1
|
Sánchez ML, Coveñas R. Peptidergic Systems and Neuroblastoma. Int J Mol Sci 2025; 26:3464. [PMID: 40331938 PMCID: PMC12027295 DOI: 10.3390/ijms26083464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The peptidergic systems are involved in neuroblastoma. Peptides (angiotensin II, neuropeptide Y, neurotensin, substance P) act as oncogenic agents in neuroblastoma, whereas others (adrenomedullin, corticotropin-releasing factor, urocortin, orexin) exert anticancer effects against neuroblastoma. This plethora of peptidergic systems show the functional complexity of the mechanisms regulated by peptides in neuroblastoma. Peptide receptor antagonists act as antineuroblastoma agents since these compounds counteracted neuroblastoma cell growth and migration and the angiogenesis promoted by oncogenic peptides. Other therapeutic approaches (signaling pathway inhibitors, focal adhesion kinase inhibitors, peptide receptor knockdown, acetic acid analogs) that also counteract the beneficial effects mediated by the oncogenic peptides in neuroblastoma are discussed, and future research lines to be developed in neuroblastoma (interactions between oncogenic and anticancer peptides, combination therapy using peptide receptor antagonists and chemotherapy/radiotherapy) are also suggested. Although the data regarding the involvement of the peptidergic systems in neuroblastoma are, in many cases, fragmentary or very scarce for a particular peptidergic system, taken together, they are quite promising with respect to potentiating and developing this research line with the aim of developing new therapeutic strategies to treat neuroblastoma in the future. Peptidergic systems are potential and promising targets for the diagnosis and treatment of neuroblastoma.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain;
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain;
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Schwarz L, Heise J, Liu Z, Bennewitz J, Thaller G, Tetens J. Mendelian randomisation to uncover causal associations between conformation, metabolism, and production as potential exposure to reproduction in German Holstein dairy cattle. Genet Sel Evol 2025; 57:7. [PMID: 40000939 PMCID: PMC11863791 DOI: 10.1186/s12711-025-00950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Reproduction is vital to welfare, health, and economics in animal husbandry and breeding. Health and reproduction are increasingly being considered because of the observed genetic correlations between reproduction, health, conformation, and performance traits in dairy cattle. Understanding the detailed genetic architecture underlying these traits would represent a major step in comprehending their interplay. Identifying known, putative or novel associations in genomics could improve animal health, welfare, and performance while allowing further adjustments in animal breeding. RESULTS We conducted genome-wide association studies for 25 different traits belonging to four different complexes, namely reproduction (n = 13), conformation (n = 6), production (n = 3), and metabolism (n = 3), using a cohort of over 235,000 dairy cows. As a result, we identified genome-wide significant signals for all the studied traits. The obtained summary statistics collected served as the input for a Mendelian randomisation approach (GSMR) to infer causal associations between putative exposure and reproduction traits. The study considered conformation, production, and metabolism as exposure and reproduction as outcome. A range of 139 to 252 genome-wide significant SNPs per combination were identified as instrumental variables (IVs). Out of 156 trait combinations, 135 demonstrated statistically significant effects, thereby enabling the identification of the responsible IVs. Combinations of traits related to metabolism (38 out of 39), conformation (68 out of 78), or production (29 out of 39) were found to have significant effects on reproduction. These relationships were partially non-linear. Moreover, a separate variance component estimation supported these findings, strongly correlating with the GSMR results and offering suggestions for improvement. Downstream analyses of selected representative traits per complex resulted in identifying and investigating potential physiological mechanisms. Notably, we identified both trait-specific SNPs and genes that appeared to influence specific traits per complex, as well as more general SNPs that were common between exposure and outcome traits. CONCLUSIONS Our study confirms the known genetic associations between reproduction traits and the three complexes tested. It provides new insights into causality, indicating a non-linear relationship between conformation and reproduction. In addition, the downstream analyses have identified several clustered genes that may mediate this association.
Collapse
Affiliation(s)
- Leopold Schwarz
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany.
| | - Johannes Heise
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Zengting Liu
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24118, Kiel, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Schwarz L, Križanac AM, Schneider H, Falker-Gieske C, Heise J, Liu Z, Bennewitz J, Thaller G, Tetens J. Genetic and genomic analysis of reproduction traits in holstein cattle using SNP chip data and imputed sequence level genotypes. BMC Genomics 2024; 25:880. [PMID: 39300329 DOI: 10.1186/s12864-024-10782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Reproductive performance plays an important role in animal welfare, health and profitability in animal husbandry and breeding. It is well established that there is a negative correlation between performance and reproduction in dairy cattle. This relationship is being increasingly considered in breeding programs. By elucidating the genetic architecture of underlying reproduction traits, it will be possible to make a more detailed contribution to this. Our study followed two approaches to elucidate this area; in a first part, variance components were estimated for 14 different calving and fertility traits, and then genome-wide association studies were performed for 13 reproduction traits on imputed sequence-level genotypes with subsequent enrichment analyses. RESULTS Variance components analyses showed a low to moderate heritability (h2) for the traits analysed, ranging from 0.014 for endometritis up to 0.271 for stillbirth, indicating variable degrees of variation within the reproduction traits. For genome-wide association studies, we were able to detect genome-wide significant association signals for nine out of 13 analysed traits after Bonferroni correction on chromosome 6, 18 and the X chromosome. In total, we detected over 2700 associated SNPs encircling more than 90 different genes using the imputed whole-genome sequence data. Functional associations were reviewed so far known and potential candidate regions in the proximity of reproduction events were hypothesised. CONCLUSION Our results confirm previous findings of other authors in a comprehensive cohort including 13 different traits at the same time. Additionally, we identified new candidate genes involved in dairy cattle reproduction and made initial suggestions regarding their potential impact, with special regard to the X chromosome as a putative information source for further research. This work can make a contribution to reveal the genetic architecture of reproduction traits in context of trait specific interactions.
Collapse
Affiliation(s)
- Leopold Schwarz
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany.
| | - Ana-Marija Križanac
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| | - Helen Schneider
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | | | - Johannes Heise
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Zengting Liu
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT), 27283, Verden, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, 24118, Kiel, Germany
| | - Jens Tetens
- Department of Animal Sciences, Georg-August-University, 37077, Göttingen, Germany
| |
Collapse
|
4
|
Strnadová V, Morgan A, Škrlová M, Haasová E, Bardová K, Myšková A, Sýkora D, Kuneš J, Železná B, Maletínská L. Peripheral administration of lipidized NPAF and NPFF analogs does not influence central food intake regulation but induces anxiety-like behavior. Neuropeptides 2024; 104:102417. [PMID: 38422597 DOI: 10.1016/j.npep.2024.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
RF-amide peptides influence multiple physiological processes, including the regulation of appetite, stress responses, behavior, and reproductive and endocrine functions. In this study, we examined the roles of neuropeptide FF receptors (NPFFR1 and NPFFR2) by generating several lipidized analogs of neuropeptide AF (NPAF) and 1DMe, a stable analog of neuropeptide FF (NPFF). These analogs were administered peripherally for the first time to investigate their effects on food intake and other potential physiological outcomes. Lipidized NPAF and 1DMe analogs exhibited enhanced stability and increased pharmacokinetics. These analogs demonstrated preserved high affinity for NPFFR2 in the nanomolar range, while the binding affinity for NPFFR1 was tens of nanomoles. They activated the ERK and Akt signaling pathways in cells overexpressing the NPFFR1 and NPFFR2 receptors. Acute food intake in fasted mice decreased after the peripheral administration of oct-NPAF or oct-1DMe. However, this effect was not as pronounced as that observed after the injection of palm11-PrRP31, a potent anorexigenic compound used as a comparator that binds to GPR10 and the NPFFR2 receptor with high affinity. Neither oct-1DMe nor oct-NPAF decreased food intake or body weight in mice with diet-induced obesity during long-term treatment. In mice treated with oct-1DMe, we observed decreased activity in the central zone during the open field test and decreased activity in the open arms of the elevated plus maze. Furthermore, we observed a decrease in plasma noradrenaline levels and an increase in plasma corticosterone levels, as well as an increase in Crh expression in the hypothalamus. Moreover, neuronal activity in the hypothalamus was increased after treatment with oct-1DMe. In this study, we report that oct-1DMe did not have any long-term effects on the central regulation of food intake; however, it caused anxiety-like behavior.
Collapse
Affiliation(s)
- Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Alena Morgan
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Magdalena Škrlová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eliška Haasová
- Institute of Physiology, CAS, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Aneta Myšková
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; Institute of Physiology, CAS, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic.
| |
Collapse
|
5
|
Wu Z, Jia Q, Liu B, Fang L, Leung PCK, Cheng JC. NPFF stimulates human ovarian cancer cell invasion by upregulating MMP-9 via ERK1/2 signaling. Exp Cell Res 2023; 430:113693. [PMID: 37392963 DOI: 10.1016/j.yexcr.2023.113693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Neuropeptide FF (NPFF) belongs to the RFamide peptide family. NPFF regulates a variety of physiological functions by binding to a G protein-coupled receptor, NPFFR2. Epithelial ovarian cancer (EOC) is a leading cause of death among gynecological malignancies. The pathogenesis of EOC can be regulated by many local factors, including neuropeptides, through an autocrine/paracrine manner. However, to date, the expression and/or function of NPFF/NPFFR2 in EOC is undetermined. In this study, we show that the upregulation of NPFFR2 mRNA was associated with poor overall survival in EOC. The TaqMan probe-based RT-qPCR showed that NPFF and NPFFR2 were expressed in three human EOC cells, CaOV3, OVCAR3, and SKOV3. In comparison, NPFF and NPFFR2 expression levels were higher in SKOV3 cells than in CaOV3 or OVCAR3 cells. Treatment of SKOV3 cells with NPFF did not affect cell viability and proliferation but stimulated cell invasion. NPFF treatment upregulates matrix metalloproteinase-9 (MMP-9) expression. Using the siRNA-mediated knockdown approach, we showed that the stimulatory effect of NPFF on MMP-9 expression was mediated by the NPFFR2. Our results also showed that ERK1/2 signaling was activated in SKOV3 cells in response to the NPFF treatment. In addition, blocking the activation of ERK1/2 signaling abolished the NPFF-induced MMP-9 expression and cell invasion. This study provides evidence that NPFF stimulates EOC cell invasion by upregulating MMP-9 expression through the NPFFR2-mediated ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Boqun Liu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Central Kisspeptin Does Not Affect ERK1/2 or p38 Phosphorylation in Oxytocin Neurons of Late-Pregnant Rats. Int J Mol Sci 2022; 23:ijms23147729. [PMID: 35887077 PMCID: PMC9319833 DOI: 10.3390/ijms23147729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Oxytocin is secreted by hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) oxytocin neurons to induce uterine contractions during parturition. Increased activation of oxytocin neurons at parturition involves a network of afferent inputs that increase oxytocin neuron excitability. Kisspeptin fibre density increases around oxytocin neurons during pregnancy, and central kisspeptin administration excites oxytocin neurons only in late pregnancy. Kisspeptin signals via extracellular regulated kinase 1/2 (ERK1/2) and p38. Therefore, to determine whether kisspeptin excites oxytocin neurons via ERK1/2-p38 signalling in late-pregnant rats, we performed immunohistochemistry for phosphorylated ERK1/2 (pERK1/2) and phosphorylated p38 (p-p38) in oxytocin neurons of non-pregnant and late-pregnant rats. Intracerebroventricular (ICV) kisspeptin administration (2 µg) did not affect pERK1/2 or p-p38 expression in SON and PVN oxytocin neurons of non-pregnant or late-pregnant rats. Furthermore, ICV kisspeptin did not affect pERK1/2 or p-p38 expression in brain areas with major projections to the SON and PVN: the nucleus tractus solitarius, rostral ventrolateral medulla, locus coeruleus, dorsal raphe nucleus, organum vasculosum of the lamina terminalis, median preoptic nucleus, subfornical organ, anteroventral periventricular nucleus, periventricular nucleus and arcuate nucleus. Hence, kisspeptin-induced excitation of oxytocin neurons in late pregnancy does not appear to involve ERK1/2 or p38 activation in oxytocin neurons or their afferent inputs.
Collapse
|
7
|
Djouahra N, Moudilou EN, Exbrayat JM, Hammouche S. Immunodistribution of RFamide-related peptide-3 (RFRP-3) during the seminiferous epithelium cycle in a desert rodent Psammomys obesus. Tissue Cell 2021; 69:101484. [PMID: 33450652 DOI: 10.1016/j.tice.2020.101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
The Sand rat, Psammomys obesus, living northwest of the Algerian Sahara, presents a seasonal reproductive cycle. The purposes of this study were firstly to determine the stages of seminiferous epithelium cycle (SEC) by histological and morphometric analysis and secondly to investigate, for the first time, the testicular expression of RFamide-related peptide-3 (RFRP-3) during the SEC by immunohistochemistry. The results showed that the SEC consists of 14 stages according to the tubular morphology method. RFRP-3 was observed in both testicular compartments: the tubular and the interstitial. Leydig cells exhibited the highest RFRP-3 signal (30.73 % ± 4.80) compared to Sertoli cells (13-15 %). In the germline, RFRP-3 was detected during the late prophase I of meiosis in late pachytene, diplotene and metaphasic spermatocytes I. In addition, only round and triangular spermatids were positive during spermiogenesis. Referring to the SEC, it was found that the increased staining of RFRP-3 in spermatocytes I coincided with late pachytene of XI and XII stages (16.90 % ± 0.69 and 16.61 % ± 0.28, respectively). In spermatids, the labeling decreased in the triangular ones at stage IX (8.04 % ± 0.42). These results suggest the involvement of RFRP-3 in the control of SEC in P. obesus.
Collapse
Affiliation(s)
- Nassima Djouahra
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Arid Area Research Laboratory, Algiers, Algeria.
| | - Elara N Moudilou
- Confluence Sciences and Humanities Research Unit, Biosciences Technologies Ethics Laboratory, Lyon Catholic University, 10 Place des Archives, Lyon, 69002, France
| | - Jean-Marie Exbrayat
- Confluence Sciences and Humanities Research Unit, Biosciences Technologies Ethics Laboratory, Lyon Catholic University, 10 Place des Archives, Lyon, 69002, France
| | - Sadjia Hammouche
- USTHB, University of Sciences and Technology of Houari Boumediene, Biological Sciences Faculty, Arid Area Research Laboratory, Algiers, Algeria
| |
Collapse
|
8
|
Chen J, Huang S, Zhang J, Li J, Wang Y. Characterization of the neuropeptide FF (NPFF) gene in chickens: evidence for a single bioactive NPAF peptide encoded by the NPFF gene in birds. Domest Anim Endocrinol 2020; 72:106435. [PMID: 32247990 DOI: 10.1016/j.domaniend.2020.106435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/09/2019] [Accepted: 01/03/2020] [Indexed: 01/06/2023]
Abstract
The 2 structurally related peptides, neuropeptide FF (NPFF) and neuropeptide AF (NPAF), are encoded by the NPFF gene and have been identified as neuromodulators that regulate nociception and opiate-mediated analgesia via NPFF receptor (NPFFR2) in mammals. However, little is known about these 2 peptides in birds. In this study, we examined the structure, tissue expression profile, and functionality of NPAF and NPFF in chickens. Our results showed that: 1) unlike mammalian NPFF, NPFF from chicken and other avian species is predicted to produce a single bioactive NPAF peptide, whereas the putative avian NPFF peptide likely lacks activity due to the absence of functional RFamide motif at its C-terminus; 2) synthetic chicken (c-) NPAF can potently activate cNPFFR2 (and not cNPFFR1) expressed in HEK293 cells, as monitored by 3 cell-based luciferase reporter systems, indicating that cNPAF is a potent ligand for cNPFFR2, which activation could decrease intracellular cAMP levels and stimulate the MAPK/ERK signaling cascade; interestingly, gonadotropin-inhibitory hormone, a peptide sharing high structural similarity to NPAF, could specifically activate cNPFFR1 (but not cNPFFR2); 3) Quantitative real-time PCR revealed that cNPFF mRNA is widely expressed in chicken tissues with the highest level detected in the hypothalamus, whereas cNPFFR2 is expressed in all tissues examined with the highest level noted in the hypothalamus and anterior pituitary. Taken together, our data reveal that avian NPFF encodes a single bioactive NPAF peptide, which preferentially activates NPFFR2, and provides insights into potential structural and functional changes of NPFF-derived peptides during vertebrate evolution.
Collapse
Affiliation(s)
- J Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - S Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - J Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - J Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Y Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Zhu H, Peng B, Klausen C, Yi Y, Li Y, Xiong S, von Dadelszen P, Leung PCK. NPFF increases fusogenic proteins syncytin 1 and syncytin 2 via GCM1 in first trimester primary human cytotrophoblast cells. FASEB J 2020; 34:9419-9432. [PMID: 32501590 DOI: 10.1096/fj.201902978r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 01/22/2023]
Abstract
Neuropeptide FF (NPFF) is well-known for its roles in the central nervous system. Despite studies demonstrating that NPFF receptor 2 (NPFFR2) mRNA is highest in placenta, nothing is known about NPFF-NPFFR2 functions in placental development. Here, we investigated the effects of NPFF-NPFFR2 on expression of syncytial [human chorionic gonadotropin (hCG) β] and fusogenic [syncytin 1, syncytin 2, and glial cells missing 1 (GCM1)] genes in first trimester primary human cytotrophoblast cells. By analyzing two publicly available microarray data sets, we found that NPFF is consistently expressed throughout gestation whereas NPFFR2 increases in first trimester and is elevated in placenta samples from women with preeclampsia. Immunohistochemistry showed that NPFFR2, syncytin 1/2, and GCM1 each displayed unique patterns of expression among different trophoblast populations in first trimester placenta. Treatment of primary human cytotrophoblast cells with NPFF increased the mRNA and protein levels of hCG β, syncytin 1, syncytin 2, and GCM1; and knockdown of NPFFR2 abolished these effects. Interestingly, GCM1 mediated NPFF-induced upregulation of syncytin 1 and syncytin 2, but not hCG β, in primary human cytotrophoblasts. Our results demonstrate that NPFF acts via NPFFR2 to enhance production of hCG β and promote GCM1-dependent expression of syncytin 1 and 2 in human cytotrophoblasts.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Bo Peng
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yan Li
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Siyuan Xiong
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Tsutsui K, Osugi T, Son YL, Ubuka T. Review: Structure, function and evolution of GnIH. Gen Comp Endocrinol 2018; 264:48-57. [PMID: 28754274 DOI: 10.1016/j.ygcen.2017.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/27/2022]
Abstract
Neuropeptides that possess the Arg-Phe-NH2 motif at their C-termini (i.e., RFamide peptides) have been characterized in the nervous system of both invertebrates and vertebrates. In vertebrates, RFamide peptides make a family and consist of the groups of gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), kisspeptin (kiss1 and kiss2), and pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa). It now appears that these vertebrate RFamide peptides exert important neuroendocrine, behavioral, sensory, and autonomic functions. In 2000, GnIH was discovered as a novel hypothalamic RFamide peptide inhibiting gonadotropin release in quail. Subsequent studies have demonstrated that GnIH acts on the brain and pituitary to modulate reproductive physiology and behavior across vertebrates. To clarify the origin and evolution of GnIH, the existence of GnIH was investigated in agnathans, the most ancient lineage of vertebrates, and basal chordates, such as tunicates and cephalochordates (represented by amphioxus). This review first summarizes the structure and function of GnIH and other RFamide peptides, in particular NPFF having a similar C-terminal structure of GnIH, in vertebrates. Then, this review describes the evolutionary origin of GnIH based on the studies in agnathans and basal chordates.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| | - Takayoshi Ubuka
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
11
|
Yu HP, Zhang N, Zhang T, Wang ZL, Li N, Tang HH, Zhang R, Zhang MN, Xu B, Fang Q, Wang R. Activation of NPFF 2 receptor stimulates neurite outgrowth in Neuro 2A cells through activation of ERK signaling pathway. Peptides 2016; 86:24-32. [PMID: 27669639 DOI: 10.1016/j.peptides.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 10/21/2022]
Abstract
Neurite outgrowth is an important process in neural regeneration and plasticity, especially after neural injury, and recent evidence indicates that several Gαi/o protein-coupled receptors play an important role in neurite outgrowth. The neuropeptide (NP)FF system contains two Gαi/o protein-coupled receptors, NPFF1 and NPFF2 receptors, which are mainly distributed in the central nervous system. The aim of the present study was to determine whether the NPFF system is involved in neurite outgrowth in Neuro 2A cells. We showed that Neuro 2A cells endogenously expressed NPFF2 receptor, and the NPFF2 receptor agonist dNPA inhibited cyclic adenosine monophosphate (cAMP) production stimulated by forskolin in Neuro 2A cells. We also demonstrated that NPFF and dNPA dose-dependently induced neurite outgrowth in Neuro 2A cells, which was completely abolished by the NPFF receptor antagonist RF9. Pretreatment with mitogen-activated protein kinase inhibitors PD98059 and U0126 decreased dNPA-induced neurite outgrowth. In addition, dNPA increased phosphorylation of extracellular signal-regulated kinase (ERK) in Neuro 2A cells, which was completely antagonized by pretreatment with U0126. Our results suggest that activation of NPFF2 receptor stimulates neurite outgrowth in Neuro 2A cells through activation of the ERK signaling pathway. Moreover, NPFF2 receptor may be a potential therapeutic target for neural injury and degeneration in the future.
Collapse
Affiliation(s)
- Hong-Ping Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zi-Long Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Hong-Hai Tang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Meng-Na Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
12
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
13
|
Sun Y, Chen X, Chen Z, Ma X, Li D, Shang P, Qian A. Neuropeptide FF attenuates RANKL-induced differentiation of macrophage-like cells into osteoclast-like cells. Arch Oral Biol 2015; 60:282-92. [DOI: 10.1016/j.archoralbio.2014.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/28/2014] [Accepted: 11/08/2014] [Indexed: 01/31/2023]
|
14
|
Bray L, Froment C, Pardo P, Candotto C, Burlet-Schiltz O, Zajac JM, Mollereau C, Moulédous L. Identification and functional characterization of the phosphorylation sites of the neuropeptide FF2 receptor. J Biol Chem 2014; 289:33754-66. [PMID: 25326382 DOI: 10.1074/jbc.m114.612614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuropeptide FF2 (NPFF2) receptor belongs to the rhodopsin family of G protein-coupled receptors and mediates the effects of several related RFamide neuropeptides. One of the main pharmacological interests of this system resides in its ability to regulate endogenous opioid systems, making it a potential target to reduce the negative effects of chronic opioid use. Phosphorylation of intracellular residues is the most extensively studied post-translational modification regulating G protein-coupled receptor activity. However, until now, no information concerning NPFF2 receptor phosphorylation is available. In this study, we combined mass spectrometric analysis and site-directed mutagenesis to analyze for the first time the phosphorylation pattern of the NPFF2 receptor and the role of the various phosphorylation sites in receptor signaling, desensitization, and trafficking in a SH-SY5Y model cell line. We identified the major, likely GRK-dependent, phosphorylation cluster responsible for acute desensitization, (412)TNST(415) at the end of the C terminus of the receptor, and additional sites involved in desensitization ((372)TS(373)) and internalization (Ser(395)). We thus demonstrate the key role played by phosphorylation in the regulation of NPFF2 receptor activity and trafficking. Our data also provide additional evidence supporting the concept that desensitization and internalization are partially independent processes relying on distinct phosphorylation patterns.
Collapse
Affiliation(s)
- Lauriane Bray
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Carine Froment
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Pierre Pardo
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Cédric Candotto
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Odile Burlet-Schiltz
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Jean-Marie Zajac
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Catherine Mollereau
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| | - Lionel Moulédous
- From the Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
15
|
Osugi T, Okamura T, Son YL, Ohkubo M, Ubuka T, Henmi Y, Tsutsui K. Evolutionary origin of GnIH and NPFF in chordates: insights from novel amphioxus RFamide peptides. PLoS One 2014; 9:e100962. [PMID: 24983238 PMCID: PMC4077772 DOI: 10.1371/journal.pone.0100962] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/30/2014] [Indexed: 11/18/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a newly identified hypothalamic neuropeptide that inhibits pituitary hormone secretion in vertebrates. GnIH has an LPXRFamide (X = L or Q) motif at the C-terminal in representative species of gnathostomes. On the other hand, neuropeptide FF (NPFF), a neuropeptide characterized as a pain-modulatory neuropeptide, in vertebrates has a PQRFamide motif similar to the C-terminal of GnIH, suggesting that GnIH and NPFF have diverged from a common ancestor. Because GnIH and NPFF belong to the RFamide peptide family in vertebrates, protochordate RFamide peptides may provide important insights into the evolutionary origin of GnIH and NPFF. In this study, we identified a novel gene encoding RFamide peptides and two genes of their putative receptors in the amphioxus Branchiostoma japonicum. Molecular phylogenetic analysis and synteny analysis indicated that these genes are closely related to the genes of GnIH and NPFF and their receptors of vertebrates. We further identified mature RFamide peptides and their receptors in protochordates. The identified amphioxus RFamide peptides inhibited forskolin induced cAMP signaling in the COS-7 cells with one of the identified amphioxus RFamide peptide receptors expressed. These results indicate that the identified protochordate RFamide peptide gene is a common ancestral form of GnIH and NPFF genes, suggesting that the origin of GnIH and NPFF may date back to the time of the emergence of early chordates. GnIH gene and NPFF gene may have diverged by whole-genome duplication in the course of vertebrate evolution.
Collapse
Affiliation(s)
- Tomohiro Osugi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Tomoki Okamura
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Makoto Ohkubo
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Yasuhisa Henmi
- Aitsu Marine Station, Center for Marine Environmental Studies, Kumamoto University, Kumamoto, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
Jászberényi M, Bagosi Z, Csabafi K, Palotai M, Telegdy G. The actions of neuropeptide SF on the hypothalamic-pituitary-adrenal axis and behavior in rats. ACTA ACUST UNITED AC 2013; 188:46-51. [PMID: 24316399 DOI: 10.1016/j.regpep.2013.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022]
Abstract
Present experiments focused on measuring the effect of neuropeptide SF (NPSF) on the hypothalamus-pituitary-adrenal (HPA) axis and behavior. The peptide was administered in different doses (0.25, 0.5, 1, 2 μg) intracerebroventricularly to rats, and the behavior of which was then observed by telemetry and open-field test. Effect of NPSF on core temperature was also measured via telemetry. Plasma ACTH and corticosterone concentrations were measured to assess the influence of NPSF on the HPA activation. In addition, the changes in corticotrophin-releasing hormone (CRH) level in the hypothalamic paraventricular nucleus were continuously monitored by means of intracerebral microdialysis. Our results showed that NPSF augmented paraventricular CRH release and increased ACTH and corticosterone levels in the plasma. The release of corticosterone was successfully blocked by the pre-treatment of the CRH antagonist α-helical CRH9-41. Spontaneous and exploratory locomotor activity was also stimulated according to the telemetric and open-field studies. However, NPSF only tended to alter stereotyped behavior in the open-field experiments. These results demonstrate that NPSF may play a physiologic role in the regulation of such circadian functions as the activity of motor centers and the HPA axis, through the release of CRH.
Collapse
Affiliation(s)
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Miklós Palotai
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Gyula Telegdy
- Department of Pathophysiology, University of Szeged, Szeged, Hungary; MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences Szeged, Szeged, Hungary.
| |
Collapse
|
17
|
Sun YL, Zhang XY, Sun T, He N, Li JY, Zhuang Y, Zeng Q, Yu J, Fang Q, Wang R. The anti-inflammatory potential of neuropeptide FF in vitro and in vivo. Peptides 2013; 47:124-32. [PMID: 23856454 DOI: 10.1016/j.peptides.2013.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 01/22/2023]
Abstract
Neuropeptide FF (NPFF) has many functions in regulating various biological processes. However, little attention has been focused on the anti-inflammatory effect of this peptide. In the present study, the in vitro anti-inflammatory activity of NPFF in both primary peritoneal macrophages and RAW 264.7 macrophages was investigated. Our data showed that NPFF suppressed the nitric oxide (NO) production of macrophages in the inflammation process. RF9, a reported antagonist of NPFF receptors, completely blocked the NPFF-induced NO suppression, suggesting a NPFF receptors-mediated pathway is mainly involved. Down-regulation of the nitric oxide synthases significantly inhibited the NPFF-induced NO reduction, indicating the involvement of nitric oxide synthases. However, the nitric oxide synthases were not the only route by which NPFF modulated the NO levels of macrophages. Pharmacological antagonists of the NF-κB signal pathway also completely suppressed the NPFF-induced NO decline. Moreover, we also observed that NPFF is capable of blocking the LPS-induced nuclear translocation of p65 in macrophages, implying the involvement of the NF-κB signal pathway. Finally, we observed that NPFF markedly attenuated the carrageenan-induced mouse paw edema, indicating that NPFF is capable of exerting anti-inflammatory potency in vivo. Collectively, our findings reveal the potential role of NPFF in the anti-inflammatory field both in vitro and in vivo, which will be helpful for the further exploitation of NPFF utility therapeutically.
Collapse
Affiliation(s)
- Yu-Long Sun
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology & Psychology, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, Gansu 730000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sun YL, Zhang XY, He N, Sun T, Zhuang Y, Fang Q, Wang KR, Wang R. Neuropeptide FF activates ERK and NF kappa B signal pathways in differentiated SH-SY5Y cells. Peptides 2012; 38:110-7. [PMID: 22981806 DOI: 10.1016/j.peptides.2012.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/30/2012] [Accepted: 08/30/2012] [Indexed: 12/27/2022]
Abstract
Neuropeptide FF (NPFF) has been reported to play important roles in regulating diverse biological processes. However, little attention has been focused on the downstream signal transduction pathway of NPFF. Here, we used the differentiated neuroblastoma cell line, dSH-SY5Y, which endogenously expresses hNPFF2 receptor, to investigate the signal transduction downstream of NPFF. In particular we investigated the regulation of the extracellular signal-regulated protein kinase (ERK) and the nuclear factor kappa B (NF-κB) pathways by NPFF in these cells. NPFF rapidly and transiently stimulated ERK. H89, a selective inhibitor of cyclic AMP-dependent protein kinase A (PKA), inhibited the NPFF-activated ERK pathway, indicating the involvement of PKA in the NPFF-induced ERK activation. Down-regulation of nitric oxide synthases also attenuated NPFF-induced ERK activation, suggesting that a nitric oxide synthase-dependent pathway is involved. Moreover, the core upstream components of the NF-κB pathway were also significantly activated in response to NPFF, suggesting that the NF-κB pathway is involved in the signal transduction pathway of NPFF. Collectively, these data demonstrate that nitric oxide synthases are involved in the signal transduction pathway of NPFF, and provide the first evidence for the interaction between NPFF and the NF-κB pathway. These advances in our interpretation of the NPFF pathway mechanism will aid the comprehensive understanding of its function and provide novel molecular insight for further study of the NPFF system.
Collapse
Affiliation(s)
- Yu-long Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cline MA, Bowden CN, Calchary WA, Layne JE. Short-term anorexigenic effects of central neuropeptide VF are associated with hypothalamic changes in chicks. J Neuroendocrinol 2008; 20:971-7. [PMID: 18540998 DOI: 10.1111/j.1365-2826.2008.01749.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was designed to measure food and water intake, changes in hypothalamic chemistry, and other behaviour modifications after central injection of neuropeptide (NP) VF in broiler type chicks. In Experiment 1, chicks responded to central NPVF with a reduction in food intake for up to 90 min post injection. Water intake was unaffected. In Experiment 2, NPVF exerted a less potent and shorter duration of attenuated food intake than did the structurally related NPFF. In Experiment 3, 16.0 nmol NPVF reversed the prolactin-releasing peptide induced orexigenic effect. In Experiment 4, central NPVF treatment was associated with decreased c-Fos immunoreactivity in the lateral hypothalamus, whereas c-Fos immunoreactivity in the dorsomedial nucleus, infundibular nucleus (homologue to the mammalian arcuate nucleus) and ventromedial nucleus was increased. In Experiment 5, behaviours unrelated to ingestion including sit, stand, deep rest and locomotion were affected by central NPVF injection. Some of these behaviours are incompatible with ingestion and may contribute to hypothalamic associated perception of satiety after central NPVF. In conclusion, NVPF is a short-term regulator of appetite and its effects are associated with hypothalamic and behaviour changes in chicks.
Collapse
Affiliation(s)
- M A Cline
- Department of Biology, Radford University, Radford, VA 24142, USA.
| | | | | | | |
Collapse
|
20
|
Ben-Shlomo G, Ofri R, Bandah D, Rosner M, Sharon D. Microarray-based gene expression analysis during retinal maturation of albino rats. Graefes Arch Clin Exp Ophthalmol 2008; 246:693-702. [PMID: 18286297 DOI: 10.1007/s00417-008-0772-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/03/2008] [Accepted: 01/12/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In recent years, the rat has become a commonly-used animal model for the study of retinal diseases. Similar to other tissues, the retina undergoes significant functional changes during maturation. Aiming to gain knowledge on additional aspects of retinal maturation, we performed gene expression and histological analyses of the rat retina during maturation. METHODS Rat retinas were dissected at three time points. Histological examination of the samples was performed, and the expression levels of retinal genes were evaluated using the rat whole-genome microarray system. Quantitative real-time PCR analysis was used to validate selected expression patterns. Various statistical and bioinformatic tools were used to identify differentially expressed genes. RESULTS The microarray analysis revealed a relatively high number of highly expressed non-annotated genes. We identified 603 differentially expressed genes, which were grouped into six clusters based on changes in expression levels during the first 20 weeks of life. A bioinformatic analysis of these clusters revealed sets of genes encoding proteins with functions that are likely to be relevant to retinal maturation (potassium, sodium, calcium, and chloride channels, synaptic vesicle transport, and axonogenesis). The histological analysis revealed a significant reduction of outer nuclear layer thickness and retinal ganglion cell number during maturation. CONCLUSIONS These data, taken together with our previously reported electrophysiological data, contribute to our understanding of the retinal maturation processes of this widely-used animal model.
Collapse
Affiliation(s)
- Gil Ben-Shlomo
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
21
|
Yang HYT, Tao T, Iadarola MJ. Modulatory role of neuropeptide FF system in nociception and opiate analgesia. Neuropeptides 2008; 42:1-18. [PMID: 17854890 DOI: 10.1016/j.npep.2007.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 10/22/2022]
Abstract
The tetra-peptide FMRF-NH(2) is a cardioexcitatory peptide in the clam. Using the antibody against this peptide, FMRF-NH(2)-like immunoreactive material was detected in mammalian CNS. Subsequently, mammalian FMRF-NH(2) immunoreactive peptides were isolated from bovine brain and characterized to be FLFQPQRF-NH(2) (NPFF) and AGEGLSSPFWSLAAPQRF-NH(2) (NPAF). The genes encoding NPFF precursor proteins and NPFF receptors 1 and 2 are expressed in all vertebrate species examined to date and are highly conserved. Among many biological roles suggested for the NPFF system, the possible modulatory role of NPFF in nocicetion and opiate analgesia has been most widely investigated. Pharmacologically, NPFF-related peptides were found to exhibit analgesia and also potentiate the analgesic activity of opiates when administered intrathecally but attenuate the opiate induced analgesia when administered intracerebroventricularly. RF-NH(2) peptides including NPFF-related peptides were found to delay the rate of acid sensing ion channels (ASIC) desensitization resulting in enhancing acid gated currents, raising the possibility that NPFF also may have a pain modulatory role through ASIC. The genes for NPFF as well as NPFF-R2, preferred receptor for NPFF, are highly unevenly expressed in the rat CNS with the highest levels localized to the superficial layers of the dorsal spinal cord. These two genes are also present in the dorsal root ganglia (DRG), though at low levels in normal rats. NPFF and NPFF-R2 mRNAs were found to be coordinately up-regulated in spinal cord and DRG of rats with peripheral inflammation. In addition, NPFF-R2 immunoreactivity in the primary afferents was increased by peripheral inflammation. The findings from the early studies on the analgesic and morphine modulating activities suggested a role for NPFF in pain modulation and this possibility is further supported by the distribution of NPFF and its receptor and the regulation of the NPFF system in vivo.
Collapse
Affiliation(s)
- Hsiu-Ying T Yang
- Neurobiology and Pain Therapeutics Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892-4410, USA.
| | | | | |
Collapse
|
22
|
Cline MA, Nandar W, Rogers JO. Central neuropeptide FF reduces feed consumption and affects hypothalamic chemistry in chicks. Neuropeptides 2007; 41:433-9. [PMID: 17936900 DOI: 10.1016/j.npep.2007.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
Information on the physiological functions of neuropeptide FF; NPFF, a morphine modulating octapeptide in avians is lacking. Thus, we designed a study to investigate the effects of central NPFF with particular emphasis on appetite-related processes. Cobb-500 chicks were intracerebroventricularly (ICV) injected with 0, 4.16, 8.32 or 16.6nmol NPFF, and feed and water intake were quantified. Feed intake was linearly decreased as NPFF dose increased, and this effect decayed over time and was not significant by 120min post-injection. Water intake was not affected by ICV NPFF. In a second exp, we observed that naloxone completely reversed the NPFF-induced decrease in feed intake. The amount of time a visible marker took to travel through the total length of the alimentary canal linearly increased as NPFF dose increased. We measured neuronal activation in the lateral hypothalamus (LH), paraventricular nucleus (PVN) dorsomedial nucleus (DMN) and ventromedial hypothalamus (VMN) of the hypothalamus, and nucleus dorsomedialis posterior thalami (DMP) of the thalamus. The DMN, DMP, PVN and VMH were all activated by ICV NPFF while the LH was not affected. Finally, we determined that the anorexigenic effect of ICV NPFF is primarily behavior specific, since behaviors unrelated to ingestion were not increased the same duration of time as was consumatory pecking. We conclude that NPFF causes anorexigenic effects in chicks that are primarily behavior specific.
Collapse
Affiliation(s)
- Mark A Cline
- Department of Biology, Radford University, P.O. Box 6931, Radford, VA 24142, USA.
| | | | | |
Collapse
|