1
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
2
|
Smirnova EV, Rakitina TV, Ziganshin RH, Saratov GA, Arapidi GP, Belogurov AA, Kudriaeva AA. Identification of Myelin Basic Protein Proximity Interactome Using TurboID Labeling Proteomics. Cells 2023; 12:cells12060944. [PMID: 36980286 PMCID: PMC10047773 DOI: 10.3390/cells12060944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath.
Collapse
Affiliation(s)
- Evgeniya V Smirnova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana V Rakitina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - George A Saratov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
| | - Georgij P Arapidi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alexey A Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
3
|
Deconvolution of the MBP-Bri2 Interaction by a Yeast Two Hybrid System and Synergy of the AlphaFold2 and High Ambiguity Driven Protein-Protein Docking. CRYSTALS 2022. [DOI: 10.3390/cryst12020197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myelin basic protein (MBP) is one of the key proteins in the development of multiple sclerosis (MS). However, very few intracellular MBP partners have been identified up to now. In order to find proteins interacting with MBP in the brain, an expression library from the human brain was screened using a yeast two-hybrid system. Here we showed that MBP interacts with the C-terminal 24-residue peptide of Integral transmembrane protein II associated with familial British and Danish dementia (ITM2B/Bri2 or Bri2). This peptide (Bri23R) was one residue longer than the known Bri23 peptide, which is cleaved from the C-terminus of Bri2 during its maturation in the Golgi and has physiological activity as a modulator of amyloid precursor protein processing. Since the spatial structures for both MBP and Bri2 were not known, we used computational methods of structural biology including an artificial intelligence system AlphaFold2 and high ambiguity driven protein-protein docking (HADDOCK 2.1) to gain a mechanistic explanation of the found protein-protein interaction and elucidate a possible structure of the complex of MBP with Bri23R peptide. As expected, MBP was mostly unstructured, although it has well-defined α-helical regions, while Bri23R forms a stable β-hairpin. Simulation of the interaction between MBP and Bri23R in two different environments, as parts of the two-hybrid system fusion proteins and in the form of single polypeptides, showed that MBP twists around Bri23R. The observed interaction results in the adjustment of the size of the internal space between MBP α-helices to the size of the β-hairpin of Bri23R. Since Bri23 is known to inhibit aggregation of amyloid oligomers, and the association of MBP to the inner leaflet of the membrane bilayer shares features with amyloid fibril formation, Bri23 may serve as a peptide chaperon for MBP, thus participating in myelin membrane assembly.
Collapse
|
4
|
Tachikawa M, Watanabe M, Fukaya M, Sakai K, Terasaki T, Hosoya KI. Cell-Type-Specific Spatiotemporal Expression of Creatine Biosynthetic Enzyme S-adenosylmethionine:guanidinoacetate N-methyltransferase in Developing Mouse Brain. Neurochem Res 2017; 43:500-510. [DOI: 10.1007/s11064-017-2446-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/18/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
|
5
|
DiCarlo LM, Vied C, Nowakowski RS. The stability of the transcriptome during the estrous cycle in four regions of the mouse brain. J Comp Neurol 2017; 525:3360-3387. [PMID: 28685836 DOI: 10.1002/cne.24282] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 01/21/2023]
Abstract
We analyzed the transcriptome of the C57BL/6J mouse hypothalamus, hippocampus, neocortex, and cerebellum to determine estrous cycle-specific changes in these four brain regions. We found almost 16,000 genes are present in one or more of the brain areas but only 210 genes, ∼1.3%, are significantly changed as a result of the estrous cycle. The hippocampus has the largest number of differentially expressed genes (DEGs) (82), followed by the neocortex (76), hypothalamus (63), and cerebellum (26). Most of these DEGs (186/210) are differentially expressed in only one of the four brain regions. A key finding is the unique expression pattern of growth hormone (Gh) and prolactin (Prl). Gh and Prl are the only DEGs to be expressed during only one stage of the estrous cycle (metestrus). To gain insight into the function of the DEGs, we examined gene ontology and phenotype enrichment and found significant enrichment for genes associated with myelination, hormone stimulus, and abnormal hormone levels. Additionally, 61 of the 210 DEGs are known to change in response to estrogen in the brain. 50 of the 210 genes differentially expressed as a result of the estrous cycle are related to myelin and oligodendrocytes and 12 of the 63 DEGs in the hypothalamus are oligodendrocyte- and myelin-specific genes. This transcriptomic analysis reveals that gene expression in the female mouse brain is remarkably stable during the estrous cycle and demonstrates that the genes that do fluctuate are functionally related.
Collapse
Affiliation(s)
- Lisa M DiCarlo
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Cynthia Vied
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida.,Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, Florida
| | - Richard S Nowakowski
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| |
Collapse
|
6
|
Expression of proteolipid protein gene in spinal cord stem cells and early oligodendrocyte progenitor cells is dispensable for normal cell migration and myelination. J Neurosci 2014; 34:1333-43. [PMID: 24453324 DOI: 10.1523/jneurosci.2477-13.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plp1 gene expression occurs very early in development, well before the onset of myelination, creating a conundrum with regard to the function of myelin proteolipid protein (PLP), one of the major proteins in compact myelin. Using PLP-EGFP mice to investigate Plp1 promoter activity, we found that, at very early time points, PLP-EGFP was expressed in Sox2+ undifferentiated precursors in the spinal cord ventricular zone (VZ), as well as in the progenitors of both neuronal and glial lineages. As development progressed, most PLP-EGFP-expressing cells gave rise to oligodendrocyte progenitor cells (OPCs). The expression of PLP-EGFP in the spinal cord was quite dynamic during development. PLP-EGFP was highly expressed as cells delaminated from the VZ. Expression was downregulated as cells moved laterally through the cord, and then robustly upregulated as OPCs differentiated into mature myelinating oligodendrocytes. The presence of PLP-EGFP expression in OPCs raises the question of its role in this migratory population. We crossed PLP-EGFP reporter mice into a Plp1-null background to investigate the role of PLP in early OPC development. In the absence of PLP, normal numbers of OPCs were generated and their distribution throughout the spinal cord was unaffected. However, the orientation and length of OPC processes during migration was abnormal in Plp1-null mice, suggesting that PLP plays a role either in the structural integrity of OPC processes or in their response to extracellular cues that orient process outgrowth.
Collapse
|
7
|
Marom L, Ulitsky I, Cabilly Y, Shamir R, Elroy-Stein O. A point mutation in translation initiation factor eIF2B leads to function--and time-specific changes in brain gene expression. PLoS One 2011; 6:e26992. [PMID: 22073122 PMCID: PMC3205039 DOI: 10.1371/journal.pone.0026992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/07/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mutations in eukaryotic translation initiation factor 2B (eIF2B) cause Childhood Ataxia with CNS Hypomyelination (CACH), also known as Vanishing White Matter disease (VWM), which is associated with a clinical pathology of brain myelin loss upon physiological stress. eIF2B is the guanine nucleotide exchange factor (GEF) of eIF2, which delivers the initiator tRNA(Met) to the ribosome. We recently reported that a R132H mutation in the catalytic subunit of this GEF, causing a 20% reduction in its activity, leads under normal conditions to delayed brain development in a mouse model for CACH/VWM. To further explore the effect of the mutation on global gene expression in the brain, we conducted a wide-scale transcriptome analysis of the first three critical postnatal weeks. METHODOLOGY/PRINCIPAL FINDINGS Genome-wide mRNA expression of wild-type and mutant mice was profiled at postnatal (P) days 1, 18 and 21 to reflect the early proliferative stage prior to white matter establishment (P1) and the peak of oligodendrocye differentiation and myelin synthesis (P18 and P21). At each developmental stage, between 441 and 818 genes were differentially expressed in the mutant brain with minimal overlap, generating unique time point-specific gene expression signatures. CONCLUSIONS The current study demonstrates that a point mutation in eIF2B, a key translation initiation factor, has a massive effect on global gene expression in the brain. The overall changes in expression patterns reflect multiple layers of indirect effects that accumulate as the brain develops and matures. The differentially expressed genes seem to reflect delayed waves of gene expression as well as an adaptation process to cope with hypersensitivity to cellular stress.
Collapse
Affiliation(s)
- Liraz Marom
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Igor Ulitsky
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Cabilly
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Orna Elroy-Stein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
- Interdisciplinary School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Pereira GB, Dobretsova A, Hamdan H, Wight PA. Expression of myelin genes: comparative analysis of Oli-neu and N20.1 oligodendroglial cell lines. J Neurosci Res 2011; 89:1070-8. [PMID: 21472765 PMCID: PMC3088771 DOI: 10.1002/jnr.22625] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/07/2011] [Accepted: 01/20/2011] [Indexed: 01/20/2023]
Abstract
The use of immortalized cells has been instrumental as a tool with which to study gene regulation. However, it is crucial to understand the status of a given cell line, especially when investigating the regulation of genes whose expression is developmentally regulated. Several immortalized cell lines have been derived from primary cultures of mouse oligodendrocytes. Two such cell lines, N20.1 and Oli-neu, were characterized here in terms of their relative expression of myelin genes at both the mRNA level and the protein level. Analysis of the splice isoforms expressed by the myelin proteolipid protein (Plp1), myelin basic protein (Mbp), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) genes, along with the relative amount of protein expressed by these genes, suggests that the cell lines are representative of immature oligodendrocytes, although Oli-neu cells appear to be farther along the differentiation pathway compared with N20.1 cells. Previous studies have shown that the developmental increase in Plp1 gene expression that occurs during the active myelination period is governed by transcription regulatory elements present within the first intron. The responsiveness of one of these elements, the so-called antisilencer/enhancer (ASE), was investigated in both cell lines. Results presented here suggest that the ASE has a much more potent effect in Oli-neu cells. Thus, the two cell lines appear to be at different stages and will be useful as a means to study transcription regulatory elements whose influence changes during development.
Collapse
Affiliation(s)
- Glauber B. Pereira
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Anna Dobretsova
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Hamdan Hamdan
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Patricia A. Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
9
|
Miller MJ, Kangas CD, Macklin WB. Neuronal expression of the proteolipid protein gene in the medulla of the mouse. J Neurosci Res 2010; 87:2842-53. [PMID: 19479988 DOI: 10.1002/jnr.22121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The proteolipid protein (PLP) gene (Plp) encodes the major myelin proteins, PLP and DM20. Expression of Plp occurs predominantly in oligodendrocytes, but evidence is accumulating that this gene is also expressed in neurons. In earlier studies, we demonstrated that myelin-deficient (MD) rats, which carry a mutation in the Plp gene, exhibit lethal hypoxic ventilatory depression. Furthermore, we found that, in the MD rat, PLP accumulated in neuronal cell bodies in the medulla oblongata. In the current study, we sought to determine which neurons expressed the Plp gene in the medulla oblongata and whether Plp gene expression changed in neurons with maturation. A transgenic mouse expressing the Plp promoter driving expression of enhanced green fluorescent protein (Plp-EGFP) was used to identify neurons expressing this gene. Plp expression in neurons was confirmed by immunostaining EGFP-positive cells for NeuN and by in situ hybridization for PLP mRNA. The numbers of neurons expressing Plp-EGFP and their distribution increased between P5 and P10 in the medulla. Immunostaining for surface receptors and classes of neurons expressing Plp-EGFP revealed that Plp gene expression in brainstem neurons was restricted to neurons expressing specific ligand-gated channels and biosynthetic enzymes, including glutamatergic NMDA receptors, GABA(A) receptors, and ChAT in defined areas of the medulla. Plp gene expression was rarely found in interneurons expressing GABA and was never found in AMPA receptor- or tyrosine hydroxylase-expressing neurons. Thus, Plp expression in the mouse caudal medulla was found to be developmentally regulated and restricted to specific groups of neurons.
Collapse
Affiliation(s)
- Martha J Miller
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
10
|
Eckhardt M, Yaghootfam A, Fewou SN, Zöller I, Gieselmann V. A mammalian fatty acid hydroxylase responsible for the formation of alpha-hydroxylated galactosylceramide in myelin. Biochem J 2009; 388:245-54. [PMID: 15658937 PMCID: PMC1186713 DOI: 10.1042/bj20041451] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydroxylation is an abundant modification of the ceramides in brain, skin, intestinal tract and kidney. Hydroxylation occurs at the sphingosine base at C-4 or within the amide-linked fatty acid. In myelin, hydroxylation of ceramide is exclusively found at the alpha-C atom of the fatty acid moiety. alpha-Hydroxylated cerebrosides are the most abundant lipids in the myelin sheath. The functional role of this modification, however, is not known. On the basis of sequence similarity to a yeast C26 fatty acid hydroxylase, we have identified a murine cDNA encoding FA2H (fatty acid 2-hydroxylase). Transfection of FA2H cDNA in CHO cells (Chinese-hamster ovary cells) led to the formation of alpha-hydroxylated fatty acid containing hexosylceramide. An EGFP (enhanced green fluorescent protein)-FA2H fusion protein co-localized with calnexin, indicating that the enzyme resides in the endoplasmic reticulum. FA2H is expressed in brain, stomach, skin, kidney and testis, i.e. in tissues known to synthesize fatty acid alpha-hydroxylated sphingolipids. The time course of its expression in brain closely follows the expression of myelin-specific genes, reaching a maximum at 2-3 weeks of age. This is in agreement with the reported time course of fatty acid alpha-hydroxylase activity in the developing brain. In situ hybridization of brain sections showed expression of FA2H in the white matter. Our results thus strongly suggest that FA2H is the enzyme responsible for the formation of alpha-hydroxylated ceramide in oligodendrocytes of the mammalian brain. Its further characterization will provide insight into the functional role of alpha-hydroxylation modification in myelin, skin and other organs.
Collapse
Affiliation(s)
- Matthias Eckhardt
- Institut für Physiologische Chemie, Rheinische-Friedrich-Wilhelms Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| | | | | | | | | |
Collapse
|
11
|
Anitei M, Cowan AE, Pfeiffer SE, Bansal R. Role for Rab3a in oligodendrocyte morphological differentiation. J Neurosci Res 2009; 87:342-52. [PMID: 18798275 DOI: 10.1002/jnr.21870] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rab3a, a small GTPase important for exocytosis, is uniquely up-regulated as oligodendrocytes enter terminal differentiation and initiate myelin biosynthesis. In this study, we analyze the role of this protein in oligodendrocyte morphological differentiation by using Rab3a overexpression and siRNAi-mediated Rab3a silencing. We found that Rab3a silencing delayed mature oligodendrocyte morphological differentiation but did not interfere with lineage progression of OL progenitors; this is consistent with the high levels of Rab3a expressed by mature oligodendrocytes compared with progenitor cells. Overexpression of GTP-bound, but not that of wild-type, Rab3a delayed OL morphological differentiation; this suggests that expression of a GTP-bound Rab3a mutant interferes with the normal function of endogenous Rab3a. We have also identified in oligodendrocytes two other exocytic small GTPases, Rab27B and RalA. Together, these findings indicate that Rab3a specifically stimulates morphological differentiation of mature oligodendrocytes and thus may be part of the necessary machinery for myelin membrane biogenesis.
Collapse
Affiliation(s)
- Mihaela Anitei
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut 06030-3401, USA
| | | | | | | |
Collapse
|
12
|
Zeger M, Popken G, Zhang J, Xuan S, Lu QR, Schwab MH, Nave KA, Rowitch D, D’Ercole AJ, Ye P. Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia 2007; 55:400-11. [PMID: 17186502 PMCID: PMC1774584 DOI: 10.1002/glia.20469] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Insulin-like growth factor-I (IGF-I) has been shown to be a potent agent in promoting the growth and differentiation of oligodendrocyte precursors, and in stimulating myelination during development and following injury. To definitively determine whether IGF-I acts directly on the cells of oligodendrocyte lineage, we generated lines of mice in which the type 1 IGF receptor gene (igf1r) was conditionally ablated either in Olig1 or proteolipid protein expressing cells (termed IGF1R(pre-oligo-ko) and IGF1R(oligo-ko) mice, respectively). Compared with wild type mice, IGF1R(pre-oligo-ko) mice had a decreased volume (by 35-55%) and cell number (by 54-70%) in the corpus callosum (CC) and anterior commissure at 2 and 6 weeks of age, respectively. IGF1R(oligo-ko) mice by 25 weeks of age also showed reductions, albeit less marked, in CC volume and cell number. Unlike astrocytes, the percentage of NG2(+) oligodendrocyte precursors was decreased by approximately 13% in 2-week-old IGF1R(pre-oligo-ko) mice, while the percentage of CC1(+) mature oligodendrocytes was decreased by approximately 24% in 6-week-old IGF1R(pre-oligo-ko) mice and approximately 25% in 25-week-old IGF1R(oligo-ko) mice. The reduction in these cells is apparently a result of decreased proliferation and increased apoptosis. These results indicate that IGF-I directly affects oligodendrocytes and myelination in vivo via IGF1R, and that IGF1R signaling in the cells of oligodendrocyte lineage is required for normal oligodendrocyte development and myelination. These data also provide a fundamental basis for developing strategies with the potential to target IGF-IGF1R signaling pathways in oligodendrocyte lineage cells for the treatment of demyelinating disorders.
Collapse
Affiliation(s)
- Martha Zeger
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Greg Popken
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jihui Zhang
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shouhong Xuan
- Dept of Genetics and Development, Columbia University, New York, New York
| | - Q. Richard Lu
- Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - Markus H. Schwab
- Dept of Neurogenetics, Max Planck Institute of Experimental Medicine, Germany
| | - Klaus-Armin Nave
- Dept of Neurogenetics, Max Planck Institute of Experimental Medicine, Germany
| | - David Rowitch
- Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - A. Joseph D’Ercole
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ping Ye
- Dept of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Correspondence should be addressed to Dr. Ping Ye, Department of Pediatrics, CB# 7039, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7039, Tel: (919) 966-4435, Fax: (919) 966-2423, E-mail:
| |
Collapse
|
13
|
Wight PA, Duchala CS, Shick HE, Gudz TI, Macklin WB. Expression of a myelin proteolipid protein (Plp)-lacZ transgene is reduced in both the CNS and PNS of Plp(jp) mice. Neurochem Res 2006; 32:343-51. [PMID: 17191136 PMCID: PMC1976413 DOI: 10.1007/s11064-006-9202-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 10/11/2006] [Indexed: 12/19/2022]
Abstract
Jimpy (Plp(jp)) is an X-linked recessive mutation in mice that causes CNS dysmyelination and early death in affected males. It results from a point mutation in the acceptor splice site of myelin proteolipid protein (Plp) exon 5, producing transcripts that are missing exon 5, with a concomitant shift in the downstream reading frame. Expression of the mutant PLP product in Plp(jp) males leads to hypomyelination and oligodendrocyte death. Expression of our Plp-lacZ fusion gene, PLP(+)Z, in transgenic mice is an excellent readout for endogenous Plp transcriptional activity. The current studies assess expression of the PLP(+)Z transgene in the Plp(jp) background. These studies demonstrate that expression of the transgene is decreased in both the central and peripheral nervous systems of affected Plp(jp) males. Thus, expression of mutated PLP protein downregulates Plp gene activity both in oligodendrocytes, which eventually die, and in Schwann cells, which are apparently unaffected in Plp(jp) mice.
Collapse
Affiliation(s)
- Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | | | | | | |
Collapse
|
14
|
Zhao L, Tian D, Xia M, Macklin WB, Feng Y. Rescuing qkV dysmyelination by a single isoform of the selective RNA-binding protein QKI. J Neurosci 2006; 26:11278-86. [PMID: 17079655 PMCID: PMC6674528 DOI: 10.1523/jneurosci.2677-06.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of the qkI transcript generates multiple isoforms of the selective RNA-binding protein QKI, which play key roles in controlling the homeostasis of their mRNA targets. QKI deficiency in oligodendrocytes of homozygous quakingviable (qkV/qkV) mutant mice results in severe hypomyelination, indicating the essential function of QKI in myelinogenesis. However, the molecular mechanisms by which QKI controls myelination remain elusive. We report here that QKI-6 is the most abundant isoform in brain and is preferentially reduced in the qkV/qkV mutant during normal myelinogenesis. To test whether QKI-6 is the predominant isoform responsible for advancing CNS myelination, we developed transgenic mice that express Flag-QKI-6 specifically in the oligodendroglia lineage, driven by the proteolipid protein (PLP) promoter. When introduced into the qkV/qkV mutant, the QKI-6 transgene rescues the severe tremor and hypomyelination phenotype. Electron microscopic studies further revealed that the Flag-QKI-6 transgene is sufficient for restoring compact myelin formation with normal lamellar periodicity and thickness. Interestingly, Flag-QKI-6 preferentially associates with the mRNA encoding the myelin basic protein (MBP) and rescues MBP expression from the beginning of myelinogenesis. In contrast, Flag-QKI-6 binds the PLP mRNA with lower efficiency and has a minimal impact on PLP expression until much later, when the expression level of QKI-6 in the transgenic animal significantly exceeds what is needed for normal myelination. Together, our results demonstrate that QKI-6 is the major isoform responsible for CNS myelination, which preferentially promotes MBP expression in oligodendrocytes.
Collapse
Affiliation(s)
- Lixia Zhao
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Donghua Tian
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Mingjing Xia
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| | - Wendy B. Macklin
- Department of Neurology, Northwestern University, Chicago, Illinois 60611
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, and
| |
Collapse
|
15
|
Southwood CM, Peppi M, Dryden S, Tainsky MA, Gow A. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem Res 2006; 32:187-95. [PMID: 16933150 DOI: 10.1007/s11064-006-9127-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2006] [Indexed: 10/24/2022]
Abstract
Examination of the cytoskeleton has demonstrated the pivotal role of regulatory proteins governing cytoskeletal dynamics. Most work has focused on cell cycle and cell migration regarding cancer. However, these studies have yielded tremendous insight for development, particularly in the nervous system where all major cell types remodel their shape, generate unsurpassed quantities of membranes and extend cellular processes to communicate, and regulate the activities of other cells. Herein, we analyze two microtubule regulatory alpha-tubulin deacetylases, histone deacetylase-6 (HDAC6) and SirT2. HDAC6 is expressed by most neurons but is abundant in cerebellar Purkinje cells. In contrast, SirT2 is targeted to myelin sheaths. Expression of these proteins by post-mitotic cells indicates novel functions, such as process outgrowth and membrane remodeling. In oligodendrocytes, targeting of SirT2 to paranodes coincides with the presence of the microtubule-destabilizing protein stathmin-1 during early myelinogenesis and suggests the existence of a microtubule regulatory network that modulates cytoskeletal dynamics.
Collapse
Affiliation(s)
- Cherie M Southwood
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 3216 Scott Hall, 540 E Canfield Ave., Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
16
|
Sun LY. Hippocampal IGF-1 expression, neurogenesis and slowed aging: clues to longevity from mutant mice. AGE (DORDRECHT, NETHERLANDS) 2006; 28:181-189. [PMID: 19943139 PMCID: PMC2464726 DOI: 10.1007/s11357-006-9009-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 12/01/2005] [Indexed: 05/28/2023]
Abstract
Recent studies point out the important role of IGF and insulin-related signaling pathways in the control of longevity of laboratory animals. The Ames dwarf mouse is a murine model of circulating GH and IGF-1 deficiency that exhibits dwarf phenotype characteristics and significantly extends lifespan. It is interesting to know that Ames dwarf mice do not experience an age-related decline in cognitive function when compared to their young counterparts. In this study, the most recent works on local GH and IGF-1 expression in the hippocampus of Ames mice are briefly reviewed.
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Pediatrics, Division of Endocrinology, University of North Carolina at Chapel Hill, Campus Box #7039 , 3341 MBRB, Chapel Hill, North Carolina 27599-7039, USA.
| |
Collapse
|
17
|
Cerghet M, Skoff RP, Bessert D, Zhang Z, Mullins C, Ghandour MS. Proliferation and death of oligodendrocytes and myelin proteins are differentially regulated in male and female rodents. J Neurosci 2006; 26:1439-47. [PMID: 16452667 PMCID: PMC6675481 DOI: 10.1523/jneurosci.2219-05.2006] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sexual dimorphism of neurons and astrocytes has been demonstrated in different centers of the brain, but sexual dimorphism of oligodendrocytes and myelin has not been examined. We show, using immunocytochemistry and in situ hybridization, that the density of oligodendrocytes in corpus callosum, fornix, and spinal cord is 20-40% greater in males compared with females. These differences are present in young and aged rodents and are independent of strain and species. Proteolipid protein and carbonic anhydrase-II transcripts, measured by real-time PCR, are approximately two to three times greater in males. Myelin basic protein and 2', 3'-cyclic nucleotide 3'-phosphodiesterase, measured by Western blots, are 20-160% greater in males compared with females. Surprisingly, both generation of new glia and apoptosis of glia, including oligodendrocytes, are approximately two times greater in female corpus callosum. These results indicate that the lifespan of oligodendrocytes is shorter in females than in males. Castration of males produces a female phenotype characterized by fewer oligodendrocytes and increased generation of new glia. These findings indicate that exogenous androgens differentially affect the lifespan of male and female oligodendrocytes, and they can override the endogenous production of neurosteroids. The data imply that turnover of myelin is greater in females than in males. Mu-calpain, a protease upregulated in degeneration of myelin, is dramatically increased at both transcriptional and translational levels in females compared with males. These morphological, molecular, and biochemical data show surprisingly large differences in turnover of oligodendrocytes and myelin between sexes. We discuss the potential significance of these differences to multiple sclerosis, a sexually dimorphic disease, whose progression is altered by exogenous hormones.
Collapse
|
18
|
Campagnoni AT, Skoff RP. The pathobiology of myelin mutants reveal novel biological functions of the MBP and PLP genes. Brain Pathol 2006; 11:74-91. [PMID: 11145205 PMCID: PMC8098301 DOI: 10.1111/j.1750-3639.2001.tb00383.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Substantial biological data indicate that the myelin basic protein (MBP) and myelin proteolipid protein (PLP/DM20) genes produce products with functions beyond that of serving as myelin structural proteins. Much of this evidence comes from studies on naturally-occurring and man-made mutations of these genes in mice and other species. This review focuses upon recent evidence showing the existence of other products of these genes that may account for some of these other functions, and recent studies providing evidence for alternative biological functions of PLP/DM20. The MBP and PLP/DM20 genes each encode the classic MBP and PLP isoforms, as well as a second family of proteins that are not involved in myelin structure. The biological roles of these other products of the genes are becoming clarified. The non-classic MBP gene products appear to be components of transcriptional complexes in the nucleus, and they also may be involved in signaling pathways in T-cells and in neural cells. The non-classic PLP/DM20 gene products appear to be components of intracellular transport vesicles in oligodendrocytes. There is evidence for other functions of the classic PLP/DM20 proteins, including a role in neural cell death mechanisms, autocrine and paracrine regulation of oligodendrocytes and neurons, intracellular transport and oligodendrocyte migration.
Collapse
Affiliation(s)
- A T Campagnoni
- Neuropsychiatric Institute, UCLA School of Medicine, 90024, USA.
| | | |
Collapse
|
19
|
Fewou SN, Büssow H, Schaeren-Wiemers N, Vanier MT, Macklin WB, Gieselmann V, Eckhardt M. Reversal of non-hydroxy : α-hydroxy galactosylceramide ratio and unstable myelin in transgenic mice overexpressing UDP-galactose : ceramide galactosyltransferase. J Neurochem 2005; 94:469-81. [PMID: 15998297 DOI: 10.1111/j.1471-4159.2005.03221.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sphingolipids galactosylceramide and sulfatide are important for the formation and maintenance of myelin. Transgenic mice overexpressing the galactosylceramide synthesizing enzyme UDP-galactose:ceramide galactosyltransferase in oligodendrocytes display an up to four-fold increase in UDP-galactose:ceramide galactosyltransferase activity, which correlates with an increase in its products monogalactosyl diglyceride and non-hydroxy fatty acid-containing galactosylceramide. Surprisingly, however, we observed a concomitant decrease in alpha-hydroxylated galactosylceramide such that total galactosylceramide in transgenic mice was almost unaltered. These data suggest that UDP-galactose:ceramide galactosyltransferase activity does not limit total galactosylceramide level. Furthermore, the predominance of alpha-hydroxylated galactosylceramide appeared to be determined by the extent to which non-hydroxylated ceramide was galactosylated rather than by the higher affinity of UDP-galactose:ceramide galactosyltransferase for alpha-hydroxy fatty acid ceramide. The protein composition of myelin was unchanged with the exception of significant up-regulation of the myelin and lymphocyte protein. Transgenic mice were able to form myelin, which, however, was apparently unstable and uncompacted. These mice developed a progressive hindlimb paralysis and demyelination in the CNS, demonstrating that tight control of UDP-galactose:ceramide galactosyltransferase expression is essential for myelin maintenance.
Collapse
MESH Headings
- Age Factors
- Animals
- Behavior, Animal/physiology
- Blotting, Northern/methods
- Blotting, Western/methods
- Brain/anatomy & histology
- Brain/metabolism
- Chromatography, Thin Layer/methods
- Fatty Acids/metabolism
- Galactosylceramides/metabolism
- Galactosyltransferases/genetics
- Galactosyltransferases/metabolism
- Ganglioside Galactosyltransferase
- Gene Expression Regulation, Developmental/physiology
- In Situ Hybridization/methods
- Mice
- Mice, Transgenic
- Microscopy, Electron, Transmission/methods
- Motor Activity/genetics
- Myelin Sheath/metabolism
- Myelin-Associated Glycoprotein/metabolism
- Optic Nerve/ultrastructure
- Psychosine/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Rotarod Performance Test/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Simon N Fewou
- Institut für Physiologische Chemie, University of Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Wei Q, Miskimins WK, Miskimins R. Stage-specific expression of myelin basic protein in oligodendrocytes involves Nkx2.2-mediated repression that is relieved by the Sp1 transcription factor. J Biol Chem 2005; 280:16284-94. [PMID: 15695521 DOI: 10.1074/jbc.m500491200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The homeodomain-containing protein Nkx2.2 is critical for the development of oligodendrocyte lineage cells, but the target genes of Nkx2.2 regulation have not been identified. In the present study, we found that the myelin basic protein gene is one of the genes that is regulated by Nkx2.2. Expression of Nkx2.2 represses the expression of myelin basic protein in oligodendrocyte progenitors. Two regulatory elements in the myelin basic protein promoter were identified and found to interact with Nkx2.2 in vitro. Despite their sequence divergence, both sites were involved in the Nkx2.2-mediated repression of the myelin basic protein promoter. Binding of Nkx2.2 also blocked and disrupted the binding of the transcriptional activator Puralpha to the myelin basic protein promoter. Additionally Nkx2.2 recruited a histone deacetylase 1-mSin3A complex to the myelin basic protein promoter. We also found that the transcription factor Sp1 was able to compete off the binding of Nkx2.2 to its consensus binding site in vitro and reversed the repressive effect of Nkx2.2 in vivo. Our data revealed a novel role for Nkx2.2 in preventing the precocious expression of myelin basic protein in immature oligodendrocytes. Based on this study and our previous reports, a model for myelin basic protein gene control is proposed.
Collapse
Affiliation(s)
- Qiou Wei
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, South Dakota 57069, USA
| | | | | |
Collapse
|
21
|
Bu J, Banki A, Wu Q, Nishiyama A. Increased NG2+ glial cell proliferation and oligodendrocyte generation in the hypomyelinating mutant shiverer. Glia 2004; 48:51-63. [PMID: 15326615 DOI: 10.1002/glia.20055] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glial cells that express the NG2 proteoglycan (NG2(+) cells) are considered to be oligodendrocyte progenitors (OPCs) in the central nervous system (CNS), based on their ability to give rise to mature oligodendrocytes in vitro. To understand how dysmyelinated conditions influence OPC proliferation and differentiation, we studied proliferation and differentiation of NG2(+) OPCs in vivo in the shiverer mutant (shi), which do not form compact myelin due to a deletion in the myelin basic protein gene. Acute bromodeoxyuridine (BrdU) labeling studies revealed a 4- to 6-fold increase in NG2(+) cell proliferation in shi spinal cord between postnatal day18 (P18) and P60, and most BrdU(+) cells were NG2(+) after P18. The increased proliferation was accompanied by a 2-fold increase in the number of OPCs and oligodendrocytes. Survival studies following a single injection of BrdU at P18 revealed a decline in the number of BrdU(+)/NG2(+) cells with a concomitant increase in the number of BrdU(+) oligodendrocytes over time, suggesting that the proliferated NG2(+) cells had differentiated into oligodendrocytes. BrdU(+) oligodendrocytes were generated over a longer period of time in shi spinal cord and persisted longer in shi than in wild type spinal cord. These findings suggest that new oligodendrocytes continue to be generated in the dysmyelinated shi spinal cord by enhanced proliferation and differentiation of NG2(+) oligodendrocyte progenitor cells.
Collapse
Affiliation(s)
- Jie Bu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | | | | | | |
Collapse
|
22
|
Wei Q, Miskimins WK, Miskimins R. Cloning and characterization of the rat myelin basic protein gene promoter. Gene 2003; 313:161-7. [PMID: 12957387 DOI: 10.1016/s0378-1119(03)00675-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of myelin basic protein in differentiating oligodendrocytes is mainly regulated at the transcriptional level. To better understand the regulation of myelin basic protein gene expression in mammalian cells, we cloned and characterized the rat myelin basic protein promoter by a genome walking technique. Extensive sequence homology has been found among mouse, rat and human MBP promoters. Alignment of the proximal core promoter of mouse and rat reveals highly conserved cis-elements that are important for regulating myelin basic protein gene transcription. One major transcription start site along with two minor sites have been identified in both mouse and rat myelin basic protein gene promoters using RNA ligase-mediated rapid amplification of 5' cDNA ends. The amplified rat myelin basic protein promoter was cloned into a luciferase reporter construct. Transient transfection experiments show that both mouse and rat myelin basic protein promoters yield increased expression when oligodendrocytes differentiate. The sequence and characterization of the rat MBP promoter provide a useful tool to investigate MBP gene regulation in mammalian cells.
Collapse
Affiliation(s)
- Qiou Wei
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD 57069, USA
| | | | | |
Collapse
|
23
|
Fox MA, Colello RJ, Macklin WB, Fuss B. Phosphodiesterase-Ialpha/autotaxin: a counteradhesive protein expressed by oligodendrocytes during onset of myelination. Mol Cell Neurosci 2003; 23:507-19. [PMID: 12837632 DOI: 10.1016/s1044-7431(03)00073-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The initial stages of central nervous system (CNS) myelination require complex interactions of oligodendrocytes with their surrounding extracellular environment. In the present study, we demonstrate that commencing with active myelination oligodendrocytes express phosphodiesterase-Ialpha/autotaxin [PD-Ialpha/ATX (NPP-2)] as a non-membrane-associated extracellular factor. As such a component of the extracellular environment, PD-Ialpha/ATX has the ability to antagonize the adhesive interactions between oligodendroglial cells and known extracellular matrix (ECM) molecules present in the developing CNS. This counteradhesion requires intracellular signaling through heterotrimeric G proteins on fibronectin substrates and thus represents an active cellular response. Similar counteradhesive effects in other systems have been attributed to the activity of matricellular proteins, which support intermediate stages of cell adhesion thought to facilitate cellular locomotion and remodeling. Thus, the release of PD-Ialpha/ATX may be critically involved in the regulation of the initial stages of myelination, i.e., oligodendrocyte remodeling, via modulation of oligodendrocyte-ECM interactions in a matricellular fashion.
Collapse
Affiliation(s)
- Michael A Fox
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
24
|
Al-Saktawi K, McLaughlin M, Klugmann M, Schneider A, Barrie JA, McCulloch MC, Montague P, Kirkham D, Nave KA, Griffiths IR. Genetic background determines phenotypic severity of the Plp rumpshaker mutation. J Neurosci Res 2003; 72:12-24. [PMID: 12645075 DOI: 10.1002/jnr.10561] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The rumpshaker mutation of the proteolipid protein (Plp) gene causes dysmyelination in man and mouse. We show that the phenotype in the mouse depends critically on the genetic background in which the mutation is expressed. On the C3H background there is normal longevity whereas changing to a C57BL/6 strain results in seizures and death at around postnatal day 30. The more severe phenotype is associated with less myelin and reduced levels of major myelin proteins. There are also more apoptotic cells, including oligodendrocytes, increased numbers of proliferating cells, increased numbers of NG2+ oligodendrocyte progenitors and increased microglia compared to the milder phenotype. The number of mature oligodendrocytes is similar to wild-type in both strains of mutant, however, suggesting that increased oligodendrocyte death is matched by increased generation from progenitors. The dichotomy of phenotype probably reflects the influence of modifying loci. The localization of these putative modifying genes and their mode of action remain to be determined.
Collapse
Affiliation(s)
- K Al-Saktawi
- Applied Neurobiology Group, Institute of Comparative Medicine, University of Glasgow, Bearsden, Glasgow, Scotland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Larocque D, Pilotte J, Chen T, Cloutier F, Massie B, Pedraza L, Couture R, Lasko P, Almazan G, Richard S. Nuclear retention of MBP mRNAs in the quaking viable mice. Neuron 2002; 36:815-29. [PMID: 12467586 DOI: 10.1016/s0896-6273(02)01055-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Quaking viable (qk(v)) mice fail to properly compact myelin in their central nervous systems. Although the defect in the qk(v) mice involves a mutation affecting the expression of the alternatively spliced qk gene products, their roles in myelination are unknown. We show that the QKI RNA binding proteins regulate the nuclear export of MBP mRNAs. Disruption of the QKI nucleocytoplasmic equilibrium in oligodendrocytes results in nuclear and perikaryal retention of the MBP mRNAs and lack of export to cytoplasmic processes, as it occurs in qk(v) mice. MBP mRNA export defect leads to a reduction in the MBP levels and their improper cellular targeting to the periphery. Our findings suggest that QKI participates in myelination by regulating the mRNA export of key protein components.
Collapse
Affiliation(s)
- Daniel Larocque
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wu JI, Reed RB, Grabowski PJ, Artzt K. Function of quaking in myelination: regulation of alternative splicing. Proc Natl Acad Sci U S A 2002; 99:4233-8. [PMID: 11917126 PMCID: PMC123631 DOI: 10.1073/pnas.072090399] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Proteomic diversity is frequently achieved by alternative RNA-splicing events that can be fine-tuned in tissue-specific and developmentally regulated ways. Understanding this type of genetic regulation is compelling because of the extensive complexity of alternative splicing found in the nervous system. quaking (qk), one of the classical mouse dysmyelination mutants, is defective for the expression of myelin-associated glycoprotein (MAG), and the misregulation of MAG pre-mRNA alternative splicing is implicated as a causal factor. The qk locus encodes several RNA-binding proteins with heterogeneous nuclear ribonucleoprotein K-type homology, a characteristic of several known alternative splicing regulators. Here we test the nuclear-localized qk isoform (QKI-5) for its ability to regulate alternative splicing of MAG pre-mRNA in transient coexpression assays. QKI-5 exhibits properties of a negative regulator of MAG exon 12 alternative splicing. An intronic sequence element required for the repressive function and binding of QKI-5 is also identified. Direct evidence for irregularities in alternative splicing of MAG and other myelin protein transcripts in the qk mouse is demonstrated.
Collapse
Affiliation(s)
- Jiang I Wu
- Institute for Cellular and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas, Austin, TX 78712-1064, USA
| | | | | | | |
Collapse
|
27
|
3-Phosphoglycerate dehydrogenase, a key enzyme for l-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J Neurosci 2001. [PMID: 11567059 DOI: 10.1523/jneurosci.21-19-07691.2001] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
l-Serine is synthesized from glycolytic intermediate 3-phosphoglycerate and is an indispensable precursor for the synthesis of proteins, membrane lipids, nucleotides, and neuroactive amino acids d-serine and glycine. We have recently shown that l-serine and its interconvertible glycine act as Bergmann glia-derived trophic factors for cerebellar Purkinje cells. To investigate whether such a metabolic neuron-glial relationship is fundamental to the developing and adult brain, we examined by in situ hybridization and immunohistochemistry the cellular expression of 3-phosphoglycerate dehydrogenase (3PGDH), the initial step enzyme for de novo l-serine biosynthesis in animal cells. At early stages when the neural wall consists exclusively of the ventricular zone, neuroepithelial stem cells expressed 3PGDH strongly and homogeneously. Thereafter, 3PGDH expression was downregulated and eventually disappeared in neuronal populations, whereas its high expression was transmitted to the radial glia and later to astrocytes in the gray and white matters. In addition, 3PGDH was highly expressed throughout development in the olfactory ensheathing glia, a specialized supporting cell that thoroughly ensheathes olfactory nerves. These results establish a fundamental link of the radial glia/astrocyte lineage and olfactory ensheathing glia to l-serine biosynthesis in the brain. We discuss this finding in the context of the hypothesis that 3PGDH expression in these glia cells contributes to energy metabolism in differentiating and differentiated neurons and other glia cells, which are known to be vulnerable to energy loss.
Collapse
|
28
|
Fuss B, Afshari FS, Colello RJ, Macklin WB. Normal CNS myelination in transgenic mice overexpressing MHC class I H-2L(d) in oligodendrocytes. Mol Cell Neurosci 2001; 18:221-34. [PMID: 11520182 DOI: 10.1006/mcne.2001.1011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In demyelinating diseases, such as multiple sclerosis, an upregulation of MHC class I expression is thought to contribute to oligodendrocyte/myelin damage. In order to investigate potential physiological consequences of upregulated MHC class I expression in oligodendrocytes, we generated transgenic mice that overexpress H-2L(d) under the control of the proteolipid protein (PLP) promoter (PLP-L(d) mice). We focused our studies on the MHC class I molecule H-2L(d), because of its unique intracellular transport characteristics. In the CNS of PLP-L(d) mice, H-2L(d) was expressed by oligodendrocytes. Furthermore, H-2L(d) protein was transported to and expressed on the surface of oligodendrocytes. Most importantly, this upregulation of MHC class I expression in the CNS of PLP-L(d) mice did not by itself result in a de- or dysmyelinating phenotype. These transgenic mice are likely to provide a unique and novel tool for the analysis of potential roles of MHC class I-mediated mechanisms in demyelinating pathologies.
Collapse
MESH Headings
- Aging/genetics
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Cell Membrane/metabolism
- Cells, Cultured/cytology
- Cells, Cultured/metabolism
- Central Nervous System/cytology
- Central Nervous System/growth & development
- Central Nervous System/metabolism
- Gene Expression Regulation, Developmental/physiology
- Genes, MHC Class I/physiology
- H-2 Antigens/genetics
- Histocompatibility Antigen H-2D
- Immunohistochemistry
- Mice
- Mice, Transgenic/anatomy & histology
- Mice, Transgenic/growth & development
- Mice, Transgenic/metabolism
- Myelin Proteolipid Protein/genetics
- Myelin Sheath/metabolism
- Myelin Sheath/ultrastructure
- Oligodendroglia/cytology
- Oligodendroglia/metabolism
- Phenotype
- Promoter Regions, Genetic/physiology
- RNA, Messenger/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- B Fuss
- Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| | | | | | | |
Collapse
|
29
|
Southwood C, Gow A. Molecular pathways of oligodendrocyte apoptosis revealed by mutations in the proteolipid protein gene. Microsc Res Tech 2001; 52:700-8. [PMID: 11276122 DOI: 10.1002/jemt.1054] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A decade after the genetic link was established between mutations in the proteolipid protein gene and two leukodystrophies, Pelizaeus-Merzbacher disease and spastic paraplegia, the molecular mechanisms underlying pathogenesis are beginning to come to light. Data from animal models of these diseases suggest that the absence of proteolipid protein gene products in the central nervous system confers a relatively mild phenotype while missense mutations in and duplications of this gene give rise to mild or severe forms of disease. Previously, we have interpreted the disease process in terms of the accumulation of the mutant proteins in the secretory pathway and, herein, we review the evidence in favor of such a cellular mechanism. Furthermore, on the basis of recent data we suggest that the unfolded protein response may be involved in the pathogenesis of Pelizaeus-Merzbacher disease and spastic paraplegia through a kinase signaling cascade that links the accumulation of mutant proteins in the endoplasmic reticulum of oligodendrocytes with changes in gene regulation, protein synthesis, and possibly apoptosis.
Collapse
Affiliation(s)
- C Southwood
- Brookdale Center for Developmental and Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
30
|
Destabilization and mislocalization of myelin basic protein mRNAs in quaking dysmyelination lacking the QKI RNA-binding proteins. J Neurosci 2000. [PMID: 10864952 DOI: 10.1523/jneurosci.20-13-04944.2000] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quakingviable (qk(v)) is a well known dysmyelination mutation. Recently, the genetic lesion of qk(v) has been defined as a deletion 5' to the qkI gene, which results in the severe reduction of the qkI-encoded QKI RNA-binding proteins in myelin-producing cells. However, no comprehensive model has been proposed regarding how the lack of QKI leads to dysmyelination. We hypothesized that QKI binds to myelin protein mRNAs, and the lack of QKI causes posttranscriptional misregulation, which in turn leads to the loss of the corresponding myelin proteins. To test this hypothesis, we developed an RNase protection assay to directly measure the mRNA isoforms encoding the myelin basic proteins (MBPs) in the brain. Our result suggested that isoform-preferential destabilization of MBP mRNAs in the cytoplasm was responsible for the reduced MBPs in the qk(v)/qk(v) brain during early myelination. In addition, we detected markedly reduced MBP mRNAs in the qk(v)/qk(v) myelin fraction with concomitant accumulation of MBP mRNAs associated with membrane-free polyribosomes. Presumably, the impaired localization of MBP mRNAs to the myelin membrane may cause insufficient incorporation of the newly synthesized MBPs into the myelin sheath. Finally, we observed interactions between QKI and MBP mRNAs, and removing MBP 3'UTR significantly reduced QKI-binding. Taken together, these observations suggest that misregulation at multiple posttranscriptional steps is responsible for the severe reduction of MBPs in qk(v) dysmyelination, presumably because of the lack of interactions between MBP mRNAs and the QKI RNA-binding proteins.
Collapse
|
31
|
Vouyiouklis DA, Barrie JA, Griffiths IR, Thomson CE. A proteolipid protein-specific pre-mRNA (Ppm-1) contains intron 3 and is up-regulated during myelination in the CNS. J Neurochem 2000; 74:940-8. [PMID: 10693924 DOI: 10.1046/j.1471-4159.2000.0740940.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alternative splicing of the precursor for messenger RNA (pre-mRNA) is a common process utilised by higher eukaryotes to modulate gene expression. A single primary transcript may generate several proteins with distinct functions, expressed in tissue-specific, developmental patterns. This article describes an oligodendrocyte-specific pre-mRNA product of proteolipid protein gene (P/p) transcription, which is the precursor for P/p but not Dm20 mRNA in the CNS. This P/p-specific pre-mRNA (Ppm-1) includes the intact intron 3 of the P/p gene. It is first expressed during active myelination, and it localises to the nucleus of oligodendrocytes, in both normal and jimpy (jp) murine CNS. In addition to mouse, Ppm-1 is found also in rat and dog, but not toad or trout. Our work suggests that alternative splicing of the P/p gene primary transcript follows a branching pattern, resulting in the presence of at least one P/p isoform-specific pre-mRNA molecule, Ppm-1. Therefore, Dm20 mRNA may be the product of a divergent set of pre-mRNA splicing events.
Collapse
Affiliation(s)
- D A Vouyiouklis
- Department of Veterinary Clinical Studies, University of Glasgow Veterinary School, Scotland.
| | | | | | | |
Collapse
|
32
|
Fuss B, Mallon B, Phan T, Ohlemeyer C, Kirchhoff F, Nishiyama A, Macklin WB. Purification and analysis of in vivo-differentiated oligodendrocytes expressing the green fluorescent protein. Dev Biol 2000; 218:259-74. [PMID: 10656768 DOI: 10.1006/dbio.1999.9574] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complete understanding of the molecular mechanisms involved in the formation and repair of the central nervous system myelin sheath requires an unambiguous identification and isolation of in vivo-differentiated myelin-forming cells. In order to develop a novel tool for the analysis of in vivo-differentiated oligodendrocytes, we generated transgenic mice expressing a red-shifted variant of the green fluorescent protein under the control of the proteolipid protein promoter. We demonstrate here that green fluorescent protein-derived fluorescence in the central nervous system of 9-day- to 7-week-old mice is restricted to mature oligodendrocytes, as determined by its spatiotemporal appearance and by both immunocytochemical and electrophysiological criteria. Green fluorescent protein-positive oligodendrocytes could easily be visualized in live and fixed tissue. Furthermore, we show that this convenient and reliable identification now allows detailed physiological analyses of differentiated oligodendrocytes in situ. In addition, we developed a novel tissue culture system for in vivo-differentiated oligodendrocytes. Initial data using this system indicate that, for oligodendrocytes isolated after differentiation in vivo, as yet unidentified factors secreted by astrocytes are necessary for survival and/or reappearance of a mature phenotype in culture.
Collapse
Affiliation(s)
- B Fuss
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Identification of a new exon in the myelin proteolipid protein gene encoding novel protein isoforms that are restricted to the somata of oligodendrocytes and neurons. J Neurosci 1999. [PMID: 10493736 DOI: 10.1523/jneurosci.19-19-08349.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The myelin proteolipid protein (PLP) gene (i.e., the PLP/DM20 gene) has been of some interest because of its role in certain human demyelinating diseases, such as Pelizaeus-Merzbacher disease. A substantial amount of evidence, including neuronal pathology in knock-out and transgenic animals, suggests the gene also has functions unrelated to myelin structure, but the products of the gene responsible for these putative functions have not yet been identified. Here we report the identification of a new exon of the PLP/DM20 gene and at least two new products of the gene that contain this exon. The new exon, located between exons 1 and 2, is spliced into PLP and DM20 mRNAs creating a new translation initiation site that generates PLP and DM20 proteins with a 12 amino acid leader sequence. This leader sequence appears to target these proteins to a different cellular compartment within the cell bodies of oligodendrocytes and away from the myelin membranes. Furthermore, these new products are also expressed in a number of neuronal populations within the postnatal mouse brain, including the cerebellum, hippocampus, and olfactory system. We term these products somal-restricted PLP and DM20 proteins to distinguish them from the classic PLP and DM20 proteolipids. They represent putative candidates for some of the nonmyelin-related functions of the PLP/DM20 gene.
Collapse
|
34
|
Tretiakova A, Steplewski A, Johnson EM, Khalili K, Amini S. Regulation of myelin basic protein gene transcription by Sp1 and Pur?: Evidence for association of Sp1 and Pur? in brain. J Cell Physiol 1999. [DOI: 10.1002/(sici)1097-4652(199910)181:1%3c160::aid-jcp17%3e3.0.co;2-h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Tretiakova A, Steplewski A, Johnson EM, Khalili K, Amini S. Regulation of myelin basic protein gene transcription by Sp1 and Puralpha: evidence for association of Sp1 and Puralpha in brain. J Cell Physiol 1999; 181:160-8. [PMID: 10457364 DOI: 10.1002/(sici)1097-4652(199910)181:1<160::aid-jcp17>3.0.co;2-h] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Direct interaction between transcription factors may provide a mechanism for the regulatory function of these proteins on transcription of the responsive genes. These interactions may be facilitated if the target DNA sequences for the participant regulatory proteins are overlapped or positioned in close proximity to each other within the promoter of the responsive genes. In earlier studies, we identified a cellular protein, named Puralpha, which upon binding to the MB1 regulatory DNA sequence of the myelin basic protein (MBP) gene, stimulates its transcription in central nervous system (CNS) cells. Here, we provide evidence for binding of the ubiquitous DNA binding transcription factor, Sp1, to the MB1 DNA motif at the region that partially overlaps with the Puralpha binding site. We demonstrate that binding of Puralpha to its target sequence is enhanced by inclusion of Sp1 in the binding reaction. Under this condition, binding of Sp1 to the MB1 regulatory sequence remained fairly unchanged, and no evidence for the formation of Puralpha:MB1:Sp1 was observed. This observation suggests that transient interaction of Puralpha and Sp1 may result in stable association of Puralpha and the MB1 element. In support of this notion, results from immunoprecipitation/Western blot studies have established association of Puralpha and Sp1 in nuclear extracts from mouse brain. Of interest, Puralpha appears to bind to the phosphorylated form of Sp1 which is developmentally regulated and that coincides with the periods when MBP gene expression is at its maximum level. Results from cotransfection studies revealed that ectopic expression of Puralpha and Sp1 synergistically stimulates MBP promoter activity in CNS cells. The importance of these findings in stage-specific expression of MBP during brain development is discussed.
Collapse
Affiliation(s)
- A Tretiakova
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University School of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | |
Collapse
|
36
|
Lehman DM, Hale DE, Cody JT, Harrison JM, Leach RJ. Molecular, morphometric and functional analyses demonstrate that the growth hormone deficient little mouse is not hypomyelinated. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 116:191-9. [PMID: 10521563 DOI: 10.1016/s0165-3806(99)00081-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To study the effects of naturally occurring growth hormone deficiency type I on CNS myelination, we compared the myelination of brains from little and wild-type littermate mice using molecular, histological, morphometric, and functional analyses. The little mouse produces only 6-8% of normal levels of growth hormone (GH) and approximately 20% of normal circulating levels of insulin-like growth factor 1 (IGF-1). Our data show that the expression of myelin basic protein (MBP) and proteolipid protein (PLP) of the little brain exhibit the same temporal pattern and amount as that of the wild-type brain. Furthermore, the density and size of myelinated axons and the myelin sheath thickness in the corpus callosum, anterior commissure and the optic nerve are comparable in the little and wild-type brains. These regions are reduced in size in the little mouse brain proportionate to the overall reduction in brain size implying a reduction in the total number of neurons. Therefore, it follows that the total myelin content is reduced, but when normalized to brain size, the myelin concentration is unchanged. Myelin staining patterns of whole brains were identical. Moreover, functional analysis of the visual pathway indicated no difference between the little and control mice. These results are inconsistent with previous reports of hypomyelination in the little mouse and suggest that this form of GH deficiency does not adversely affect the myelination process except possibly through neuronal proliferation. However, since axon size and density are maintained, the neuronal growth may conversely be inherently limited by other restricted brain growth.
Collapse
Affiliation(s)
- D M Lehman
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78284-7762, USA
| | | | | | | | | |
Collapse
|
37
|
Uusitalo A, Tenhunen K, Heinonen O, Hiltunen JO, Saarma M, Haltia M, Jalanko A, Peltonen L. Toward understanding the neuronal pathogenesis of aspartylglucosaminuria: expression of aspartylglucosaminidase in brain during development. Mol Genet Metab 1999; 67:294-307. [PMID: 10444340 DOI: 10.1006/mgme.1999.2872] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deficiency of a lysosomal enzyme, aspartylglucosaminidase, results in a lysosomal storage disorder, aspartylglucosaminuria, manifesting as progressive mental retardation. To understand tissue pathogenesis and disease progression we analyzed the developmental expression of the enzyme, especially in brain, which is the major source of the pathological symptoms. Highest mRNA levels in brain were detected during embryogenesis, the levels decreased neonatally and started to increase again from Day 7 on. In Western analyses, a defective processing of aspartylglucosaminidase was observed in brain as compared to other tissues, resulting in very low levels of the mature, active form of the enzyme. Interestingly immunohistochemical analyses of mouse brain revealed that aspartylglucosaminidase immunoreactivity closely mimicked the myelin basic protein immunostaining pattern. The only evident neuronal staining was observed in the developing Purkinje cells of the cerebellum from Days 3 to 10, reflecting well the mRNA expression. In human infant brain, the immunostaining was also present in myelinated fibers as well as in the Purkinje cells and, additionally, in the soma and extensions of other neurons. In the adult human brain neurons and oligodendrocytes displayed immunoreactivity whereas myelinated fibers were not stained. Our results of aspartylglucosaminidase immunostaining in myelinated fibers of infant brain might imply the involvement of aspartylglucosaminidase in the early myelination process. This is consistent with previous magnetic resonance imaging findings in the brains of aspartylglucosaminuria patients, revealing delayed myelination in childhood.
Collapse
Affiliation(s)
- A Uusitalo
- National Public Health Institute and Department of Medical Genetics, University of Helsinki, Mannerheimintie 166, Helsinki, FIN-00300, Finland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Frank M, Schaeren-Wiemers N, Schneider R, Schwab ME. Developmental expression pattern of the myelin proteolipid MAL indicates different functions of MAL for immature Schwann cells and in a late step of CNS myelinogenesis. J Neurochem 1999; 73:587-97. [PMID: 10428054 DOI: 10.1046/j.1471-4159.1999.0730587.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The myelin and lymphocyte protein MAL is a small proteolipid of 17 kDa and is expressed by oligodendrocytes and Schwann cells. We have characterized the embryonic and postnatal expression of MAL in the rat nervous system by in situ hybridization, immunocytochemistry, and western blotting and compared it with that of other myelin constituents. In the CNS, MAL is expressed during late steps of myelination: MAL protein appears approximately 3-5 days later than myelin basic protein and proteolipid protein. In contrast, in the PNS, MAL transcript and protein expression is detected prior to the onset of myelination, as early as embryonic day 17. Our results demonstrate that MAL is differentially expressed in oligodendrocytes and Schwann cells, likely reflecting different functions of the MAL proteolipid: (1) The late expression of MAL protein in the CNS points to a role in the final steps of myelin sheath formation, such as stabilization of the compacted myelin membranes. (2) The early expression of MAL protein in immature Schwann cells suggests an important role of MAL in the terminal differentiation step of the Schwann cell lineage and in the onset of peripheral myelination.
Collapse
Affiliation(s)
- M Frank
- Brain Research Institute, University of Zurich, Switzerland
| | | | | | | |
Collapse
|
39
|
Tretiakova A, Otte J, Croul SE, Kim JH, Johnson EM, Amini S, Khalili K. Association of JC virus large T antigen with myelin basic protein transcription factor (MEF-1/Puralpha) in hypomyelinated brains of mice transgenically expressing T antigen. J Virol 1999; 73:6076-84. [PMID: 10364361 PMCID: PMC112670 DOI: 10.1128/jvi.73.7.6076-6084.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease caused by cytolytic destruction of oligodendrocytes, the myelin-producing cells of the central nervous system, by the human neurotropic JC virus (JCV). The early protein of JCV, T antigen, which is produced at the early stage of infection, is important for orchestrating the events leading to viral lytic infection and cytolytic destruction of oligodendrocytes. Results from transgenic mouse studies, however, have revealed that, in the absence of lytic infection, this protein can induce brain hypomyelination and suppression of myelin gene expression. Since expression of the gene encoding myelin basic protein, the major component of myelin, can be regulated by a DNA-binding transcription factor, MEF-1/Puralpha, (Puralpha), we have examined the level of this protein in transgenic mouse brains. Results from immunoprecipitation and Western blots showed that while there was no drastic decrease in the level of MEF-1/Puralpha in transgenic mouse brains, JCV T antigen was found in a complex with MEF-1/Puralpha. Immunohistological studies revealed abnormal oligodendrocytes in white matter, where MEF-1/Puralpha and T antigen were detected. Furthermore, immunogold electron microscopic studies revealed that Puralpha and T antigen are colocalized in the nucleus of the oligodendrocytes and in hippocampal neurons. Interestingly, results from cell culture studies revealed that incubation of oligodendrocytes with JCV led to a drastic decrease in the level of MEF-1/Puralpha protein. These observations provide insight into the molecular pathogenesis of PML and support a model for a dual effect of JCV on inducing hypomyelination by (i) affecting myelin gene expression via interaction of JCV T antigen and the myelin gene transcription factor, MEF-1/Puralpha, and (ii) causing a decline in the level of the host regulatory proteins, including MEF-1/Puralpha, which are involved in myelin gene expression.
Collapse
Affiliation(s)
- A Tretiakova
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Our understanding of myelination has been greatly enhanced via the study of spontaneous mutants that harbor a defect in a gene encoding one of the major myelin proteins (myelin mutants). In this study, we describe a unique genetic defect in a new myelin mutant called the Long Evans shaker (les) rat that causes severe dysmyelination of the CNS. Myelin deficits result from disruption of the myelin basic protein (Mbp) gene caused by the insertion of an endogenous retrotransposon [early transposons (ETn) element] into a noncoding region (intron 3) of the gene. The ETn element alters the normal splicing dynamics of MBP mRNA, leading to a dramatic reduction in the levels of full-length isoforms (<5% of normal) and the appearance of improperly spliced, chimeric transcripts. Although these aberrant transcripts contain proximal coding regions of the MBP gene (exons 1-3), they are unable to encode functional proteins required to maintain the structural integrity of the myelin sheath. These chimeric transcripts seem capable, however, of producing the necessary signal to initiate and coordinate myelin gene expression because normal numbers of mature oligodendrocytes synthesizing abundant levels of other myelin proteins are present in the mutant CNS. The les rat is thus an excellent model to study alternative functions of MBP beyond its well characterized role in myelin compaction.
Collapse
|
41
|
Bessert DA, Skoff RP. High-resolution in situ hybridization and TUNEL staining with free-floating brain sections. J Histochem Cytochem 1999; 47:693-702. [PMID: 10219061 DOI: 10.1177/002215549904700511] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We applied in situ hybridization and the TUNEL technique to free-floating (vibratomed) sections of embryonic and postnatal mouse CNS. Full-length cDNAs specific for oligodendrocyte- or astrocyte-specific genes were labeled with digoxigenin using the random primer method. With paraformaldehyde-fixed sections, the nonradioactive in situ hybridization method provides detection of individual, very small glial progenitor cells in embryonic development. Small, isolated cells expressing oligodendrocyte specific messages can be detected in the neuroepithelium at embryonic and postnatal stages. The technique can be completed within 3 days and is as sensitive as the radioactive method. Likewise, the TUNEL method using DAB as the chromogen on free-floating sections provides excellent resolution. These DAB-stained sections can be embedded in plastic and thin-sectioned to visualize the ultrastructure of apoptotic cells. Both in situ hybridization and TUNEL methods can be applied to the same section, the tissue embedded in plastic, and semithin sections cut. The high resolution obtained with this combined procedure makes it possible to determine whether brain cells expressing glia-specific messages are undergoing apoptosis.
Collapse
Affiliation(s)
- D A Bessert
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | |
Collapse
|
42
|
Kawczak JA, Mathisen PM, Drazba JA, Fuss B, Macklin WB, Tuohy VK. Digitized image analysis reveals diffuse abnormalities in normal-appearing white matter during acute experimental autoimmune encephalomyelitis. J Neurosci Res 1998; 54:364-72. [PMID: 9819141 DOI: 10.1002/(sici)1097-4547(19981101)54:3<364::aid-jnr7>3.0.co;2-#] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Demyelination of the central nervous system is a hallmark of multiple sclerosis and its widely used animal model, experimental autoimmune encephalomyelitis (EAE). Recent studies using magnetic resonance imaging and spectroscopy on multiple sclerosis patients have revealed abnormalities of central nervous system normal-appearing white matter suggesting that micro-demyelination and/or extensive membrane turnover accompanies and perhaps precedes the appearance of manifest inflammatory lesions. In the present study, we induced EAE in SWXJ mice and analyzed digitized images of immunocytochemically stained spinal cord for detection of myelin proteolipid protein (PLP). We found that digitized image analysis is a highly sensitive, objective methodology for measuring the extent of myelin loss during EAE. Our data show that two-thirds of the measured reduction of myelin PLP occurring in EAE spinal cord could be attributed to a loss of myelin in normal-appearing white matter. The marked decrease in detection of PLP was accompanied by a corresponding decrease in PLP mRNA in the central nervous system. Our results indicate that during acute EAE, diffuse myelin abnormalities extend far beyond visibly detectable inflammatory foci and are characterized by a global decrease in the expression of myelin genes and their encoded proteins.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Demyelinating Diseases/immunology
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Image Processing, Computer-Assisted
- Immunohistochemistry
- Mice
- Mice, Inbred Strains
- Myelin Proteolipid Protein/analysis
- Myelin Proteolipid Protein/genetics
- Myelin Proteolipid Protein/immunology
- Peptide Fragments/immunology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Spinal Cord/chemistry
- Spinal Cord/pathology
Collapse
Affiliation(s)
- J A Kawczak
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
43
|
Tretiakova A, Gallia GL, Shcherbik N, Jameson B, Johnson EM, Amini S, Khalili K. Association of Puralpha with RNAs homologous to 7 SL determines its binding ability to the myelin basic protein promoter DNA sequence. J Biol Chem 1998; 273:22241-7. [PMID: 9712838 DOI: 10.1074/jbc.273.35.22241] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell type and developmental stage expression of the myelin basic protein (MBP) gene in mouse brain is regulated at the transcriptional level. Earlier studies from our laboratory have led to the identification of a DNA binding protein from mouse brain, named Puralpha, which interacts with the MB1 regulatory motif of the MBP and stimulates its transcription in glial cells. In this report, we demonstrate that a cellular RNA, with significant homology to 7 SL RNA is associated with Puralpha. Results from band shift competition studies indicate that Puralpha-associated RNA (PU-RNA), inhibits the interaction of immunopurified Puralpha with the MB1 DNA sequence. Results from Northern blot studies indicated that PU-RNA is expressed during various stages of brain development. Of interest, this RNA was found in association with Puralpha that was produced in the mouse brain at the early stage of brain development. Results from Northwestern analysis using a PU-RNA probe identified the regions within Puralpha that are important for Puralpha/PU-RNA association. Production of Puralpha at the early stage of brain development and its association with PU-RNA at this stage, when Puralpha exhibits poor binding ability to the MB1 DNA sequence, suggests that PU-RNA may function as a co-factor that negatively regulates Puralpha interaction with the MBP promoter sequence.
Collapse
Affiliation(s)
- A Tretiakova
- Center for NeuroVirology and NeuroOncology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Vela JM, González B, Castellano B. Understanding glial abnormalities associated with myelin deficiency in the jimpy mutant mouse. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:29-42. [PMID: 9600623 DOI: 10.1016/s0165-0173(97)00055-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Jimpy is a shortened life-span murine mutant showing recessive sex-linked inheritance. The genetic defect consists of a point mutation in the PLP gene and produces a severe CNS myelin deficiency that is associated with a variety of complex abnormalities affecting all glial populations. The myelin deficiency is primarily due to a failure to produce the normal amount of myelin during development. However, myelin destruction and oligodendrocyte death also account for the drastic myelin deficit observed in jimpy. The oligodendroglial cell line shows complex abnormalities in its differentiation pattern, including the degeneration of oligodendrocytes through an apoptotic mechanism. Oligodendrocytes seem to be the most likely candidate to be primarily altered in a disorder affecting myelination, but disturbances affecting astrocytes and microglia are also remarkable and may have a crucial significance in the development of the jimpy disorder. In fact, the jimpy phenotype may not be attributed to a defect in a single cell but rather to a deficiency in the normal relations between glial cells. Evidences from a variety of sources indicate that the jimpy mutant could be a model for disturbed glial development in the CNS. The accurate knowledge of the significance of PLP and its regulation during development must be of vital importance in order to understand glial abnormalities in jimpy.
Collapse
Affiliation(s)
- J M Vela
- Department of Cell Biology and Physiology, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
| | | | | |
Collapse
|
45
|
Phosphodiesterase I, a novel adhesion molecule and/or cytokine involved in oligodendrocyte function. J Neurosci 1997. [PMID: 9364056 DOI: 10.1523/jneurosci.17-23-09095.1997] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One of the more complex developmental processes occurring postnatally in the CNS is the formation of the myelin sheath by oligodendrocytes. To examine the molecular events that take place during myelination, we isolated oligodendrocyte-derived cDNA clones, one of which (p421.HB) represents a putative alternatively spliced isoform of rat brain-specific phosphodiesterase I (PD-Ialpha) and a species homolog of the human cytokine autotaxin. Analysis of the structural composition of the p421.HB/PD-Ialpha protein suggests a transmembrane-bound ectoenzyme, which, in addition to the phosphodiesterase-active site contains presumed cell recognition and Ca2+-binding domains. Consequently, it may be involved in extracellular signaling events. Expression of p421.HB/PD-Ialpha is enriched in brain and spinal cord, where its mRNA can be detected in oligodendrocytes and in cells of the choroid plexus. Expression in the brain increases during development with an intermediate peak of expression around the time of active myelination and maximal expression in the adult. We have identified four presumably alternatively spliced isoforms, two of which appear to be CNS-specific. Decreased levels of p421.HB/PD-Ialpha mRNA in the dysmyelinating mouse mutant jimpy, but not shiverer, suggest a role for p421.HB/PD-Ialpha during active myelination and/or late stages of oligodendrocyte differentiation. Furthermore, p421.HB/PD-Ialpha mRNA levels were reduced in the CNS at onset of clinical symptoms in experimental autoimmune encephalomyelitis. These data together implicate the importance of p421.HB/PD-Ialpha in oligodendrocyte function, possibly through cell-cell and/or cell-extracellular matrix recognition.
Collapse
|
46
|
Abstract
Proteolipid protein (PLP) is the major myelin protein of the central nervous system and is widely believed to play an important structural role in maintaining the myelin compaction. We have studied the early developmental changes of PLP with immunohistochemical methods. Our data demonstrate for the first time a comparable scheme for the development of PLP during myelination in human fetal and infant cerebrum. Expression of PLP was first detected in the pallidothalamic fibers and globus pallidus at 20 weeks; it then extended to the striatum at 28 weeks, pericentral gyri and optic radiation at 35 weeks, and acoustic radiation at 40 weeks. Compared to the expression of myelin basic protein (MBP), another major myelin protein in the central nervous system, the developmental changes of PLP is in the same order as MBP, but the PLP immunoreactivity revealed greater and earlier appearance in the cerebrum than that of MBP in the fetal period. These results imply that PLP is a sensitive and useful marker for early myelination and its disorders.
Collapse
Affiliation(s)
- M Iai
- Division of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | | | | |
Collapse
|
47
|
Muralidharan V, Tretiakova A, Steplewski A, Haas S, Amini S, Johnson E, Khalili K. Evidence for inhibition of MyEF-2 binding to MBP promoter by MEF-1/Pur alpha. J Cell Biochem 1997; 66:524-31. [PMID: 9282330 DOI: 10.1002/(sici)1097-4644(19970915)66:4<524::aid-jcb11>3.0.co;2-b] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myelin basic protein (MBP) is a major component of the myelin sheath whose production is developmentally controlled during myelinogenesis. Earlier studies have indicated that programmed expression of the MBP gene is regulated at the level of transcription. Evidently, the MB1 regulatory motif located between nucleotides -14 to -50 plays an important role in transcription of the MBP promoter in both in vivo systems. The MB1 element contains binding sites for the activator protein MEF-1/Pur alpha and the repressor protein MyEF-2. In this study we use bandshift assays with purified MEF-1/Pur alpha and MyEF-2 and demonstrate that binding of MyEF-2 to its target sequence is inhibited by MEF-1/Pur alpha. Under similar conditions, MyEF-2 enhances the association of MEF-1/Pur alpha with MB1 DNA. MEF-1/Pur alpha binds to MB1 in mono- and dimeric forms. Inclusion of MyEF-2 in the binding reaction increases the dimeric association of MEF-1/Pur alpha with the MB1 sequence. The use of MEF-1/Pur alpha variants in the bandshift assay suggests that two distinct regions of this protein may be involved in its binding to the MB1 sequences, and its ability to block MyEF-2 interaction with the MB1 sequence. Based on previous studies on the programmed expression of MEF-1/Pur alpha and MyEF-2 during myelination and the current findings on their interplay for binding to the MB1 motif, a model is proposed for their involvement in transcriptional regulation of the MBP gene during the course of brain development.
Collapse
Affiliation(s)
- V Muralidharan
- Center for Neurovirology, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Bongarzone ER, Foster LM, Byravan S, Schonmann V, Campagnoni AT. Temperature-dependent regulation of PLP/DM20 and CNP gene expression in two conditionally-immortalized jimpy oligodendrocyte cell lines. Neurochem Res 1997; 22:363-72. [PMID: 9130245 DOI: 10.1023/a:1027339222720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We conditionally immortalized jimpy primary oligodendrocytes (ODCs) with the temperature-sensitive SV40 large T antigen. Two cell lines (clones JP1.1 and JP1.2) were generated that expressed a number of ODC markers. Both jimpy cell lines expressed DM20 mRNAs at the proliferative temperature of 34 degrees C, but not at the "differentiation" temperature of 39 degrees C. Interestingly, at 39 degrees C neither cell line appeared to differentiate further, and neither survived longer than 7 days, in contrast to other ODC cell lines from normal animals that survive many weeks at 39 degrees C. These findings are not consistent with the notion that a PLP/DM20 gene product is the cause of oligodendrocyte cell death in jimpy, since neither jimpy cell line survived at 39 degrees C, and neither line expressed PLP or DM20 proteins. Analysis of the expression of the CNP (2'3' cyclic nucleotide-3'-phosphodiesterase) gene indicated that in both cell lines only one of the two CNP isoforms was expressed at 34 degrees C. Raising the temperature to 39 degrees C caused a greater reduction in the levels of CNP protein than CNP mRNA. Taken together, the DM20 and CNP data suggest that at least some of the decline in myelin/oligodendrocyte components observed in jimpy brains may not be due simply to fewer mature oligodendrocytes, but also to a down regulation of expression of these genes at several levels including transcriptional and post-transcriptional events. Our results provide two cell models for in vitro investigations into the nature of the jimpy mutation at several cellular and molecular levels.
Collapse
Affiliation(s)
- E R Bongarzone
- Mental Retardation Research Center, U.C.L.A. Medical School 90095, USA
| | | | | | | | | |
Collapse
|
49
|
Zumkeller W. The effect of insulin-like growth factors on brain myelination and their potential therapeutic application in myelination disorders. Eur J Paediatr Neurol 1997; 1:91-101. [PMID: 10728202 DOI: 10.1016/s1090-3798(97)80039-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Degenerative disorders of the cerebral white matter, leukodystrophies and demyelination diseases, are characterized by the faulty formation or excessive breakdown of myelin. Insulin-like growth factors (IGFs) promote the proliferation of oligodendrocytes as well as their myelin synthesis. IGF-I overexpressing mice show a significant increase in brain weight associated with increased myelin content. In contrast, the brains of IGF-binding protein-1 transgenic mice show a dramatic decrease in myelination. Furthermore, IGFs and IGF-binding proteins are among the factors that are induced by brain injury and have neuroprotective effects. IGFs also induce neurite growth and survival, in particular in glial cells of the peripheral nervous system. In demyelinating diseases, IGF-I may be useful for reducing myelin breakdown and promoting myelin regeneration. These observations may lead to new therapeutic applications for IGFs, for example promoting remyelination or limiting damage following brain injury.
Collapse
Affiliation(s)
- W Zumkeller
- Department of Paediatrics, University Hospital Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
Maki A, Atwan S, al-Kaledar J, Beaman A, Skoff R. Nonradioactive in situ hybridization histochemistry in leukemic and nonleukemic culture. Biotech Histochem 1997; 72:38-44. [PMID: 9062709 DOI: 10.3109/10520299709082210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Technical limitations are associated with conducting successful in situ hybridization. In this study, three cell types including a tumor neuroblastoma cell line (Neuro-2a), an oligodendrocyte primary culture, and a nonneuronal acute lymphoblastic leukemia cell line (Reh) were used to conduct successful nonradioactive in situ hybridization. Two cDNA probes were used. A 1 kb probe was used to identify the expression of proteolipid protein (PLP) mRNA in a primary culture of oligodendrocytes. A 760 bp cDNA was used to identify the expression of ubiquitin C-terminal hydrolase (UCH-L1) mRNA in Neuro-2a and Reh cells. The probes were labeled with digoxigenin-11-dUTP, denatured, and hybridized with cells fixed on coverslips. The efficiency of the labeling was tested using dot blot analysis by comparing the intensity of our labeled probes with known concentration of the probe labeled by the provider. The nonspecific signals were washed off, followed by detection of a signal specific to the gene. The specificity of the probes was determined by treating the cells with RNase A, hybridizing with bacterial Dig-labeled cDNA (pBR322) and hybridizing the tissues in the absence of labeled probe. During the labeling step, we found that addition of co-precipitants, such as tRNA or glycogen, during precipitation of the labeled probe followed by overnight incubation at -20 C is essential for good recovery of labeled cDNA. Dissolving the labeled probe in a buffer solution containing sodium dodecyl sulfate improves the quantity of the labeling. At the cellular level, prehybridization treatments optimize the permeability of the cell and allow efficient penetration of the labeled probe. Fixing with paraformaldehyde or an ethanol-acetic acid mixture can preserve the structure of cultured cells. To increase the signal to noise ratio, cells were treated with 0.2 N HCl followed by extensive washes using a solution with a high salt concentration and containing dextran sulfate. This treatment significantly improves the signal and reduces the background in cell cultures, but not in tissue sections. The ability to reuse the labeled probe-hybridization mixture is another advantage for using nonradioactive in situ hybridization.
Collapse
Affiliation(s)
- A Maki
- Department of Urology, University of Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|