1
|
Trambauer J, Sarmiento RMR, Garringer HJ, Salbaum K, Pedro LD, Crusius D, Vidal R, Ghetti B, Paquet D, Baumann K, Lindemann L, Steiner H. γ-Secretase modulator resistance of an aggressive Alzheimer-causing presenilin mutant can be overcome in the heterozygous patient state by a set of advanced compounds. Alzheimers Res Ther 2025; 17:49. [PMID: 39972463 PMCID: PMC11837686 DOI: 10.1186/s13195-025-01680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Amyloid-β peptide (Aβ) species of 42 or 43 amino acids in length (Aβ42/43) trigger Alzheimer´s disease (AD) and are produced in abnormal amounts by mutants of the γ-secretase subunit presenilin-1 (PS1), which represent the primary cause of familial AD (FAD). Lowering these peptides by γ-secretase modulators (GSMs) is increasingly considered a safe strategy to treat AD since these compounds do not affect the overall cleavage of γ-secretase substrates. GSMs were shown to modulate not only wild-type (WT) γ-secretase but also FAD mutants, expanding their potential use also to the familial form of the disease. Unlike most other FAD mutants, the very aggressive PS1 L166P mutant is largely resistant to GSMs. However, these data were mostly obtained from overexpression models, which mimic more the less relevant homozygous state rather than the heterozygous patient situation. METHODS Mouse embryonic fibroblast and induced pluripotent stem cell-derived neuronal PS1 L166P knock-in (KI) cell models were treated with various GSMs and Aβ responses were assessed by immunoassays and/or gel-based analysis. RESULTS We identified GSMs that lower Aβ42 and/or Aβ43 when PS1 L166P is heterozygous, as it is the case in affected patients, and could reduce the amount of pathogenic Aβ species towards WT levels. RO7019009 was the most potent of these compounds, reducing both pathogenic species and concomitantly increasing the short Aβ37 and Aβ38, of which the latter has been associated with delayed AD progression. Another effective compound, the structurally novel indole-type GSM RO5254601 specifically acts on the Aβ42 product line leading to a selective increase of the beneficial Aβ38. Interestingly, we further found that this class of GSMs can bind not only one, but both presenilin fragments suggesting that it targets γ-secretase at an unusual binding site. CONCLUSION Our data show that even highly refractory presenilin FAD mutants are in principle tractable with GSMs extending the possibilities for potential clinical studies in FAD with suitable GSM molecules.
Collapse
Affiliation(s)
- Johannes Trambauer
- Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), LMU Munich, Feodor-Lynen-Str. 17, Munich, 81377, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
| | - Rosa Maria Rodriguez Sarmiento
- Pharma Research and Early Development, F. Hoffmann-La Roche AG, Therapeutic Modalities, Small Molecule Research, Roche Innovation Center Basel, Basel, 4070, Switzerland
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Katja Salbaum
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Liliana D Pedro
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Dennis Crusius
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, 81377, Germany
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dominik Paquet
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, 81377, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, 81377, Germany
| | - Karlheinz Baumann
- Pharma Research and Early Development, F. Hoffmann-La Roche AG, Neuroscience and Rare Diseases Translational Area, Neuroscience Discovery, Roche Innovation Center Basel, Basel, 4070, Switzerland
| | - Lothar Lindemann
- Pharma Research and Early Development, F. Hoffmann-La Roche AG, Neuroscience and Rare Diseases Translational Area, Neuroscience Discovery, Roche Innovation Center Basel, Basel, 4070, Switzerland
| | - Harald Steiner
- Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), LMU Munich, Feodor-Lynen-Str. 17, Munich, 81377, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, 81377, Germany.
| |
Collapse
|
2
|
Xiao D, Xiong M, Wang X, Lyu M, Sun H, Cui Y, Chen C, Jiang Z, Sun F. Regulation of the Function and Expression of EpCAM. Biomedicines 2024; 12:1129. [PMID: 38791091 PMCID: PMC11117676 DOI: 10.3390/biomedicines12051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a single transmembrane protein on the cell surface. Given its strong expression on epithelial cells and epithelial cell-derived tumors, EpCAM has been identified as a biomarker for circulating tumor cells (CTCs) and exosomes and a target for cancer therapy. As a cell adhesion molecule, EpCAM has a crystal structure that indicates that it forms a cis-dimer first and then probably a trans-tetramer to mediate intercellular adhesion. Through regulated intramembrane proteolysis (RIP), EpCAM and its proteolytic fragments are also able to regulate multiple signaling pathways, Wnt signaling in particular. Although great progress has been made, increasingly more findings have revealed the context-specific expression and function patterns of EpCAM and their regulation processes, which necessitates further studies to determine the structure, function, and expression of EpCAM under both physiological and pathological conditions, broadening its application in basic and translational cancer research.
Collapse
Affiliation(s)
- Di Xiao
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mingrui Xiong
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xin Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mengqing Lyu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hanxiang Sun
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yeting Cui
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Chen Chen
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Ziyu Jiang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Fan Sun
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
3
|
Jakowiecki J, Orzeł U, Miszta P, Młynarczyk K, Filipek S. Conformational Changes and Unfolding of β-Amyloid Substrates in the Active Site of γ-Secretase. Int J Mol Sci 2024; 25:2564. [PMID: 38473811 DOI: 10.3390/ijms25052564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and is characterized by a presence of amyloid plaques, composed mostly of the amyloid-β (Aβ) peptides, in the brains of AD patients. The peptides are generated from the amyloid precursor protein (APP), which undergoes a sequence of cleavages, referred as trimming, performed by γ-secretase. Here, we investigated conformational changes in a series of β-amyloid substrates (from less and more amyloidogenic pathways) in the active site of presenilin-1, the catalytic subunit of γ-secretase. The substrates are trimmed every three residues, finally leading to Aβ40 and Aβ42, which are the major components of amyloid plaques. To study conformational changes, we employed all-atom molecular dynamics simulations, while for unfolding, we used steered molecular dynamics simulations in an implicit membrane-water environment to accelerate changes. We have found substantial differences in the flexibility of extended C-terminal parts between more and less amyloidogenic pathway substrates. We also propose that the positively charged residues of presenilin-1 may facilitate the stretching and unfolding of substrates. The calculated forces and work/energy of pulling were exceptionally high for Aβ40, indicating why trimming of this substrate is so infrequent.
Collapse
Affiliation(s)
- Jakub Jakowiecki
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Urszula Orzeł
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Krzysztof Młynarczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Fu Q, Zhang B, Chen X, Chu L. Liquid-liquid phase separation in Alzheimer's disease. J Mol Med (Berl) 2024; 102:167-181. [PMID: 38167731 DOI: 10.1007/s00109-023-02407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The pathological aggregation and misfolding of tau and amyloid-β play a key role in Alzheimer's disease (AD). However, the underlying pathological mechanisms remain unclear. Emerging evidences indicate that liquid-liquid phase separation (LLPS) has great impacts on regulating human health and diseases, especially neurodegenerative diseases. A series of studies have revealed the significance of LLPS in AD. In this review, we summarize the latest progress of LLPS in AD, focusing on the impact of metal ions, small-molecule inhibitors, and proteinaceous partners on tau LLPS and aggregation, as well as toxic oligomerization, the role of LLPS on amyloid-β (Aβ) aggregation, and the cross-interactions between amyloidogenic proteins in AD. Eventually, the fundamental methods and techniques used in LLPS study are introduced. We expect to present readers a deeper understanding of the relationship between LLPS and AD.
Collapse
Affiliation(s)
- Qinggang Fu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liang Chu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Rami A, Damizadeh B, Behdani M, Kazemi-Lomedasht F. Insights into the Evolutionary Dynamics: Characterization of Disintegrin and Metalloproteinase Proteins in the Venom Gland Transcriptome of the Hemiscorpius lepturus Scorpion. Protein Pept Lett 2024; 31:639-656. [PMID: 39219422 DOI: 10.2174/0109298665321842240819073453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The Disintegrin and Metalloproteinase (ADAM) family, also known as the metalloproteinase/disintegrin/cysteine-rich (MDC) proteins, includes both secreted and transmembrane molecules involved in critical biological processes, such as cell migration, adhesion, and signaling. This study aimed to investigate the evolutionary relationships and structural characteristics of disintegrin and metalloproteinase proteins identified in the venom gland transcriptome of the scorpion Hemiscorpius lepturus. METHODS Using bioinformatics tools, we analyzed the open reading frame, conserved motifs, and primary, secondary, and tertiary structures of these proteins. Five proteins, named HLDisMet1, HLDisMet2, HLDisMet3, HLDisMet4, and HLDisMet5, were identified. Their predicted 3-D structures were within normal ranges (Z-score between -4 to -9). RESULTS Phylogenetic analysis revealed that HLDisMet1 shares similarities with proteins from various spider species (Nephila pilipes, Argiope bruennichi, Araneus ventricosus, and Trichonephila inaurata madagascariensis), HLDisMet2 with the scorpion Centruroides sculpturatus, HLDis- Met4 with the scorpion Tityus serrulatus, and HLDisMet5 with several snake species (Python bivittatus, Vipera anatolica senliki, Protobothrops mucrosquamatus, and Naja naja). CONCLUSION These findings highlight the significant similarities between HLDisMet proteins and those found in other venomous species, suggesting a complex and diverse evolutionary pathway for venom components. The cross-species conservation observed may indicate a convergent evolutionary strategy, where different species independently develop similar venom components to adapt to similar ecological niches or prey types. This study highlights the evolutionary significance of venom diversification and its potential applications in understanding venom biology across different species.
Collapse
Affiliation(s)
- Abbas Rami
- Venom and Biotherapeutics Molecules Laboratory, Department of Biochemistry, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Benjamin Damizadeh
- Venom and Biotherapeutics Molecules Laboratory, Department of Biochemistry, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Department of Biochemistry, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Department of Biochemistry, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Pauli TM, Julius A, Costa F, Eschrig S, Moosmüller J, Fischer L, Schanzenbach C, Schmidt FC, Ortner M, Langosch D. Interaction of Substrates with γ-Secretase at the Level of Individual Transmembrane Helices-A Methodological Approach. Int J Mol Sci 2023; 24:14396. [PMID: 37762696 PMCID: PMC10531681 DOI: 10.3390/ijms241814396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Intramembrane proteases, such as γ secretase, typically recruit multiple substrates from an excess of single-span membrane proteins. It is currently unclear to which extent substrate recognition depends on specific interactions of their transmembrane domains (TMDs) with TMDs of a protease. Here, we investigated a large number of potential pairwise interactions between TMDs of γ secretase and a diverse set of its substrates using two different configurations of BLaTM, a genetic reporter system. Our results reveal significant interactions between TMD2 of presenilin, the enzymatic subunit of γ secretase, and the TMD of the amyloid precursor protein, as well as of several other substrates. Presenilin TMD2 is a prime candidate for substrate recruitment, as has been shown from previous studies. In addition, the amyloid precursor protein TMD enters interactions with presenilin TMD 4 as well as with the TMD of nicastrin. Interestingly, the Gly-rich interfaces between the amyloid precursor protein TMD and presenilin TMDs 2 and 4 are highly similar to its homodimerization interface. In terms of methodology, the economics of the newly developed library-based method could prove to be a useful feature in related future work for identifying heterotypic TMD-TMD interactions within other biological contexts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Martin Ortner
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany; (T.M.P.); (A.J.); (F.C.); (S.E.); (J.M.); (L.F.); (C.S.); (F.C.S.)
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany; (T.M.P.); (A.J.); (F.C.); (S.E.); (J.M.); (L.F.); (C.S.); (F.C.S.)
| |
Collapse
|
7
|
Belapurkar V, Mahadeva Swamy HS, Singh N, Kedia S, Setty SRG, Jose M, Nair D. Real-time heterogeneity of supramolecular assembly of amyloid precursor protein is modulated by an endocytic risk factor PICALM. Cell Mol Life Sci 2023; 80:295. [PMID: 37726569 PMCID: PMC11072284 DOI: 10.1007/s00018-023-04939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Recently, the localization of amyloid precursor protein (APP) into reversible nanoscale supramolecular assembly or "nanodomains" has been highlighted as crucial towards understanding the onset of the molecular pathology of Alzheimer's disease (AD). Surface expression of APP is regulated by proteins interacting with it, controlling its retention and lateral trafficking on the synaptic membrane. Here, we evaluated the involvement of a key risk factor for AD, PICALM, as a critical regulator of nanoscale dynamics of APP. Although it was enriched in the postsynaptic density, PICALM was also localized to the presynaptic active zone and the endocytic zone. PICALM colocalized with APP and formed nanodomains with distinct morphological properties in different subsynaptic regions. Next, we evaluated if this localization to subsynaptic compartments was regulated by the C-terminal sequences of APP, namely, the "Y682ENPTY687" domain. Towards this, we found that deletion of C-terminal regions of APP with partial or complete deletion of Y682ENPTY687, namely, APP-Δ9 and APP-Δ14, affected the lateral diffusion and nanoscale segregation of APP. Lateral diffusion of APP mutant APP-Δ14 sequence mimicked that of a detrimental Swedish mutant of APP, namely, APP-SWE, while APP-Δ9 diffused similar to wild-type APP. Interestingly, elevated expression of PICALM differentially altered the lateral diffusion of the APP C-terminal deletion mutants. These observations confirm that the C-terminal sequence of APP regulates its lateral diffusion and the formation of reversible nanoscale domains. Thus, when combined with autosomal dominant mutations, it generates distinct molecular patterns leading to onset of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Vivek Belapurkar
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Interdisciplinary Institute for Neuroscience CNRS UMR5297, University of Bordeaux, Bordeaux, France
| | - H S Mahadeva Swamy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Tata Institute for Genetics and Society, Bengaluru, India
| | - Nivedita Singh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Mini Jose
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
8
|
Tambini MD, Yin T, Yesiltepe M, Breuillaud L, Zehntner SP, d'Abramo C, Giliberto L, D'Adamio L. Aβ43 levels determine the onset of pathological amyloid deposition. J Biol Chem 2023; 299:104868. [PMID: 37257821 PMCID: PMC10404620 DOI: 10.1016/j.jbc.2023.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
About 2% of Alzheimer's disease (AD) cases have early onset (FAD) and are caused by mutations in either Presenilins (PSEN1/2) or amyloid-β precursor protein (APP). PSEN1/2 catalyze production of Aβ peptides of different length from APP. Aβ peptides are the major components of amyloid plaques, a pathological lesion that characterizes AD. Analysis of mechanisms by which PSEN1/2 and APP mutations affect Aβ peptide compositions lead to the implication of the absolute or relative increase in Aβ42 in amyloid-β plaques formation. Here, to elucidate the formation of pathogenic Aβ cocktails leading to amyloid pathology, we utilized FAD rat knock-in models carrying the Swedish APP (Apps allele) and the PSEN1 L435F (Psen1LF allele) mutations. To accommodate the differences in the pathogenicity of rodent and human Aβ, these rat models are genetically engineered to express human Aβ species as both the Swedish mutant allele and the WT rat allele (called Apph) have been humanized in the Aβ-coding region. Analysis of the eight possible FAD mutant permutations indicates that the CNS levels of Aβ43, rather than absolute or relative increases in Aβ42, determine the onset of pathological amyloid deposition in FAD knock-in rats. Notably, Aβ43 was found in amyloid plaques in late onset AD and mild cognitive impairment cases, suggesting that the mechanisms initiating amyloid pathology in FAD knock-in rat reflect disease mechanisms driving amyloid pathology in late onset AD. This study helps clarifying the molecular determinants initiating amyloid pathology and supports therapeutic interventions targeting Aβ43 in AD.
Collapse
Affiliation(s)
- Marc D Tambini
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Tao Yin
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Metin Yesiltepe
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | | | | | - Cristina d'Abramo
- Litwin-Zucker Center for the Study of Alzheimer's Disease and Memory Disorders, Feinstein Institutes for Medical Research, Institute of Molecular Medicine, Northwell Health System, Manhasset, New York, USA
| | - Luca Giliberto
- Litwin-Zucker Center for the Study of Alzheimer's Disease and Memory Disorders, Feinstein Institutes for Medical Research, Institute of Molecular Medicine, Northwell Health System, Manhasset, New York, USA; Institute of Neurology and Neurosurgery, Northwell Health System, Manhasset, New York, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA.
| |
Collapse
|
9
|
Contreras W, Bazan JF, Mentrup T. The transmembrane domain of Frey1 harbors a transplantable inhibitory motif for intramembrane proteases. Cell Mol Life Sci 2023; 80:170. [PMID: 37261541 DOI: 10.1007/s00018-023-04823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Although aspartic intramembrane-cleaving proteases (I-CLIPs) are crucial switches of multiple signaling pathways and involved in several devastating diseases, little is known about their physiological regulation. We have recently identified Frey regulator of sperm-oocyte fusion 1 (Frey1) as an inhibitory protein of Signal Peptide Peptidase-like 2c (SPPL2c), a member of this protease family. Employing structure modeling along with cell-based inhibition and interaction studies, we identify a short motif within the Frey1 transmembrane domain essential for inhibition of SPPL2c. Intriguingly, this motif can be transplanted to the SPPL2c substrate PLN, thereby transforming it into an inhibitor of this enzyme. It can be adopted for the generation of Notch1-based γ-Secretase inhibitors demonstrating its versatile use among aspartic I-CLIPs. In summary, we describe a mechanism of aspartic I-CLIP inhibition which allows the targeted generation of specific inhibitors of these enzymes and might enable the identification of endogenous negative regulators of these enzymes.
Collapse
Affiliation(s)
- Whendy Contreras
- Institute of Physiological Chemistry, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - J Fernando Bazan
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.
| |
Collapse
|
10
|
Schmidt FC, Fitz K, Feilen LP, Okochi M, Steiner H, Langosch D. Different transmembrane domains determine the specificity and efficiency of the cleavage activity of the γ-secretase subunit presenilin. J Biol Chem 2023; 299:104626. [PMID: 36944398 PMCID: PMC10164903 DOI: 10.1016/j.jbc.2023.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023] Open
Abstract
The γ-secretase complex catalyzes the intramembrane cleavage of C99, a carboxy-terminal fragment of the amyloid precursor protein. Two paralogs of its catalytic subunit presenilin (PS1 and PS2) are expressed which are autocatalytically cleaved into an N-terminal and a C-terminal fragment during maturation of γ-secretase. In this study, we compared the efficiency and specificity of C99 cleavage by PS1- and PS2-containing γ-secretases. Mass spectrometric analysis of cleavage products obtained in cell-free and cell-based assays revealed that the previously described lower amyloid-β (Aβ)38 generation by PS2 is accompanied by a reciprocal increase in Aβ37 production. We further found PS1 and PS2 to show different preferences in the choice of the initial cleavage site of C99. However, the differences in Aβ38 and Aβ37 generation appear to mainly result from altered subsequent stepwise cleavage of Aβ peptides. Apart from these differences in cleavage specificity, we confirmed a lower efficiency of initial C99 cleavage by PS2 using a detergent-solubilized γ-secretase system. By investigating chimeric PS1/2 molecules, we show that the membrane-embedded, nonconserved residues of the N-terminal fragment mainly account for the differential cleavage efficiency and specificity of both presenilins. At the level of individual transmembrane domains (TMDs), TMD3 was identified as a major modulator of initial cleavage site specificity. The efficiency of endoproteolysis strongly depends on nonconserved TMD6 residues at the interface to TMD2, i.e., at a putative gate of substrate entry. Taken together, our results highlight the role of individual presenilin TMDs in the cleavage of C99 and the generation of Aβ peptides.
Collapse
Affiliation(s)
- Fabian C Schmidt
- Biopolymer Chemistry, Technical University of Munich, Freising, Germany
| | - Katja Fitz
- Biopolymer Chemistry, Technical University of Munich, Freising, Germany
| | - Lukas P Feilen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Masayasu Okochi
- Neuropsychiatry, Division of Internal Medicine, Department of Integrated Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Division of Metabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University, Munich, Germany
| | - Dieter Langosch
- Biopolymer Chemistry, Technical University of Munich, Freising, Germany.
| |
Collapse
|
11
|
Baltissen D, Bold CS, Rehra L, Banićević M, Fricke J, Just J, Ludewig S, Buchholz CJ, Korte M, Müller UC. APPsα rescues CDK5 and GSK3β dysregulation and restores normal spine density in Tau transgenic mice. Front Cell Neurosci 2023; 17:1106176. [PMID: 36779015 PMCID: PMC9909437 DOI: 10.3389/fncel.2023.1106176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
The Tau protein can be phosphorylated by numerous kinases. In Alzheimer's disease (AD) hyperphosphorylated Tau species accumulate as neurofibrillary tangles that constitute a major hallmark of AD. AD is further characterized by extracellular Aβ plaques, derived from the β-amyloid precursor protein APP. Whereas Aβ is produced by amyloidogenic APP processing, APP processing along the competing non-amyloidogenic pathway results in the secretion of neurotrophic and synaptotrophic APPsα. Recently, we demonstrated that APPsα has therapeutic effects in transgenic AD model mice and rescues Aβ-dependent impairments. Here, we examined the potential of APPsα to regulate two major Tau kinases, GSK3β and CDK5 in THY-Tau22 mice, a widely used mouse model of tauopathy. Immunohistochemistry revealed a dramatic increase in pathologically phosphorylated (AT8 and AT180) or misfolded Tau species (MC1) in the hippocampus of THY-Tau22 mice between 3 and 12 months of age. Using a highly sensitive radioactive kinase assay with recombinant human Tau as a substrate and immunoblotting, we demonstrate an increase in GSK3β and CDK5 activity in the hippocampus of THY-Tau22 mice. Interestingly, AAV-mediated intracranial expression of APPsα in THY-Tau22 mice efficiently restored normal GSK3β and CDK5 activity. Western blot analysis revealed upregulation of the CDK5 regulatory proteins p35 and p25, indicating CDK5 hyperactivation in THY-Tau22 mice. Strikingly, AAV-APPsα rescued p25 upregulation to wild-type levels even at stages of advanced Tau pathology. Sarkosyl fractionation used to study the abundance of soluble and insoluble phospho-Tau species revealed increased soluble AT8-Tau and decreased insoluble AT100-Tau species upon AAV-APPsα injection. Moreover, AAV-APPsα reduced misfolded (MC1) Tau species, particularly in somatodendritic compartments of CA1 pyramidal neurons. Finally, we show that AAV-APPsα upregulated PSD95 expression and rescued deficits in spine density of THY-Tau22 mice. Together our findings suggest that APPsα holds therapeutic potential to mitigate Tau-induced pathology.
Collapse
Affiliation(s)
- Danny Baltissen
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Charlotte S. Bold
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Lena Rehra
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Marija Banićević
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Justus Fricke
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Jennifer Just
- Department of Cellular Neurobiology, Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany
| | - Susann Ludewig
- Department of Cellular Neurobiology, Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany
| | - Christian J. Buchholz
- Department of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany,Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany
| | - Ulrike C. Müller
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany,*Correspondence: Ulrike C. Müller,
| |
Collapse
|
12
|
Eden A, Zhao J, Xiao Y, Gibson J, Wang C. Covalent fragment inhibits intramembrane proteolysis. Front Mol Biosci 2022; 9:958399. [PMID: 36158579 PMCID: PMC9490316 DOI: 10.3389/fmolb.2022.958399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a serious public health crisis with only one current modifying treatment. The reduction of amyloid load by targeting γ-secretase (GS) has been a leading approach in AD drug discovery and development. Despite the focus on GS inhibition, multiple GS inhibitors (GSIs) have failed in clinical trials as a result of side effects including exacerbated cognitive decline. These side effects are largely attributable to inhibition of normal GS function. Standard enzyme inhibitors target catalytic or allosteric sites of the enzyme, including the active site presenilin, as previous GSIs did. To avoid issues observed from broad-spectrum GSIs we discovered that fragment 6H8 that covalently binds to the substrate of GS, the transmembrane domain of amyloid precursor protein (APPTM). Nuclear Magnetic Resonance (NMR) Spectroscopy combined with MALDI-TOF-MS established 6H8 covalently binds to APPTM. 6H8 acts as a Michael acceptor and covalently links to the side chain amines of lysine residues, specifically targeting a cluster of C-terminal lysines K53-K55. Through this modification, 6H8 can inhibit intramembrane proteolysis of an archaeal homolog of presenilin (the active subunit of GS) via substrate binding with a 2-4 μM IC50, determined by a gel-based cleavage assay. 6H8, while too small to be an effective drug candidate, can be combined with a specific non-covalent partner and function as an effective covalent warhead of a targeted covalent inhibitor (TCI). The future development of the 6H8 fragment into the covalent warhead of a TCI is, to our knowledge, a novel approach to AD drug discovery.
Collapse
Affiliation(s)
- Angela Eden
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Troy, NY, United States
- Department of Biological Sciences, Troy, NY, United States
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Yuanyuan Xiao
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - James Gibson
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Troy, NY, United States
- Department of Biological Sciences, Troy, NY, United States
| |
Collapse
|
13
|
Elsworthy RJ, Dunleavy C, Whitham M, Aldred S. Exercise for the prevention of Alzheimer's disease: Multiple pathways to promote non-amyloidogenic AβPP processing. AGING AND HEALTH RESEARCH 2022. [DOI: 10.1016/j.ahr.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
14
|
Chen SY, Zacharias M. An internal docking site stabilizes substrate binding to γ-secretase: Analysis by molecular dynamics simulations. Biophys J 2022; 121:2330-2344. [PMID: 35598043 PMCID: PMC9279352 DOI: 10.1016/j.bpj.2022.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022] Open
Abstract
Amyloid precursor protein (APP) is cleaved and processed sequentially by γ-secretase yielding amyloid β (Aβ) peptides of different lengths. Longer Aβ peptides are associated with the formation of neurotoxic plaques related to Alzheimer's disease. Based on the APP substrate-bound structure of γ-secretase, we investigated the enzyme-substrate interaction using molecular dynamics simulations and generated model structures that represent the sequentially cleaved intermediates during the processing reaction. The simulations indicated an internal docking site providing strong enzyme-substrate packing interaction. In the enzyme-substrate complex, it is located close to the region where the helical conformation of the substrate is interrupted and continues toward the active site in an extended conformation. The internal docking site consists of two non-polar pockets that are preferentially filled by large hydrophobic or aromatic substrate side chains to stabilize binding. Placement of smaller residues such as glycine can trigger a shift in the cleavage pattern during the simulations or results in destabilization of substrate binding. The reduced packing by smaller residues also influences the hydration of the active site and the formation of a catalytically active state. The simulations on processed substrate intermediates and a substrate G33I mutation offer an explanation of the experimentally observed relative increase of short Aβ fragment production for this mutation. In addition, studies on a substrate K28A mutation indicate that the internal docking site opposes the tendency of substrate dissociation due to a hydrophobic mismatch at the membrane boundary caused by K28 during processing and substrate movement toward the enzyme active site. The proposed internal docking site could also be useful for the specific design of new γ-secretase modulators.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Physics Department and Center of Functional Protein Assemblies, Technical University of Munich, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department and Center of Functional Protein Assemblies, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
15
|
Yang H, Mei J, Xu W, Ma X, Sun B, Ai H. Identification of the probable structure of the sAPPα-GABA BR1a complex and theoretical solutions for such cases. Phys Chem Chem Phys 2022; 24:12267-12280. [PMID: 35543350 DOI: 10.1039/d2cp00569g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyloid precursor protein (APP) is the core of the pathogenesis of Alzheimer's disease (AD). Existing studies have shown that the soluble secreted APP (sAPPα) fragment obtained from the hydrolysis of APP by α-secretase has a synaptic function. Thereinto, a nine-residue fragment (APP9mer) of the extension domain region of sAPPα can bind directly and selectively to the N-terminal sushi1 domain (SD1) of the γ-aminobutyric acid type B receptor subunit 1a (GABABR1a) protein, which can influence synaptic transmission and plasticity by changing the GABABR1a conformation. APP9mer is a highly flexible, disordered region, and as such it is difficult to experimentally determine the optimal APPmer-SD1 binding complex. In this study we constructed two types of APP9mer-SD1 complexes through molecular docking and molecular dynamics simulation, aiming to explore the recognition function and mechanism of the specific binding of APP9mer with SD1, from which the most probable APPmer-SD1 model conformation is predicted. All the data from the analyses of RMSD, RMSF, PCA, DCCM and MM/PBSA binding energy as well as comparison with the experimental dissociation constant Kd suggest that 2NC is the most likely conformation to restore the crystal structure of the experimental APP9mer-SD1 complex. Of note, the key recognition residues of APP9mer are D24, D25, D27, W29 and W30, which mainly act on the 9-45 residue domain of SD1 (consisting of two loops and three short β-chains at the N-terminus of SD1). The mini-model with key residues identified establishes the molecular basis with deep insight into the interaction between APP and GABABR1a and provides a target for the development of therapeutic strategies for modulating GABABR1a-specific signaling in neurological and psychiatric disorders. More importantly, the study offers a theoretical solution for how to determine a biomolecular structure with a highly flexible, disordered fragment embedded within. The flexible fragment involved in a protein structure has to be deserted usually during the structural determination with experimental methods (e.g. X-ray crystallography, etc.).
Collapse
Affiliation(s)
- Huijuan Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wen Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xiaohong Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Bo Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
16
|
Feilen LP, Chen SY, Fukumori A, Feederle R, Zacharias M, Steiner H. Active site geometry stabilization of a presenilin homolog by the lipid bilayer promotes intramembrane proteolysis. eLife 2022; 11:76090. [PMID: 35579427 PMCID: PMC9282858 DOI: 10.7554/elife.76090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cleavage of membrane proteins in the lipid bilayer by intramembrane proteases is crucial for health and disease. Although different lipid environments can potently modulate their activity, how this is linked to their structural dynamics is unclear. Here, we show that the carboxy-peptidase-like activity of the archaeal intramembrane protease PSH, a homolog of the Alzheimer’s disease-associated presenilin/γ-secretase is impaired in micelles and promoted in a lipid bilayer. Comparative molecular dynamics simulations revealed that important elements for substrate binding such as transmembrane domain 6a of PSH are more labile in micelles and stabilized in the lipid bilayer. Moreover, consistent with an enhanced interaction of PSH with a transition-state analog inhibitor, the bilayer promoted the formation of the enzyme’s catalytic active site geometry. Our data indicate that the lipid environment of an intramembrane protease plays a critical role in structural stabilization and active site arrangement of the enzyme-substrate complex thereby promoting intramembrane proteolysis. Cutting proteins into pieces is a crucial process in the cell, allowing several important processes to take place, including cell differentiation (which allows cells to develop into specific types), cell death, protein quality control, or even where in the cell a protein will end up. However, the specialized proteins that carry out this task, known as proteases, can also be involved in the development of disease. For example, in the brain, a protease called γ-secretase cuts up the amyloid-β protein precursor, producing toxic forms of amyloid-β peptides that are widely believed to cause Alzheimer’s disease. Proteases like γ-secretase carry out their role in the membrane, the layer of fats (also known as lipids) that forms the outer boundary of the cell. The environment in this area of the cell can influence the activity of proteases, but it is poorly understood how this happens. One way to address this question would be to compare the activity of γ-secretase in the lipid environment of the membrane to its activity when it is entirely surrounded by different molecules, such as detergent molecules. Unfortunately, γ-secretase is not active when it is removed from its lipid environment by a detergent, making it difficult to perform this comparison. To overcome this issue, Feilen et al. chose to study PSH, a protease similar to γ-secretase that produces the same amyloid-β peptides but remains active in detergent. When Feilen et al. mixed PSH with lipid molecules like those found in the membrane and amyloid-β precursor protein, PSH produced amyloid-β peptides including those that are thought to cause Alzheimer’s. However, when a detergent was substituted for the lipid molecules this led to longer amyloid-β peptides than usual, indicating that PSH was not able to cut proteins as effectively. The change in environment appeared to reduce PSH’s ability to progressively trim small segments from the peptides. Computer modelling of the protease’s structure in lipids versus detergent supported the experimental findings: the model predicted that the areas of PSH important for recognizing and cutting other proteins would be more stable in the membrane compared to the detergent. These results indicate that the cell membrane plays a vital role in the stability of the active regions of proteases that are cleaving in this environment. In the future, this could help to better understand how changes to the lipid molecules in the membrane may contribute to the activity of γ-secretase and its role in Alzheimer’s disease.
Collapse
Affiliation(s)
- Lukas P Feilen
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Shu-Yu Chen
- Physics Department T38, Technical University of Munich, Garching, Germany
| | - Akio Fukumori
- Department of Pharmacotherapeutics II, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Regina Feederle
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, Garching, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
17
|
Greenough MA, Lane DJR, Balez R, Anastacio HTD, Zeng Z, Ganio K, McDevitt CA, Acevedo K, Belaidi AA, Koistinaho J, Ooi L, Ayton S, Bush AI. Selective ferroptosis vulnerability due to familial Alzheimer’s disease presenilin mutations. Cell Death Differ 2022; 29:2123-2136. [PMID: 35449212 PMCID: PMC9613996 DOI: 10.1038/s41418-022-01003-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractMutations in presenilin 1 and 2 (PS1 and PS2) cause autosomal dominant familial Alzheimer’s disease (FAD). Ferroptosis has been implicated as a mechanism of neurodegeneration in AD since neocortical iron burden predicts Alzheimer’s disease (AD) progression. We found that loss of the presenilins dramatically sensitizes multiple cell types to ferroptosis, but not apoptosis. FAD causal mutations of presenilins similarly sensitizes cells to ferroptosis. The presenilins promote the expression of GPX4, the selenoprotein checkpoint enzyme that blocks ferroptosis by quenching the membrane propagation of lethal hydroperoxyl radicals. Presenilin γ-secretase activity cleaves Notch-1 to signal LRP8 expression, which then controls GPX4 expression by regulating the supply of selenium into the cell since LRP8 is the uptake receptor for selenoprotein P. Selenium uptake is thus disrupted by presenilin FAD mutations, suppressing GPX4 expression. Therefore, presenilin mutations may promote neurodegeneration by derepressing ferroptosis, which has implications for disease-modifying therapeutics.
Collapse
|
18
|
Paasila PJ, Aramideh JA, Sutherland GT, Graeber MB. Synapses, Microglia, and Lipids in Alzheimer's Disease. Front Neurosci 2022; 15:778822. [PMID: 35095394 PMCID: PMC8789683 DOI: 10.3389/fnins.2021.778822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by synaptic dysfunction accompanied by the microscopically visible accumulation of pathological protein deposits and cellular dystrophy involving both neurons and glia. Late-stage AD shows pronounced loss of synapses and neurons across several differentially affected brain regions. Recent studies of advanced AD using post-mortem brain samples have demonstrated the direct involvement of microglia in synaptic changes. Variants of the Apolipoprotein E and Triggering Receptors Expressed on Myeloid Cells gene represent important determinants of microglial activity but also of lipid metabolism in cells of the central nervous system. Here we review evidence that may help to explain how abnormal lipid metabolism, microglial activation, and synaptic pathophysiology are inter-related in AD.
Collapse
Affiliation(s)
- Patrick J. Paasila
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Jason A. Aramideh
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Greg T. Sutherland
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Manuel B. Graeber
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
19
|
Klein M, Kaleem A, Oetjen S, Wünkhaus D, Binkle L, Schilling S, Gjorgjieva M, Scholz R, Gruber-Schoffnegger D, Storch S, Kins S, Drewes G, Hoffmeister-Ullerich S, Kuhl D, Hermey G. Converging roles of PSENEN/PEN2 and CLN3 in the autophagy-lysosome system. Autophagy 2021; 18:2068-2085. [PMID: 34964690 PMCID: PMC9397472 DOI: 10.1080/15548627.2021.2016232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PSENEN/PEN2 is the smallest subunit of the γ-secretase complex, an intramembrane protease that cleaves proteins within their transmembrane domains. Mutations in components of the γ-secretase underlie familial Alzheimer disease. In addition to its proteolytic activity, supplementary, γ-secretase independent, functions in the macroautophagy/autophagy-lysosome system have been proposed. Here, we screened for PSENEN-interacting proteins and identified CLN3. Mutations in CLN3 are causative for juvenile neuronal ceroid lipofuscinosis, a rare lysosomal storage disorder considered the most common neurodegenerative disease in children. As mutations in the PSENEN and CLN3 genes cause different neurodegenerative diseases, understanding shared cellular functions of both proteins might be pertinent for understanding general cellular mechanisms underlying neurodegeneration. We hypothesized that CLN3 modulates γ-secretase activity and that PSENEN and CLN3 play associated roles in the autophagy-lysosome system. We applied CRISPR gene-editing and obtained independent isogenic HeLa knockout cell lines for PSENEN and CLN3. Following previous studies, we demonstrate that PSENEN is essential for forming a functional γ-secretase complex and is indispensable for γ-secretase activity. In contrast, CLN3 does not modulate γ-secretase activity to a significant degree. We observed in PSENEN- and CLN3-knockout cells corresponding alterations in the autophagy-lysosome system. These include reduced activity of lysosomal enzymes and lysosome number, an increased number of autophagosomes, increased lysosome-autophagosome fusion, and elevated levels of TFEB (transcription factor EB). Our study strongly suggests converging roles of PSENEN and CLN3 in the autophagy-lysosome system in a γ-secretase activity-independent manner, supporting the idea of common cytopathological processes underlying different neurodegenerative diseases. Abbreviations: Aβ, amyloid-beta; AD, Alzheimer disease; APP, amyloid precursor protein; ATP5MC, ATP synthase membrane subunit c; DQ-BSA, dye-quenched bovine serum albumin; ER, endoplasmic reticulum; GFP, green fluorescent protein; ICC, immunocytochemistry; ICD, intracellular domain; JNCL, juvenile neuronal ceroid lipofuscinosis; KO, knockout; LC3, microtubule associated protein 1 light chain 3; NCL, neuronal ceroid lipofuscinoses; PSEN, presenilin; PSENEN/PEN2: presenilin enhancer, gamma-secretase subunit; TAP, tandem affinity purification; TEV, tobacco etch virus; TF, transferrin; WB, Western blot; WT, wild type.
Collapse
Affiliation(s)
- Marcel Klein
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Abuzar Kaleem
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Oetjen
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Lars Binkle
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Schilling
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Milena Gjorgjieva
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Scholz
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stephan Storch
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kins
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Gerard Drewes
- Cellzome, Functional Genomics Research and Development, Heidelberg, Germany
| | - Sabine Hoffmeister-Ullerich
- Bioanalytics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
D’Andrea L, Stringhi R, Di Luca M, Marcello E. Looking at Alzheimer's Disease Pathogenesis from the Nuclear Side. Biomolecules 2021; 11:biom11091261. [PMID: 34572474 PMCID: PMC8467578 DOI: 10.3390/biom11091261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder representing the most common form of dementia. It is biologically characterized by the deposition of extracellular amyloid-β (Aβ) senile plaques and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein. The key protein in AD pathogenesis is the amyloid precursor protein (APP), which is cleaved by secretases to produce several metabolites, including Aβ and APP intracellular domain (AICD). The greatest genetic risk factor associated with AD is represented by the Apolipoprotein E ε4 (APOE ε4) allele. Importantly, all of the above-mentioned molecules that are strictly related to AD pathogenesis have also been described as playing roles in the cell nucleus. Accordingly, evidence suggests that nuclear functions are compromised in AD. Furthermore, modulation of transcription maintains cellular homeostasis, and alterations in transcriptomic profiles have been found in neurodegenerative diseases. This report reviews recent advancements in the AD players-mediated gene expression. Aβ, tau, AICD, and APOE ε4 localize in the nucleus and regulate the transcription of several genes, part of which is involved in AD pathogenesis, thus suggesting that targeting nuclear functions might provide new therapeutic tools for the disease.
Collapse
|
21
|
Integrated Bioinformatics Analysis to Identify Alternative Therapeutic Targets for Alzheimer's Disease: Insights from a Synaptic Machinery Perspective. J Mol Neurosci 2021; 72:273-286. [PMID: 34414562 DOI: 10.1007/s12031-021-01893-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD), the most common type of dementia, is a serious neurodegenerative disease that has no cure yet, but whose symptoms can be alleviated with available medications. Therefore, early and accurate diagnosis of the disease and elucidation of the molecular mechanisms involved in the progression of pathogenesis are critically important. This study aimed to identify dysregulated miRNAs and their target mRNAs through the integrated analysis of miRNA and mRNA expression profiling in AD patients versus unaffected controls. Expression profiles in postmortem brain samples from AD patients and healthy individuals were extracted from the Gene Expression Omnibus database and were analyzed using bioinformatics approaches to identify gene ontologies, pathways, and networks. Finally, the module analysis of the PPI network and hub gene selection was carried out. A total of five differentially expressed miRNAs were extracted from the miRNA dataset, and 4312 differentially expressed mRNAs were obtained from the mRNA dataset. By comparing the DEGs and the putative targets of the altered miRNAs, 116 (3 upregulated and 113 downregulated) coordinated genes were determined. Also, six hub genes (SNAP25, GRIN2A, GRIN2B, DLG2, ATP2B2, and SCN2A) were identified by constructing a PPI network. The results of the present study provide insight into mechanisms such as synaptic machinery and neuronal communication underlying AD pathogenesis, specifically concerning miRNAs.
Collapse
|
22
|
Orzeł U, Jakowiecki J, Młynarczyk K, Filipek S. The Role of Cholesterol in Amyloidogenic Substrate Binding to the γ-Secretase Complex. Biomolecules 2021; 11:biom11070935. [PMID: 34202467 PMCID: PMC8301813 DOI: 10.3390/biom11070935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease is the most common progressive neurodegenerative disorder and is characterized by the presence of amyloid β (Aβ) plaques in the brain. The γ-secretase complex, which produces Aβ, is an intramembrane-cleaving protease consisting of four membrane proteins. In this paper we investigated the amyloidogenic fragments of amyloid precursor protein (substrates Aβ43 and Aβ45, leading to less amyloidogenic Aβ40 and more amyloidogenic Aβ42, respectively) docked to the binding site of presenilin, the catalytic subunit of γ-secretase. In total, we performed 9 μs of all-atom molecular dynamics simulations of the whole γ-secretase complex with both substrates in low (10%) and high (50%) concentrations of cholesterol in the membrane. We found that, at the high cholesterol level, the Aβ45 helix was statistically more flexible in the binding site of presenilin than Aβ43. An increase in the cholesterol concentration was also correlated with a higher flexibility of the Aβ45 helix, which suggests incompatibility between Aβ45 and the binding site of presenilin potentiated by a high cholesterol level. However, at the C-terminal part of Aβ45, the active site of presenilin was more compact in the case of a high cholesterol level, which could promote processing of this substrate. We also performed detailed mapping of the cholesterol binding sites at low and high cholesterol concentrations, which were independent of the typical cholesterol binding motifs.
Collapse
|
23
|
Gonzalez SM, Siddik AB, Su RC. Regulated Intramembrane Proteolysis of ACE2: A Potential Mechanism Contributing to COVID-19 Pathogenesis? Front Immunol 2021; 12:612807. [PMID: 34163462 PMCID: PMC8215698 DOI: 10.3389/fimmu.2021.612807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
Since being identified as a key receptor for SARS-CoV-2, Angiotensin converting enzyme 2 (ACE2) has been studied as one of the potential targets for the development of preventative and/or treatment options. Tissue expression of ACE2 and the amino acids interacting with the spike protein of SARS-CoV-2 have been mapped. Furthermore, the recombinant soluble extracellular domain of ACE2 is already in phase 2 trials as a treatment for SARS-CoV-2 infection. Most studies have continued to focus on the ACE2 extracellular domain, which is known to play key roles in the renin angiotensin system and in amino acid uptake. However, few also found ACE2 to have an immune-modulatory function and its intracellular tail may be one of the signaling molecules in regulating cellular activation. The implication of its immune-modulatory role in preventing the cytokine-storm, observed in severe COVID-19 disease outcomes requires further investigation. This review focuses on the regulated proteolytic cleavage of ACE2 upon binding to inducer(s), such as the spike protein of SARS-CoV, the potential of cleaved ACE2 intracellular subdomain in regulating cellular function, and the ACE2's immune-modulatory function. This knowledge is critical for targeting ACE2 levels for developing prophylactic treatment or preventative measures in SARS-CoV infections.
Collapse
Affiliation(s)
- Sandra M. Gonzalez
- Department of Medical Microbiology and Infectious Diseases, University of Manitobag, Winnipe, MB, Canada
| | - Abu Bakar Siddik
- Department of Medical Microbiology and Infectious Diseases, University of Manitobag, Winnipe, MB, Canada
- National HIV and Retrovirology Laboratories, J.C. Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Ruey-Chyi Su
- Department of Medical Microbiology and Infectious Diseases, University of Manitobag, Winnipe, MB, Canada
- National HIV and Retrovirology Laboratories, J.C. Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
24
|
Amyloid-Beta Mediates Homeostatic Synaptic Plasticity. J Neurosci 2021; 41:5157-5172. [PMID: 33926999 PMCID: PMC8211553 DOI: 10.1523/jneurosci.1820-20.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022] Open
Abstract
The physiological role of the amyloid-precursor protein (APP) is insufficiently understood. Recent work has implicated APP in the regulation of synaptic plasticity. Substantial evidence exists for a role of APP and its secreted ectodomain APPsα in Hebbian plasticity. Here, we addressed the relevance of APP in homeostatic synaptic plasticity using organotypic tissue cultures prepared from APP -/- mice of both sexes. In the absence of APP, dentate granule cells failed to strengthen their excitatory synapses homeostatically. Homeostatic plasticity is rescued by amyloid-β and not by APPsα, and it is neither observed in APP+/+ tissue treated with β- or γ-secretase inhibitors nor in synaptopodin-deficient cultures lacking the Ca2+-dependent molecular machinery of the spine apparatus. Together, these results suggest a role of APP processing via the amyloidogenic pathway in homeostatic synaptic plasticity, representing a function of relevance for brain physiology as well as for brain states associated with increased amyloid-β levels.
Collapse
|
25
|
Mycroft-West CJ, Devlin AJ, Cooper LC, Guimond SE, Procter P, Guerrini M, Miller GJ, Fernig DG, Yates EA, Lima MA, Skidmore MA. Glycosaminoglycans from Litopenaeus vannamei Inhibit the Alzheimer's Disease β Secretase, BACE1. Mar Drugs 2021; 19:203. [PMID: 33916819 PMCID: PMC8067017 DOI: 10.3390/md19040203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Only palliative therapeutic options exist for the treatment of Alzheimer's Disease; no new successful drug candidates have been developed in over 15 years. The widely used clinical anticoagulant heparin has been reported to exert beneficial effects through multiple pathophysiological pathways involved in the aetiology of Alzheimer's Disease, for example, amyloid peptide production and clearance, tau phosphorylation, inflammation and oxidative stress. Despite the therapeutic potential of heparin as a multi-target drug for Alzheimer's disease, the repurposing of pharmaceutical heparin is proscribed owing to the potent anticoagulant activity of this drug. Here, a heterogenous non-anticoagulant glycosaminoglycan extract, obtained from the shrimp Litopenaeus vannamei, was found to inhibit the key neuronal β-secretase, BACE1, displaying a more favorable therapeutic ratio compared to pharmaceutical heparin when anticoagulant activity is considered.
Collapse
Affiliation(s)
- Courtney J. Mycroft-West
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
| | - Anthony J. Devlin
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
| | - Lynsay C. Cooper
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
| | - Scott E. Guimond
- School of Medicine, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK;
| | - Patricia Procter
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milan, Italy;
| | - Gavin J. Miller
- School of Chemistry, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK;
| | - David G. Fernig
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; (D.G.F.); (E.A.Y.)
| | - Edwin A. Yates
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; (D.G.F.); (E.A.Y.)
| | - Marcelo A. Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
| | - Mark A. Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK; (C.J.M.-W.); (A.J.D.); (L.C.C.); (P.P.); (M.A.L.)
- Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; (D.G.F.); (E.A.Y.)
| |
Collapse
|
26
|
Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021; 296:100489. [PMID: 33662398 PMCID: PMC8027268 DOI: 10.1016/j.jbc.2021.100489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.
Collapse
|
27
|
da Rocha JF, Bastos L, Domingues SC, Bento AR, Konietzko U, da Cruz E Silva OAB, Vieira SI. APP Binds to the EGFR Ligands HB-EGF and EGF, Acting Synergistically with EGF to Promote ERK Signaling and Neuritogenesis. Mol Neurobiol 2021; 58:668-688. [PMID: 33009641 DOI: 10.1007/s12035-020-02139-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022]
Abstract
The amyloid precursor protein (APP) is a transmembrane glycoprotein central to Alzheimer's disease (AD) with functions in brain development and plasticity, including in neurogenesis and neurite outgrowth. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are well-described neurotrophic and neuromodulator EGFR ligands, both implicated in neurological disorders, including AD. Pro-HB-EGF arose as a putative novel APP interactor in a human brain cDNA library yeast two-hybrid screen. Based on their structural and functional similarities, we first aimed to verify if APP could bind to (HB-)EGF proforms. Here, we show that APP interacts with these two EGFR ligands, and further characterized the effects of APP-EGF interaction in ERK activation and neuritogenesis. Yeast co-transformation and co-immunoprecipitation assays confirmed APP interaction with HB-EGF. Co-immunoprecipitation also revealed that APP binds to cellular pro-EGF. Overexpression of HB-EGF in HeLa cells, or exposure of SH-SY5Y cells to EGF, both resulted in increased APP protein levels. EGF and APP were observed to synergistically activate the ERK pathway, crucial for neuronal differentiation. Immunofluorescence analysis of cellular neuritogenesis in APP overexpression and EGF exposure conditions confirmed a synergistic effect in promoting the number and the mean length of neurite-like processes. Synergistic ERK activation and neuritogenic effects were completely blocked by the EGFR inhibitor PD 168393, implying APP/EGF-induced activation of EGFR as part of the mechanism. This work shows novel APP protein interactors and provides a major insight into the APP/EGF-driven mechanisms underlying neurite outgrowth and neuronal differentiation, with potential relevance for AD and for adult neuroregeneration.
Collapse
Affiliation(s)
- Joana F da Rocha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Luísa Bastos
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
- Roche Sistemas de Diagnósticos, Lda, 2720-413, Amadora, Portugal
| | - Sara C Domingues
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Ana R Bento
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Uwe Konietzko
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Odete A B da Cruz E Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Andrade-Silva D, Zelanis A, Travaglia-Cardoso SR, Nishiyama MY, Serrano SMT. Venom Profiling of the Insular Species Bothrops alcatraz: Characterization of Proteome, Glycoproteome, and N-Terminome Using Terminal Amine Isotopic Labeling of Substrates. J Proteome Res 2021; 20:1341-1358. [PMID: 33404253 DOI: 10.1021/acs.jproteome.0c00737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bothrops alcatraz, a species endemic to Alcatrazes Islands, is regarded as critically endangered due to its small area of occurrence and the declining quality of its habitat. We recently reported the identification of N-glycans attached to toxins of Bothrops species, showing similar compositions in venoms of the B. jararaca complex (B. jararaca, B. insularis, and B. alcatraz). Here, we characterized B. alcatraz venom using electrophoretic, proteomic, and glycoproteomic approaches. Electrophoresis showed that B. alcatraz venom differs from B. jararaca and B. insularis; however, N-glycan removal revealed similarities between them, indicating that the occupation of N-glycosylation sites contributes to interspecies variability in the B. jararaca complex. Metalloproteinase was the major toxin class identified in the B. alcatraz venom proteome followed by serine proteinase and C-type lectin, and overall, the adult B. alcatraz venom resembles that of B. jararaca juvenile specimens. The comparative glycoproteomic analysis of B. alcatraz venom with B. jararaca and B. insularis indicated that there may be differences in the utilization of N-glycosylation motifs among their different toxin classes. Furthermore, we prospected for the first time the N-terminome of a snake venom using the terminal amine isotopic labeling of substrates (TAILS) approach and report the presence of ∼30% of N-termini corresponding to truncated toxin forms and ∼37% N-terminal sequences blocked by pyroglutamic acid in B. alcatraz venom. These findings underscore a low correlation between venom gland transcriptomes and proteomes and support the view that post-translational processes play a major role in shaping venom phenotypes.
Collapse
Affiliation(s)
- Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo, (ICT-UNIFESP), São José dos Campos 12231-280, SP, Brazil
| | | | - Milton Y Nishiyama
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| |
Collapse
|
29
|
Silber M, Hitzenberger M, Zacharias M, Muhle-Goll C. Altered Hinge Conformations in APP Transmembrane Helix Mutants May Affect Enzyme-Substrate Interactions of γ-Secretase. ACS Chem Neurosci 2020; 11:4426-4433. [PMID: 33232115 DOI: 10.1021/acschemneuro.0c00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cleavage of substrates by γ-secretase is an inherently slow process where substrate-enzyme affinities cannot be broken down into specific sequence requirements in contrast to soluble proteases. Nevertheless, despite its apparent sequence tolerance single point mutations in amyloid precursor protein can severely affect cleavage efficiencies and change product line preferences. We have determined by NMR spectroscopy the structures of the transmembrane domain of amyloid precursor protein in TFE/water and compared it to that of four mutants: two FAD mutants, V44M and I45T, and the two diglycine hinge mutants, G38L and G38P. In accordance with previous publications, the transmembrane domain is composed of two helical segments connected by the diglycine hinge. Mutations alter kink angles and structural flexibility. Furthermore, to our surprise, we observe different, but specific mutual orientations of N- and C-terminal helical segments in the four mutants compared to the wildtype. We speculate that the observed orientations for G38L, G38P, V44M, and I45T lead to unfavorable interactions with γ-secretase exosites during substrate movement to the enzyme's active site in presenilin and/or for the accommodation into the substrate-binding cavity of presenilin.
Collapse
Affiliation(s)
- Mara Silber
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Manuel Hitzenberger
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
30
|
Papadopoulou AA, Fluhrer R. Signaling Functions of Intramembrane Aspartyl-Proteases. Front Cardiovasc Med 2020; 7:591787. [PMID: 33381526 PMCID: PMC7768045 DOI: 10.3389/fcvm.2020.591787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Intramembrane proteolysis is more than a mechanism to "clean" the membranes from proteins no longer needed. By non-reversibly modifying transmembrane proteins, intramembrane cleaving proteases hold key roles in multiple signaling pathways and often distinguish physiological from pathological conditions. Signal peptide peptidase (SPP) and signal peptide peptidase-like proteases (SPPLs) recently have been associated with multiple functions in the field of signal transduction. SPP/SPPLs together with presenilins (PSs) are the only two families of intramembrane cleaving aspartyl proteases known in mammals. PS1 or PS2 comprise the catalytic center of the γ-secretase complex, which is well-studied in the context of Alzheimer's disease. The mammalian SPP/SPPL family of intramembrane cleaving proteases consists of five members: SPP and its homologous proteins SPPL2a, SPPL2b, SPPL2c, and SPPL3. Although these proteases were discovered due to their homology to PSs, it became evident in the past two decades that no physiological functions are shared between these two families. Based on studies in cell culture models various substrates of SPP/SPPL proteases have been identified in the past years and recently-developed mouse lines lacking individual members of this protease family, will help to further clarify the physiological functions of these proteases. In this review we concentrate on signaling roles of mammalian intramembrane cleaving aspartyl proteases. In particular, we will highlight the signaling roles of PS via its substrates NOTCH, VEGF, and others, mainly focusing on its involvement in vasculature. Delineating also signaling pathways that are affected and/or controlled by SPP/SPPL proteases. From SPP's participation in tumor progression and survival, to SPPL3's regulation of protein glycosylation and SPPL2c's control over cellular calcium stores, various crossovers between proteolytic activity of intramembrane proteases and cell signaling will be described.
Collapse
Affiliation(s)
- Alkmini A. Papadopoulou
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
31
|
Steiner A, Schlepckow K, Brunner B, Steiner H, Haass C, Hagn F. γ-Secretase cleavage of the Alzheimer risk factor TREM2 is determined by its intrinsic structural dynamics. EMBO J 2020; 39:e104247. [PMID: 32830336 PMCID: PMC7560206 DOI: 10.15252/embj.2019104247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Sequence variants of the microglial expressed TREM2 (triggering receptor expressed on myeloid cells 2) are a major risk factor for late onset Alzheimer's disease. TREM2 requires a stable interaction with DAP12 in the membrane to initiate signaling, which is terminated by TREM2 ectodomain shedding and subsequent intramembrane cleavage by γ-secretase. To understand the structural basis for the specificity of the intramembrane cleavage event, we determined the solution structure of the TREM2 transmembrane helix (TMH). Caused by the presence of a charged amino acid in the membrane region, the TREM2-TMH adopts a kinked structure with increased flexibility. Charge removal leads to TMH stabilization and reduced dynamics, similar to its structure in complex with DAP12. Strikingly, these dynamical features match with the site of the initial γ-secretase cleavage event. These data suggest an unprecedented cleavage mechanism by γ-secretase where flexible TMH regions act as key determinants of substrate cleavage specificity.
Collapse
Affiliation(s)
- Andrea Steiner
- Bavarian NMR Center at the Department of Chemistry and Institute for Advanced StudyTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
| | - Bettina Brunner
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
- Biomedical Center (BMC)Chair of Metabolic BiochemistryFaculty of MedicineLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
- Biomedical Center (BMC)Chair of Metabolic BiochemistryFaculty of MedicineLudwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Franz Hagn
- Bavarian NMR Center at the Department of Chemistry and Institute for Advanced StudyTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| |
Collapse
|
32
|
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 2020; 105:12-26. [DOI: 10.1016/j.semcdb.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
|
33
|
Güner G, Lichtenthaler SF. The substrate repertoire of γ-secretase/presenilin. Semin Cell Dev Biol 2020; 105:27-42. [PMID: 32616437 DOI: 10.1016/j.semcdb.2020.05.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/09/2022]
Abstract
The intramembrane protease γ-secretase is a hetero-tetrameric protein complex with presenilin as the catalytic subunit and cleaves its membrane protein substrates within their single transmembrane domains. γ-Secretase is well known for its role in Notch signalling and in Alzheimer's disease, where it catalyzes the formation of the pathogenic amyloid β (Aβ) peptide. However, in the 21 years since its discovery many more substrates and substrate candidates of γ-secretase were identified. Although the physiological relevance of the cleavage of many substrates remains to be studied in more detail, the substrates demonstrate a broad role for γ-secretase in embryonic development, adult tissue homeostasis, signal transduction and protein degradation. Consequently, chronic γ-secretase inhibition may cause significant side effects due to inhibition of cleavage of multiple substrates. This review provides a list of 149 γ-secretase substrates identified to date and highlights by which expeirmental approach substrate cleavage was validated. Additionally, the review lists the cleavage sites where they are known and discusses the functional implications of γ-secretase cleavage with a focus on substrates identified in the recent past, such as CHL1, TREM2 and TNFR1. A comparative analysis demonstrates that γ-secretase substrates mostly have a long extracellular domain and require ectodomain shedding before γ-secretase cleavage, but that γ-secretase is also able to cleave naturally short substrates, such as the B cell maturation antigen. Taken together, the list of substrates provides a resource that may help in the future development of drugs inhibiting or modulating γ-secretase activity in a substrate-specific manner.
Collapse
Affiliation(s)
- Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
34
|
Gaber A, Lenarčič B, Pavšič M. Current View on EpCAM Structural Biology. Cells 2020; 9:cells9061361. [PMID: 32486423 PMCID: PMC7349879 DOI: 10.3390/cells9061361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
EpCAM, a carcinoma cell-surface marker protein and a therapeutic target, has been primarily addressed as a cell adhesion molecule. With regard to recent discoveries of its role in signaling with implications in cell proliferation and differentiation, and findings contradicting a direct role in mediating adhesion contacts, we provide a comprehensive and updated overview on the available structural data on EpCAM and interpret it in the light of recent reports on its function. First, we describe the structure of extracellular part of EpCAM, both as a subunit and part of a cis-dimer which, according to several experimental observations, represents a biologically relevant oligomeric state. Next, we provide a thorough evaluation of reports on EpCAM as a homophilic cell adhesion molecule with a structure-based explanation why direct EpCAM participation in cell–cell contacts is highly unlikely. Finally, we review the signaling aspect of EpCAM with focus on accessibility of signaling-associated cleavage sites.
Collapse
Affiliation(s)
- Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
- Correspondence: ; Tel.: +386-1-479-8550
| |
Collapse
|
35
|
Liu X, Zhao J, Zhang Y, Ubarretxena-Belandia I, Forth S, Lieberman RL, Wang C. Substrate-Enzyme Interactions in Intramembrane Proteolysis: γ-Secretase as the Prototype. Front Mol Neurosci 2020; 13:65. [PMID: 32508589 PMCID: PMC7248309 DOI: 10.3389/fnmol.2020.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/03/2020] [Indexed: 11/15/2022] Open
Abstract
Intramembrane-cleaving proteases (I-CLiPs) catalyze the hydrolysis of peptide bonds within the transmembrane regions of membrane protein substrates, releasing bioactive fragments that play roles in many physiological and pathological processes. Based on their catalytic mechanism and nucleophile, I-CLiPs are classified into metallo, serine, aspartyl, and glutamyl proteases. Presenilin is the most prominent among I-CLiPs, as the catalytic subunit of γ-secretase (GS) complex responsible for cleaving the amyloid precursor protein (APP) and Notch, as well as many other membrane substrates. Recent cryo-electron microscopy (cryo-EM) structures of GS provide new details on how presenilin recognizes and cleaves APP and Notch. First, presenilin transmembrane helix (TM) 2 and 6 are dynamic. Second, upon binding to GS, the substrate TM helix is unwound from the C-terminus, resulting in an intermolecular β-sheet between the substrate and presenilin. The transition of the substrate C-terminus from α-helix to β-sheet is proposed to expose the scissile peptide bond in an extended conformation, leaving it susceptible to protease cleavage. Despite the astounding new insights in recent years, many crucial questions remain unanswered regarding the inner workings of γ-secretase, however. Key unanswered questions include how the enzyme recognizes and recruits substrates, how substrates are translocated from an initial docking site to the active site, how active site aspartates recruit and coordinate catalytic water, and the nature of the mechanisms of processive trimming of the substrate and product release. Answering these questions will have important implications for drug discovery aimed at selectively reducing the amyloid load in Alzheimer's disease (AD) with minimal side effects.
Collapse
Affiliation(s)
- Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, United States
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Scott Forth
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Raquel L. Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
36
|
Brummer T, Müller SA, Pan-Montojo F, Yoshida F, Fellgiebel A, Tomita T, Endres K, Lichtenthaler SF. NrCAM is a marker for substrate-selective activation of ADAM10 in Alzheimer's disease. EMBO Mol Med 2020; 11:emmm.201809695. [PMID: 30833305 PMCID: PMC6460357 DOI: 10.15252/emmm.201809695] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The metalloprotease ADAM10 is a drug target in Alzheimer's disease, where it cleaves the amyloid precursor protein (APP) and lowers amyloid‐beta. Yet, ADAM10 has additional substrates, which may cause mechanism‐based side effects upon therapeutic ADAM10 activation. However, they may also serve—in addition to APP—as biomarkers to monitor ADAM10 activity in patients and to develop APP‐selective ADAM10 activators. Our study demonstrates that one such substrate is the neuronal cell adhesion protein NrCAM. ADAM10 controlled NrCAM surface levels and regulated neurite outgrowth in vitro in an NrCAM‐dependent manner. However, ADAM10 cleavage of NrCAM, in contrast to APP, was not stimulated by the ADAM10 activator acitretin, suggesting that substrate‐selective ADAM10 activation may be feasible. Indeed, a whole proteome analysis of human CSF from a phase II clinical trial showed that acitretin, which enhanced APP cleavage by ADAM10, spared most other ADAM10 substrates in brain, including NrCAM. Taken together, this study demonstrates an NrCAM‐dependent function for ADAM10 in neurite outgrowth and reveals that a substrate‐selective, therapeutic ADAM10 activation is possible and may be monitored with NrCAM.
Collapse
Affiliation(s)
- Tobias Brummer
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan A Müller
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany
| | - Francisco Pan-Montojo
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fumiaki Yoshida
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Andreas Fellgiebel
- Department of Psychiatry and Psychotherapy, University Medical Center JGU, Mainz, Germany
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center JGU, Mainz, Germany
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Advanced Study, Technische Universität München, Garching, Germany
| |
Collapse
|
37
|
Milà-Alomà M, Suárez-Calvet M, Molinuevo JL. Latest advances in cerebrospinal fluid and blood biomarkers of Alzheimer's disease. Ther Adv Neurol Disord 2019; 12:1756286419888819. [PMID: 31897088 PMCID: PMC6920596 DOI: 10.1177/1756286419888819] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and its diagnosis has classically been based on clinical symptoms. Recently, a biological rather than a syndromic definition of the disease has been proposed that is based on biomarkers that reflect neuropathological changes. In AD, there are two main biomarker categories, namely neuroimaging and fluid biomarkers [cerebrospinal fluid (CSF) and blood]. As a complex and multifactorial disease, AD biomarkers are important for an accurate diagnosis and to stage the disease, assess the prognosis, test target engagement, and measure the response to treatment. In addition, biomarkers provide us with information that, even if it does not have a current clinical use, helps us to understand the mechanisms of the disease. In addition to the pathological hallmarks of AD, which include amyloid-β and tau deposition, there are multiple concomitant pathological events that play a key role in the disease. These include, but are not limited to, neurodegeneration, inflammation, vascular dysregulation or synaptic dysfunction. In addition, AD patients often have an accumulation of other proteins including α-synuclein and TDP-43, which may have a pathogenic effect on AD. In combination, there is a need to have biomarkers that reflect different aspects of AD pathogenesis and this will be important in the future to establish what are the most suitable applications for each of these AD-related biomarkers. It is unclear whether sex, gender, or both have an effect on the causes of AD. There may be differences in fluid biomarkers due to sex but this issue has often been neglected and warrants further research. In this review, we summarize the current state of the principal AD fluid biomarkers and discuss the effect of sex on these biomarkers.
Collapse
Affiliation(s)
- Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- Department of Neurology, Hospital del Mar,
Barcelona
| | - José Luís Molinuevo
- Scientific Director, Alzheimer’s Prevention
Program, Barcelonaβeta Brain Research Center, Wellington 30, Barcelona,
08005, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- CIBER Fragilidad y Envejecimiento Saludable,
Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
38
|
Lee YJ, Ch'ng TH. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromolecular Med 2019; 22:1-24. [PMID: 31346933 DOI: 10.1007/s12017-019-08556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Regulated intramembrane proteolysis (RIP) occurs in a cell when transmembrane proteins are cleaved by intramembrane proteases such as secretases to generate soluble protein fragments in the extracellular environment and the cytosol. In the cytosol, these soluble intracellular domains (ICDs) have local functions near the site of cleavage or in many cases, translocate to the nucleus to modulate gene expression. While the mechanism of RIP is relatively well studied, the fate and function of ICDs for most substrate proteins remain poorly characterized. In neurons, RIP occurs in various subcellular compartments including at the synapse. In this review, we summarize current research on RIP in neurons, focusing specifically on synaptic proteins where the presence and function of the ICDs have been reported. We also briefly discuss activity-driven processing of RIP substrates at the synapse and the cellular machinery that support long-distance transport of ICDs from the synapse to the nucleus. Finally, we describe future challenges in this field of research in the context of understanding the contribution of ICDs in neuronal function.
Collapse
Affiliation(s)
- Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore.,Interdisciplinary Graduate School (IGS), Nanyang Technological University, Singapore, Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Science Building, 11 Mandalay Road, 10-01-01 M, Singapore, 308232, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
39
|
LOX-1: Regulation, Signaling and Its Role in Atherosclerosis. Antioxidants (Basel) 2019; 8:antiox8070218. [PMID: 31336709 PMCID: PMC6680802 DOI: 10.3390/antiox8070218] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis has long been known to be a chronic inflammatory disease. In addition, there is intense oxidative stress in atherosclerosis resulting from an imbalance between the excess reactive oxygen species (ROS) generation and inadequate anti-oxidant defense forces. The excess of the oxidative forces results in the conversion of low-density lipoproteins (LDL) to oxidized LDL (ox-LDL), which is highly atherogenic. The sub-endothelial deposition of ox-LDL, formation of foamy macrophages, vascular smooth muscle cell (VSMC) proliferation and migration, and deposition of collagen are central pathophysiologic steps in the formation of atherosclerotic plaque. Ox-LDL exerts its action through several different scavenger receptors, the most important of which is LOX-1 in atherogenesis. LOX-1 is a transmembrane glycoprotein that binds to and internalizes ox-LDL. This interaction results in variable downstream effects based on the cell type. In endothelial cells, there is an increased expression of cellular adhesion molecules, resulting in the increased attachment and migration of inflammatory cells to intima, followed by their differentiation into macrophages. There is also a worsening endothelial dysfunction due to the increased production of vasoconstrictors, increased ROS, and depletion of endothelial nitric oxide (NO). In the macrophages and VSMCs, ox-LDL causes further upregulation of the LOX-1 gene, modulation of calpains, macrophage migration, VSMC proliferation and foam cell formation. Soluble LOX-1 (sLOX-1), a fragment of the main LOX-1 molecule, is being investigated as a diagnostic marker because it has been shown to be present in increased quantities in patients with hypertension, diabetes, metabolic syndrome and coronary artery disease. LOX-1 gene deletion in mice and anti-LOX-1 therapy has been shown to decrease inflammation, oxidative stress and atherosclerosis. LOX-1 deletion also results in damage from ischemia, making LOX-1 a promising target of therapy for atherosclerosis and related disorders. In this article we focus on the different mechanisms for regulation, signaling and the various effects of LOX-1 in contributing to atherosclerosis.
Collapse
|
40
|
Götz A, Mylonas N, Högel P, Silber M, Heinel H, Menig S, Vogel A, Feyrer H, Huster D, Luy B, Langosch D, Scharnagl C, Muhle-Goll C, Kamp F, Steiner H. Modulating Hinge Flexibility in the APP Transmembrane Domain Alters γ-Secretase Cleavage. Biophys J 2019; 116:2103-2120. [PMID: 31130234 PMCID: PMC6554489 DOI: 10.1016/j.bpj.2019.04.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 01/27/2023] Open
Abstract
Intramembrane cleavage of the β-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer's disease pathogenesis. Biophysical data have suggested that the N-terminal part of the C99 transmembrane domain (TMD) is separated from the C-terminal cleavage domain by a di-glycine hinge. Because the flexibility of this hinge might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline. Both mutants impaired γ-secretase cleavage and also altered its cleavage specificity. Circular dichroism, NMR, and backbone amide hydrogen/deuterium exchange measurements as well as molecular dynamics simulations showed that the mutations distinctly altered the intrinsic structural and dynamical properties of the substrate TMD. Although helix destabilization and/or unfolding was not observed at the initial ε-cleavage sites of C99, subtle changes in hinge flexibility were identified that substantially affected helix bending and twisting motions in the entire TMD. These resulted in altered orientation of the distal cleavage domain relative to the N-terminal TMD part. Our data suggest that both enhancing and reducing local helix flexibility of the di-glycine hinge may decrease the occurrence of enzyme-substrate complex conformations required for normal catalysis and that hinge mobility can thus be conducive for productive substrate-enzyme interactions.
Collapse
Affiliation(s)
- Alexander Götz
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany
| | - Nadine Mylonas
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Philipp Högel
- Center for Integrated Protein Science Munich at the Lehrstuhl Chemie der Biopolymere, Technical University Munich, Freising, Germany
| | - Mara Silber
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hannes Heinel
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Simon Menig
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Hannes Feyrer
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dieter Langosch
- Center for Integrated Protein Science Munich at the Lehrstuhl Chemie der Biopolymere, Technical University Munich, Freising, Germany
| | - Christina Scharnagl
- Physics of Synthetic Biological Systems (E14), Technical University of Munich, Freising, Germany.
| | - Claudia Muhle-Goll
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Frits Kamp
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
41
|
Mycroft-West CJ, Cooper LC, Devlin AJ, Procter P, Guimond SE, Guerrini M, Fernig DG, Lima MA, Yates EA, Skidmore MA. A Glycosaminoglycan Extract from Portunus pelagicus Inhibits BACE1, the β Secretase Implicated in Alzheimer's Disease. Mar Drugs 2019; 17:E293. [PMID: 31100859 PMCID: PMC6562973 DOI: 10.3390/md17050293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/23/2022] Open
Abstract
Therapeutic options for Alzheimer's disease, the most common form of dementia, are currently restricted to palliative treatments. The glycosaminoglycan heparin, widely used as a clinical anticoagulant, has previously been shown to inhibit the Alzheimer's disease-relevant β-secretase 1 (BACE1). Despite this, the deployment of pharmaceutical heparin for the treatment of Alzheimer's disease is largely precluded by its potent anticoagulant activity. Furthermore, ongoing concerns regarding the use of mammalian-sourced heparins, primarily due to prion diseases and religious beliefs hinder the deployment of alternative heparin-based therapeutics. A marine-derived, heparan sulphate-containing glycosaminoglycan extract, isolated from the crab Portunus pelagicus, was identified to inhibit human BACE1 with comparable bioactivity to that of mammalian heparin (IC50 = 1.85 μg mL-1 (R2 = 0.94) and 2.43 μg mL-1 (R2 = 0.93), respectively), while possessing highly attenuated anticoagulant activities. The results from several structural techniques suggest that the interactions between BACE1 and the extract from P. pelagicus are complex and distinct from those of heparin.
Collapse
Affiliation(s)
- Courtney J Mycroft-West
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Lynsay C Cooper
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Anthony J Devlin
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via G. Colombo 81, 20133 Milan, Italy.
| | - Patricia Procter
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Scott E Guimond
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via G. Colombo 81, 20133 Milan, Italy.
| | - David G Fernig
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Marcelo A Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
| | - Edwin A Yates
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Mark A Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
- Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG, UK.
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
42
|
Tornkvist A, Liu C, Moschou PN. Proteolysis and nitrogen: emerging insights. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2009-2019. [PMID: 30715465 DOI: 10.1093/jxb/erz024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/10/2019] [Indexed: 05/07/2023]
Abstract
Nitrogen (N) is a core component of fertilizers used in modern agriculture to increase yields and thus to help feed a growing global population. However, this comes at a cost to the environment, through run-off of excess N as a result of poor N-use efficiency (NUE) by crops. An obvious remedy to this problem would therefore be the improvement of NUE, which requires advancing our understanding on N homeostasis, sensing, and uptake. Proteolytic pathways are linked to N homeostasis as they recycle proteins that contain N and carbon; however, emerging data suggest that their functions extend beyond this simple recycling. Here, we highlight roles of proteolytic pathways in non-symbiotic and symbiotic N uptake and in systemic N sensing. We also offer a novel view in which we suggest that proteolytic pathways have roles in N homeostasis that differ from their accepted function in recycling.
Collapse
Affiliation(s)
- Anna Tornkvist
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
43
|
Götz A, Högel P, Silber M, Chaitoglou I, Luy B, Muhle-Goll C, Scharnagl C, Langosch D. Increased H-Bond Stability Relates to Altered ε-Cleavage Efficiency and Aβ Levels in the I45T Familial Alzheimer's Disease Mutant of APP. Sci Rep 2019; 9:5321. [PMID: 30926830 PMCID: PMC6440955 DOI: 10.1038/s41598-019-41766-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Cleavage of the amyloid precursor protein's (APP) transmembrane domain (TMD) by γ-secretase is a crucial step in the aetiology of Alzheimer's Disease (AD). Mutations in the APP TMD alter cleavage and lead to familial forms of AD (FAD). The majority of FAD mutations shift the preference of initial cleavage from ε49 to ε48, thus raising the AD-related Aβ42/Aβ40 ratio. The I45T mutation is among the few FAD mutations that do not alter ε-site preference, while it dramatically reduces the efficiency of ε-cleavage. Here, we investigate the impact of the I45T mutation on the backbone dynamics of the substrate TMD. Amide exchange experiments and molecular dynamics simulations in solvent and a lipid bilayer reveal an increased stability of amide hydrogen bonds at the ζ- and γ-cleavage sites. Stiffening of the H-bond network is caused by an additional H-bond between the T45 side chain and the TMD backbone, which alters dynamics within the cleavage domain. In particular, the increased H-bond stability inhibits an upward movement of the ε-sites in the I45T mutant. Thus, an altered presentation of ε-sites to the active site of γ-secretase as a consequence of restricted local flexibility provides a rationale for reduced ε-cleavage efficiency of the I45T mutant.
Collapse
Grants
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Helmholtz-Gemeinschaft (Helmholtz Association)
- Leibniz Supercomputing Centre: Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Boltzmannstraße 1, 85748 Garching bei München, Germany, WEB: https://www.lrz.de Gauss Centre for Supercomputing: GCS-Geschäftsstelle Bonn, Ahrstrasse 45, 53175 Bonn, Germany, WEB: http://www.gauss-centre.eu
- Center for Integrated Protein Science: Munich Center For Integrated Protein Science (CIPSM), Butenandtstr. 5 - 13, 81377 Munich, Germany, WEB: http://www.cipsm.de/ Leibniz Supercomputing Centre: Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Boltzmannstraße 1, 85748 Garching bei München, Germany, WEB: https://www.lrz.de
Collapse
Affiliation(s)
- Alexander Götz
- Lehrstuhl für Physik synthetischer Biosysteme (E14), Technische Universität München, Maximus-von-Imhof Forum 4, 85354, Freising, Germany
| | - Philipp Högel
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Mara Silber
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Iro Chaitoglou
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Claudia Muhle-Goll
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Christina Scharnagl
- Lehrstuhl für Physik synthetischer Biosysteme (E14), Technische Universität München, Maximus-von-Imhof Forum 4, 85354, Freising, Germany.
| | - Dieter Langosch
- Center for Integrated Protein Science Munich (CIPSM) at the Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany.
| |
Collapse
|
44
|
Oikawa N, Walter J. Presenilins and γ-Secretase in Membrane Proteostasis. Cells 2019; 8:cells8030209. [PMID: 30823664 PMCID: PMC6468700 DOI: 10.3390/cells8030209] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
The presenilin (PS) proteins exert a crucial role in the pathogenesis of Alzheimer disease (AD) by mediating the intramembranous cleavage of amyloid precursor protein (APP) and the generation of amyloid β-protein (Aβ). The two homologous proteins PS1 and PS2 represent the catalytic subunits of distinct γ-secretase complexes that mediate a variety of cellular processes, including membrane protein metabolism, signal transduction, and cell differentiation. While the intramembrane cleavage of select proteins by γ-secretase is critical in the regulation of intracellular signaling pathways, the plethora of identified protein substrates could also indicate an important role of these enzyme complexes in membrane protein homeostasis. In line with this notion, PS proteins and/or γ-secretase has also been implicated in autophagy, a fundamental process for the maintenance of cellular functions and homeostasis. Dysfunction in the clearance of proteins in the lysosome and during autophagy has been shown to contribute to neurodegeneration. This review summarizes the recent knowledge about the role of PS proteins and γ-secretase in membrane protein metabolism and trafficking, and the functional relation to lysosomal activity and autophagy.
Collapse
Affiliation(s)
- Naoto Oikawa
- Department of Neurology, University of Bonn, 53127 Bonn, Germany.
| | - Jochen Walter
- Department of Neurology, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
45
|
Mentrup T, Theodorou K, Cabrera-Cabrera F, Helbig AO, Happ K, Gijbels M, Gradtke AC, Rabe B, Fukumori A, Steiner H, Tholey A, Fluhrer R, Donners M, Schröder B. Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis. J Exp Med 2019; 216:807-830. [PMID: 30819724 PMCID: PMC6446863 DOI: 10.1084/jem.20171438] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/21/2018] [Accepted: 10/17/2018] [Indexed: 11/27/2022] Open
Abstract
The intramembrane proteases SPPL2a/b control pro-atherogenic signaling of membrane-bound proteolytic fragments derived from the oxLDL receptor LOX-1. In mice deficient for these proteases, plaque development and fibrosis is enhanced. This highlights SPPL2a/b as crucial players of a novel athero-protective mechanism, which is conserved in humans. The lectin-like oxidized LDL receptor 1 (LOX-1) is a key player in the development of atherosclerosis. LOX-1 promotes endothelial activation and dysfunction by mediating uptake of oxidized LDL and inducing pro-atherogenic signaling. However, little is known about modulators of LOX-1–mediated responses. Here, we show that the function of LOX-1 is controlled proteolytically. Ectodomain shedding by the metalloprotease ADAM10 and lysosomal degradation generate membrane-bound N-terminal fragments (NTFs), which we identified as novel substrates of the intramembrane proteases signal peptide peptidase–like 2a and b (SPPL2a/b). SPPL2a/b control cellular LOX-1 NTF levels which, following self-association via their transmembrane domain, can activate MAP kinases in a ligand-independent manner. This leads to an up-regulation of several pro-atherogenic and pro-fibrotic targets including ICAM-1 and the connective tissue growth factor CTGF. Consequently, SPPL2a/b-deficient mice, which accumulate LOX-1 NTFs, develop larger and more advanced atherosclerotic plaques than controls. This identifies intramembrane proteolysis by SPPL2a/b as a novel atheroprotective mechanism via negative regulation of LOX-1 signaling.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Kosta Theodorou
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands
| | - Florencia Cabrera-Cabrera
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Andreas O Helbig
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Kathrin Happ
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Marion Gijbels
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands.,Department of Molecular Genetics, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands.,Amsterdam Cardiovascular Sciences, Department of Medical Biochemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ann-Christine Gradtke
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany.,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Björn Rabe
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | - Akio Fukumori
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Biomedical Center, Metabolic Biochemistry, Ludwig Maximilians University of Munich, Munich, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Biomedical Center, Metabolic Biochemistry, Ludwig Maximilians University of Munich, Munich, Germany
| | - Marjo Donners
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany .,Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
46
|
Höfling C, Shehabi E, Kuhn PH, Lichtenthaler SF, Hartlage-Rübsamen M, Roßner S. Cell Type-Specific Human APP Transgene Expression by Hippocampal Interneurons in the Tg2576 Mouse Model of Alzheimer's Disease. Front Neurosci 2019; 13:137. [PMID: 30853883 PMCID: PMC6395433 DOI: 10.3389/fnins.2019.00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/06/2019] [Indexed: 01/21/2023] Open
Abstract
Amyloid precursor protein (APP) transgenic animal models of Alzheimer’s disease have become versatile tools for basic and translational research. However, there is great heterogeneity of histological, biochemical, and functional data between transgenic mouse lines, which might be due to different transgene expression patterns. Here, the expression of human APP (hAPP) by GABAergic hippocampal interneurons immunoreactive for the calcium binding proteins parvalbumin, calbindin, calretinin, and for the peptide hormone somatostatin was analyzed in Tg2576 mice by double immunofluorescent microscopy. Overall, there was no GABAergic interneuron subpopulation that did not express the transgene. On the other hand, in no case all neurons of such a subpopulation expressed hAPP. In dentate gyrus molecular layer and in stratum lacunosum moleculare less than 10% of hAPP-positive interneurons co-express any of these interneuron markers, whereas in stratum oriens hAPP-expressing neurons frequently co-express these interneuron markers to different proportions. We conclude that these neurons differentially contribute to deficits in young Tg2576 mice before the onset of Abeta plaque pathology. The detailed analysis of distinct brain region and neuron type-specific APP transgene expression patterns is indispensable to understand particular pathological features and mouse line-specific differences in neuronal and systemic functions.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul-Flechsig-Institute for Brain Research, Leipzig University, Leipzig, Germany
| | - Emira Shehabi
- Paul-Flechsig-Institute for Brain Research, Leipzig University, Leipzig, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | | | - Steffen Roßner
- Paul-Flechsig-Institute for Brain Research, Leipzig University, Leipzig, Germany
| |
Collapse
|
47
|
Huang Y, Chanou A, Kranz G, Pan M, Kohlbauer V, Ettinger A, Gires O. Membrane-associated epithelial cell adhesion molecule is slowly cleaved by γ-secretase prior to efficient proteasomal degradation of its intracellular domain. J Biol Chem 2018; 294:3051-3064. [PMID: 30598504 DOI: 10.1074/jbc.ra118.005874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/20/2018] [Indexed: 12/27/2022] Open
Abstract
Regulated intramembrane proteolysis (RIP) is a key mechanism for activating transmembrane proteins such as epithelial cell adhesion molecule (EpCAM) for cellular signaling and degradation. EpCAM is highly expressed in carcinomas and progenitor and embryonic stem cells and is involved in the regulation of cell adhesion, proliferation, and differentiation. Strictly sequential cleavage of EpCAM through RIP involves initial shedding of the extracellular domain by α-secretase (ADAM) and β-secretase (BACE) sheddases, generating a membrane-tethered C-terminal fragment EpCTF. Subsequently, the rate-limiting γ-secretase complex catalyzes intramembrane cleavage of EpCTF, generating an extracellular EpCAM-Aβ-like fragment and an intracellular EpICD fragment involved in nuclear signaling. Here, we have combined biochemical approaches with live-cell imaging of fluorescent protein tags to investigate the kinetics of γ-secretase-mediated intramembrane cleavage of EpCTF. We demonstrate that γ-secretase-mediated proteolysis of exogenously and endogenously expressed EpCTF is a slow process with a 50% protein turnover in cells ranging from 45 min to 5.5 h. The slow cleavage was dictated by γ-secretase activity and not by EpCTF species, as indicated by cross-species swapping experiments. Furthermore, both human and murine EpICDs generated from EpCTF by γ-secretase were degraded efficiently (94-99%) by the proteasome. Hence, proteolytic cleavage of EpCTF is a comparably slow process, and EpICD generation does not appear to be suited for rapidly transducing extracellular cues into nuclear signaling, but appears to provide steady signals that can be further controlled through efficient proteasomal degradation. Our approach provides an unbiased bioassay to investigate proteolytic processing of EpCTF in single living cells.
Collapse
Affiliation(s)
- Yuanchi Huang
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany, .,the Department of Spinal Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Anna Chanou
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Gisela Kranz
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Min Pan
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Vera Kohlbauer
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Andreas Ettinger
- the Institute of Epigenetics and Stem Cells, Marchioninistrasse 25, 81377 München, Germany, and
| | - Olivier Gires
- From the Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Marchioninistrasse 15, 81377 Munich, Germany, .,the Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
48
|
Li S, Jin M, Liu L, Dang Y, Ostaszewski BL, Selkoe DJ. Decoding the synaptic dysfunction of bioactive human AD brain soluble Aβ to inspire novel therapeutic avenues for Alzheimer's disease. Acta Neuropathol Commun 2018; 6:121. [PMID: 30409172 PMCID: PMC6225562 DOI: 10.1186/s40478-018-0626-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Pathologic, biochemical and genetic evidence indicates that accumulation and aggregation of amyloid β-proteins (Aβ) is a critical factor in the pathogenesis of Alzheimer's disease (AD). Several therapeutic interventions attempting to lower Aβ have failed to ameliorate cognitive decline in patients with clinical AD significantly, but most such approaches target only one or two facets of Aβ production/clearance/toxicity and do not consider the heterogeneity of human Aβ species. As synaptic dysfunction may be among the earliest deficits in AD, we used hippocampal long-term potentiation (LTP) as a sensitive indicator of the early neurotoxic effects of Aβ species. Here we confirmed prior findings that soluble Aβ oligomers, much more than fibrillar amyloid plaque cores or Aβ monomers, disrupt synaptic function. Interestingly, not all (84%) human AD brain extracts are able to inhibit LTP and the degree of LTP impairment by AD brain extracts does not correlate with Aβ levels detected by standard ELISAs. Bioactive AD brain extracts also induce neurotoxicity in iPSC-derived human neurons. Shorter forms of Aβ (including Aβ1-37, Aβ1-38, Aβ1-39), pre-Aβ APP fragments (- 30 to - 1) and N-terminally extended Aβs (- 30 to + 40) each showed much less synaptotoxicity than longer Aβs (Aβ1-42 - Aβ1-46). We found that antibodies which target the N-terminus, not the C-terminus, efficiently rescued Aβ oligomer-impaired LTP and oligomer-facilitated LTD. Our data suggest that preventing soluble Aβ oligomer formation and targeting their N-terminal residues with antibodies could be an attractive combined therapeutic approach.
Collapse
|
49
|
Steiner H, Fukumori A, Tagami S, Okochi M. Making the final cut: pathogenic amyloid-β peptide generation by γ-secretase. Cell Stress 2018; 2:292-310. [PMID: 31225454 PMCID: PMC6551803 DOI: 10.15698/cst2018.11.162] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer´s disease (AD) is a devastating neurodegenerative disease of the elderly population. Genetic evidence strongly suggests that aberrant generation and/or clearance of the neurotoxic amyloid-β peptide (Aβ) is triggering the disease. Aβ is generated from the amyloid precursor protein (APP) by the sequential cleavages of β- and γ-secretase. The latter cleavage by γ-secretase, a unique and fascinating four-component protease complex, occurs in the APP transmembrane domain thereby releasing Aβ species of 37-43 amino acids in length including the longer, highly pathogenic peptides Aβ42 and Aβ43. The lack of a precise understanding of Aβ generation as well as of the functions of other γ-secretase substrates has been one factor underlying the disappointing failure of γ-secretase inhibitors in clinical trials, but on the other side also been a major driving force for structural and in depth mechanistic studies on this key AD drug target in the past few years. Here we review recent breakthroughs in our understanding of how the γ-secretase complex recognizes substrates, of how it binds and processes β-secretase cleaved APP into different Aβ species, as well as the progress made on a question of outstanding interest, namely how clinical AD mutations in the catalytic subunit presenilin and the γ-secretase cleavage region of APP lead to relative increases of Aβ42/43. Finally, we discuss how the knowledge emerging from these studies could be used to therapeutically target this enzyme in a safe way.
Collapse
Affiliation(s)
- Harald Steiner
- Biomedical Center (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Akio Fukumori
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu & Department of Mental Health Promotion, Osaka University Graduate School of Medicine, Toyonaka, Japan
| | - Shinji Tagami
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayasu Okochi
- Neuropsychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
50
|
Lichtenthaler SF, Lemberg MK, Fluhrer R. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J 2018; 37:e99456. [PMID: 29976761 PMCID: PMC6068445 DOI: 10.15252/embj.201899456] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/05/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolytic removal of membrane protein ectodomains (ectodomain shedding) is a post-translational modification that controls levels and function of hundreds of membrane proteins. The contributing proteases, referred to as sheddases, act as important molecular switches in processes ranging from signaling to cell adhesion. When deregulated, ectodomain shedding is linked to pathologies such as inflammation and Alzheimer's disease. While proteases of the "a disintegrin and metalloprotease" (ADAM) and "beta-site APP cleaving enzyme" (BACE) families are widely considered as sheddases, in recent years a much broader range of proteases, including intramembrane and soluble proteases, were shown to catalyze similar cleavage reactions. This review demonstrates that shedding is a fundamental process in cell biology and discusses the current understanding of sheddases and their substrates, molecular mechanisms and cellular localizations, as well as physiological functions of protein ectodomain shedding. Moreover, we provide an operational definition of shedding and highlight recent conceptual advances in the field. While new developments in proteomics facilitate substrate discovery, we expect that shedding is not a rare exception, but rather the rule for many membrane proteins, and that many more interesting shedding functions await discovery.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, School of Medicine, and Institute for Advanced Study, Technical University Munich, Munich, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedizinisches Centrum (BMC), Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|