1
|
Dong Z, He W, Lin G, Chen X, Cao S, Guan T, Sun Y, Zhang Y, Qi M, Guo B, Zhou Z, Zhuo R, Wu R, Liu M, Liu Y. Histone acetyltransferase KAT2A modulates neural stem cell differentiation and proliferation by inducing degradation of the transcription factor PAX6. J Biol Chem 2023; 299:103020. [PMID: 36791914 PMCID: PMC10011063 DOI: 10.1016/j.jbc.2023.103020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Neural stem cells (NSCs) proliferation and differentiation rely on proper expression and post-translational modification of transcription factors involved in the determination of cell fate. Further characterization is needed to connect modifying enzymes with their transcription factor substrates in the regulation of these processes. Here, we demonstrated that the inhibition of KAT2A, a histone acetyltransferase, leads to a phenotype of small eyes in the developing embryo of zebrafish, which is associated with enhanced proliferation and apoptosis of NSCs in zebrafish eyes. We confirmed that this phenotype is mediated by the evaluated level of PAX6 protein. We further verified that KAT2A negatively regulates PAX6 at the protein level in cultured neural stem cells of rat cerebral cortex. We revealed that PAX6 is a novel acetylation substrate of KAT2A, and the acetylation of PAX6 promotes its ubiquitination mediated by the E3 ligase RNF8 that facilitated PAX6 degradation. Our study proposes that KAT2A inhibition results in accelerated proliferation, delayed differentiation, or apoptosis, depending on the context of PAX6 dosage. Thus, the KAT2A/PAX6 axis plays an essential role to keep a balance between the self-renewal and differentiation of NSCs.
Collapse
Affiliation(s)
- Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Wei He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ge Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Xu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Sixian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ying Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Zhihao Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, China.
| |
Collapse
|
2
|
Rodrigues RS, Paulo SL, Moreira JB, Tanqueiro SR, Sebastião AM, Diógenes MJ, Xapelli S. Adult Neural Stem Cells as Promising Targets in Psychiatric Disorders. Stem Cells Dev 2021; 29:1099-1117. [PMID: 32723008 DOI: 10.1089/scd.2020.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of new therapies for psychiatric disorders is of utmost importance, given the enormous toll these disorders pose to society nowadays. This should be based on the identification of neural substrates and mechanisms that underlie disease etiopathophysiology. Adult neural stem cells (NSCs) have been emerging as a promising platform to counteract brain damage. In this perspective article, we put forth a detailed view of how NSCs operate in the adult brain and influence brain homeostasis, having profound implications at both behavioral and functional levels. We appraise evidence suggesting that adult NSCs play important roles in regulating several forms of brain plasticity, particularly emotional and cognitive flexibility, and that NSC dynamics are altered upon brain pathology. Furthermore, we discuss the potential therapeutic value of utilizing adult endogenous NSCs as vessels for regeneration, highlighting their importance as targets for the treatment of multiple mental illnesses, such as affective disorders, schizophrenia, and addiction. Finally, we speculate on strategies to surpass current challenges in neuropsychiatric disease modeling and brain repair.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Soeda S, Saito R, Fujii A, Tojo S, Tokumura Y, Taniura H. Abnormal DNA methylation in pluripotent stem cells from a patient with Prader-Willi syndrome results in neuronal differentiation defects. Stem Cell Res 2021; 53:102351. [PMID: 33895503 DOI: 10.1016/j.scr.2021.102351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 03/09/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
DNA methylation is a common method of gene expression regulation, and this form of regulation occurs in the neurodevelopmental disorder Prader-Willi syndrome (PWS). Gene expression regulation via methylation is important for humans, although there is little understanding of the role of methylation in neuronal differentiation. We characterized the cellular differentiation potential of iPS cells derived from a patient with PWS with abnormal methylation (M-iPWS cells). A comparative genomic hybridization (CGH) array revealed that, unlike iPWS cells (deletion genes type), the abnormally methylated M-iPWS cells had no deletion in the15q11.2-q13 chromosome region. In addition, methylation-specific PCR showed that M-iPWS cells had strong methylation in CpG island of the small nuclear ribonucleoprotein polypeptide N (SNRPN) on both alleles. To assess the effect of abnormal methylation on cell differentiation, the M-iPWS and iPWS cells were induced to differentiate into embryoid bodies (EBs). The results suggest that iPWS and M-iPWS cells are defective at differentiation into ectoderm. Neural stem cells (NSCs) and neurons derived from M-iPWS cells had fewer NSCs and mature neurons with low expression of NSCs and neuronal markers. We conclude that expression of the downstream of genes in the PWS region regulated by methylation is involved in neuronal differentiation.
Collapse
Affiliation(s)
- Shuhei Soeda
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan.
| | - Ryo Saito
- Advanced Clinical Research Center, Southern Tohoku Research Institute for Neuroscience, Kanagawa 215-0026, Japan; Core Research Facilities for Basic Science, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Ai Fujii
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Shusei Tojo
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Yuka Tokumura
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hideo Taniura
- Laboratory of Neurochemistry, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| |
Collapse
|
4
|
Sharif A, Fitzsimons CP, Lucassen PJ. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:125-140. [PMID: 34225958 DOI: 10.1016/b978-0-12-819975-6.00006-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adult brain harbors specific niches where stem cells undergo substantial plasticity and, in some regions, generate new neurons throughout life. This phenomenon is well known in the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus and has recently also been described in the hypothalamus of several rodent and primate species. After a brief overview of preclinical studies illustrating the pathophysiologic significance of hypothalamic neurogenesis in the control of energy metabolism, reproduction, thermoregulation, sleep, and aging, we review current literature on the neurogenic niche of the human hypothalamus. A comparison of the organization of the niche between humans and rodents highlights some common features, but also substantial differences, e.g., in the distribution and extent of the hypothalamic neural stem cells. Exploring the full dynamics of hypothalamic neurogenesis in humans raises a formidable challenge however, given among others, inherent technical limitations. We close with discussing possible functional role(s) of the human hypothalamic niche, and how gaining more insights into this form of plasticity could be relevant for a better understanding of pathologies associated with disturbed hypothalamic function.
Collapse
Affiliation(s)
- Ariane Sharif
- Lille Neuroscience & Cognition, University of Lille, Lille, France.
| | - Carlos P Fitzsimons
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res 2020; 381:112458. [DOI: 10.1016/j.bbr.2019.112458] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/29/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023]
|
6
|
Increased Neuronal Differentiation Efficiency in High Cell Density-Derived Induced Pluripotent Stem Cells. Stem Cells Int 2019; 2019:2018784. [PMID: 31871463 PMCID: PMC6913159 DOI: 10.1155/2019/2018784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/23/2019] [Indexed: 01/30/2023] Open
Abstract
Human pluripotent stem cells (hPSCs), including induced pluripotent stem cells (iPSCs), provide access to hard-to-obtain cells for studies under physiological and disease conditions. For the study of neurodegenerative diseases, especially sporadic cases where the “disease condition” might be restricted towards the neuroectodermal lineage, obtaining the affected neurons is important to help unravel the underlying molecular mechanism leading to the diseases. Although differentiation of iPSCs to neural lineage allows acquisition of cell types of interest, the technology suffers from low efficiency leading to low yield of neurons. Here, we investigated the potential of adult neuroprogenitor cells (aNPCs) for iPSC derivation and possible confounders such as cell density of infected NPCs on their subsequent neuronal differentiation potential from reprogrammed cells under isogenic conditions. Characterized hiPSCs of defined cell densities generated from aNPCs were subjected to neuronal differentiation on PA6 stromal cells. The results showed that hiPSC clones obtained from low seeding density (iPSC-aNPCLow) differentiated less efficiently compared to those from higher density (iPSC-aNPCHigh). Our findings might help to further improve the yield and quality of neurons for in vitro modelling of neurodegenerative diseases.
Collapse
|
7
|
Tao H, Zhou X, Xie Q, Ma Z, Sun F, Cui L, Cai Y, Ma G, Fu J, Liu Z, Li Y, Zhou H, Zhao J, Chen Y, Mai H, Chen Y, Chen J, Qi W, Sun C, Zhao B, Li K. SRR intronic variation inhibits expression of its neighbouring SMG6 gene and protects against temporal lobe epilepsy. J Cell Mol Med 2018; 22:1883-1893. [PMID: 29363864 PMCID: PMC5824374 DOI: 10.1111/jcmm.13473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/30/2017] [Indexed: 01/05/2023] Open
Abstract
D‐serine is a predominant N‐methyl‐D‐aspartate receptor co‐agonist with glutamate, and excessive activation of the receptor plays a substantial role in epileptic seizures. Serine racemase (SRR) is responsible for transforming L‐serine to D‐serine. In this study, we aimed to investigate the genetic roles of SRR and a neighbouring gene, nonsense‐mediated mRNA decay factor (SMG6), in temporal lobe epilepsy (TLE). Here, a total of 496 TLE patients and 528 healthy individuals were successfully genotyped for three SRR tag single nucleotide polymorphisms. The frequencies of the GG genotype at rs4523957 T > G were reduced in the TLE cases in the initial cohort (cohort 1) and were confirmed in the independent cohort (cohort 2). An analysis of all TLE cases in cohort 1 + 2 revealed that the seizure frequency and drug‐resistant incidence were significantly decreased in carriers of the GG genotype at rs4523957. Intriguingly, the activity of the SMG6 promoter with the mutant allele at rs4523957 decreased by 22% in the dual‐luciferase assay, and up‐regulated expression of SMG6 was observed in an epilepsy rat model. This study provides the first demonstration that the GG genotype is a protective marker against TLE. In particular, variation at rs4523957 likely inhibits SMG6 transcription and plays a key role against susceptibility to and severity of TLE. The significance of SMG6 hyperfunction in epileptic seizures deserves to be investigated in future studies.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu Zhou
- Clinical Research Center, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qian Xie
- Emergency Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhonghua Ma
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Fuhai Sun
- Department of Neurology, the First People's Hospital of Pingdingshan, Pingdingshan, Hebei, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guoda Ma
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - You Li
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianghao Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanyan Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hui Mai
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ying Chen
- Department of Neurology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Jun Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wei Qi
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chaowen Sun
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong, China.,Stroke Center, Neurology& Neurosurgery Division, Clinical Medicine Research Institute & the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
|
9
|
Lojewski X, Srimasorn S, Rauh J, Francke S, Wobus M, Taylor V, Araúzo-Bravo MJ, Hallmeyer-Elgner S, Kirsch M, Schwarz S, Schwarz J, Storch A, Hermann A. Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential. Stem Cells Transl Med 2015; 4:1223-33. [PMID: 26304036 DOI: 10.5966/sctm.2015-0057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Brain perivascular cells have recently been identified as a novel mesodermal cell type in the human brain. These cells reside in the perivascular niche and were shown to have mesodermal and, to a lesser extent, tissue-specific differentiation potential. Mesenchymal stem cells (MSCs) are widely proposed for use in cell therapy in many neurological disorders; therefore, it is of importance to better understand the "intrinsic" MSC population of the human brain. We systematically characterized adult human brain-derived pericytes during in vitro expansion and differentiation and compared these cells with fetal and adult human brain-derived neural stem cells (NSCs) and adult human bone marrow-derived MSCs. We found that adult human brain pericytes, which can be isolated from the hippocampus and from subcortical white matter, are-in contrast to adult human NSCs-easily expandable in monolayer cultures and show many similarities to human bone marrow-derived MSCs both regarding both surface marker expression and after whole transcriptome profile. Human brain pericytes showed a negligible propensity for neuroectodermal differentiation under various differentiation conditions but efficiently generated mesodermal progeny. Consequently, human brain pericytes resemble bone marrow-derived MSCs and might be very interesting for possible autologous and endogenous stem cell-based treatment strategies and cell therapeutic approaches for treating neurological diseases. SIGNIFICANCE Perivascular mesenchymal stem cells (MSCs) recently gained significant interest because of their appearance in many tissues including the human brain. MSCs were often reported as being beneficial after transplantation in the central nervous system in different neurological diseases; therefore, adult brain perivascular cells derived from human neural tissue were systematically characterized concerning neural stem cell and MSC marker expression, transcriptomics, and mesodermal and inherent neuroectodermal differentiation potential in vitro and in vivo after in utero transplantation. This study showed the lack of an innate neuronal but high mesodermal differentiation potential. Because of their relationship to mesenchymal stem cells, these adult brain perivascular mesodermal cells are of great interest for possible autologous therapeutic use.
Collapse
Affiliation(s)
- Xenia Lojewski
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Sumitra Srimasorn
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Juliane Rauh
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Silvan Francke
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Manja Wobus
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Verdon Taylor
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Marcos J Araúzo-Bravo
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Susanne Hallmeyer-Elgner
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Matthias Kirsch
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Sigrid Schwarz
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Johannes Schwarz
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Alexander Storch
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, University Center for Orthopaedics and Trauma Surgery and Center for Translational Bone, Joint and Soft Tissue Research, Department of Medicine I, Faculty of Medicine, and Department of Neurosurgery, Technische Universität Dresden, Dresden, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department for Translational Neurodegeneration, Technical University of Munich, German Centre for Neurodegenerative Diseases, Munich, Germany; Geriatric Hospital Haag, Haag, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Center for Regenerative Therapies Dresden, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany
| |
Collapse
|
10
|
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor and is notorious for its poor prognosis. The highly invasive nature of GBM and its inherent resistance to therapy lead to very high rates of recurrence. Recently, a small cohort of tumor cells, called cancer stem cells (CSCs), has been recognized as a subset of tumor cells with self-renewal ability and multilineage capacity. These properties, along with the remarkable tumorigenicity of CSCs, are thought to account for the high rates of tumor recurrence after treatment. Recent research has been geared toward understanding the unique biological characteristics of CSCs to enable development of targeted therapy. Strategies include inhibition of CSC-specific pathways and receptors; agents that increase sensitivity of CSCs to chemotherapy and radiotherapy; CSC differentiation agents; and CSC-specific immunotherapy, virotherapy, and gene therapy. These approaches could inform the development of newer therapeutics for GBM.
Collapse
|
11
|
Wolkowitz OM, Mellon SH, Lindqvist D, Epel ES, Blackburn EH, Lin J, Reus VI, Burke H, Rosser R, Mahan L, Mackin S, Yang T, Weiner M, Mueller S. PBMC telomerase activity, but not leukocyte telomere length, correlates with hippocampal volume in major depression. Psychiatry Res 2015; 232:58-64. [PMID: 25773002 PMCID: PMC4404215 DOI: 10.1016/j.pscychresns.2015.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/02/2014] [Accepted: 01/09/2015] [Indexed: 11/29/2022]
Abstract
Accelerated cell aging, indexed in peripheral leukocytes by telomere shortness and in peripheral blood mononuclear cells (PBMCs) by telomerase activity, has been reported in several studies of major depressive disorder (MDD). However, the relevance of these peripheral measures for brain indices that are presumably more directly related to MDD pathophysiology is unknown. In this study, we explored the relationship between PBMC telomerase activity and leukocyte telomere length and magnetic resonance imaging-estimated hippocampal volume in un-medicated depressed individuals and healthy controls. We predicted that, to the extent peripheral and central telomerase activity are directly related, PBMC telomerase activity would be positively correlated with hippocampal volume, perhaps due to hippocampal telomerase-associated neurogenesis, neuroprotection or neurotrophic facilitation, and that this effect would be clearer in individuals with increased PBMC telomerase activity, as previously reported in un-medicated MDD. We did not have specific hypotheses regarding the relationship between leukocyte telomere length and hippocampal volume, due to conflicting reports in the published literature. We found, in 25 un-medicated MDD subjects, that PBMC telomerase activity was significantly positively correlated with hippocampal volume; this relationship was not observed in 18 healthy controls. Leukocyte telomere length was not significantly related to hippocampal volume in either group (19 unmedicated MDD subjects and 17 healthy controls). Although the nature of the relationship between peripheral telomerase activity and telomere length and the hippocampus is unclear, these preliminary data are consistent with the possibility that PBMC telomerase activity indexes, and may provide a novel window into, hippocampal neuroprotection and/or neurogenesis in MDD.
Collapse
Affiliation(s)
- Owen M. Wolkowitz
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
,Corresponding author: Dept. of Psychiatry, UCSF School of Medicine, 401 Parnassus Ave., San Francisco, CA 94143-0983, USA. Tel.: +1 (415) 476-7433; Fax: +1 (415) 502-2661;
| | - Synthia H. Mellon
- Department of OBGYN and Reproductive Endocrinology, UCSF School of Medicine, San Francisco, CA, USA
| | - Daniel Lindqvist
- Department of Clinical Sciences, Section for Psychiatry, Lund University, Lund, Sweden
| | - Elissa S. Epel
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Elizabeth H. Blackburn
- Department of Physiology and Biochemistry, UCSF School of Medicine, San Francisco, CA, USA
| | - Jue Lin
- Department of Physiology and Biochemistry, UCSF School of Medicine, San Francisco, CA, USA
| | - Victor I. Reus
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Heather Burke
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Rebecca Rosser
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Laura Mahan
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Scott Mackin
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Tony Yang
- Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Michael Weiner
- Department of Radiology, UCSF School of Medicine, and San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| | - Susanne Mueller
- Department of Radiology, UCSF School of Medicine, and San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| |
Collapse
|
12
|
Khan IS, Ehtesham M. Laboratory models for central nervous system tumor stem cell research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:69-83. [PMID: 25895708 DOI: 10.1007/978-3-319-16537-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Central nervous system (CNS) tumors are complex organ systems comprising of a neoplastic component with associated vasculature, inflammatory cells, and reactive cellular and extracellular components. Research has identified a subset of cells in CNS tumors that portray defining properties of neural stem cells, namely, that of self-renewal and multi-potency. Growing evidence suggests that these tumor stem cells (TSC) play an important role in the maintenance and growth of the tumor. Furthermore, these cells have also been shown to be refractory to conventional therapy and may be crucial for tumor recurrence and metastasis. Current investigations are focusing on isolating these TSC from CNS tumors to investigate their unique biological processes. This understanding will help identify and develop more effective and comprehensive treatment strategies. This chapter provides an overview of some of the most commonly used laboratory models for CNSTSC research.
Collapse
Affiliation(s)
- Imad Saeed Khan
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
13
|
Wei YB, Backlund L, Wegener G, Mathé AA, Lavebratt C. Telomerase dysregulation in the hippocampus of a rat model of depression: normalization by lithium. Int J Neuropsychopharmacol 2015; 18:pyv002. [PMID: 25618407 PMCID: PMC4540104 DOI: 10.1093/ijnp/pyv002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Telomeres are protective DNA-protein complexes at the ends of each chromosome, maintained primarily by the enzyme telomerase. Shortening of the blood leukocyte telomeres is associated with aging, several chronic diseases, and stress, eg, major depression. Hippocampus is pivotal in the regulation of cognition and mood and the main brain region of telomerase activity. Whether there is telomere dysfunction in the hippocampus of depressed subjects is unknown. Lithium, used in the treatment and relapse prevention of mood disorders, was found to protect against leukocyte telomere shortening in humans, but the mechanism has not been elucidated. To answer the questions whether telomeres are shortened and the telomerase activity changed in the hippocampus and whether lithium could reverse the process, we used a genetic model of depression, the Flinders Sensitive Line rat, and treated the animals with lithium. METHODS Telomere length, telomerase reverse transcriptase (Tert) expression, telomerase activity, and putative mediators of telomerase activity were investigated in the hippocampus of these animals. RESULTS The naïve Flinders Sensitive Line had shorter telomere length, downregulated Tert expression, reduced brain-derived neurotrophic factor levels, and reduced telomerase activity compared with the Flinders Resistant Line controls. Lithium treatment normalized the Tert expression and telomerase activity in the Flinders Sensitive Line and upregulated β-catenin. CONCLUSION This is the first report showing telomere dysregulation in hippocampus of a well-defined depression model and restorative effects of lithium treatment. If replicated in other models of mood disorder, the findings will contribute to understanding both the telomere function and the mechanism of lithium action in hippocampus of depressed patients.
Collapse
|
14
|
Khan IS, Ehtesham M. Isolation and characterization of stem cells from human central nervous system malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:33-47. [PMID: 25895706 DOI: 10.1007/978-3-319-16537-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Central Nervous System (CNS) tumors include some of the most invasive and lethal tumors in humans. The poor prognosis in patients with CNS tumors is ascribed to their invasive nature. After the description of a stem cell-like cohort in hematopoietic cancers, tumor stem cells (TSCs) have been isolated from a variety of solid tumors, including brain tumors. Further research has uncovered the crucial role these cells play in the initiation and propagation of brain tumors. More importantly, TSCs have also been shown to be relatively resistant to conventional cytotoxic therapeutics, which may also account for the alarmingly high rate of CNS tumor recurrence. In order to elucidate prospective therapeutic targets it is imperative to study these cells in detail and to accomplish this, we need to be able to reliably isolate and characterize these cells. This chapter will therefore, provide an overview of the methods used to isolate and characterize stem cells from human CNS malignancies.
Collapse
Affiliation(s)
- Imad Saeed Khan
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
15
|
Marei HES, Farag A, Althani A, Afifi N, Abd-Elmaksoud A, Lashen S, Rezk S, Pallini R, Casalbore P, Cenciarelli C. Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer's disease rat model. J Cell Physiol 2015; 230:116-130. [PMID: 24911171 DOI: 10.1002/jcp.24688] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/22/2014] [Indexed: 12/14/2022]
Abstract
In this study, we aim to demonstrate the fate of allogenic adult human olfactory bulb neural stem/progenitor cells (OBNSC/NPCs) transplanted into the rat hippocampus treated with ibotenic acid (IBO), a neurotoxicant specific to hippocampal cholinergic neurons that are lost in Alzheimer's disease. We assessed their possible ability to survive, integrate, proliferate, and differentiate into different neuronal and glial elements: we also evaluate their possible therapeutic potential, and the mechanism(s) relevant to neuroprotection following their engraftment into the CNS milieu. OBNSC/NPCs were isolated from adult human olfactory bulb patients, genetically engineered to express GFP and human nerve growth factor (hNGF) by lentivirus-mediated infection, and stereotaxically transplanted into the hippocampus of IBO-treated animals and controls. Stereological analysis of engrafted OBNSCs eight weeks post transplantation revealed a 1.89 fold increase with respect to the initial cell population, indicating a marked ability for survival and proliferation. In addition, 54.71 ± 11.38%, 30.18 ± 6.00%, and 15.09 ± 5.38% of engrafted OBNSCs were identified by morphological criteria suggestive of mature neurons, oligodendrocytes and astrocytes respectively. Taken together, this work demonstrated that human OBNSCs expressing NGF ameliorate the cognitive deficiencies associated with IBO-induced lesions in AD model rats, and the improvement can probably be attributed primarily to neuronal and glial cell replacement as well as the trophic influence exerted by the secreted NGF.
Collapse
Affiliation(s)
- Hany E S Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sandberg CJ, Vik-Mo EO, Behnan J, Helseth E, Langmoen IA. Transcriptional profiling of adult neural stem-like cells from the human brain. PLoS One 2014; 9:e114739. [PMID: 25514637 PMCID: PMC4267785 DOI: 10.1371/journal.pone.0114739] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022] Open
Abstract
There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33–60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.
Collapse
Affiliation(s)
- Cecilie Jonsgar Sandberg
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- * E-mail:
| | - Einar O. Vik-Mo
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Jinan Behnan
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Eirik Helseth
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Iver A. Langmoen
- Vilhelm Magnus Lab, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Cancer Stem Cell Innovation Center (CAST), Oslo University Hospital and University of Oslo, Oslo, Norway
- Norwegian Stem Cell Center, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Lojewski X, Hermann A, Wegner F, Araúzo-Bravo MJ, Hallmeyer-Elgner S, Kirsch M, Schwarz J, Schöler HR, Storch A. Human adult white matter progenitor cells are multipotent neuroprogenitors similar to adult hippocampal progenitors. Stem Cells Transl Med 2014; 3:458-69. [PMID: 24558163 DOI: 10.5966/sctm.2013-0117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adult neural progenitor cells (aNPC) are a potential autologous cell source for cell replacement in neurologic diseases or for cell-based gene therapy of neurometabolic diseases. Easy accessibility, long-term expandability, and detailed characterization of neural progenitor cell (NPC) properties are important requisites for their future translational/clinical applications. aNPC can be isolated from different regions of the adult human brain, including the accessible subcortical white matter (aNPCWM), but systematic studies comparing long-term expanded aNPCWM with aNPC from neurogenic brain regions are not available. Freshly isolated cells from subcortical white matter and hippocampus expressed oligodendrocyte progenitor cell markers such as A2B5, neuron-glial antigen 2 (NG2), and oligodendrocyte transcription factor 2 (OLIG2) in ∼20% of cells but no neural stem cell (NSC) markers such as CD133 (Prominin1), Nestin, SOX2, or PAX6. The epidermal growth factor receptor protein was expressed in 18% of aNPCWM and 7% of hippocampal aNPC (aNPCHIP), but only a small fraction of cells, 1 of 694 cells from white matter and 1 of 1,331 hippocampal cells, was able to generate neurospheres. Studies comparing subcortical aNPCWM with their hippocampal counterparts showed that both NPC types expressed mainly markers of glial origin such as NG2, A2B5, and OLIG2, and the NSC/NPC marker Nestin, but no pericyte markers. Both NPC types were able to produce neurons, astrocytes, and oligodendrocytes in amounts comparable to fetal NSC. Whole transcriptome analyses confirmed the strong similarity of aNPCWM to aNPCHIP. Our data show that aNPCWM are multipotent NPC with long-term expandability similar to NPC from hippocampus, making them a more easily accessible source for possible autologous NPC-based treatment strategies.
Collapse
Affiliation(s)
- Xenia Lojewski
- Division of Neurodegenerative Diseases, Department of Neurology, and Department of Neurosurgery, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany; Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany; Department of Neurology, Technical University of Munich, Munich, Germany; Division of Biology, California Institute of Technology, Pasadena, California, USA; Center for Regenerative Therapies Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
González S, Deng SX. Presence of native limbal stromal cells increases the expansion efficiency of limbal stem/progenitor cells in culture. Exp Eye Res 2013; 116:169-76. [PMID: 24016868 DOI: 10.1016/j.exer.2013.08.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/08/2013] [Accepted: 08/27/2013] [Indexed: 12/13/2022]
Abstract
Niche factors are important in the maintenance and regulation of stem cells. Limbal stromal cells are potentially a component of limbal stem cell (LSC) niche. We investigated the role of the limbal stromal cells in the ex vivo expansion of limbal stem/progenitor cells. Limbal epithelial cells were cultured as single-cell suspension and cell clusters from dispase II or collagenase A (ColA), or tissue explant. ColA isolated limbal stromal cells along with limbal epithelial cells. In the presence of limbal stromal cells, a higher absolute number of p63α(bright) cells (p < 0.05) and a higher proportion of K14 positive epithelial cells were obtained from both ColA and explant tissue cultures. Expansion of the stem/progenitor population from dispase isolation was more efficient in the form of cell clusters than single cell suspension based on the absolute number of p63α(bright) cells. Expansion of the stem cell population is similar in the single cell and cell cluster cultures that are derived from ColA isolation. Our finding suggests that limbal stromal cells and an intact cell-cell contact help to maintain LSCs in an undifferentiated state in vitro during expansion.
Collapse
Affiliation(s)
- Sheyla González
- Cornea Division, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
19
|
Arsenault J, Ferrari E, Niranjan D, Cuijpers SAG, Gu C, Vallis Y, O'Brien J, Davletov B. Stapling of the botulinum type A protease to growth factors and neuropeptides allows selective targeting of neuroendocrine cells. J Neurochem 2013; 126:223-33. [PMID: 23638840 PMCID: PMC3758956 DOI: 10.1111/jnc.12284] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 01/12/2023]
Abstract
Precise cellular targeting of macromolecular cargos has important biotechnological and medical implications. Using a recently established ‘protein stapling’ method, we linked the proteolytic domain of botulinum neurotoxin type A (BoNT/A) to a selection of ligands to target neuroendocrine tumor cells. The botulinum proteolytic domain was chosen because of its well-known potency to block the release of neurotransmitters and hormones. Among nine tested stapled ligands, the epidermal growth factor was able to deliver the botulinum enzyme into pheochromocytoma PC12 and insulinoma Min6 cells; ciliary neurotrophic factor was effective on neuroblastoma SH-SY5Y and Neuro2A cells, whereas corticotropin-releasing hormone was active on pituitary AtT-20 cells and the two neuroblastoma cell lines. In neuronal cultures, the epidermal growth factor- and ciliary neurotrophic factor-directed botulinum enzyme targeted distinct subsets of neurons whereas the whole native neurotoxin targeted the cortical neurons indiscriminately. At nanomolar concentrations, the retargeted botulinum molecules were able to inhibit stimulated release of hormones from tested cell lines suggesting their application for treatments of neuroendocrine disorders.
Collapse
Affiliation(s)
- Jason Arsenault
- MRC Laboratory of Molecular Biology, Neurobiology, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Linta L, Boeckers TM, Kleger A, Liebau S. Calcium activated potassium channel expression during human iPS cell-derived neurogenesis. Ann Anat 2013; 195:303-311. [PMID: 23587809 DOI: 10.1016/j.aanat.2013.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/05/2013] [Accepted: 02/27/2013] [Indexed: 01/11/2023]
Abstract
The family of calcium activated potassium channels of low and intermediate conductance, known as SK channels, consists of four members (SK1-4). These channels are widely expressed throughout the organism and involved in various cellular processes, such as the afterhyperpolarization in excitable cells but also in differentiation processes of various tissues. To date, the role of SK channels in developmental processes has been merely a marginal focus of investigation, although it is well accepted that cell differentiation and maturation affect the expression patterns of certain ion channels. Recently, several studies from our laboratory delineated the influence of SK channel expression and their respective activity on cytoskeletal reorganization in neural and pluripotent stem cells and regulation of cell fate determination toward the cardiac lineage in human and mouse pluripotent stem cells. Herein, we have now analyzed SK channel expression patterns and distribution at various stages of human induced pluripotent stem cell-derived neurogenesis particularly focusing on undifferentiated iPS cells, neural progenitors and mature neurons. All family members could be detected starting at the iPS cell level and were differentially expressed during the subsequent maturation process. Intriguingly, we found obvious discrepancies between mRNA and protein expression pointing toward a complex regulatory mechanism. Inhibition of SK channels with either apamin or clotrimazol did not have any significant effects on the speed or amount of neurogenesis in vitro. The abundance and specific regulation of SK channel expression during iPS cell differentiation indicates distinct roles of these ion channels not only for the cardiac but also for neuronal cell differentiation and in vitro neurogenesis.
Collapse
Affiliation(s)
- Leonhard Linta
- Institute for Anatomy & Cell Biology, Ulm University, Ulm, Germany
| | | | - Alexander Kleger
- Department of Internal Medicine I, Ulm University, Ulm, Germany.
| | - Stefan Liebau
- Institute for Anatomy & Cell Biology, Ulm University, Ulm, Germany.
| |
Collapse
|
21
|
Oliveira SLB, Pillat MM, Cheffer A, Lameu C, Schwindt TT, Ulrich H. Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A 2012; 83:76-89. [PMID: 23044513 DOI: 10.1002/cyto.a.22161] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 07/23/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022]
Abstract
The identification and isolation of multipotent neural stem and progenitor cells in the brain, giving rise to neurons, astrocytes, and oligodendrocytes initiated many studies in order to understand basic mechanisms of endogenous neurogenesis and repair mechanisms of the nervous system and to develop novel therapeutic strategies for cellular regeneration therapies in brain disease. A previous review (Trujillo et al., Cytometry A 2009;75:38-53) focused on the importance of extrinsic factors, especially neurotransmitters, for directing migration and neurogenesis in the developing and adult brain. Here, we extend our review discussing the effects of the principal growth and neurotrophic factors as well as their intracellular signal transduction on neurogenesis, fate determination and neuroprotective mechanisms. Many of these mechanisms have been elucidated by in vitro studies for which neural stem cells were isolated, grown as neurospheres, induced to neural differentiation under desired experimental conditions, and analyzed for embryonic, progenitor, and neural marker expression by flow and imaging cytometry techniques. The better understanding of neural stem cells proliferation and differentiation is crucial for any therapeutic intervention aiming at neural stem cell transplantation and recruitment of endogenous repair mechanisms.
Collapse
Affiliation(s)
- Sophia L B Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Adult neurogenesis is often considered an archaic trait that has undergone a 'phylogenetic reduction' from amphibian ancestors to humans. However, adult neurogenesis in the hippocampal dentate gyrus might actually be a late-evolved trait. In non-mammals, adult hippocampal neurogenesis is not restricted to the equivalents of the dentate gyrus, which also show different connectivity and functionality compared to their mammalian counterpart. Moving actively in a changing world and dealing with novelty and complexity regulate adult neurogenesis. New neurons might thus provide the cognitive adaptability to conquer ecological niches rich with challenging stimuli.
Collapse
|
23
|
Elias PZ, Spector M. Implantation of a collagen scaffold seeded with adult rat hippocampal progenitors in a rat model of penetrating brain injury. J Neurosci Methods 2012; 209:199-211. [PMID: 22698665 DOI: 10.1016/j.jneumeth.2012.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/24/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Penetrating brain injury (PBI) is a complex central nervous system injury in which mechanical damage to brain parenchyma results in hemorrhage, ischemia, broad areas of necrosis, and eventually cavitation. The permanent loss of brain tissue affords the possibility of treatment using a biomaterial scaffold to fill the lesion site and potentially deliver pharmacological or cellular therapeutic agents. The administration of cellular therapy may be of benefit in both mitigating the secondary injury process and promoting regeneration through replacement of certain cell populations. This study investigated the survival and differentiation of adult rat hippocampal neural progenitor cells delivered by a collagen scaffold in a rat model of PBI. The cell-scaffold construct was implanted 1 week after injury and was observed to remain intact with open pores upon analysis 4 weeks later. Implanted neural progenitors were found to have survived within the scaffold, and also to have migrated into the surrounding brain. Differentiated phenotypes included astrocytes, oligodendrocytes, vascular endothelial cells, and possibly macrophages. The demonstrated multipotency of this cell population in vivo in the context of traumatic brain injury has implications for regenerative therapies, but additional stimulation appears necessary to promote neuronal differentiation outside normally neurogenic regions.
Collapse
Affiliation(s)
- Paul Z Elias
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
24
|
Marei HES, Ahmed AE, Michetti F, Pescatori M, Pallini R, Casalbore P, Cenciarelli C, Elhadidy M. Gene expression profile of adult human olfactory bulb and embryonic neural stem cell suggests distinct signaling pathways and epigenetic control. PLoS One 2012; 7:e33542. [PMID: 22485144 PMCID: PMC3317670 DOI: 10.1371/journal.pone.0033542] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/10/2012] [Indexed: 12/20/2022] Open
Abstract
Global gene expression profiling was performed using RNA from human embryonic neural stem cells (hENSC), and adult human olfactory bulb-derived neural stem cells (OBNSCs), to define a gene expression pattern and signaling pathways that are specific for each cell lineage. We have demonstrated large differences in the gene expression profile of human embryonic NSC, and adult human OBNSCs, but less variability between parallel cultures. Transcripts of genes involved in neural tube development and patterning (ALDH1A2, FOXA2), progenitor marker genes (LMX1a, ALDH1A1, SOX10), proliferation of neural progenitors (WNT1 and WNT3a), neuroplastin (NPTN), POU3F1 (OCT6), neuroligin (NLGN4X), MEIS2, and NPAS1 were up-regulated in both cell populations. By Gene Ontology, 325 out of 3875 investigated gene sets were scientifically different. 41 out of the 307 investigated Cellular Component (CC) categories, 45 out of the 620 investigated Molecular Function (MF) categories, and 239 out of the 2948 investigated Biological Process (BP) categories were significant. KEGG Pathway Class Comparison had revealed that 75 out of 171 investigated gene sets passed the 0.005 significance threshold. Levels of gene expression were explored in three signaling pathways, Notch, Wnt, and mTOR that are known to be involved in NS cell fates determination. The transcriptional signature also deciphers the role of genes involved in epigenetic modifications. SWI/SNF DNA chromatin remodeling complex family, including SMARCC1 and SMARCE1, were found specifically up-regulated in our OBNSC but not in hENSC. Differences in gene expression profile of transcripts controlling epigenetic modifications, and signaling pathways might indicate differences in the therapeutic potential of our examined two cell populations in relation to in cell survival, proliferation, migration, and differentiation following engraftments in different CNS insults.
Collapse
Affiliation(s)
- Hany E S Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
The potential of iPS cells in synucleinopathy research. Stem Cells Int 2012; 2012:629230. [PMID: 22550513 PMCID: PMC3329650 DOI: 10.1155/2012/629230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/12/2012] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is a protein involved in the pathogenesis of several so-called synucleinopathies including Parkinson's disease. A variety of models have been so far assessed. Human induced pluripotent stem cells provide a patient- and disease-specific model for in vitro studies, pharmacotoxicological screens, and hope for future cell-based therapies. Initial experimental procedures include the harvest of patients' material for the reprogramming process, the investigation of the patients genetic background in the cultured cells, and the evaluation of disease-relevant factors/proteins under various cell culture conditions.
Collapse
|
26
|
Increased membrane shedding – indicated by an elevation of CD133-enriched membrane particles – into the CSF in partial epilepsy. Epilepsy Res 2012; 99:101-6. [DOI: 10.1016/j.eplepsyres.2011.10.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/16/2011] [Accepted: 10/24/2011] [Indexed: 01/14/2023]
|
27
|
Marei HES, Althani A, Afifi N, Michetti F, Pescatori M, Pallini R, Casalbore P, Cenciarelli C, Schwartz P, Ahmed AE. Gene expression profiling of embryonic human neural stem cells and dopaminergic neurons from adult human substantia nigra. PLoS One 2011; 6:e28420. [PMID: 22163301 PMCID: PMC3233561 DOI: 10.1371/journal.pone.0028420] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 11/08/2011] [Indexed: 11/29/2022] Open
Abstract
Neural stem cells (NSC) with self-renewal and multipotent properties serve as an ideal cell source for transplantation to treat neurodegenerative insults such as Parkinson's disease. We used Agilent's and Illumina Whole Human Genome Oligonucleotide Microarray to compare the genomic profiles of human embryonic NSC at a single time point in culture, and a multicellular tissue from postmortem adult substantia nigra (SN) which are rich in dopaminergic (DA) neurons. We identified 13525 up-regulated genes in both cell types of which 3737 (27.6%) genes were up-regulated in the hENSC, 4116 (30.4%) genes were up-regulated in the human substantia nigra dopaminergic cells, and 5672 (41.93%) were significantly up-regulated in both cell population. Careful analysis of the data that emerged using DAVID has permitted us to distinguish several genes and pathways that are involved in dopaminergic (DA) differentiation, and to identify the crucial signaling pathways that direct the process of differentiation. The set of genes expressed more highly at hENSC is enriched in molecules known or predicted to be involved in the M phase of the mitotic cell cycle. On the other hand, the genes enriched in SN cells include a different set of functional categories, namely synaptic transmission, central nervous system development, structural constituents of the myelin sheath, the internode region of axons, myelination, cell projection, cell somata, ion transport, and the voltage-gated ion channel complex. Our results were also compared with data from various databases, and between different types of arrays, Agilent versus Illumina. This approach has allowed us to confirm the consistency of our obtained results for a large number of genes that delineate the phenotypical differences of embryonic NSCs, and SN cells.
Collapse
Affiliation(s)
- Hany E S Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Linta L, Stockmann M, Kleinhans KN, Böckers A, Storch A, Zaehres H, Lin Q, Barbi G, Böckers TM, Kleger A, Liebau S. Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells. Stem Cells Dev 2011; 21:965-76. [PMID: 21699413 DOI: 10.1089/scd.2011.0026] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patient-specific human induced pluripotent stem (hiPS) cells not only provide a promising tool for cellular disease models in general, but also open up the opportunity to establish cell-type-specific systems for personalized medicine. One of the crucial prerequisites for these strategies, however, is a fast and efficient reprogramming strategy from easy accessible somatic cell populations. Keratinocytes from plucked human hair had been introduced as a superior cell source for reprogramming purposes compared with the widely used skin fibroblasts. The starting cell population is, however, limited and thereby further optimization in terms of time, efficiency, and quality is inevitable. Here we show that rat embryonic fibroblasts (REFs) should replace mouse embryonic fibroblasts as feeder cells in the reprogramming process. REFs enable a significantly more efficient reprogramming procedure as shown by colony number and total amount of SSEA4-positive cells. We successfully produced keratinocyte-derived hiPS (k-hiPS) cells from various donors. The arising k-hiPS cells display the hallmarks of pluripotency such as expression of stem cell markers and differentiation into all 3 germ layers. The increased reprogramming efficiency using REFs as a feeder layer occurred independent of the proliferation rate in the parental keratinocytes and acts, at least in part, in a non-cell autonomous way by secreting factors known to facilitate pluripotency such as Tgfb1, Inhba and Grem1. Hence, we provide an easy to use and highly efficient reprogramming system that could be very useful for a broad application to generate human iPS cells.
Collapse
Affiliation(s)
- Leonhard Linta
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Genome-wide expression profiling and functional network analysis upon neuroectodermal conversion of human mesenchymal stem cells suggest HIF-1 and miR-124a as important regulators. Exp Cell Res 2010; 316:2760-78. [DOI: 10.1016/j.yexcr.2010.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 06/10/2010] [Accepted: 06/16/2010] [Indexed: 11/17/2022]
|
30
|
Arrigoni FI, Matarin M, Thompson PJ, Michaelides M, McClements ME, Redmond E, Clarke L, Ellins E, Mohamed S, Pavord I, Klein N, Hunt DM, Moore AT, Halcox J, Sisodiya SM. Extended extraocular phenotype of PROM1 mutation in kindreds with known autosomal dominant macular dystrophy. Eur J Hum Genet 2010; 19:131-7. [PMID: 20859302 DOI: 10.1038/ejhg.2010.147] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in prominin 1 (PROM1) have been shown to result in retinitis pigmentosa, macular degeneration and cone-rod dystrophy. Because of the putative role of PROM1 in hippocampal neurogenesis, we examined two kindreds with the same R373C PROM1 missense mutation using our established paradigm to study brain structure and function. As the protein encoded by PROM1, known as CD133, is used to identify stem/progenitor cells that can be found in peripheral blood and reflect endothelial reparatory mechanisms, other parameters were subsequently examined that included measures of vascular function, endothelial function and angiogenic capacity. We found that aspects of endothelial function assayed ex vivo were abnormal in patients with the R373C PROM1 mutation, with impaired adhesion capacity and higher levels of cellular damage. We also noted renal infections, haematuria and recurrent miscarriages possibly reflecting consequences of abnormal tubular modelling. Further studies are needed to confirm these findings.
Collapse
|
31
|
Habisch HJ, Liebau S, Lenk T, Ludolph AC, Brenner R, Storch A. Neuroectodermally converted human mesenchymal stromal cells provide cytoprotective effects on neural stem cells and inhibit their glial differentiation. Cytotherapy 2010; 12:491-504. [DOI: 10.3109/14653241003649502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Buddensiek J, Dressel A, Kowalski M, Runge U, Schroeder H, Hermann A, Kirsch M, Storch A, Sabolek M. Cerebrospinal fluid promotes survival and astroglial differentiation of adult human neural progenitor cells but inhibits proliferation and neuronal differentiation. BMC Neurosci 2010; 11:48. [PMID: 20377845 PMCID: PMC2856586 DOI: 10.1186/1471-2202-11-48] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 04/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neural stem cells (NSCs) are a promising source for cell replacement therapies for neurological diseases. Growing evidence suggests an important role of cerebrospinal fluid (CSF) not only on neuroectodermal cells during brain development but also on the survival, proliferation and fate specification of NSCs in the adult brain. Existing in vitro studies focused on embryonic cell lines and embryonic CSF. We therefore studied the effects of adult human leptomeningeal CSF on the behaviour of adult human NSCs (ahNSCs). RESULTS Adult CSF increased the survival rate of adult human NSCs compared to standard serum free culture media during both stem cell maintenance and differentiation. The presence of CSF promoted differentiation of NSCs leading to a faster loss of their self-renewal capacity as it is measured by the proliferation markers Ki67 and BrdU and stronger cell extension outgrowth with longer and more cell extensions per cell. After differentiation in CSF, we found a larger number of GFAP+ astroglial cells compared to differentiation in standard culture media and a lower number of beta-tubulin III+ neuronal cells. CONCLUSIONS Our data demonstrate that adult human leptomeningeal CSF creates a beneficial environment for the survival and differentiation of adult human NSCs. Adult CSF is in vitro a strong glial differentiation stimulus and leads to a rapid loss of stem cell potential.
Collapse
Affiliation(s)
- Judith Buddensiek
- Department of Neurology, Ernst Moritz Arndt University of Greifswald, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lanfer B, Hermann A, Kirsch M, Freudenberg U, Reuner U, Werner C, Storch A. Directed Growth of Adult Human White Matter Stem Cell–Derived Neurons on Aligned Fibrillar Collagen. Tissue Eng Part A 2010; 16:1103-13. [DOI: 10.1089/ten.tea.2009.0282] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Babette Lanfer
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Andreas Hermann
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
- Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Matthias Kirsch
- Department of Neurosurgery, Dresden University of Technology, Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Ulrike Reuner
- Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Alexander Storch
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
- Department of Neurology, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
34
|
Hermann A, Brandt MD, Loewenbrück KF, Storch A. “Silenced” polydendrocytes: a new cell type within the oligodendrocyte progenitor cell population? Cell Tissue Res 2010; 340:45-50. [DOI: 10.1007/s00441-010-0940-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 01/22/2010] [Indexed: 12/29/2022]
|
35
|
Chung KF, Sicard F, Vukicevic V, Hermann A, Storch A, Huttner WB, Bornstein SR, Ehrhart-Bornstein M. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2010; 27:2602-13. [PMID: 19609938 DOI: 10.1002/stem.180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Unlike the closely-related sympathetic neurons, a subpopulation of proliferation-competent cells exists even in the adult. Here, we describe the isolation, expansion, and in vitro characterization of proliferation-competent progenitor cells from the bovine adrenal medulla. Similar to neurospheres, these cells, when prevented from adherence to the culture dish, grew in spheres, which we named chromospheres. These chromospheres were devoid of mRNA specific for smooth muscle cells (MYH11) or endothelial cells (PECAM1). During sphere formation, markers for differentiated chromaffin cells, such as phenylethanolamine-N-methyl transferase, were downregulated while neural progenitor markers nestin, vimentin, musashi 1, and nerve growth factor receptor, as well as markers of neural crest progenitor cells such as Sox1 and Sox9, were upregulated. Clonal analysis and bromo-2'-deoxyuridine-incorporation analysis demonstrated the self-renewing capacity of chromosphere cells. Differentiation protocols using NGF and BMP4 or dexamethasone induced neuronal or endocrine differentiation, respectively. Electrophysiological analyses of neural cells derived from chromospheres revealed functional properties of mature nerve cells, such as tetrodotoxin-sensitive sodium channels and action potentials. Our study provides evidence that proliferation and differentiation competent chromaffin progenitor cells can be isolated from adult adrenal medulla and that these cells might harbor the potential for the treatment of neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Kuei-Fang Chung
- Carl Gustav Carus University Medical School, Medical Clinic III, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 2010; 5:e8809. [PMID: 20126454 PMCID: PMC2813284 DOI: 10.1371/journal.pone.0008809] [Citation(s) in RCA: 490] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 12/23/2009] [Indexed: 02/06/2023] Open
Abstract
Background Essentially all knowledge about adult hippocampal neurogenesis in humans still comes from one seminal study by Eriksson et al. in 1998, although several others have provided suggestive findings. But only little information has been available in how far the situation in animal models would reflect the conditions in the adult and aging human brain. We therefore here mapped numerous features associated with adult neurogenesis in rodents in samples from human hippocampus across the entire lifespan. Such data would not offer proof of adult neurogenesis in humans, because it is based on the assumption that humans and rodents share marker expression patterns in adult neurogenesis. Nevertheless, together the data provide valuable information at least about the presence of markers, for which a link to adult neurogenesis might more reasonably be assumed than for others, in the adult human brain and their change with increasing age. Methods and Findings In rodents, doublecortin (DCX) is transiently expressed during adult neurogenesis and within the neurogenic niche of the dentate gyrus can serve as a valuable marker. We validated DCX as marker of granule cell development in fetal human tissue and used DCX expression as seed to examine the dentate gyrus for additional neurogenesis-associated features across the lifespan. We studied 54 individuals and detected DCX expression between birth and 100 years of age. Caveats for post-mortem analyses of human tissues apply but all samples were free of signs of ischemia and activated caspase-3. Fourteen markers related to adult hippocampal neurogenesis in rodents were assessed in DCX-positive cells. Total numbers of DCX expressing cells declined exponentially with increasing age, and co-expression of DCX with the other markers decreased. This argued against a non-specific re-appearance of immature markers in specimen from old brains. Early postnatally all 14 markers were co-expressed in DCX-positive cells. Until 30 to 40 years of age, for example, an overlap of DCX with Ki67, Mcm2, Sox2, Nestin, Prox1, PSA-NCAM, Calretinin, NeuN, and others was detected, and some key markers (Nestin, Sox2, Prox1) remained co-expressed into oldest age. Conclusions Our data suggest that in the adult human hippocampus neurogenesis-associated features that have been identified in rodents show patterns, as well as qualitative and quantitative age-related changes, that are similar to the course of adult hippocampal neurogenesis in rodents. Consequently, although further validation as well as the application of independent methodology (e.g. electron microscopy and cell culture work) is desirable, our data will help to devise the framework for specific research on cellular plasticity in the aging human hippocampus.
Collapse
Affiliation(s)
- Rolf Knoth
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Ilyas Singec
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
- Burnham Institute for Medical Research, Stem Cell and Regeneration Program, La Jolla, California, United States of America
| | - Margarethe Ditter
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Georgios Pantazis
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Philipp Capetian
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Ralf P. Meyer
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Volker Horvat
- CRTD – Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Benedikt Volk
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Gerd Kempermann
- CRTD – Center for Regenerative Therapies Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
37
|
Hermann A, List C, Habisch HJ, Vukicevic V, Ehrhart-Bornstein M, Brenner R, Bernstein P, Fickert S, Storch A. Age-dependent neuroectodermal differentiation capacity of human mesenchymal stromal cells: limitations for autologous cell replacement strategies. Cytotherapy 2010; 12:17-30. [DOI: 10.3109/14653240903313941] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Kato K, Suzuki M, Kanno H, Sekino S, Kusakabe K, Okada T, Mori T, Yoshida K, Hirabayashi Y. Distinct role of growth hormone on epilepsy progression in a model of temporal lobe epilepsy. J Neurochem 2009; 110:509-19. [DOI: 10.1111/j.1471-4159.2009.06132.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Schaarschmidt G, Schewtschik S, Kraft R, Wegner F, Eilers J, Schwarz J, Schmidt H. A new culturing strategy improves functional neuronal development of human neural progenitor cells. J Neurochem 2009; 109:238-47. [DOI: 10.1111/j.1471-4159.2009.05954.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Epileptogenesis alters gene expression pattern in rats subjected to amygdala-dependent emotional learning. Neuroscience 2009; 159:468-82. [DOI: 10.1016/j.neuroscience.2008.12.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/11/2008] [Accepted: 12/31/2008] [Indexed: 11/18/2022]
|
41
|
Hermann A, Suess C, Fauser M, Kanzler S, Witt M, Fabel K, Schwarz J, Höglinger GU, Storch A. Rostro-Caudal Gradual Loss of Cellular Diversity Within the Periventricular Regions of the Ventricular System. Stem Cells 2009; 27:928-41. [DOI: 10.1002/stem.21] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav 2009; 14 Suppl 1:16-25. [PMID: 18835369 DOI: 10.1016/j.yebeh.2008.09.023] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/18/2008] [Accepted: 09/18/2008] [Indexed: 12/21/2022]
Abstract
Epileptogenesis refers to a process in which an initial brain-damaging insult triggers a cascade of molecular and cellular changes that eventually lead to the occurrence of spontaneous seizures. Cellular alterations include neurodegeneration, neurogenesis, axonal sprouting, axonal injury, dendritic remodeling, gliosis, invasion of inflammatory cells, angiogenesis, alterations in extracellular matrix, and acquired channelopathies. Large-scale molecular profiling of epileptogenic tissue has provided information about the molecular pathways that can initiate and maintain cellular alterations. Currently we are learning how these pathways contribute to postinjury epileptogenesis and recovery process and whether they could be used as treatment targets.
Collapse
|
43
|
Lança V, Zee RY, Rivera A, Romero JR. Quantitative telomerase activity in circulating human leukocytes: utility of real-time telomeric repeats amplification protocol (RQ-TRAP) in a clinical/epidemiological setting. Clin Chem Lab Med 2009; 47:870-3. [DOI: 10.1515/cclm.2009.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Arias-Carrión O, Yamada E, Freundlieb N, Djufri M, Maurer L, Hermanns G, Ipach B, Chiu WH, Steiner C, Oertel WH, Höglinger GU. Neurogenesis in substantia nigra of parkinsonian brains? JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:279-85. [PMID: 20411786 DOI: 10.1007/978-3-211-92660-4_23] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The clinical motor dysfunction in Parkinson's disease is primarily the consequence of a progressive degeneration of dopaminergic neurons in the substantia nigra of the nigrostriatal pathway. The degeneration of this tract provokes a depletion of dopamine in the striatum, where it is required as a permissive factor for normal motor function. Despite intense investigations, no effective therapy is available to prevent the onset or to halt the progression of the neuronal cell loss. Therefore, recent years have seen research into the mechanisms of endogenous repair processes occurring in the adult brain, particularly in the substantia nigra. Neurogenesis occurs in the adult brain in a constitutive manner under physiological circumstances within two regions: the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. In contrast to these two so-called neurogenic areas, the remainder of the brain is considered to be primarily nonneurogenic in nature, implying that no new neurons are produced there under normal conditions. The occurrence of adult neurogenesis in the substantia nigra under the pathological conditions of Parkinson's disease, however, remains controversial. Here, we review the published evidence of whether adult neurogenesis exists or not within the substantia nigra, where dopaminergic neurons are lost in Parkinson's disease.
Collapse
|
45
|
Ho BC, Epping E, Wang K, Andreasen NC, Librant A, Wassink TH. Basic helix-loop-helix transcription factor NEUROG1 and schizophrenia: effects on illness susceptibility, MRI brain morphometry and cognitive abilities. Schizophr Res 2008; 106:192-9. [PMID: 18799289 PMCID: PMC2597152 DOI: 10.1016/j.schres.2008.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 08/05/2008] [Accepted: 08/11/2008] [Indexed: 12/22/2022]
Abstract
Transcription factors, including the basic helix-loop-helix (bHLH) family, regulate numerous genes and play vital roles in controlling gene expression. Consequently, transcription factor mutations can lead to phenotypic pleiotropy, and may be a candidate mechanism underlying the complex genetics and heterogeneous phenotype of schizophrenia. Neurogenin1 (NEUROG1; a.k.a. Ngn1 or Neurod3), a bHLH transcription factor encoded on a known schizophrenia linkage region in 5q31.1, induces glutamatergic and suppresses GABAergic neuronal differentiation during embryonic neurodevelopment. The goal of this study is to investigate NEUROG1 effects on schizophrenia risk and on phenotypic features of schizophrenia. We tested 392 patients with schizophrenia or schizoaffective disorder and 226 healthy normal volunteers for association with NEUROG1. Major alleles on two NEUROG1-associated SNPs (rs2344484-C-allele and rs8192558-G-allele) were significantly more prevalent among patients (p
Collapse
Affiliation(s)
- Beng-Choon Ho
- Department of Psychiatry, University of Iowa Carver College of Medicine, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Siebzehnrubl FA, Blumcke I. Neurogenesis in the human hippocampus and its relevance to temporal lobe epilepsies. Epilepsia 2008; 49 Suppl 5:55-65. [PMID: 18522601 DOI: 10.1111/j.1528-1167.2008.01638.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ample evidence points to the dentate gyrus as anatomical region for persistent neurogenesis in the adult mammalian brain. This has been confirmed in a variety of animal models under physiological as well as pathophysiological conditions. Notwithstanding, similar experiments are difficult to perform in humans. Postmortem studies demonstrated persisting neurogenesis in the elderly human brain. In addition, neural precursor cells can be isolated from surgical specimens obtained from patients with intractable temporal lobe epilepsy (TLE) and propagated or differentiated into neuronal and glial lineages. It remains a controversial issue, whether epileptic seizures have an effect on or even increase hippocampal neurogenesis in humans. Recent data support the notion that seizures induce neurogenesis in young patients, whereas the capacity of neuronal recruitment and proliferation decreases with age. Animal models of TLE further indicate that these newly generated neurons integrate into epileptogenic networks and contribute to increased seizure susceptibility. However, pathomorphological disturbances within the epileptic hippocampus, such as granule cell dispersion (GCD), may not directly result from compromised neurogenesis. Still, the majority of adult TLE patients present with significant dentate granule cell loss at an end stage of the disease, which relates to severe memory and learning disabilities. In conclusion, surgical specimens obtained from TLE patients represent an important tool to study mechanisms of stem cell recruitment, proliferation and differentiation in the human brain. In addition, increasing availability of surgical specimens opens new avenues to systematically explore disease pathomechanisms in chronic epilepsies.
Collapse
|
47
|
Naujokat C, Sarić T. Concise Review: Role and Function of the Ubiquitin-Proteasome System in Mammalian Stem and Progenitor Cells. Stem Cells 2007; 25:2408-18. [PMID: 17641241 DOI: 10.1634/stemcells.2007-0255] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Highly ordered degradation of cell proteins by the ubiquitin-proteasome system, a sophisticated cellular proteolytic machinery, has been identified as a key regulatory mechanism in many eukaryotic cells. Accumulating evidence reveals that the ubiquitin-proteasome system is involved in the regulation of fundamental processes in mammalian stem and progenitor cells of embryonic, neural, hematopoietic, and mesenchymal origin. Such processes, including development, survival, differentiation, lineage commitment, migration, and homing, are directly controlled by the ubiquitin-proteasome system, either via proteolytic degradation of key regulatory proteins of signaling and gene expression pathways or via nonproteolytic mechanisms involving the proteasome itself or posttranslational modifications of target proteins by ubiquitin or other ubiquitin-like modifiers. Future characterization of the precise roles and functions of the ubiquitin-proteasome system in mammalian stem and early progenitor cells will improve our understanding of stem cell biology and may provide an experimental basis for the development of novel therapeutic strategies in regenerative medicine. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Cord Naujokat
- Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
48
|
Yeo GW, Xu X, Liang TY, Muotri AR, Carson CT, Coufal NG, Gage FH. Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLoS Comput Biol 2007; 3:1951-67. [PMID: 17967047 PMCID: PMC2041973 DOI: 10.1371/journal.pcbi.0030196] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 08/24/2007] [Indexed: 02/06/2023] Open
Abstract
Human embryonic stem cells (hESCs) and neural progenitor (NP) cells are excellent models for recapitulating early neuronal development in vitro, and are key to establishing strategies for the treatment of degenerative disorders. While much effort had been undertaken to analyze transcriptional and epigenetic differences during the transition of hESC to NP, very little work has been performed to understand post-transcriptional changes during neuronal differentiation. Alternative RNA splicing (AS), a major form of post-transcriptional gene regulation, is important in mammalian development and neuronal function. Human ESC, hESC-derived NP, and human central nervous system stem cells were compared using Affymetrix exon arrays. We introduced an outlier detection approach, REAP (Regression-based Exon Array Protocol), to identify 1,737 internal exons that are predicted to undergo AS in NP compared to hESC. Experimental validation of REAP-predicted AS events indicated a threshold-dependent sensitivity ranging from 56% to 69%, at a specificity of 77% to 96%. REAP predictions significantly overlapped sets of alternative events identified using expressed sequence tags and evolutionarily conserved AS events. Our results also reveal that focusing on differentially expressed genes between hESC and NP will overlook 14% of potential AS genes. In addition, we found that REAP predictions are enriched in genes encoding serine/threonine kinase and helicase activities. An example is a REAP-predicted alternative exon in the SLK (serine/threonine kinase 2) gene that is differentially included in hESC, but skipped in NP as well as in other differentiated tissues. Lastly, comparative sequence analysis revealed conserved intronic cis-regulatory elements such as the FOX1/2 binding site GCAUG as being proximal to candidate AS exons, suggesting that FOX1/2 may participate in the regulation of AS in NP and hESC. In summary, a new methodology for exon array analysis was introduced, leading to new insights into the complexity of AS in human embryonic stem cells and their transition to neural stem cells.
Collapse
Affiliation(s)
- Gene W Yeo
- Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute, La Jolla, California, United States of America
- Laboratory of Genetics, Salk Institute, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail: (GWY); (FHG)
| | - Xiangdong Xu
- Laboratory of Genetics, Salk Institute, La Jolla, California, United States of America
| | - Tiffany Y Liang
- Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute, La Jolla, California, United States of America
| | - Alysson R Muotri
- Laboratory of Genetics, Salk Institute, La Jolla, California, United States of America
| | - Christian T Carson
- Laboratory of Genetics, Salk Institute, La Jolla, California, United States of America
| | - Nicole G Coufal
- Laboratory of Genetics, Salk Institute, La Jolla, California, United States of America
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail: (GWY); (FHG)
| |
Collapse
|
49
|
Habisch HJ, Janowski M, Binder D, Kuzma-Kozakiewicz M, Widmann A, Habich A, Schwalenstöcker B, Hermann A, Brenner R, Lukomska B, Domanska-Janik K, Ludolph AC, Storch A. Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects. J Neural Transm (Vienna) 2007; 114:1395-406. [PMID: 17510731 DOI: 10.1007/s00702-007-0748-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 04/13/2007] [Indexed: 12/23/2022]
Abstract
Stem and progenitor cells provide a promising therapeutic strategy for amyotrophic lateral sclerosis (ALS). To comparatively evaluate the therapeutic potentials of human bone marrow-derived mesodermal stromal cells (hMSCs) and umbilical cord blood cells (hUBCs) in ALS, we transplanted hMSCs and hUBCs and their neuroectodermal derivatives (hMSC-NSCs and hUBC-NSCs) into the ALS mouse model over-expressing the G93A mutant of the human SOD1 gene. We used a standardized protocol similar to clinical studies by performing a power calculation to estimate sample size prior to transplantation, matching the treatment groups for gender and hSOD-G93A gene content, and applying a novel method for directly injecting 100,000 cells into the CSF (the cisterna magna). Ten days after transplantation we found many cells within the subarachnoidal space ranging from frontal basal cisterns back to the cisterna magna, but only a few cells around the spinal cord. hMSCs and hMSC-NSCs were also located within the Purkinje cell layer. Intrathecal cell application did not affect survival times of mice compared to controls. Consistently, time of disease onset and first pareses, death weight, and motor neuron count in lumbar spinal cord did not vary between treatment groups. Interestingly, transplantation of hMSCs led to an increase of pre-symptomatic motor performance compared to controls in female animals. The negative outcome of the present study is most likely due to insufficient cell numbers within the affected brain regions (mainly the spinal cord). Further experiments defining the optimal cell dose, time point and route of application and particularly strategies to improve the homing of transplanted cells towards the CNS region of interest are warranted to define the therapeutic potential of mesodermal stem cells for the treatment of ALS.
Collapse
Affiliation(s)
- H-J Habisch
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Maisel M, Herr A, Milosevic J, Hermann A, Habisch HJ, Schwarz S, Kirsch M, Antoniadis G, Brenner R, Hallmeyer-Elgner S, Lerche H, Schwarz J, Storch A. Transcription profiling of adult and fetal human neuroprogenitors identifies divergent paths to maintain the neuroprogenitor cell state. Stem Cells 2007; 25:1231-40. [PMID: 17218394 DOI: 10.1634/stemcells.2006-0617] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global gene expression profiling was performed using RNA from adult human hippocampus-derived neuroprogenitor cells (NPCs) and multipotent frontal cortical fetal NPCs compared with adult human mesenchymal stem cells (hMSCs) as a multipotent adult stem cell control, and adult human hippocampal tissue, to define a gene expression pattern that is specific for human NPCs. The results were compared with data from various databases. Hierarchical cluster analysis of all neuroectodermal cell/tissue types revealed a strong relationship of adult hippocampal NPCs with various white matter tissues, whereas fetal NPCs strongly correlate with fetal brain tissue. However, adult and fetal NPCs share the expression of a variety of genes known to be related to signal transduction, cell metabolism and neuroectodermal tissue. In contrast, adult NPCs and hMSCs overlap in the expression of genes mainly involved in extracellular matrix biology. We present for the first time a detailed transcriptome analysis of human adult NPCs suggesting a relationship between hippocampal NPCs and white matter-derived precursor cells. We further provide a framework for standardized comparative gene expression analysis of human brain-derived NPCs with other stem cell populations or differentiated tissues. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Martina Maisel
- Department of Neurology, Technical University of Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|