1
|
Multivariate pharmacokinetic/pharmacodynamic (PKPD) analysis with metabolomics shows multiple effects of remoxipride in rats. Eur J Pharm Sci 2017; 109:431-440. [DOI: 10.1016/j.ejps.2017.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/12/2023]
|
2
|
Jayakumar AR, Curtis KM, Panickar KS, Shamaladevi N, Norenberg MD. Decreased STAT3 Phosphorylation Mediates Cell Swelling in Ammonia-Treated Astrocyte Cultures. BIOLOGY 2016; 5:48. [PMID: 27918421 PMCID: PMC5192428 DOI: 10.3390/biology5040048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/18/2016] [Accepted: 11/24/2016] [Indexed: 12/25/2022]
Abstract
Brain edema, due largely to astrocyte swelling, and the subsequent increase in intracranial pressure and brain herniation, are major complications of acute liver failure (ALF). Elevated level of brain ammonia has been strongly implicated in the development of astrocyte swelling associated with ALF. The means by which ammonia brings about astrocyte swelling, however, is incompletely understood. Recently, oxidative/nitrosative stress and associated signaling events, including activation of mitogen-activated protein kinases (MAPKs), as well as activation of the transcription factor, nuclear factor-kappaB (NF-κB), have been implicated in the mechanism of ammonia-induced astrocyte swelling. Since these signaling events are known to be regulated by the transcription factor, signal transducer and activator of transcription 3 (STAT3), we examined the state of STAT3 activation in ammonia-treated cultured astrocytes, and determined whether altered STAT3 activation and/or protein expression contribute to the ammonia-induced astrocyte swelling. STAT3 was found to be dephosphorylated (inactivated) at Tyrosine705 in ammonia-treated cultured astrocytes. Total STAT3 protein level was also reduced in ammonia-treated astrocytes. We also found a significant increase in protein tyrosine phosphatase receptor type-1 (PTPRT-1) protein expression in ammonia-treated cultured astrocytes, and that inhibition of PTPRT-1 enhanced the phosphorylation of STAT3 after ammonia treatment. Additionally, exposure of cultured astrocytes to inhibitors of protein tyrosine phosphatases diminished the ammonia-induced cell swelling, while cultured astrocytes over-expressing STAT3 showed a reduction in the astrocyte swelling induced by ammonia. Collectively, these studies strongly suggest that inactivation of STAT3 represents a critical event in the mechanism of the astrocyte swelling associated with acute liver failure.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA.
- South Florida Foundation for Research and Education Inc., Miami VA Healthcare System, Miami, FL 33125, USA.
- Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Miami, FL 33125, USA.
| | - Kevin M Curtis
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA.
- Geriatric Research Education and Clinical Center, U.S. Department of Veterans Affairs, Miami, FL 33125, USA.
| | - Kiran S Panickar
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA.
| | - Nagarajarao Shamaladevi
- South Florida Foundation for Research and Education Inc., Miami VA Healthcare System, Miami, FL 33125, USA.
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA.
| | - Michael D Norenberg
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA.
- South Florida Foundation for Research and Education Inc., Miami VA Healthcare System, Miami, FL 33125, USA.
- Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Miami, FL 33125, USA.
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA.
| |
Collapse
|
3
|
Haack N, Dublin P, Rose CR. Dysbalance of astrocyte calcium under hyperammonemic conditions. PLoS One 2014; 9:e105832. [PMID: 25153709 PMCID: PMC4143319 DOI: 10.1371/journal.pone.0105832] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022] Open
Abstract
Increased brain ammonium (NH4+/NH3) plays a central role in the manifestation of hepatic encephalopathy (HE), a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼90%) experienced a persistent calcium increase by ∼50 nM. This persistent increase was already evoked at concentrations of 1–2 mM NH4+/NH3, developed within 10–20 minutes and was maintained as long as the NH4+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC), the reverse mode of sodium/calcium exchange (NCX), AMPA- or mGluR5-receptors did not dampen NH4+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study furthermore suggests that dysbalance of astrocyte calcium homeostasis under hyperammonemic conditions is a widespread phenomenon, which might contribute to the disturbance of neurotransmission during HE.
Collapse
Affiliation(s)
- Nicole Haack
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
| | - Pavel Dublin
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
4
|
Jayakumar AR, Tong XY, Curtis KM, Ruiz-Cordero R, Abreu MT, Norenberg MD. Increased toll-like receptor 4 in cerebral endothelial cells contributes to the astrocyte swelling and brain edema in acute hepatic encephalopathy. J Neurochem 2014; 128:890-903. [PMID: 24261962 PMCID: PMC3951576 DOI: 10.1111/jnc.12516] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/10/2013] [Accepted: 10/17/2013] [Indexed: 12/14/2022]
Abstract
Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll-like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4-silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up-regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide-treated TLR4 knock-out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood-borne noxious agents.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, Florida, USA; Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
5
|
Jayakumar AR, Valdes V, Tong XY, Shamaladevi N, Gonzalez W, Norenberg MD. Sulfonylurea receptor 1 contributes to the astrocyte swelling and brain edema in acute liver failure. Transl Stroke Res 2014; 5:28-37. [PMID: 24443056 DOI: 10.1007/s12975-014-0328-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/03/2014] [Accepted: 01/05/2014] [Indexed: 01/21/2023]
Abstract
Astrocyte swelling (cytotoxic brain edema) is the major neurological complication of acute liver failure (ALF), a condition in which ammonia has been strongly implicated in its etiology. Ion channels and transporters are known to be involved in cell volume regulation, and a disturbance in these systems may result in cell swelling. One ion channel known to contribute to astrocyte swelling/brain edema in other neurological disorders is the ATP-dependent, nonselective cation (NCCa-ATP) channel. We therefore examined its potential role in the astrocyte swelling/brain edema associated with ALF. Cultured astrocytes treated with 5 mM ammonia showed a threefold increase in the sulfonylurea receptor type 1 (SUR1) protein expression, a marker of NCCa-ATP channel activity. Blocking SUR1 with glibenclamide significantly reduced the ammonia-induced cell swelling in cultured astrocytes. Additionally, overexpression of SUR1 in ammonia-treated cultured astrocytes was significantly reduced by cotreatment of cells with BAY 11-7082, an inhibitor of NF-κB, indicating the involvement of an NF-κB-mediated SUR1 upregulation in the mechanism of ammonia-induced astrocyte swelling. Brain SUR1 mRNA level was also found to be increased in the thioacetamide (TAA) rat model of ALF. Additionally, we found a significant increase in SUR1 protein expression in rat brain cortical astrocytes in TAA-treated rats. Treatment with glibenclamide significantly reduced the brain edema in this model of ALF. These findings strongly suggest the involvement of NCCa-ATP channel in the astrocyte swelling/brain edema in ALF and that targeting this channel may represent a useful approach for the treatment of the brain edema associated with ALF.
Collapse
Affiliation(s)
- A R Jayakumar
- Department of Pathology, University of Miami Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA
| | | | | | | | | | | |
Collapse
|
6
|
Jayakumar AR, Ruiz-Cordero R, Tong XY, Norenberg MD. Brain edema in acute liver failure: role of neurosteroids. Arch Biochem Biophys 2013; 536:171-5. [PMID: 23567839 PMCID: PMC4737089 DOI: 10.1016/j.abb.2013.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/07/2013] [Accepted: 03/18/2013] [Indexed: 12/12/2022]
Abstract
Brain edema is a major neurological complication of acute liver failure (ALF) and swelling of astrocytes (cytotoxic brain edema) is the most prominent neuropathological abnormality in this condition. Elevated brain ammonia level has been strongly implicated as an important factor in the mechanism of astrocyte swelling/brain edema in ALF. Recent studies, however, have suggested the possibility of a vasogenic component in the mechanism in ALF. We therefore examined the effect of ammonia on blood-brain barrier (BBB) integrity in an in vitro co-culture model of the BBB (consisting of primary cultures of rat brain endothelial cells and astrocytes). We found a minor degree of endothelial permeability to dextran fluorescein (16.2%) when the co-culture BBB model was exposed to a pathophysiological concentration of ammonia (5mM). By contrast, lipopolysaccharide (LPS), a molecule well-known to disrupt the BBB, resulted in an 87% increase in permeability. Since increased neurosteroid biosynthesis has been reported to occur in brain in ALF, and since neurosteroids are known to protect against BBB breakdown, we examined whether neurosteroids exerted any protective effect on the slight permeability of the BBB after exposure to ammonia. We found that a nanomolar concentration (10nM) of the neurosteroids allopregnanolone (THP) and tetrahydrodeoxycorticosterone (THDOC) significantly reduced the ammonia-induced increase in BBB permeability (69.13 and 58.64%, respectively). On the other hand, we found a marked disruption of the BBB when the co-culture model was exposed to the hepatotoxin azoxymethane (218.4%), but not with other liver toxins commonly used as models of ALF (thioacetamide and galactosamine, showed a 29.3 and 30.67% increase in permeability, respectively). Additionally, THP and THDOC reduced the effect of TAA and galactosamine on BBB permeability, while no BBB protective effect was observed following treatment with azoxymethane. These findings suggest that ammonia does not cause a significant BBB disruption, and that the BBB is intact in the TAA or galactosamine-induced animal models of ALF, likely due to the protective effect of neurosteroids that are synthesized in brain in the setting of ALF. However, caution should be exercised when using azoxymethane as an experimental model of ALF as it caused a severe breakdown of the BBB, and neurosteriods failed to protect against this breakdown.
Collapse
|
7
|
Cooper AJL. Possible treatment of end-stage hyperammonemic encephalopathy by inhibition of glutamine synthetase. Metab Brain Dis 2013; 28:119-25. [PMID: 23065027 PMCID: PMC3566340 DOI: 10.1007/s11011-012-9338-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Glutamine synthetase (GS) is highly active in astrocytes, and these cells are physiologically and morphologically compromised by hyperammonemia. Hyperammonemia in end-stage acute liver failure (ALF) is often associated with cerebral edema and astrocyte pathology/swelling. Many studies of animal models of hyperammonemia, and, more recently, nuclear magnetic resonance studies of liver disease patients, have shown that cerebral glutamine is elevated in hyperammonemia, contributing to the edema and encephalopathy. The GS inhibitor L-methionine-S,R-sulfoximine (MSO) is protective in animal models against acute ammonia intoxication. MSO is also an inhibitor of glutamate cysteine ligase, is converted to metabolic products, and causes convulsions at high doses. However, the susceptibility to MSO-induced convulsions is species dependent, with primates being relatively resistant. Moreover, it is possible to chronically maintain cerebral GS activity in mice at low levels by MSO treatment without any obvious untoward effects. Furthermore, MSO is protective in a mouse model of ALF. Extreme caution would be needed in administering MSO to patients. Nevertheless, inhibition of brain GS by MSO (or other GS inhibitors) may have therapeutic benefit in ALF.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA.
| |
Collapse
|
8
|
Rao KVR, Brahmbhatt M, Norenberg MD. Microglia contribute to ammonia-induced astrocyte swelling in culture. Metab Brain Dis 2013; 28:139-43. [PMID: 23065046 DOI: 10.1007/s11011-012-9339-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/27/2012] [Indexed: 12/22/2022]
Abstract
Brain edema, a lethal complication of acute liver failure (ALF), is believed to be largely cytotoxic due to the swelling of astrocytes. Ammonia, a principal neurotoxin in ALF, has been strongly implicated in the development of the brain edema. It was previously shown that treatment of cultured astrocytes with ammonia (5 mM NH₄Cl) results in cell swelling. While ammonia continues to exert a direct effect on astrocytes, it is possible that ammonia can affect other neural cells, particularly microglia. Microglia are capable of evoking an inflammatory response, a process known to contribute to the brain edema. We therefore examined the potential role of microglia in the mechanism of ammonia-induced astrocyte swelling. Conditioned media (CM) derived from ammonia-treated cultured microglia when added to cultured astrocytes resulted in significant cell swelling. Such swelling was synergistically increased when astrocytes were additionally treated with 5 mM ammonia. CM from ammonia-treated microglia also showed significant release of oxy-radicals and nitric oxide into the CM. CM from ammonia-treated microglia containing Tempol (a superoxide scavenger) or uric acid (a peroxynitrite scavenger) when added to astrocytes resulted in marked reduction in the cell swelling. Together, these studies indicate that microglia contribute to the ammonia-induced astrocyte swelling by a mechanism involving oxidative/nitrosative stress.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Departments of Pathology, University of Miami Miller School of Medicine, PO Box 016960, Miami, FL 33101, USA.
| | | | | |
Collapse
|
9
|
Jayakumar AR, Tong XY, Ospel J, Norenberg MD. Role of cerebral endothelial cells in the astrocyte swelling and brain edema associated with acute hepatic encephalopathy. Neuroscience 2012; 218:305-16. [PMID: 22609932 PMCID: PMC4714767 DOI: 10.1016/j.neuroscience.2012.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/25/2012] [Accepted: 05/03/2012] [Indexed: 12/15/2022]
Abstract
Brain edema is an important complication of acute hepatic encephalopathy (AHE), and astrocyte swelling is largely responsible for its development. Elevated blood and brain ammonia levels have been considered as major etiological factors in this edema. In addition to ammonia, recent studies have suggested that systemic infection, inflammation (and associated cytokines (CKs)), as well as endotoxin (lipopolysaccharide (LPS)) are also involved in AHE-associated brain edema. As endothelial cells (ECs) are the first resident brain cells exposed to blood-borne "noxious agents" (i.e., ammonia, CKs, LPS) that are present in AHE, these cells may be in a critical position to react to these agents and trigger a process resulting in astrocyte swelling/brain edema. We therefore examined the effect of conditioned media (CM) from ammonia, LPS and cytokine-treated cultured brain ECs on cell swelling in cultured astrocytes. CM from ammonia-treated ECs when added to astrocytes caused significant cell swelling, and such swelling was potentiated when astrocytes were exposed to CM from ECs treated with a combination of ammonia, LPS and CKs. We also found an additive effect when astrocytes were exposed to ammonia along with CM from ammonia-treated ECs. Additionally, ECs treated with ammonia showed a significant increase in the production of oxy-radicals, nitric oxide (NO), as well as evidence of oxidative/nitrative stress and activation of the transcription factor nuclear factor kappa B (NF-κB). CM derived from ECs treated with ammonia, along with antioxidants (AOs) or the NF-κB inhibitor BAY 11-7082, when added to astrocytes resulted in a significant reduction in cell swelling, as compared to the effect of CM from ECs-treated only with ammonia. We also identified increased nuclear NF-κB expression in rat brain cortical ECs in the thioacetamide (TAA) model of AHE. These studies suggest that ECs significantly contribute to the astrocyte swelling/brain edema in AHE, likely as a consequence of oxidative/nitrative stress and activation of NF-κB.
Collapse
Affiliation(s)
- A R Jayakumar
- South Florida Foundation for Research & Education Inc., Veterans Affairs Medical Center, Miami, FL, USA
| | | | | | | |
Collapse
|
10
|
Pathogenesis of hepatic encephalopathy and brain edema in acute liver failure: role of glutamine redefined. Neurochem Int 2012; 60:690-6. [PMID: 22382077 DOI: 10.1016/j.neuint.2012.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 02/02/2012] [Accepted: 02/04/2012] [Indexed: 11/23/2022]
Abstract
Acute liver failure (ALF) is characterized neuropathologically by cytotoxic brain edema and biochemically by increased brain ammonia and its detoxification product, glutamine. The osmotic actions of increased glutamine synthesis in astrocytes are considered to be causally related to brain edema and its complications (intracranial hypertension, brain herniation) in ALF. However studies using multinuclear (1)H- and (13)C-NMR spectroscopy demonstrate that neither brain glutamine concentrations per se nor brain glutamine synthesis rates correlate with encephalopathy grade or the presence of brain edema in ALF. An alternative mechanism is now proposed whereby the newly synthesized glutamine is trapped within the astrocyte as a consequence of down-regulation of its high affinity glutamine transporter SNAT5 in ALF. Restricted transfer out of the cell rather than increased synthesis within the cell could potentially explain the cell swelling/brain edema in ALF. Moreover, the restricted transfer of glutamine from the astrocyte to the adjacent glutamatergic nerve terminal (where glutamine serves as immediate precursor for the releasable/transmitter pool of glutamate) could result in decreased excitatory transmission and excessive neuroinhibition that is characteristic of encephalopathy in ALF. Paradoxically, in spite of renewed interest in arterial ammonia as a predictor of raised intracranial pressure and brain herniation in ALF, ammonia-lowering agents aimed at reduction of ammonia production in the gut have so far been shown to be of limited value in the prevention of these cerebral consequences. Mild hypothermia, shown to prevent brain edema and intracranial hypertension in both experimental and human ALF, does so independent of effects on brain glutamine synthesis; whether or not hypothermia restores expression levels of SNAT5 in ALF awaits further studies. While inhibitors of brain glutamine synthesis such as methionine sulfoximine, have been proposed for the prevention of brain edema in ALF, potential adverse effects have so far limited their applicability.
Collapse
|
11
|
Alvarez VM, Rama Rao KV, Brahmbhatt M, Norenberg MD. Interaction between cytokines and ammonia in the mitochondrial permeability transition in cultured astrocytes. J Neurosci Res 2011; 89:2028-40. [PMID: 21748779 DOI: 10.1002/jnr.22708] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/10/2011] [Accepted: 05/13/2011] [Indexed: 01/23/2023]
Abstract
Hepatic encephalopathy (HE) is the major neurological complication occurring in patients with acute and chronic liver failure. Elevated levels of blood and brain ammonia are characteristic of HE, and astrocytes are the primary target of ammonia toxicity. In addition to ammonia, recent studies suggest that inflammation and associated cytokines (CKs) also contribute to the pathogenesis of HE. It was previously established that ammonia induces the mitochondrial permeability transition (mPT) in cultured astrocytes. As CKs have been shown to cause mitochondrial dysfunction in other conditions, we examined whether CKs induce the mPT in cultured astrocytes. Cultures treated with tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ, individually or in a mixture, resulted in the induction of the mPT in a time-dependent manner. Simultaneous treatment of cultures with a mixture of CKs and ammonia showed a marked additive effect on the mPT. As oxidative stress (OS) is known to induce the mPT, so we examined the effect of CKs and ammonia on hemeoxygenase-1 (HO-1) protein expression, a marker of OS. Such treatment displayed a synergistic effect in the upregulation of HO-1. Antioxidants significantly blocked the additive effects on the mPT by CKs and ammonia, suggesting that OS represents a major mechanism in the induction of the mPT. Treatment of cultures with minocycline, an antiinflammatory agent, which is known to inhibit OS, also diminished the additive effects on the mPT caused by CKs and ammonia. Induction of the mPT in astrocytes appears to represent a major pathogenetic factor in HE, in which CKs and ammonia are critically involved.
Collapse
Affiliation(s)
- Veronica M Alvarez
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33101, USA.
| | | | | | | |
Collapse
|
12
|
NF-κB in the mechanism of brain edema in acute liver failure: studies in transgenic mice. Neurobiol Dis 2010; 41:498-507. [PMID: 21087666 DOI: 10.1016/j.nbd.2010.10.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/12/2010] [Accepted: 10/27/2010] [Indexed: 12/26/2022] Open
Abstract
Astrocyte swelling and brain edema are major complications of the acute form of hepatic encephalopathy (acute liver failure, ALF). While elevated brain ammonia level is a well-known etiological factor in ALF, the mechanism by which ammonia brings about astrocyte swelling is not well understood. We recently found that astrocyte cultures exposed to ammonia activated nuclear factor-κB (NF-κB), and that pharmacological inhibition of such activation led to a reduction in astrocyte swelling. Although these findings suggest the involvement of NF-κB in astrocyte swelling in vitro, it is not known whether NF-κB contributes to the development of brain edema in ALF in vivo. Furthermore, pharmacological agents used to inhibit NF-κB may have non-specific effects. Accordingly, we used transgenic (Tg) mice that have a functional inactivation of astrocytic NF-κB and examined whether these mice are resistant to ALF-associated brain edema. ALF was induced in mice by treatment with the hepatotoxin thioacetamide (TAA). Wild type (WT) mice treated with TAA showed a significant increase in brain water content (1.65%) along with prominent astrocyte swelling and spongiosis of the neuropil, consistent with the presence of cytotoxic edema. These changes were not observed in Tg mice treated with TAA. Additionally, WT mice with ALF showed an increase in inducible nitric oxide synthase (iNOS) immunoreactivity in astrocytes from WT mice treated with TAA (iNOS is known to be activated by NF-κB and to contribute to cell swelling). By contrast, Tg mice treated with TAA did not exhibit brain edema, histological changes nor an increase in iNOS immunoreactivity. We also examined astrocytes cultures derived from Tg mice to determine whether these cells exhibit a lesser degree of swelling and cytopathological changes following exposure to ammonia. Astrocyte cultures derived from Tg mice showed no cell swelling nor morphological abnormalities when exposed to ammonia for 24h. By contrast, ammonia significantly increased cell swelling (31.7%) in cultured astrocytes from WT mice and displayed cytological abnormalities. Moreover, we observed a lesser increment in iNOS and NADPH oxidase activity (the latter is also known to be activated by NF-κB and to contribute to astrocyte swelling) in astrocyte cultures from Tg mice treated with ammonia, as compared to ammonia-treated WT mice astrocytes. These findings strongly suggest that activation of NF-κB is a critical factor in the development of astrocyte swelling/brain edema in ALF.
Collapse
|
13
|
Rama Rao KV, Jayakumar AR, Tong X, Alvarez VM, Norenberg MD. Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes. J Neuroinflammation 2010; 7:66. [PMID: 20942959 PMCID: PMC2964656 DOI: 10.1186/1742-2094-7-66] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/13/2010] [Indexed: 12/19/2022] Open
Abstract
Background Brain edema leading to high intracranial pressure is a lethal complication of acute liver failure (ALF), which is believed to be cytotoxic due to swelling of astrocytes. In addition to the traditional view that elevated levels of blood and brain ammonia are involved in the mechanism of brain edema in ALF, emerging evidence suggests that inflammatory cytokines also contribute to this process. We earlier reported that treatment of astrocyte cultures with a pathophysiological concentration of ammonia (5 mM NH4Cl) resulted in the activation of nuclear factor-kappaB (NF-κB) and that inhibition of such activation diminished astrocyte swelling, suggesting a key role of NF-κB in the mechanism of ammonia-induced astrocyte swelling. Since cytokines are also well-known to activate NF-κB, this study examined for additive/synergistic effects of ammonia and cytokines in the activation of NF-κB and their role in astrocyte swelling. Methods Primary cultures of astrocytes were treated with ammonia and cytokines (TNF-α, IL-1, IL-6, IFN-γ, each at 10 ng/ml), individually or in combination, and cell volume was determined by the [3H]-O-methylglucose equilibration method. The effect of ammonia and cytokines on the activation of NF-κB was determined by immunoblots. Results Cell swelling was increased by ammonia (43%) and by cytokines (37%) at 24 h. Simultaneous co-treatment with cytokines and ammonia showed no additional swelling. By contrast, cultures pretreated with ammonia for 24 h and then exposed to cytokines for an additional 24 h, showed a marked increase in astrocyte swelling (129%). Treatment of cultures with ammonia or cytokines alone also activated NF-κB (80-130%), while co-treatment had no additive effect. However, in cultures pre-treated with ammonia for 24 h, cytokines induced a marked activation of NF-κB (428%). BAY 11-7082, an inhibitor of NF-κB, completely blocked the astrocyte swelling in cultures pre-treated with ammonia and followed by the addition of a mixture of cytokines. Conclusion Our results indicate that ammonia and a mixture of cytokines each cause astrocyte swelling but when these agents are added simultaneously, no additive effects were found. On the other hand, when cells were initially treated with ammonia and 24 h later given a mixture of cytokines, a marked potentiation in cell swelling and NF-κB activation occurred. These data suggest that the potentiation in cell swelling is a consequence of the initial activation of NF-κB by ammonia. These findings provide a likely mechanism for the exacerbation of brain edema in patients with ALF in the setting of sepsis/inflammation.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | | | | | | | | |
Collapse
|
14
|
Chastre A, Jiang W, Desjardins P, Butterworth RF. Ammonia and proinflammatory cytokines modify expression of genes coding for astrocytic proteins implicated in brain edema in acute liver failure. Metab Brain Dis 2010; 25:17-21. [PMID: 20217200 DOI: 10.1007/s11011-010-9185-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
There is evidence to suggest that, in acute liver failure (ALF), brain ammonia and proinflammatory cytokines may act synergistically to cause brain edema and its complications (intracranial hypertension, brain herniation). However, the molecular mechanisms involved remain to be established. In order to address this issue, semi-quantitative RT-PCR was used to measure the expression of genes coding for astrocytic proteins with an established role in cell volume regulation in cerebral cortical astrocytes exposed to toxic agents previously identified in experimental and clinical ALF. Such agents include ammonia, the proinflammatory cytokine interleukin-1beta (IL-1beta) and combinations of the two. Exposure of cultured astrocytes to recombinant IL-1beta (but not ammonia) resulted in increased expression of aquaporin-4 (AQP-4). Both ammonia and proinflammatory mediators led to decreased expression of glial fibrillary acidic protein (GFAP), a cytoskeletal protein, but these effects were not additive. On the other hand, heme oxygenase-1 (HO-1) and inducible nitric oxide synthase (iNOS) expression were significantly increased by exposure to both ammonia and proinflammatory mediators and although modest, these effects were additive suggestive of a synergistic mechanism. These findings suggest that worsening of brain edema and its complications in ALF due to proinflammatory mechanisms may result from exacerbation of oxidative stress-related mechanisms rather than upregulation of AQP-4 or decreases in expression of the astrocytic structural protein GFAP.
Collapse
Affiliation(s)
- Anne Chastre
- Neuroscience Research Unit, St-Luc Hospital (CHUM), University of Montreal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
15
|
Dejong CHC, van de Poll MCG, Soeters PB, Jalan R, Olde Damink SWM. Aromatic amino acid metabolism during liver failure. J Nutr 2007; 137:1579S-1585S; discussion 1597S-1598S. [PMID: 17513430 DOI: 10.1093/jn/137.6.1579s] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Liver failure is associated with hepatic encephalopathy (HE). An imbalance in plasma levels of aromatic amino acids (AAA) phenylalanine, tyrosine, and tryptophan and branched chain amino acids (BCAA) and their BCAA/AAA ratio has been suggested to play a causal role in HE by enhanced brain AAA uptake and subsequently disturbed neurotransmission. Until recently, data on this subject and the role of the liver and splanchnic bed were scarce, particularly in humans, due to inaccessibility of portal and hepatic veins. Here, we discuss, against a background of relevant literature, data obtained in patients undergoing liver resection or with a transjugular intrahepatic portasystemic stent shunt (TIPSS), where these veins are accessible. The BCAA/AAA ratio remained unchanged after major liver resection, but plasma AAA levels were inversely correlated (P < 0.001) with residual liver volume, in keeping with the observed hepatic AAA uptake. In patients with stable cirrhosis and a TIPSS, the plasma BCAA/AAA ratio was lower than in controls (1.19 +/- 0.09 vs. controls: 3.63 +/- 0.34). Gastrointestinal bleeding in cirrhotics with a TIPSS induced disturbances in BCAA levels and the BCAA/AAA ratio and induced catabolism, which could partly be corrected by isoleucine administration. AAA may be important in the pathogenesis of HE, but it is unlikely that they are the sole factors. HE most likely is a syndrome with multifactorial pathogenesis, where hyperammonemia, AAA/BCAA imbalances, inflammation, brain edema, and neurotransmitter changes interact. Novel therapies to normalize AAA levels in patients with liver failure (such as the molecular adsorbent recirculating system dialysis device) should probably be combined with supplementation of e.g. isoleucine and enhancing ammonia excretion by the kidneys.
Collapse
Affiliation(s)
- Cornelis H C Dejong
- Department of Surgery, Nutrition and Toxicology Institute Maastricht, Maastricht University, the Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Murthy CRK, Norenberg MD. Suppression of ammonia-induced swelling by aspartate but not by ornithine in primary cultures of rat astrocytes. Neurochem Int 2002; 41:171-6. [PMID: 12020617 DOI: 10.1016/s0197-0186(02)00039-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cerebral edema with a rise in intracranial pressure is the hallmark of fulminant hepatic failure (FHF) and acute hyperammonemic (HA) states and is characterized by a poor survival rate. Astrocytes are the cells in brain which are swollen in these conditions. Several hypotheses have been proposed to explain the mechanism of cerebral edema in FHF and treatment strategies have evolved based on these putative mechanisms. Treatment with a mixture of ornithine and aspartate has been proven to be clinically beneficial as it reduces edema and improves the neurological status. It has been suggested that these two amino acids generate the glutamate required for the synthesis of glutamine and that they also enhance urea synthesis in surviving hepatocytes in FHF and HA. Presently, we report that of these two amino acids, only aspartate is effective in suppressing ammonia-induced swelling in primary cultures of astrocytes, while ornithine is ineffective. These results are discussed in relation to the metabolism of aspartate and ornithine in astrocytes, with an emphasis on glutamine synthesis and the malate-aspartate shuttle (MAS). We propose that the ability of aspartate to generate glutamate in the cytosol for glutamine synthesis and oxaloacetate in mitochondria to support the citric acid cycle play a role in its ability to reduce ammonia-induced swelling in astrocytes.
Collapse
Affiliation(s)
- Chinta R K Murthy
- Department of Animal Sciences, University of Hyderabad, Andhra Pradesh, Hyderabad, India
| | | |
Collapse
|
17
|
Affiliation(s)
- K H Boeker
- Department of Gastroenterology and Hepatology, Medizinische Hochschule, Hannover, Germany
| |
Collapse
|
18
|
Basile AS, Mullen K. Preclinical models of hepatic encephalopathy. CURRENT PROTOCOLS IN NEUROSCIENCE 2001; Chapter 9:Unit9.3. [PMID: 18428551 DOI: 10.1002/0471142301.ns0903s08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hepatic encephalopathy is a multifactorial neuropsychiatric syndrome accompanying acute or chronic liver failure. Techniques for developing animal models of hepatic encephalopathy associated with acute or chronic liver failure, or vascular shunting are illustrated. In addition, the behavioral and biochemical characteristics of these models are described.
Collapse
Affiliation(s)
- A S Basile
- Laboratory of Bio-Organic Chemistry, National Institute of Diabetes and Digestive & Kidney Diseases, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
19
|
Bengtsson F. Brain tryptophan/serotonin perturbations in metabolic encephalopathy and the hazards involved in the use of psychoactive drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 467:139-54. [PMID: 10721051 DOI: 10.1007/978-1-4615-4709-9_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Several combined pathogenetic factors such as hyperammonemia, different brain tryptophan metabolic disturbances and serotonin physiological/pharmacological alterations not yet defined in all details, will often give rise to the clinical neuropsychiatric condition known as hepatic encephalopathy (HE). Indeed, to this the probable exposure to novel potent CNS-monoamine acting drugs today may put such patients at certain risk for other pharmacodynamic (PD) responses than usually are expected from these "safe" drugs. Moreover, with a compromised liver function in HE, also pharmacokinetic (PK) features for the drugs are likely changed in these patients. Thus, the ultimate clinical outcome by this probable but unknown PD/PK-deviation for such psychoactive drugs when given to HE-patients needs further clarification. Accordingly, delineation of both PD- and PK-effects in experimental HE should shed light on this issue of relevance for monoamine-active drug safety as well as on some further details in the complex tryptophan/monoamine-related pathophysiology that comes into play in HE.
Collapse
Affiliation(s)
- F Bengtsson
- Department of Psychiatry, University Hospital, Linköping, Sweden.
| |
Collapse
|
20
|
Abstract
While the pathogenesis of hepatic encephalopathy (HE) is unclear, there is evidence of enhanced GABAergic neurotransmission in this condition. Ammonia is believed to play a major pathogenetic role in HE. To determine whether ammonia might contribute to abnormalities in GABAergic neurotransmission, its effects on GABA uptake and release were studied in cultured astrocytes, cells that appear to be targets of ammonia neurotoxicity. Acutely, ammonium chloride (5 mM) inhibited GABA uptake by 30%, and by 50-60% after 4-day treatment. GABA uptake inhibition was associated with a predominant decrease in Vmax; the Km was also decreased. Ammonia also enhanced GABA release after 4-day treatment, although such release was initially inhibited. These effects of ammonia (inhibition of GABA uptake and enhanced GABA release) may elevate extracellular levels of GABA and contribute to a dysfunction of GABAergic neurotransmission in HE and other hyperammonemic states.
Collapse
Affiliation(s)
- A S Bender
- Veterans Administration Medical Center and Department of Pathology, University of Miami School of Medicine, FL 33101, USA
| | | |
Collapse
|
21
|
Rose C, Michalak A, Pannunzio M, Chatauret N, Rambaldi A, Butterworth RF. Mild hypothermia delays the onset of coma and prevents brain edema and extracellular brain glutamate accumulation in rats with acute liver failure. Hepatology 2000; 31:872-7. [PMID: 10733542 DOI: 10.1053/he.2000.5923] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Mild hypothermia is effective in the prevention of brain edema associated with cerebral ischemia and traumatic brain injury. Brain edema is also a serious complication of acute liver failure (ALF). To assess the effectiveness of hypothermia in ALF, groups of rats were subjected to hepatic devascularization (portacaval anastomosis, followed 48 hours later by hepatic artery ligation), and body temperatures were maintained at either 35 degrees C (hypothermic) or 37 degrees C (normothermic). Mild hypothermia resulted in a significant delay in the onset of severe encephalopathy and in reduction of brain water content compared with normothermic ALF rats (control [n = 8] 80.22%; ALF-37 degrees C [n = 8] 81.74%; ALF-35 degrees C [n = 8] 80.48% [P <.01 compared with ALF-37 degrees C]). This protective effect was accompanied by a significant reduction of cerebrospinal fluid (CSF) (but not plasma) ammonia concentrations (CSF ammonia: control: 0.05 mg/dL; ALF-37 degrees C: 1.01 mg/dL; ALF-35 degrees C: 0.07 mg/dL, P <.01 compared with ALF-37 degrees C). In vivo cerebral microdialysis studies revealed that mild hypothermia resulted in a significant reduction of extracellular glutamate concentrations in the brains of rats with ALF (control: 1. 06 micromol/L; ALF-37 degrees C: 2.74 micromol/L; ALF-35 degrees C: 1.49 micromol/L [P <.01 compared with ALF-37 degrees C]). These findings suggest that: 1) mild hypothermia is an effective approach to the prevention of the central nervous system consequences of experimental ALF; and that 2) the beneficial effect of hypothermia is mediated via mechanisms involving reduced blood-brain transfer of ammonia and/or reduction of extracellular brain glutamate concentrations. Mild hypothermia may be an effective approach to delay the onset of brain edema in patients with ALF awaiting liver transplantation.
Collapse
Affiliation(s)
- C Rose
- Neuroscience Research Unit, Centre Hospitalier de l'Université de Montréal (Campus Saint-Luc), Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Rose C, Michalak A, Rao KV, Quack G, Kircheis G, Butterworth RF. L-ornithine-L-aspartate lowers plasma and cerebrospinal fluid ammonia and prevents brain edema in rats with acute liver failure. Hepatology 1999; 30:636-40. [PMID: 10462368 DOI: 10.1002/hep.510300311] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brain edema sufficient to cause intracranial hypertension and brain herniation remains a major cause of mortality in acute liver failure (ALF). Studies in experimental animal models of ALF suggest a role for ammonia in the pathogenesis of both encephalopathy and brain edema in this condition. As part of a series of studies to evaluate the therapeutic efficacy of ammonia-lowering agents, groups of rats with ALF caused by hepatic devascularization were treated with L-ornithine-L-aspartate (OA), an agent shown previously to be effective in reducing blood ammonia concentrations in both experimental and human chronic liver failure. Treatment of rats in ALF with infusions of OA (0.33 g/kg/h, intravenously) resulted in normalization of plasma ammonia concentrations and in a significant delay in onset of severe encephalopathy. More importantly, brain water content was significantly reduced in OA-treated rats with ALF. These protective effects of OA were accompanied by increased plasma concentrations of several amino acids including glutamate, gamma-aminobutyric acid (GABA), taurine, and alanine, as well as the branched-chain amino acids, leucine, isoleucine, and valine. Increased availability of glutamate following OA treatment provides the substrate for the major ammonia-removal mechanism (glutamine synthetase). Plasma (but not cerebrospinal fluid) glutamine concentrations were increased 2-fold (P <.02) in OA-treated rats, consistent with increased muscle glutamine synthesis. Direct measurement of glutamine synthetase activities revealed a 2-fold increase following OA treatment. These findings demonstrate a significant ammonia-lowering effect of OA together with a protective effect on the development of encephalopathy and brain edema in this model of ALF.
Collapse
Affiliation(s)
- C Rose
- Neuroscience Research Unit, Centre Hospitalier de l'Université de Montréal (Campus Saint-Luc), Montreal, Que., Canada H2X 3J4
| | | | | | | | | | | |
Collapse
|
23
|
Michalak A, Butterworth RF. Selective increases of extracellular brain concentrations of aromatic and branched-chain amino acids in relation to deterioration of neurological status in acute (ischemic) liver failure. Metab Brain Dis 1997; 12:259-69. [PMID: 9475499 DOI: 10.1007/bf02674670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous reports based on studies in brain tissue from humans and experimental animals suggest that aromatic amino acids (AAAs) and branched-chain amino acids (BCAA's) accumulate in brain in acute liver failure. In order to assess these changes in relation to the severity of neurological impairment and to the degree of hyperammonemia, AAAs and BCAAs were measured in vivo by cerebral microdialysis in frontal cortex of rats at various stages during the development of hepatic encephalopathy due to acute liver failure resulting from portacaval anastomosis followed by hepatic artery ligation. Extracellular brain concentrations of AAAs and of valine and leucine were elevated 2 to 4-fold following hepatic devascularization and these increases were significantly correlated to arterial ammonia concentration (r= 0.71-0.84, p<0.05). Extracellular concentrations of tyrosine paralleled the deterioration of neurological status in acute liver failure rats. In view of their role as precursors of monoamine neurotransmitters, ammonia-induced alterations of intracellular/extracellular brain concentration ratios for AAAs could account for altered neuronal excitability and contribute to the encephalopathy characteristic of acute liver failure.
Collapse
Affiliation(s)
- A Michalak
- Neuroscience Research Unit, Pavillon Saint-Luc (University of Montreal), Quebec, Canada
| | | |
Collapse
|
24
|
Bengtsson F, Bergqvist PB, Apelqvist G. Brain tryptophan perturbation in hepatic encephalopathy: implications for effects by neuropsychoactive drugs in clinical practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 420:1-33. [PMID: 9286423 DOI: 10.1007/978-1-4615-5945-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- F Bengtsson
- Department of Clinical Pharmacology, Lund University Hospital, Sweden
| | | | | |
Collapse
|
25
|
Ha JH, Basile AS. Modulation of ligand binding to components of the GABAA receptor complex by ammonia: implications for the pathogenesis of hyperammonemic syndromes. Brain Res 1996; 720:35-44. [PMID: 8782894 DOI: 10.1016/0006-8993(96)00104-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of 5-2500 microM concentrations of neutral ammonium salts on the binding of ligands to components of the GABAA receptor complex were investigated. [3H]Flunitrazepam binding to the benzodiazepine receptor was enhanced by ammonium (10-500 microM), but not sodium tartrate with EC50 = 98 microM and Emax = 31%. Further increasing ammonium tartrate concentrations (500-2500 microM) decreased [3H]flunitrazepam binding to control levels. The ammonium tartrate-induced increase in [3H]flunitrazepam binding was manifested as a 50% decrease in Kd. Furthermore, GABA increased the potency of ammonium tartrate in enhancing [3H]flunitrazepam binding by 63%. [3H]Ro 15-1788 and [3H]Ro 15-4513 binding to the benzodiazepine receptor was not significantly enhanced by ammonium tartrate (Emax approximately 13%). Ammonium tartrate also increased, then decreased the binding of 500 nM [3H]muscimol to the GABAA receptor (EC50 = 52 microM, Emax = 30%) in a concentration-dependent manner, but had no effect on [3H]SR 95-531 binding (Emax < 16%). The ammonium tartrate-induced alterations in [3H]muscimol binding were demonstrated in saturation assays as the loss of the high affinity binding site and a 27% increase in the Bmax of the low affinity binding site. These results indicate that ammonia biphasically enhances, then returns ligand binding to both the GABA and benzodiazepine receptor components of the GABAA receptor complex to control levels in a barbiturate-like fashion. This suggests that ammonia may enhance GABAergic neurotransmission at concentrations commonly encountered in hepatic failure, an event preceding the suppression of inhibitory neuronal function observed at higher (> 1 mM) ammonia concentrations. This increase in GABAergic neurotransmission is consistent with the clinical picture of lethargy, ataxia and cognitive deficits associated with liver failure and congenital hyperammonemia.
Collapse
Affiliation(s)
- J H Ha
- Laboratory of Neuroscience, NIDDKD, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
26
|
Dejong CH, Deutz NE, Soeters PB. Ammonia and glutamine metabolism during liver insufficiency: the role of kidney and brain in interorgan nitrogen exchange. SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY. SUPPLEMENT 1996; 218:61-77. [PMID: 8865453 DOI: 10.3109/00365529609094733] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND During liver failure, urea synthesis capacity is impaired. In this situation the most important alternative pathway for ammonia detoxification is the formation of glutamine from ammonia and glutamate. Information is lacking about the quantitative and qualitative role of kidney and brain in ammonia detoxification during liver failure. METHODS This review is based on own experiments considered against literature data. RESULTS AND CONCLUSIONS Brain detoxifies ammonia during liver failure by ammonia uptake from the blood, glutamine synthesis and subsequent glutamine release into the blood. Although quantitatively unimportant, this may be qualitatively important, because it may influence metabolic and/or neurotransmitter glutamate concentrations. The kidney plays an important role in adaptation to hyperammonaemia by reversing the ratio of ammonia excreted in the urine versus ammonia released into the blood from 0.5 to 2. Thus, the kidney changes into an organ that netto removes ammonia from the body as opposed to the normal situation in which it adds ammonia to the body pools.
Collapse
Affiliation(s)
- C H Dejong
- Dept. of Surgery, University Hospital Maastricht, The Netherlands
| | | | | |
Collapse
|
27
|
Dejong CH, Deutz NE, Soeters PB. Cerebral cortex ammonia and glutamine metabolism in two rat models of chronic liver insufficiency-induced hyperammonemia: influence of pair-feeding. J Neurochem 1993; 60:1047-57. [PMID: 8094741 DOI: 10.1111/j.1471-4159.1993.tb03253.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis, and glutamine release into the bloodstream have been hypothesized to deplete cerebral cortex glutamate pools. We investigated this hypothesis in rats with chronic liver insufficiency-induced hyperammonemia and in pair-fed controls to rule out effects of differences in food intake. Cerebral cortex plasma flow and venous-arterial concentration differences of ammonia and amino acids, as well as cerebral cortex tissue concentrations, were studied 7 and 14 days after surgery in portacaval-shunted/bile duct-ligated, portacaval-shunted, and sham-operated rats, while the latter two were pair-fed to the first group, and in normal unoperated ad libitum-fed control rats. At both time points, arterial ammonia was elevated in the chronic liver insufficiency groups and arterial glutamine was elevated in portacaval shunt/biliary obstruction rats compared to the other groups. In the chronic liver insufficiency groups net cerebral cortex ammonia uptake was observed at both time points and was accompanied by net glutamine release. Also in these groups, cerebral cortex tissue glutamine, many other amino acid, and ammonia levels were elevated. Tissue glutamate levels were decreased to a similar level in all operated groups compared with normal unoperated rats, irrespective of plasma and tissue ammonia and glutamine levels. These results demonstrate that during chronic liver insufficiency-induced hyperammonemia, the rat cerebral cortex enhances net ammonia uptake and glutamine release. However, the decrease in tissue glutamate concentrations in these chronic liver insufficiency models seems to be related primarily to nutritional status and/or surgical trauma.
Collapse
Affiliation(s)
- C H Dejong
- Department of Surgery, University of Limburg, Maastricht, The Netherlands
| | | | | |
Collapse
|
28
|
Kanamori K, Parivar F, Ross BD. A 15N NMR study of in vivo cerebral glutamine synthesis in hyperammonemic rats. NMR IN BIOMEDICINE 1993; 6:21-26. [PMID: 8096147 DOI: 10.1002/nbm.1940060104] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rats were given intravenous 15NH4+ infusion at a rate of 2.2 or 5.5 mmol/h/kg body wt to induce hyperammonemia, as animal models of hepatic encephalopathy. Its effect on cerebral amino acid metabolism was studied in vivo by 15N NMR spectroscopy at 20.27 MHz for 15N. Cerebral [gamma-15N]glutamine (present at a tissue concentration of 4-9 mumol/g) and [alpha-15N]glutamate/glutamine (6 mumol/g) were clearly observed in living rats within 9-18 min. In portacaval-shunted rats, final cerebral [gamma-15N]glutamine concentrations were higher than those in controls after the same infusion period, presumably because decreased 15NH4+ removal in the liver led to increased 15NH3 diffusion into the astrocytes. In control rats, cerebral [gamma-15N]glutamine pool increased at a rate of 1.7 mumol/h/g when blood ammonia concentration was 0.8 mM. 15N enrichment in gamma-15N was 71%. From these observations, in vivo activity of glutamine synthetase in rat brain was estimated to be 3.5 mumol/h/g. Comparison with reported optimum in vitro activity suggests that in situ concentrations of some substrates and cofactors limit the activity of glutamine synthetase in vivo.
Collapse
Affiliation(s)
- K Kanamori
- Magnetic Resonance Spectroscopy Laboratory, Huntington Medical Research Institutes, Pasadena, CA 91105
| | | | | |
Collapse
|
29
|
Abstract
Hepatic encephalopathy occurs in a number of different species as a result of either congenital portacaval shunts or acquired liver disease. Despite intensive research, the neurochemical basis of the disorder has not been defined. Theories to explain the cerebral dysfunction that accompanies acute or chronic hepatic failure include 1) ammonia acting as the putative neurotoxin, 2) perturbed monoamine neurotransmission as a result of altered plasma amino acid metabolism, 3) an imbalance between excitatory amino acid neurotransmission, mediated by glutamate, and inhibitory amino acid neurotransmission, mediated by gamma-aminobutyric acid, and 4) increased cerebral concentrations of an endogenous benzodiazepine-like substance.
Collapse
Affiliation(s)
- J E Maddison
- Department of Pharmacology, University of Sydney, Australia
| |
Collapse
|
30
|
Swain MS, Bergeron M, Audet R, Blei AT, Butterworth RF. Monitoring of neurotransmitter amino acids by means of an indwelling cisterna magna catheter: a comparison of two rodent models of fulminant liver failure. Hepatology 1992; 16:1028-35. [PMID: 1356903 DOI: 10.1002/hep.1840160428] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alterations of brain and cerebrospinal fluid amino acids have consistently been described in human and experimental fulminant liver failure. To evaluate the significance of such changes in the pathogenesis of hepatic encephalopathy in fulminant liver failure, brain and cerebrospinal fluid amino acids (glutamate, aspartate, GABA, glycine, taurine) were measured at various stages during the development of neurological dysfunction in rats after hepatic devascularization or thioacetamide treatment to induce acute liver failure. To facilitate repetitive removal of cerebrospinal fluid, a technique employing long-term implantation of cisterna magna catheters in conscious, freely moving rats was developed. Brain but not cerebrospinal fluid concentrations of the excitatory amino acids glutamate and aspartate were reduced in both animal models of fulminant liver failure in parallel with deterioration of neurological status. Brain and cerebrospinal fluid GABA levels were not significantly altered. Cerebrospinal fluid glycine levels were increased two to three times in parallel with increasing brain glycine content in the devascularized rat but were unchanged in thioacetamide-induced liver failure, suggesting distinct pathophysiological mechanisms in these two experimental situations. On the other hand, onset of coma in both animal models of fulminant liver failure was accompanied by significantly increased cerebrospinal fluid taurine levels. We suggest that such changes result from taurine release from astrocytes in brain into the extracellular fluid; this is consistent with taurine's role in the regulation of intracellular osmolarity in brain. Sequential measurements of amino acids in the cerebrospinal fluid of small rodents with indwelling cisterna magna catheters adds a useful new approach for exploring the neurobiology of hepatic encephalopathy in fulminant liver failure.
Collapse
Affiliation(s)
- M S Swain
- Laboratory of Neurochemistry, André-Viallet Clinical Research Center, Hôpital Saint-Luc, University of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
31
|
Dejong CH, Kampman MT, Deutz NE, Soeters PB. Cerebral cortex ammonia and glutamine metabolism during liver insufficiency-induced hyperammonemia in the rat. J Neurochem 1992; 59:1071-9. [PMID: 1494899 DOI: 10.1111/j.1471-4159.1992.tb08349.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hyperammonemia has been suggested to induce enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis and accumulation, and finally net glutamine release into the blood stream, but this has never been confirmed in liver insufficiency models. Therefore, cerebral cortex ammonia- and glutamine-related metabolism was studied during liver insufficiency-induced hyperammonemia by measuring plasma flow and venous-arterial concentration differences of ammonia and amino acids across the cerebral cortex (enabling estimation of net metabolite exchange), 1 day after portacaval shunting and 2, 4, and 6 h after hepatic artery ligation (or in controls). The intra-organ effects were investigated by measuring cerebral cortex tissue ammonia and amino acids 6 h after liver ischemia induction or in controls. Arterial ammonia and glutamine increased in portacaval-shunted rats versus controls, and further increased during liver ischemia. Cerebral cortex net ammonia uptake, observed in portacaval-shunted rats, increased progressively during liver ischemia, but net glutamine release was only observed after 6 h of liver ischemia. Cerebral cortex tissue glutamine, gamma-aminobutyric acid, most other amino acids, and ammonia levels were increased during liver ischemia. Glutamate was equally decreased in portacaval-shunted and liver-ischemia rats. The observed net cerebral cortex ammonia uptake, cerebral cortex tissue ammonia and glutamine accumulation, and finally glutamine release into the blood suggest that the rat cerebral cortex initially contributes to net ammonia removal from the blood during liver insufficiency-induced hyperammonemia by augmenting tissue glutamine and ammonia pools, and later by net glutamine release into the blood. The changes in cerebral cortex glutamate and gamma-aminobutyric acid could be related to altered ammonia metabolism.
Collapse
Affiliation(s)
- C H Dejong
- Department of Surgery, University of Limburg, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
32
|
Bosman DK, Deutz NE, Maas MA, van Eijk HM, Smit JJ, de Haan JG, Chamuleau RA. Amino acid release from cerebral cortex in experimental acute liver failure, studied by in vivo cerebral cortex microdialysis. J Neurochem 1992; 59:591-9. [PMID: 1629730 DOI: 10.1111/j.1471-4159.1992.tb09410.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Both increased gamma-aminobutyric acid (GABA)-ergic and decreased glutamatergic neurotransmission have been suggested relative to the pathophysiology of hepatic encephalopathy. This proposed disturbance in neurotransmitter balance, however, is based mainly on brain tissue analysis. Because the approach of whole tissue analysis is of limited value with regard to in vivo neurotransmission, we have studied the extracellular concentrations in the cerebral cortex of several neuroactive amino acids by application of the in vivo microdialysis technique. During acute hepatic encephalopathy induced in rats by complete liver ischemia, increased extracellular concentrations of the neuroactive amino acids glutamate, taurine, and glycine were observed, whereas extracellular concentrations of aspartate and GABA were unaltered and glutamine decreased. It is therefore suggested that hepatic encephalopathy is associated with glycine potentiated glutamate neurotoxicity rather than with a shortage of the neurotransmitter glutamate. In addition, increased extracellular concentration of taurine might contribute to the disturbed neurotransmitter balance. The observation of decreasing glutamine concentrations, after an initial increase, points to a possible astrocytic dysfunction involved in the pathophysiology of hepatic encephalopathy.
Collapse
Affiliation(s)
- D K Bosman
- J. van Gool Laboratory of Experimental Internal Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Swain M, Butterworth RF, Blei AT. Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 1992; 15:449-53. [PMID: 1544626 DOI: 10.1002/hep.1840150316] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pathogenesis of brain edema in acute liver failure is poorly understood. We have previously shown that rats with ischemic acute liver failure (portacaval anastomosis followed by hepatic artery ligation) exhibit brain edema and intracranial hypertension, with swelling of cortical astrocytes as the most prominent neuropathological abnormality. Because ammonia has been shown to induce swelling of astrocytes in vivo and in vitro, we examined the relationship between brain ammonia, amino acids generated from ammonia metabolism and brain water content in this model. Four groups of animals were studied: rats subjected to two sham operations, rats subjected to portacaval anastomosis and a sham operation, rats subjected to a sham operation and hepatic artery ligation and rats subjected to portacaval anastomosis and hepatic artery ligation. The last group of animals was studied at three progressive stages of encephalopathy. Cortical gray matter water increased from 80.26% +/- 0.22% (sham + sham) to 82.46% +/- 0.06% (last stage of devascularization). In cerebral cortex, brain ammonia increased to a maximum of 5.4 mmol/L. Glutamine, generated in glial cells from ammonia and glutamate, increased sixfold to 24 mmol/L and remained at this level throughout all stages of encephalopathy. Alanine, which may be generated from the transamination of glutamine, increased in parallel to the increase in water (r = 0.80, n = 15). In this model of fulminant liver failure and associated brain edema, brain ammonia increases to levels associated with in vitro swelling of brain slices and glial cells. The accumulation of osmogenic aminoacids such as glutamine and alanine may contribute to the selective astrocyte swelling seen in this condition.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Swain
- Laboratory of Neurochemistry, Hôpital Saint-Luc, University of Montreal, Quebec
| | | | | |
Collapse
|
34
|
Dejong CH, Kampman MT, Deutz NE, Soeters PB. Altered glutamine metabolism in rat portal drained viscera and hindquarter during hyperammonemia. Gastroenterology 1992; 102:936-48. [PMID: 1347032 DOI: 10.1016/0016-5085(92)90180-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In normal rats, muscle is the major glutamine releasing organ and gut is the major glutamine consuming organ. It has been suggested that enhanced muscle ammonia detoxification and gut ammonia production occurs during liver insufficiency-induced hyperammonemia. Therefore, ammonia and amino acid fluxes across portal-drained viscera and hindquarter, and muscle concentrations were measured in portacaval shunted and acute liver ischemia rats. Arterial ammonia and most amino acids were increased after portacaval shunting and increased progressively during liver ischemia, but net hindquarter ammonia uptake was not observed. Net hindquarter glutamine efflux was increased during portacaval shunting, but it decreased during liver ischemia, while muscle glutamine concentrations increased. The comparable net portal drained viscera glutamine uptake in normal and portacaval shunted rats changed during liver ischemia from net uptake to release, coinciding with release of most other amino acids. These results cast doubt on the ammonia detoxifying role of muscle during acute liver ischemia-induced hyperammonemia in the rat. The portal drained viscera glutamine release during severe hyperammonemia could be due to intestinal damage.
Collapse
Affiliation(s)
- C H Dejong
- Department of Surgery, University of Limburg, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- C O Record
- Gastroenterology Unit, Royal Victoria Infirmary, University of Newcastle upon Tyne, Newcastle
| |
Collapse
|
36
|
Abstract
Levels of tryptophan in brain are increased by the action of chronic ethanol, particularly in the event of compromised hepatic function. This is likely to result in elevated brain levels of the potent excitotoxin quinolinic acid (quinolinate) since levels of this tryptophan metabolite can be elevated considerably by tryptophan loading. Ethanol may also selectively increase the activity of enzymes important in the synthesis of quinolinic acid such as tryptophan oxygenase. It is concluded that ethanol may generate significant levels of the NMDA receptor agonist, quinolinic acid, possibly even toxic levels in localized brain areas, especially during ethanol withdrawal and when associated with acute or chronic hepatotoxicity.
Collapse
Affiliation(s)
- P F Morgan
- Laboratory of Clinical Studies, National Institute of Alcohol Abuse and Alcoholism, Bethesda, MD 20892
| |
Collapse
|
37
|
Maddison JE, Watson WE, Dodd PR, Johnston GA. Alterations in cortical [3H]kainate and alpha-[3H]amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding in a spontaneous canine model of chronic hepatic encephalopathy. J Neurochem 1991; 56:1881-8. [PMID: 1673994 DOI: 10.1111/j.1471-4159.1991.tb03444.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Excitatory amino acid receptor binding parameters were investigated in a spontaneous dog model of chronic hepatic encephalopathy. L-[3H]Glutamate, (+)-[3H]-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-im ine maleate ([3H]MK-801), [3H]kainate, and alpha-[3H]-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA) binding experiments were performed using crude cerebrocortical synaptosomal membrane preparations from dogs with congenital portosystemic encephalopathy (PSE) and control dogs. There was no change in the affinity or density of L-[3H]-glutamate or [3H]MK-801 binding sites in dogs with congenital PSE compared with control dogs. However, in the PSE dogs there was a significant reduction in the density of [3H]kainate binding sites compared with control dogs and abolition of the low-affinity [3H]AMPA binding site. The relative binding capacity of PSE synaptosomal membranes for [3H]kainate and [3H]AMPA was expressed as the ratio Bmax/KD. There was a significant inverse correlation between the Bmax/KD ratio for [3H]AMPA binding and the worst grade of encephalopathy experienced by each dog. These results suggest that there is a significant perturbation of cerebrocortical non-N-methyl-D-aspartate receptor binding in dogs with congenital PSE which may have relevance to the pathogenesis of hepatic encephalopathy.
Collapse
Affiliation(s)
- J E Maddison
- Department of Pharmacology, University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
38
|
Abstract
Chronic liver failure induced by portocaval anastomosis (PCA) in Wistar rats resulted in a dramatic increase in histamine concentration in hypothalamus and a smaller, but clearly pronounced, elevation in the rest of brain. Between 10 and 120 days following surgery, shunted rats exhibited a histamine level 2.4- to 13-fold higher in hypothalamus and 1.5- to 2.5-fold higher in the rest of brain as compared to their control, sham-operated pairs. There were no significant changes in histamine concentration in the other examined tissues. The increase in brain histamine could not be attributed to the inhibition of its degradation, because activity of histamine N-methyltransferase remained unchanged for at least 40 days. Although the activity of histidine decarboxylase also remained unchanged when measured at a saturating concentration of L-histidine, the increase in histamine content in brain seems to be due to its enhanced synthesis brought about by increased availability of L-histidine in the tissue, as indicated by two to four times higher concentrations of this amino acid in PCA rats.
Collapse
Affiliation(s)
- W A Fogel
- Department of Biogenic Amines, Polish Academy of Sciences, Lodz
| | | | | |
Collapse
|
39
|
Yurdaydin C, Hörtnagl H, Steindl P, Zimmermann C, Pifl C, Singer EA, Roth E, Ferenci P. Increased serotoninergic and noradrenergic activity in hepatic encephalopathy in rats with thioacetamide-induced acute liver failure. Hepatology 1990; 12:695-700. [PMID: 1698704 DOI: 10.1002/hep.1840120413] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Functional changes of various neurotransmitter systems have been implicated in the pathogenesis of hepatic encephalopathy. In this study the role of brain monoaminergic neurotransmitter systems in hepatic encephalopathy was investigated in rats with thioacetamide-induced acute liver failure. Concentrations of serotonin, dopamine, noradrenaline and of their metabolites 5-hydroxyindoleacetic acid, dihydroxyphenylalanine (following inhibition of dihydroxyphenylalanine-decarboxylase), dihydroxyphenylacetic acid, homovanillic acid and 3-methoxy-4-hydroxyphenyl-glycol, were measured in the cerebral cortex, striatum and hippocampus by high performance liquid chromatography with electrochemical detection. In hepatic encephalopathy concentrations of 5-hydroxyindoleacetic acid were increased in all three brain areas (196%, 204% and 264% of saline-treated controls, p less than 0.01), and concentrations of serotonin were increased in the frontal cortex (121%, p less than 0.01). In the frontal cortex and hippocampus of encephalopathic rats dopamine levels were increased (157% and 289%, p less than 0.05), and levels of noradrenaline (53% and 46%, p less than 0.05) were decreased associated with increased 3-methoxy-4-hydroxyphenylglycol levels (173% and 206%, p less than 0.05). The extent of these changes correlated with the stage of hepatic encephalopathy. In hepatic encephalopathy dihydroxyphenylalanine accumulation was increased in the hippocampus and unchanged in the cerebral cortex. Dopamine, noradrenaline, dihydroxyphenylacetic acid and homovanillic acid concentrations were unchanged in the striatum. The results of this study indicate that hepatic encephalopathy in thioacetamide-induced acute liver failure in rats is associated with neurochemical changes, suggesting an increased activity of the noradrenergic and serotoninergic neurotransmitter systems.
Collapse
Affiliation(s)
- C Yurdaydin
- First Department of Gastroenterology and Hepatology, University of Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bosman DK, Deutz NE, De Graaf AA, vd Hulst RW, Van Eijk HM, Bovée WM, Maas MA, Jörning GG, Chamuleau RA. Changes in brain metabolism during hyperammonemia and acute liver failure: results of a comparative 1H-NMR spectroscopy and biochemical investigation. Hepatology 1990; 12:281-90. [PMID: 1975248 DOI: 10.1002/hep.1840120215] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of hyperammonemia on brain function have been studied in three different experimental models in the rat: acute liver ischemia, urease-treated animals and methionine sulfoximine-treated animals. To quantify the development of encephalopathy, clinical grading and electroencephalographic spectral analysis were used as indicators. In all three experimental models brain ammonia concentrations increased remarkably associated with comparable increases in severity of encephalopathy. Furthermore, in vivo 1H-nuclear magnetic resonance spectroscopy of a localized cerebral cortex region showed a decrease in glutamate concentration in each of the aforementioned experimental models. This decreased cerebral cortex glutamate concentration was confirmed by biochemical analysis of cerebral cortex tissue post mortem. Furthermore, an increase in cerebral cortex glutamine and lactate concentration was observed in urease-treated rats and acute liver ischemia rats. As expected, no increase in cerebral cortex glutamine was observed in methionine sulfoximine-treated rats. These data support the hypothesis that ammonia is of key importance in the pathogenesis of acute hepatic encephalopathy. Decreased availability of cerebral cortex glutamate for neurotransmission might be a contributing factor to the pathogenesis of hyperammonemic encephalopathy. A surprising new finding revealed by 1H-nuclear magnetic resonance spectroscopy was a decrease of cerebral cortex phosphocholine compounds in all three experimental models. The significance of this finding, however, remains speculative.
Collapse
Affiliation(s)
- D K Bosman
- Laboratory of Experimental Medicine, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mans AM, DeJoseph MR, Davis DW, Viña JR, Hawkins RA. Early establishment of cerebral dysfunction after portacaval shunting. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 259:E104-10. [PMID: 2372051 DOI: 10.1152/ajpendo.1990.259.1.e104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Portacaval shunting in rats results in brain dysfunction, as indicated by reduced energy metabolism and behavioral abnormalities, as well as many biochemical changes in plasma and brain. No etiological connections have been made between these findings, which have been studied mainly 2 wk or more after shunting. To determine how soon the various abnormalities occur and which are associated temporally with the decrease in brain glucose use, we studied shunted and sham-operated rats between 6 h and 11 days after surgery. Six hours after portacaval shunting, plasma aromatic amino acids, brain glutamine, aromatic amino acids, 5-hydroxyindoleacetic acid, and tryptophan transport into the brain were all significantly higher than normal. Brain glucose use showed a downward trend and was fully depressed within 1 day. Plasma branched-chain amino acids and threonine were decreased, and brain serotonin and norepinephrine content increased only after 2 days; these changes were therefore dissociated from the other abnormalities that developed in a shorter period. The results showed that the cerebral dysfunction characteristic of portacaval shunting began within hours and was fully established by 2 days.
Collapse
Affiliation(s)
- A M Mans
- Department of Anesthesia, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033
| | | | | | | | | |
Collapse
|
42
|
Effects of branched chain amino acids and ketoanalogues on brain branched chain and aromatic amino acids in experimental liver disease. Amino Acids 1990. [DOI: 10.1007/978-94-011-2262-7_105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Bergeron M, Reader TA, Layrargues GP, Butterworth RF. Monoamines and metabolites in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Neurochem Res 1989; 14:853-9. [PMID: 2480534 DOI: 10.1007/bf00964814] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alterations in the metabolism of monoamine neurotransmitters have been proposed to be involved in the development of the hepatic encephalopathy (HE) associated with experimental and human liver failure. In order to evaluate this hypothesis, the monoamines and some of their metabolites were measured in homogenates of caudate nucleus (CAU), prefrontal (PFCo) and frontal cortex (FCo) dissected from brains obtained at autopsy from nine cirrhotic patients who had died in hepatic coma and an equal number of control subjects, free from neurological, psychiatric and hepatic disorders, matched for age and time interval from death to freezing of autopsied brain samples. Monoamine measurements were performed by high-performance liquid chromatography with ion-pairing and electrochemical detection after a simple extraction procedure. In all three regions investigated, concentrations of dopamine (DA) were unchanged in cirrhotic patients vs controls while its metabolites, 3-methoxytyramine (3-MT) and homovanillic acid (HVA) were selectively affected i.e. 3-MT was found to be increased in CAU, while HVA levels were increased in FCo and CAU. DOPAC was also found to be unchanged in CAU. Noradrenaline (NA) levels were greatly increased in PFCo and FCo of cirrhotic patients but remained unchanged in CAU. No significant differences in the concentrations of either serotonin (5-HT) or of its precursor 5-hydroxytryptophan (5-HTP) were found in any of the three regions studied. However, 5-hydroxyindoleacetic acid (5-HIAA), the major metabolite of 5-HT, was increased in PFCo and CAU of cirrhotic patients. These findings show that selective alterations of catecholamine and 5-HT systems are involved in human HE and therefore, they may play an important role in the pathogenesis of certain neurological symptoms associated with this encephalopathy.
Collapse
Affiliation(s)
- M Bergeron
- Laboratory of Neurochemistry, André-Viallet Clinical Research Centre, Hôpital Saint-Luc, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
44
|
Bergeron M, Layrargues GP, Butterworth RF. Aromatic and branched-chain amino acids in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Metab Brain Dis 1989; 4:169-76. [PMID: 2796871 DOI: 10.1007/bf01000293] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Concentrations of the branched-chain amino acids (BCAAs) valine, leucine, and isoleucine and the aromatic amino acids (AAAs) phenylalanine and tyrosine were measured in three areas of dissected brain tissue obtained at autopsy from nine cirrhotic patients who died in hepatic encephalopathy. The controls were an equal number of subjects free from neurological, psychiatric or hepatic diseases, matched for age and time interval from death to freezing of autopsied brain samples. Amino acids were measured using high-performance liquid chromatography with fluorimetric detection. In brain tissue of cirrhotic patients, no changes in BCAA concentrations were observed compared with controls. On the other hand, phenylalanine levels were found to be increased 141% in prefrontal cortex, 86% in frontal cortex and 26% in caudate nucleus, and tyrosine content was increased by 71% in prefrontal cortex and 28% in frontal cortex with no significant increase in caudate nucleus. Alterations in the concentration of AAAs may lead to disturbances of monoamine neurotransmitters in brain. Such changes could play a role in the pathogenesis of hepatic encephalopathy resulting from chronic liver disease in man.
Collapse
Affiliation(s)
- M Bergeron
- Laboratory of Neurochemistry, André-Viallet Clinical Research Centre, Hôpital Saint-Luc (University of Montreal), Quebec, Canada
| | | | | |
Collapse
|
45
|
Ganz R, Swain M, Traber P, DalCanto M, Butterworth RF, Blei AT. Ammonia-induced swelling of rat cerebral cortical slices: implications for the pathogenesis of brain edema in acute hepatic failure. Metab Brain Dis 1989; 4:213-23. [PMID: 2796874 DOI: 10.1007/bf01000297] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pathogenesis of brain edema in fulminant hepatic failure is incompletely understood. Our previous studies in models of this disease suggest the presence of a cytotoxic mechanism; as cortical astrocytes appeared predominantly swollen, we hypothesized that ammonia, metabolized to glutamine solely within this cell, could play a role in brain water accumulation. We determined ammonia levels in different brain regions of rats after hepatic devascularization, a model previously shown to exhibit brain edema. Concentrations of 2.5 mM were observed in the edematous cerebral cortex. We then added several concentrations of ammonium chloride to the first cortical brain slice, a preparation used to study cytotoxic brain edema. At a final bath concentration of ammonia of 5 and 10 mM, swelling could be detected: a decrease in the space of distribution of inulin was seen at the 10 mM concentration, suggesting intracellular water accumulation. Neuropathologically, astrocytes appeared involved even at subswelling doses of ammonia. Octanoic acid, at a 10 mM concentration, also resulted in demonstrable swelling. Ammonia, at concentrations in the incubation bath that approach the levels seen in an in vivo model of brain edema, results in water accumulation of cortical brain slices. Toxins implicated in the pathogenesis of hepatic encephalopathy, such as ammonia and octanoic acid, may, result in brain water accumulation.
Collapse
Affiliation(s)
- R Ganz
- Department of Medicine, Lakeside VA Medical Center, Chicago, Illinois 60611
| | | | | | | | | | | |
Collapse
|
46
|
Díaz-Muñoz M, Tapia R. Regional brain GABA metabolism and release during hepatic coma produced in rats chronically treated with carbon tetrachloride. Neurochem Res 1988; 13:37-44. [PMID: 3368028 DOI: 10.1007/bf00971852] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hepatic coma was induced in rats chronically treated with CCl4, by means of a single injection of ammonium acetate. The activities of glutamate decarboxylase (GAD) and GABA transaminase (GABA-T), as well as the synaptosomal uptake and release of [3H]GABA, were measured in the following brain areas of the comatose rats: cortex, striatum, hypothalamus, hippocampus, midbrain and cerebellum. Hepatic coma was associated with a general decrease of GAD activity, whereas GABA-T activity was diminished only in the hypothalamus, striatum and midbrain. During hepatic coma, the K+-stimulated [3H]GABA release was notably diminished in the striatum and cerebellum, whereas a significant increase was observed in the hippocampus. [3H]GABA uptake increased in most regions after CCl4 treatment, independently of the presence of coma. The results indicate that GABAergic transmission seems to be decreased in most cerebral regions during hepatic coma.
Collapse
Affiliation(s)
- M Díaz-Muñoz
- Departamento de Neurociencias, Universidad Nacional Autónoma de México, México, D. F
| | | |
Collapse
|
47
|
Bengtsson F, Bugge M, Vagianos C, Jeppsson B, Nobin A. Brain serotonin metabolism and behavior in rats with carbon tetrachloride-induced liver cirrhosis. RESEARCH IN EXPERIMENTAL MEDICINE. ZEITSCHRIFT FUR DIE GESAMTE EXPERIMENTELLE MEDIZIN EINSCHLIESSLICH EXPERIMENTELLER CHIRURGIE 1987; 187:429-38. [PMID: 3441684 DOI: 10.1007/bf01852181] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Increased brain serotonin metabolism has been suggested as an etiologic factor in the development of portal-systemic encephalopathy (PSE) in connection with liver disease. We therefore investigated brain serotonin metabolism and open-field behavior (spontaneous activity and exploration) in rats with carbon tetrachloride (CCl4)-induced liver cirrhosis. Brain serotonin metabolism was evaluated in rats pretreated with an amino acid decarboxylase inhibitor. The 5-hydroxyindoles were analyzed by high-performance liquid chromatography (HPLC) with electrochemical detection. The results revealed an increased serotonin synthesis rate in all investigated brain regions in rats with histologically verified diffuse micronodular cirrhosis of the liver. Slightly impaired open-field behavior (i.e., decreased spontaneous activity) in the cirrhotic rats could not be excluded. However, the elevated brain serotonin synthesis rate could not be correlated to any abnormalities in open-field behavior.
Collapse
Affiliation(s)
- F Bengtsson
- Dept. of Surgery, University of Lund, Sweden
| | | | | | | | | |
Collapse
|
48
|
Hawkins RA, Mans AM, Biebuyck JF. Changes in brain metabolism in hepatic encephalopathy. NEUROCHEMICAL PATHOLOGY 1987; 6:35-66. [PMID: 3306481 DOI: 10.1007/bf02833600] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
49
|
Bugge M, Bengtsson F, Nobin A, Holmin T, Jeppsson B, Hultberg B, Falck B, Herlin P. Amino acids and indoleamines in the brain after infusion of branched-chain amino acids to rats with liver ischemia. JPEN J Parenter Enteral Nutr 1986; 10:474-8. [PMID: 2428987 DOI: 10.1177/0148607186010005474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rats with a portacaval anastomosis and ligation of the hepatic artery 2 days later were infused for 6 hr with a 10% glucose solution (group I) or the same solution combined with 0.24 M/liter branched-chain amino acids (BCAA, group II). Control animals with portacaval anastomosis and sham-operation (group III) or two sham-operations (group IV) were infused with a 10% glucose solution. The rats were killed by decapitation and indoleamines and amino acids were determined in the brain. Rats with liver ischemia were stuporous at the end of the experiment irrespective of treatment. The concentrations in the cortex of lysine, methionine, phenylalanine, threonine, alanine, glutamine, glycine, histidine, and tyrosine were significantly increased in group I compared to group IV. Infusion of BCAA to rats with liver-ischemia (group II) resulted in significantly lower concentrations of lysine, methionine, phenylalanine, threonine, histidine and tyrosine and increased concentrations of isoleucine, leucine, valine, and arginine compared to group I. The content of serotonin in the cortex and brain stem was significantly increased in group I compared with the BCAA-treated animals (group II) and the control groups III and IV. The concentrations of 5-hydroxyindoleacetic acid (5-HIAA) in the cortex and brain stem were higher in group I than in group IV. Infusion of BCAA to rats with liver ischemia normalized the concentrations of 5-HIAA in the cortex and brain stem.
Collapse
|
50
|
Moroni F, Lombardi G, Robitaille Y, Etienne P. Senile dementia and Alzheimer's disease: lack of changes of the cortical content of quinolinic acid. Neurobiol Aging 1986; 7:249-53. [PMID: 2944022 DOI: 10.1016/0197-4580(86)90003-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The content of Quinolinic Acid (QUIN) was fragmentographically measured in the frontal, parietal and temporal cortex obtained at autopsy from patients affected by Alzheimer's disease-senile dementia Alzheimer type (AD/SDAT) or matched controls. The density of large cholinergic neurons in the nucleus basalis magnocellularis and the density of plaques in the hippocampal formation, parietal and frontal cortex of these patients was also evaluated in order to obtain a quantitative estimation of the Alzheimer type changes. In the three cortical areas studied, the content of QUIN was similar in AD/SDAT patients and age matched controls. The AD/SDAT patients had an important reduction of the number of large cholinergic neurons in the nucleus basalis magnocellularis and a much higher density of plaques in cortex and in hippocampus than age matched controls. The data reported here do not support the possibility than an accumulation of QUIN plays a role in the neuronal degeneration occurring in the cortex of patients affected by AD/SDAT.
Collapse
|