenosine triphosphate (ATP)-sensitive potassium channels (KATP), against pressure overload-induced heart failure. The effects of natakalim, a SUR2B/Kir6.1 selective channel opener, on progression of cardiac remodeling were investigated. Pressure overload-induced heart failure was induced in Wistar rats by abdominal aortic banding. The effects of natakalim (1, 3, and 9 mg·kg⁻¹·d⁻¹ for 10 weeks) on myocardial hypertrophy and heart failure, cardiac histology, vasoactive compounds, and gene expression were assessed. Ten weeks after the onset of pressure overload, natakalim treatment potently inhibited cardiac hypertrophy and prevented heart failure. Natakalim remarkably inhibited the changes of left ventricular hemodynamic parameters and reversed the increase of heart mass index, left ventricular weight index, and lung weight index. Histological examination demonstrated that there was no significant hypertrophy or fibrosis in pressure-overloaded hearts of natakalim-treated rats. Ultrastructural examination of hearts revealed well-organized myofibrils with mitochondria grouped along the periphery of longitudinally oriented fibers in rats from the natakalim group. The content of serum nitric oxide and plasma prostacyclin was increased, whereas that of plasma endothelin-1 and cardiac tissue hydroxyproline and atrial and B-type natriuretic peptide messenger RNA was downregulated in natakalim-treated rats. Natakalim at 0.01-100 µM had no effects on isolated working hearts derived from Wistar rats; however, natakalim had endothelium-dependent vasodilatory effects on the isolated tail artery helical strips precontracted with norepinephrine. These results indicate that natakalim reduces heart failure caused by pressure overloading by activating the SUR2B/Kir6.1 KATP channel subtype and protecting against endothelial dysfunction.
Collapse
|
29
|
|
30
|
Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev 2010; 90:799-829. [PMID: 20664073 PMCID: PMC3125986 DOI: 10.1152/physrev.00027.2009] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are present in the surface and internal membranes of cardiac, skeletal, and smooth muscle cells and provide a unique feedback between muscle cell metabolism and electrical activity. In so doing, they can play an important role in the control of contractility, particularly when cellular energetics are compromised, protecting the tissue against calcium overload and fiber damage, but the cost of this protection may be enhanced arrhythmic activity. Generated as complexes of Kir6.1 or Kir6.2 pore-forming subunits with regulatory sulfonylurea receptor subunits, SUR1 or SUR2, the differential assembly of K(ATP) channels in different tissues gives rise to tissue-specific physiological and pharmacological regulation, and hence to the tissue-specific pharmacological control of contractility. The last 10 years have provided insights into the regulation and role of muscle K(ATP) channels, in large part driven by studies of mice in which the protein determinants of channel activity have been deleted or modified. As yet, few human diseases have been correlated with altered muscle K(ATP) activity, but genetically modified animals give important insights to likely pathological roles of aberrant channel activity in different muscle types.
Collapse
Affiliation(s)
- Thomas P. Flagg
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., C-2114, Bethesda, MD 20814
| | - Decha Enkvetchakul
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO 63104
| | | | - Colin G. Nichols
- Address all correspondence and reprint requests to CGN: Phone: (314) 362-6630, FAX: (314) 362-7463,
| |
Collapse
|
31
|
Zhou M, He HJ, Hirano M, Sekiguchi M, Tanaka O, Kawahara K, Abe H. Localization of ATP-sensitive K+ channel subunits in rat submandibular gland. J Histochem Cytochem 2009; 58:499-507. [PMID: 19934381 DOI: 10.1369/jhc.2009.955047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP-sensitive K(+) (K(ATP)) channel subunits were investigated in rat submandibular gland (SMG). RT-PCR detected the presence of mRNA transcripts of the Kir6.1, Kir6.2, SUR2A, and SUR2B in the SMG, whereas SUR1 mRNA was barely detected. Western blot analysis provided the evidence that these four K(ATP) channel subunits are expressed in rat SMG. Immunostaining detected that these four K(ATP) channel subunits are widely distributed, with different intensities, in myoepithelial cells, epithelial cells of intercalated ducts, granular convoluted tubules, striated ducts, and excretory ducts. Immunofluorescence double staining showed that Kir6.1 and Kir6.2 colocalized with SUR2A in the myoepithelial cells, granular convoluted tubules, striated ducts, and excretory ducts. Kir6.1 and Kir6.2 also colocalized with SUR2B, mainly in the duct system, e.g., the granular convoluted tubules, striated ducts, and excretory ducts. Taken together, these results indicate that the K(ATP) channels in SMG may consist of Kir6.1, Kir6.2, SUR2A, and SUR2B, with various combinations of colocalization with each other, and may play important roles in rat SMG during salivary secretion.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Anatomy, Akita University Graduate School of Medicine and Faculty of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Lefer DJ, Nichols CG, Coetzee WA. Sulfonylurea receptor 1 subunits of ATP-sensitive potassium channels and myocardial ischemia/reperfusion injury. Trends Cardiovasc Med 2009; 19:61-7. [PMID: 19577714 PMCID: PMC2706786 DOI: 10.1016/j.tcm.2009.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
K(ATP) channels are generally cardioprotective under conditions of metabolic impairment, consisting of pore-forming (Kir6.1 and/or Kir6.2) and sulphonylurea-binding, modulatory subunits [sulfonylurea receptor (SUR) 1, 2A, or 2B]. Cardiovascular K(ATP) channels are generally thought to consist of Kir6.2/SUR2A subunits (in the case of heart muscle) or Kir6.1/SUR2B subunits (smooth muscle), whereas SUR1-containing channels have well-documented roles in pancreatic insulin release. Recent data, however, demonstrated the presence of SUR1 subunits in mouse cardiac tissue (particularly in atria) and a surprising protection from myocardial ischemia/reperfusion in SUR1-null mice. Here, we review some of the extra-pancreatic roles assigned to SUR1 subunits and consider whether these might be involved in the sequelae of ischemia/reperfusion.
Collapse
Affiliation(s)
- David J. Lefer
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO
| | | |
Collapse
|
33
|
Billman GE. The cardiac sarcolemmal ATP-sensitive potassium channel as a novel target for anti-arrhythmic therapy. Pharmacol Ther 2008; 120:54-70. [PMID: 18708091 DOI: 10.1016/j.pharmthera.2008.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 12/25/2022]
Affiliation(s)
- George E Billman
- Department of Physiology and Cell Biology, The Ohio State University, 1645 Neil Avenue, Columbus, OH 43210-1218, USA.
| |
Collapse
|
34
|
Zhu HL, Luo WQ, Wang H. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels. Neuroscience 2008; 157:884-94. [PMID: 18951957 DOI: 10.1016/j.neuroscience.2008.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 01/01/2023]
Abstract
The rapid and irreversible brain injury produced by anoxia when stroke occurs is well known. Cumulative evidence suggests that the activation of neuronal ATP-sensitive potassium (KATP) channels may have inherent protective effects during cerebral hypoxia, yet little information regarding the therapeutic effects of KATP channel openers is available. We hypothesized that pretreatment with a KATP channel opener might protect against brain injury induced by cerebral hypoxia. In this study, adult Wistar rats were treated with iptakalim, a new KATP channel opener, which is selective for SUR2 type KATP channels, by intragastric administration at doses of 2, 4, or 8 mg/kg/day for 7 days before being exposed to simulated high altitude equivalent to 8000 m in a decompression chamber for 8 h leading to hypoxic brain injury. By light and electron microscopic images, we observed that hypobaric hypoxia-induced brain injury could be prevented by pretreatment with iptakalim. It was also observed that the permeability of the blood-brain barrier, water content, Na+ and Ca2+ concentration, and activities of Na+,K+-ATPase, Ca2+-ATPase and Mg2+-ATPase in rat cerebral cortex were increased and the gene expression of the occludin or aquaporin-4 was down- or upregulated respectively, which could also be prevented by the pretreatment with iptakalim at doses of 2, 4, or 8 mg/kg in a dose-dependent manner. Furthermore, we found that in an oxygen-and-glucose-deprived model in ECV304 cells and rat cortical astrocytes, pretreatment with iptakalim significantly increased survived cell rates and decreased lactate dehydrogenate release, which were significantly antagonized by glibenclamide, a K(ATP) channel blocker. We conclude that iptakalim is a promising drug that may protect against brain injury induced by acute hypobaric hypoxia through multiple pathways associated with SUR2-type K(ATP) channels, suggesting a new therapeutic strategy for stroke treatment.
Collapse
Affiliation(s)
- H-L Zhu
- Department of Environmental Medicine, Tianjin Institute of Hygiene and Environmental Medicine, Tianjin 300050, China
| | | | | |
Collapse
|
35
|
|
36
|
Jiang B, Wu L, Wang R. Sulphonylureas induced vasorelaxation of mouse arteries. Eur J Pharmacol 2007; 577:124-8. [DOI: 10.1016/j.ejphar.2007.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 08/30/2007] [Accepted: 09/12/2007] [Indexed: 11/25/2022]
|
37
|
Malester B, Tong X, Ghiu I, Kontogeorgis A, Gutstein DE, Xu J, Hendricks-Munoz KD, Coetzee WA. Transgenic expression of a dominant negative K(ATP) channel subunit in the mouse endothelium: effects on coronary flow and endothelin-1 secretion. FASEB J 2007; 21:2162-72. [PMID: 17341678 DOI: 10.1096/fj.06-7821com] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
K(ATP) channels are involved in regulating coronary function, but the contribution of endothelial K(ATP) channels remains largely uncharacterized. We generated a transgenic mouse model to specifically target endothelial K(ATP) channels by expressing a dominant negative Kir6.1 subunit only in the endothelium. These animals had no obvious overt phenotype and no early mortality. Histologically, the coronary endothelium in these animals was preserved. There was no evidence of increased susceptibility to ergonovine-induced coronary vasospasm. However, isolated hearts from these animals had a substantially elevated basal coronary perfusion pressure. The K(ATP) channel openers, adenosine and levcromakalim, decreased the perfusion pressure whereas the K(ATP) channel blocker glibenclamide failed to produce a vasoconstrictive response. The inducible endothelial nitric oxide pathway was intact, as evidenced by vasodilation caused by bradykinin. In contrast, basal endothelin-1 release was significantly elevated in the coronary effluent from these hearts. Treatment of mice with bosentan (endothelin-1 receptor antagonist) normalized the coronary perfusion pressure, demonstrating that the elevated endothelin-1 release was sufficient to account for the increased coronary perfusion pressure. Pharmacological blockade of K(ATP) channels led to elevated endothelin-1 levels in the coronary effluent of isolated mouse and rat hearts as well as enhanced endothelin-1 secretion from isolated human coronary endothelial cells. These data are consistent with a role for endothelial K(ATP) channels to control the coronary blood flow by modulating the release of the vasoconstrictor, endothelin-1.
Collapse
Affiliation(s)
- Brian Malester
- Department of Pediatrics, NYU School of Medicine, 560 First Ave., New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang H, Gu YT, Xue YX. Bradykinin-induced blood-brain tumor barrier permeability increase is mediated by adenosine 5'-triphosphate-sensitive potassium channel. Brain Res 2007; 1144:33-41. [PMID: 17331483 DOI: 10.1016/j.brainres.2007.01.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 01/15/2007] [Accepted: 01/21/2007] [Indexed: 10/23/2022]
Abstract
Bradykinin has been shown to selectively transiently increase the permeability of the blood-brain barrier (BBB). This study was performed to determine whether ATP-sensitive potassium (K(ATP)) channels mediate the increase in permeability of brain tumor microvessels induced by BK. Using a rat brain glioma (C6) model, we found increased expression of K(ATP) channels at tumor sites via Western blot analysis, after intracarotid infusion of bradykinin at a dose of 10 microg/kg/min for 15 min. A significant increase (73.58%) of the integrated density value (IDV) of the K(ATP) channel Kir6.2 subunit was observed in rats with glioma after 10 min of bradykinin perfusion. The over-expression of K(ATP) channels with bradykinin was significantly attenuated by the K(ATP) channel antagonist glibenclamide. Immunohistochemistry and immunolocalization experiments showed that the over-expression of K(ATP) channels was more obvious near tumor capillaries of 10 microm in diameter. I(KATP) modulation by bradykinin in cultured C6 cells was also studied using the patch-clamp technique in a whole-cell configuration. Administration of bradykinin led to a significant opening of K(ATP) channels in a time-dependent manner. This led to the conclusion that the bradykinin-mediated BBB permeability increase is due to accelerated formation of K(ATP) channels, which are thus as an important target in the biochemical regulation of this process.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Neurobiology, China Medical University, Shenyang, 110001, Liaoning Province, P.R. China
| | | | | |
Collapse
|
39
|
Fujita R, Kimura S, Kawasaki S, Watanabe S, Watanabe N, Hirano H, Matsumoto M, Sasaki K. Electrophysiological and pharmacological characterization of the K(ATP) channel involved in the K+-current responses to FSH and adenosine in the follicular cells of Xenopus oocyte. J Physiol Sci 2007; 57:51-61. [PMID: 17239259 DOI: 10.2170/physiolsci.rp010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/21/2007] [Indexed: 11/05/2022]
Abstract
The follicular cells surrounding Xenopus oocyte under voltage clamp produce K(+)-current responses to follicle-stimulating hormone (FSH), adenosine (Ade), and intracellularly applied cAMP. We previously reported that these responses are suppressed by the stimulation of P2Y receptor through phosphorylation by PKC presumably of the ATP-sensitive K(+) (K(ATP)) channel. This channel comprises sulfonylurea receptors (SURs) and K(+) ionophores (Kirs) having differential sensitivities to K(+) channel openers (KCOs) depending on the SURs. To characterize the K(+) channels involved in the FSH- and Ade-induced responses, we investigated the effects of various KCOs and SUR blockers on the agonist-induced responses. The applications of PCO400, cromakalim (Cro), and pinacidil, but not diazoxide, produced K(+)-current responses similar to the FSH- and Ade-induced responses in the magnitude order of PCO400 > Cro >> pinacidil in favor of SUR2A. The application of glibenclamide, phentolamine, and tolbutamide suppressed all the K(+)-current responses to FSH, Ade, cAMP, and KCOs. Furthermore, both the FSH- and Ade-induced responses were markedly augmented during the KCO-induced responses, or vice versa. The I-V curves for the K(+)-current responses induced by Cro, Ade, and FSH showed outward rectification in normal [K(+)](o), but weak inward rectification in 122 mM [K(+)](o). Also, stimulations of P2Y receptor by UTP or PKC by PDBu markedly depressed the K(+)-current response to KCOs in favor of Kir6.1, as previously observed with the responses to FSH and Ade. These results suggest that the K(+)-current responses to FSH and Ade may be produced by the opening of a novel type of K(ATP) channel comprising SUR2A and Kir6.1.
Collapse
Affiliation(s)
- Reiko Fujita
- Department of Chemistry, School of Liberal Arts & Sciences, Iwate Medical University, Morioka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Haynes JM, Cook ALM. Protein kinase G-induced activation of K(ATP) channels reduces contractility of human prostate tissue. Prostate 2006; 66:377-85. [PMID: 16302263 DOI: 10.1002/pros.20355] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Human cultured prostatic stromal cells respond to protein kinase G (PKG) activators and the nitric oxide donor, sodium nitroprusside (SNP) by opening ATP-sensitive potassium channels (K(ATP) channels) to reduce nifedipine-sensitive phorbol ester-induced contractility. METHODS PKG activators, SNP, diazoxide, nifedipine, isoprenaline, forskolin, and Sp-8-Br-cAMP were used to inhibit alpha(1)-adrenoceptor-induced contractions in tissue from transurethral resections of the prostate (TURP). The selective K(ATP) and large conductance Ca(2+) activated K(+) (BK(Ca)) channel inhibitors, glibenclamide and charybdotoxin, respectively were used to inhibit responses to PKG activators. RT-PCR identified the K(ATP) channel subunits present in TURP tissue and cultured cells. RESULTS The PKG activators, APT-cGMP (1 nM-100 microM) and PET-cGMP (1 nM-100 microM), and also SNP (1 nM-100 microM), forskolin (10 microM), diazoxide (100 microM) and nifedipine (3 microM) inhibited phenylephrine (20 microM)-induced contractions. The effect of APT-cGMP (1 nM-100 microM) could be reversed by glibenclamide, but not by charybdotoxin. TURP tissue contained mRNA for PKG Ialpha, Ibeta, and II and the K(ATP) channel subunits Kir6.1, Kir6.2, SUR2B, and SUR1. Cultured stromal cells contained only Kir6.1 and SUR2B subunit mRNA. SUR1 mRNA was detected in one of five cultured epithelial cell lines. CONCLUSIONS PKG activators reduce alpha(1)-adrenoceptor-induced contractility in TURP tissue via the activation of K(ATP) channels. (c) 2005 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- John M Haynes
- The Prostate Research Co-Operative, Victorian College of Pharmacy, Monash University, Victoria, Australia.
| | | |
Collapse
|
42
|
Kakkar R, Ye B, Stoller DA, Smelley M, Shi NQ, Galles K, Hadhazy M, Makielski JC, McNally EM. Spontaneous coronary vasospasm in KATP mutant mice arises from a smooth muscle-extrinsic process. Circ Res 2006; 98:682-9. [PMID: 16456098 DOI: 10.1161/01.res.0000207498.40005.e7] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the vasculature, ATP-sensitive potassium channels (KATP) channels regulate vascular tone. Mice with targeted gene disruptions of KATP subunits expressed in vascular smooth muscle develop spontaneous coronary vascular spasm and sudden death. From these models, it was hypothesized that the loss of KATP channel activity in arterial vascular smooth muscle was responsible for coronary artery spasm. We now tested this hypothesis using a transgenic strategy where the full-length sulfonylurea receptor containing exon 40 was expressed under the control of a smooth muscle-specific SM22alpha promoter. Two transgenic founder lines were generated and independently bred to sulfonylurea receptor 2 (SUR2) null mice to generate mice that restored expression of KATP channels in vascular smooth muscle. Transgenic expression of the sulfonylurea receptor in vascular smooth muscle cells was confirmed by detecting mRNA and protein from the transgene. Functional restoration was determined by recording pinacidil-based KATP current by whole cell voltage clamping of isolated aortic vascular smooth muscle cells isolated from the transgenic restored mice. Despite successful restoration of KATP channels in vascular smooth muscle, transgene-restored SUR2 null mice continued to display frequent episodes of spontaneous ST segment elevation, identical to the phenotype seen in SUR2 null mice. As in SUR2 null mice, ST segment elevation was frequently followed by atrioventricular heart block. ST segment elevation and coronary perfusion pressure in the restored mice did not differ significantly between transgene-negative and transgene-positive SUR2 null mice. We conclude that spontaneous coronary vasospasm and sudden death in SUR2 null mice arises from a coronary artery vascular smooth muscle-extrinsic process.
Collapse
Affiliation(s)
- Rahul Kakkar
- Department of Medicine, The University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Morrissey A, Parachuru L, Leung M, Lopez G, Nakamura TY, Tong X, Yoshida H, Srivastiva S, Chowdhury PD, Artman M, Coetzee WA. Expression of ATP-sensitive K+ channel subunits during perinatal maturation in the mouse heart. Pediatr Res 2005; 58:185-92. [PMID: 16085792 DOI: 10.1203/01.pdr.0000169967.83576.cb] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prevailing data suggest that sarcolemmal ATP-sensitive (K(ATP)) channels in the adult heart consist of Kir6.2 and SUR2A subunits, but the expression of other K(ATP) channel subunits (including SUR1, SUR2B, and Kir6.1) is poorly defined. The situation is even less clear for the immature heart, which shows a remarkable resistance to hypoxia and metabolic stress. The hypoxia-induced action potential shortening and opening of sarcolemmal K(ATP) channels that occurs in adults is less prominent in the immature heart. This might be due in part to the different biophysical and pharmacological properties of K(ATP) channels of immature and adult K(ATP) channels. Because these properties are largely conferred by subunit composition, it is important to examine the relative expression levels of the various K(ATP) channel subunits during maturation. We therefore used RNAse protection assays, reverse transcription-PCR approaches, and Western blotting to characterize the mRNA and protein expression profiles of K(ATP) channel subunits in fetal, neonatal, and adult mouse heart. Our data indicate that each of the K(ATP) channel subunits (Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B) is expressed in the mouse heart at all of the developmental time points studied. However, the expression level of each of the subunits is low in the fetal heart and progressively increases with maturation. Each of the subunits seems to be expressed in ventricular myocytes with a subcellular expression pattern matching that found in the adult. Our data suggest that the K(ATP) channel composition may change during maturation, which has important implications for K(ATP) channel function in the developing heart.
Collapse
Affiliation(s)
- Alison Morrissey
- Department of Pediatrics, NYU School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Diep HK, Vigmond EJ, Segal SS, Welsh DG. Defining electrical communication in skeletal muscle resistance arteries: a computational approach. J Physiol 2005; 568:267-81. [PMID: 16002449 PMCID: PMC1474767 DOI: 10.1113/jphysiol.2005.090233] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vascular cells communicate electrically to coordinate their activity and control tissue blood flow. To foster a quantitative understanding of this fundamental process, we developed a computational model that was structured to mimic a skeletal muscle resistance artery. Each endothelial cell and smooth muscle cell in our virtual artery was treated as the electrical equivalent of a capacitor coupled in parallel with a non-linear resistor representing ionic conductance; intercellular gap junctions were represented by ohmic resistors. Simulations revealed that the vessel wall is not a syncytium in which electrical stimuli spread equally to all constitutive cells. Indeed, electrical signals spread in a differential manner among and between endothelial cells and smooth muscle cells according to the initial stimulus. The predictions of our model agree with physiological data from the feed artery of the hamster retractor muscle. Cell orientation and coupling resistance were the principal factors that enable electrical signals to spread differentially along and between the two cell types. Our computational observations also illustrated how gap junctional coupling enables the vessel wall to filter and transform transient electrical events into sustained voltage responses. Functionally, differential electrical communication would permit discrete regions of smooth muscle activity to locally regulate blood flow and the endothelium to coordinate regional changes in tissue perfusion.
Collapse
Affiliation(s)
- Hai K Diep
- HMRB-G86, Heritage Medical Research Building, Faculty of Medicine, University of Calgary, 3330 Hospital Drive. N.W., Calgary, Alberta, Canada, T2N-4 N1
| | | | | | | |
Collapse
|
45
|
Abstract
Opening of potassium channels on vascular smooth muscle cells with resultant hyperpolarization plays a central role in several mechanisms of vasodilation. For example, in the arteriolar circulation where tissue perfusion is regulated, there is an endothelial derived hyperpolarizing factor that opens vascular smooth muscle calcium-activated potassium channels, eliciting dilation. Metabolic vasodilation involves the opening of sarcolemmal ATP-sensitive potassium channels. Adrenergic dilation as well as basal vasomotor tone in several vascular beds depend upon voltage-dependent potassium channels in smooth muscle. Thus hyperpolarization through potassium channel opening is a fundamental mechanism for vasodilation. Disease states such as coronary atherosclerosis and its risk factors are associated with elevated levels of reactive oxygen (ROS) and nitrogen species that have well-defined inhibitory effects on nitric oxide-mediated vasodilation. Effects of ROS on hyperpolarization mechanisms of dilation involving opening of potassium channels are less well understood but are very important because hyperpolarization-mediated dilation often compensates for loss of other dilator mechanisms. We review the effect of ROS on potassium channel function in the vasculature. Depending on the oxidative species, ROS can activate, inhibit, or leave unaltered potassium channel function in blood vessels. Therefore, discerning the activity of enzymes regulating production or degradation of ROS is important when assessing tissue perfusion in health and disease.
Collapse
Affiliation(s)
- David D Gutterman
- Cardiovascular Center, Department of Medicine, General Clinical Research Center, VA Medical Center, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | |
Collapse
|
46
|
Burmester MD, Schlüter KD, Daut J, Hanley PJ. Enantioselective Actions of Bupivacaine and Ropivacaine on Coronary Vascular Resistance at Cardiotoxic Concentrations. Anesth Analg 2005; 100:707-712. [PMID: 15728056 DOI: 10.1213/01.ane.0000146511.79069.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The main concern with the use of the long-acting local anesthetics bupivacaine and ropivacaine is inadvertent IV injection, which exposes the heart to toxic drug concentrations. We tested the hypothesis that these chiral anesthetics exert enantioselective actions on coronary vascular tone, the regulation of which does not involve voltage-gated Na(+) channels. Coronary perfusion pressure (CPP) was continuously measured in isolated hearts perfused via the aorta at a constant flow rate. This method provides a sensitive assay of coronary vascular resistance in the intact heart. In parallel experiments, we examined the effects of bupivacaine and ropivacaine on intracellular [Ca(2+)] in coronary endothelial cells. In addition, the effect of bupivacaine on mitochondrial membrane potential was assessed using isolated ventricular myocytes. Racemic bupivacaine and R(+)-bupivacaine produced similar dose-dependent decreases in CPP. However, S(-)-bupivacaine, S(-)-ropivacaine and R(+)-ropivacaine increased CPP. In contrast to adenosine triphosphate, neither racemic bupivacaine nor S(-)-ropivacaine changed endothelial intracellular [Ca(2+)], suggesting that these clinically used drugs do not modulate endothelial nitric oxide synthase. We also showed that the putative uncoupler bupivacaine did not depolarize mitochondria in intact ventricular myocytes. In conclusion, the long-acting local anesthetics have enantioselective actions on coronary resistance vessels. Racemic bupivacaine and R(+)-bupivacaine are coronary vasodilators, whereas S(-)-bupivacaine, S(-)-ropivacaine and, to a lesser extent, R(+)-ropivacaine all induce coronary vasoconstriction.
Collapse
Affiliation(s)
- Marko D Burmester
- Institut für Normale und Pathologische Physiologie, Universität Marburg, Marburg, Germany; Department of Physiology, Physiologisches Institut, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | |
Collapse
|
47
|
Yamaguchi M, Tomiyama Y, Katayama T, Kitahata H, Oshita S. Involvement of Adenosine Triphosphate-Sensitive Potassium Channels in the Response of Membrane Potential to Hyperosmolality in Cultured Human Aorta Endothelial Cells. Anesth Analg 2005; 100:419-426. [PMID: 15673869 DOI: 10.1213/01.ane.0000143350.82645.5b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The membrane potential of endothelial cells is an important determinant of endothelial functions, including regulation of vascular tone. We investigated whether adenosine triphosphate-sensitive potassium (K(ATP)) channels were involved in the response of membrane potential to hyperosmolality in cultured human aorta endothelial cells. The voltage-sensitive fluorescent dye, bis-(1,3-diethylthiobarbiturate)trimethine oxonol, was used to assess relative changes in membrane potential semiquantitatively. To investigate the effect of mannitol-, sucrose-, and NaCl-induced hyperosmolality on membrane potential, cells were continuously perfused with Earle's balanced salt solution (285 mOsm/kg H(2)O) containing 200 nM bis-(1,3-diethylthiobarbiturate)trimethine oxonol and exposed to 315 and 345 mOsm/kg H(2)O hyperosmotic medium sequentially in the presence and absence of 1 muM glibenclamide, a well-known K(ATP) channel blocker. Hyperosmotic mannitol significantly induced hyperpolarization of the endothelial cells, which was prevented by 1 microM glibenclamide (n = 6). Estimated changes of membrane potential at 315 and 345 mOsm/kg H(2)O were 13 +/- 8 and 21 +/- 8 mV, respectively. Hypertonic sucrose induced similar changes. However, although hypertonic saline also significantly induced hyperpolarization of the endothelial cells (n = 6), the hyperpolarization was not prevented by 1 muM glibenclamide. In conclusion, K(ATP) channels may participate in hyperosmotic mannitol- and sucrose-induced hyperpolarization, but not in hypertonic saline-induced hyperpolarization in cultured human aorta endothelial cells.
Collapse
Affiliation(s)
- Mikiyo Yamaguchi
- Department of Anesthesiology, Tokushima University School of Medicine, Tokushima, Japan
| | | | | | | | | |
Collapse
|
48
|
Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature. BMC PHYSIOLOGY 2005; 5:1. [PMID: 15647111 PMCID: PMC546210 DOI: 10.1186/1472-6793-5-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 01/12/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND Electrophysiological data suggest that cardiac KATP channels consist of Kir6.2 and SUR2A subunits, but the distribution of these (and other KATP channel subunits) is poorly defined. We examined the localization of each of the KATP channel subunits in the mouse and rat heart. RESULTS Immunohistochemistry of cardiac cryosections demonstrate Kir6.1 protein to be expressed in ventricular myocytes, as well as in the smooth muscle and endothelial cells of coronary resistance vessels. Endothelial capillaries also stained positive for Kir6.1 protein. Kir6.2 protein expression was found predominantly in ventricular myocytes and also in endothelial cells, but not in smooth muscle cells. SUR1 subunits are strongly expressed at the sarcolemmal surface of ventricular myocytes (but not in the coronary vasculature), whereas SUR2 protein was found to be localized predominantly in cardiac myocytes and coronary vessels (mostly in smaller vessels). Immunocytochemistry of isolated ventricular myocytes shows co-localization of Kir6.2 and SUR2 proteins in a striated sarcomeric pattern, suggesting t-tubular expression of these proteins. Both Kir6.1 and SUR1 subunits were found to express strongly at the sarcolemma. The role(s) of these subunits in cardiomyocytes remain to be defined and may require a reassessment of the molecular nature of ventricular KATP channels. CONCLUSIONS Collectively, our data demonstrate unique cellular and subcellular KATP channel subunit expression patterns in the heart. These results suggest distinct roles for KATP channel subunits in diverse cardiac structures.
Collapse
|
49
|
Abstract
Vascular smooth muscle (VSM) cells, endothelial cells (EC), and pericytes that form the walls of vessels in the microcirculation express a diverse array of ion channels that play an important role in the function of these cells and the microcirculation in both health and disease. This brief review focuses on the K+ channels expressed in smooth muscle and endothelial cells in arterioles. Microvascular VSM cells express at least four different classes of K+ channels, including inward-rectifier K+ channels (Kin), ATP-sensitive K+ channels (KATP), voltage-gated K+ channels (Kv), and large conductance Ca2+-activated K+ channels (BKCa). VSM KIR participate in dilation induced by elevated extracellular K+ and may also be activated by C-type natriuretic peptide, a putative endothelium-derived hyperpolarizing factor (EDHF). Vasodilators acting through cAMP or cGMP signaling pathways in VSM may open KATP, Kv, and BKCa, causing membrane hyperpolarization and vasodilation. VSMBKc. may also be activated by epoxides of arachidonic acid (EETs) identified as EDHF in some systems. Conversely, vasoconstrictors may close KATP, Kv, and BKCa through protein kinase C, Rho-kinase, or c-Src pathways and contribute to VSM depolarization and vasoconstriction. At the same time Kv and BKCa act in a negative feedback manner to limit depolarization and prevent vasospasm. Microvascular EC express at least 5 classes of K+ channels, including small (sKCa) and intermediate(IKCa) conductance Ca2+-activated K+ channels, Kin, KATP, and Kv. Both sK and IK are opened by endothelium-dependent vasodilators that increase EC intracellular Ca2+ to cause membrane hyper-polarization that may be conducted through myoendothelial gap junctions to hyperpolarize and relax arteriolar VSM. KIR may serve to amplify sKCa- and IKCa-induced hyperpolarization and allow active transmission of hyperpolarization along EC through gap junctions. EC KIR channels may also be opened by elevated extracellular K+ and participate in K+-induced vasodilation. EC KATP channels may be activated by vasodilators as in VSM. Kv channels may provide a negative feedback mechanism to limit depolarization in some endothelial cells.
Collapse
Affiliation(s)
- William F Jackson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| |
Collapse
|
50
|
Quast U, Stephan D, Bieger S, Russ U. The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium. Diabetes 2004; 53 Suppl 3:S156-64. [PMID: 15561904 DOI: 10.2337/diabetes.53.suppl_3.s156] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin secretagogues (sulfonylureas and glinides) increase insulin secretion by closing the ATP-sensitive K+ channel (KATP channel) in the pancreatic beta-cell membrane. KATP channels subserve important functions also in the heart. First, KATP channels in coronary myocytes contribute to the control of coronary blood flow at rest and in hypoxia. Second, KATP channels in the sarcolemma of cardiomyocytes (sarcKATP channels) are required for adaptation of the heart to stress. In addition, the opening of sarcKATP channels and of KATP channels in the inner membrane of mitochondria (mitoKATP channels) plays a central role in ischemic preconditioning. Opening of sarcKATP channels also underlies the ST-segment elevation of the electrocardiogram, the primary diagnostic tool for initiation of lysis therapy in acute myocardial infarction. Therefore, inhibition of cardiovascular KATP channels by insulin secretagogues is considered to increase cardiovascular risk. Electrophysiological experiments have shown that the secretagogues differ in their selectivity for the pancreatic over the cardiovascular KATP channels, being either highly selective (approximately 1,000x; short sulfonylureas such as nateglinide and mitiglinide), moderately selective (10-20x; long sulfonylureas such as glibenclamide [glyburide]), or essentially nonselective (<2x; repaglinide). New binding studies presented here give broadly similar results. In clinical studies, these differences are not yet taken into account. The hypothesis that the in vitro selectivity of the insulin secretagogues is of importance for the cardiovascular outcome of diabetic patients with coronary artery disease needs to be tested.
Collapse
Affiliation(s)
- Ulrich Quast
- Department of Pharmacology and Toxicology, Medical Faculty, University of Tübingen, Wilhelmstrasse. 56, D-72074 Tübingen, Germany.
| | | | | | | |
Collapse
|