1
|
Jing X, Li Y. Identification and Experimental Validation of Biomarkers Related to MiR-125a-5p in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2025; 20:581-600. [PMID: 40078927 PMCID: PMC11899922 DOI: 10.2147/copd.s493749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Purpose The miR-125a-5p has been reported influence the development of lung cancer, however, the link between it and chronic obstructive pulmonary disease (COPD) is still not well understood. Hence, this study was designed to investigate the molecular pathway by which miR-125a-5p related biomarkers were involved in COPD. Patients and Methods The differentially expressed genes (DEGs) and module genes related to COPD in GSE100153 were screened out by differential analysis and weighted gene co-expression network analysis, respectively. Then, the target genes of miR-125a-5p obtained from miRWalk database were intersected with DEGs and module genes, followed by identification of biomarkers through SVM-RFE algorithms. Moreover, the gene set enrichment analysis, immune infiltration analysis, construction of regulatory network, single-cell analysis and Mendelian randomization (MR) analysis were performed. At last, the expression levels of the biomarkers were further validated in GSE100153 and GSE146560 as well as in qRT-PCR. Results A total of 10 genes were acquired by intersecting the 126 DEGs, the 3989 module genes, and 2329 target genes, of which PITHD1, CNTNAP2 and GUCD1 were identified as biomarkers. Enrichment analysis showed their roles in various cellular functions. In addition, significant associations were identified between 9 distinct cells and biomarkers. Subsequently, 5 TFs and 63 therapeutic agents were predicted as biomarkers. Moreover, GUCD1 and PITHD1 were significantly different between case and control in T cells and Alveolar cells. In COPD, GUCD1 and PITHD1 were significantly down-regulated in GSE100153 and GSE146560 datasets and confirmed by qRT-PCR. Conclusion In our study, PITHD1, CNTNAP2, and GUCD1 were recognized as biomarkers related to miR-125a-5p-related genes in COPD, providing new references for treatment of COPD.
Collapse
Affiliation(s)
- Xia Jing
- Department of General Medical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yueqin Li
- Department of General Medical, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
2
|
Kotlyarov S, Oskin D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int J Mol Sci 2025; 26:2378. [PMID: 40141021 PMCID: PMC11942565 DOI: 10.3390/ijms26062378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The comorbid course of chronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis is an important medical and social problem. Both diseases, although having different etiologies, have many overlapping relationships that mutually influence their course and prognosis. The aim of the current review is to discuss the role of different immune mechanisms underlying inflammation in COPD and pulmonary tuberculosis. These mechanisms are known to involve both the innate and adaptive immune system, including various cellular and intercellular interactions. There is growing evidence that immune mechanisms involved in the pathogenesis of both COPD and tuberculosis may jointly contribute to the tuberculosis-associated obstructive pulmonary disease (TOPD) phenotype. Several studies have reported prior tuberculosis as a risk factor for COPD. Therefore, the study of the mechanisms that link COPD and tuberculosis is of considerable clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Dmitry Oskin
- Department of Infectious Diseases and Phthisiology, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
3
|
Wang X, Liu C, Liang R, Zhou Y, Kong X, Wang W, Wang H, Zhao L, Niu W, Yi C, Jiang F. Elucidating the beneficial impact of exercise on chronic obstructive pulmonary disease and its comorbidities: Integrating proteomic and immunological insights. Br J Pharmacol 2024; 181:5133-5150. [PMID: 39317434 DOI: 10.1111/bph.17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND AND PURPOSE Physical activity is an effective therapeutic protocol for treating chronic obstructive pulmonary disease (COPD). However, the mechanisms underlying the benefits of physical activity in COPD are not fully elucidated. EXPERIMENTAL APPROACH In a mouse model of COPD, analysis of biological markers and lung proteomics identified the molecular pathways through which exercise ameliorates COPD. KEY RESULTS Exercise improved pulmonary function, emphysema, small airway disease, pulmonary inflammation, glucose metabolic dysregulation, and insulin resistance in COPD mice. Proteomic analysis revealed 430 differentially expressed proteins (DEPs) between the COPD and COPD + Exercise (COPD + Ex) groups. GO analysis indicated that the enriched pathways were predominantly related to the immune response, inflammatory processes, insulin secretion, and glucose metabolic processes. GO analysis revealed IL-33 as a crucial target for the exercise-related amelioration of COPD. KEGG analysis showed that DEPs were significantly enriched in primary immunodeficiency, the intestinal immune network for IgA production, and the NF-κB signalling pathway. Exercise inhibited NF-κB activation by suppressing the CD14/TLR4/MyD88 and TNF-α/TNF-R1/TRAF2/5 pathways in COPD mice. Exercise inhibited expression of BCR, IgM, IgD, IgG, IgE, and IgA by suppressing B-cell receptor signalling. Exercise attenuated glucose metabolic dysregulation and insulin resistance through the suppression of proinflammatory mediators, including MHC I, MHC II, TNF-α, IFN-γ, and IL-1β, while concurrently increasing insulin expression. The qRT-PCR results were consistent with the proteomic results. CONCLUSION AND IMPLICATIONS In a mouse model, exercise improved COPD and its metabolic comorbidities through immune system regulation and inflammation suppression, offering insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Xishuai Wang
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
- College of Education for the Future, Beijing Normal University, Zhuhai, China
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Liu
- College of Education for the Future, Beijing Normal University, Zhuhai, China
| | - Ruining Liang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuehui Zhou
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Xiliang Kong
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Weichao Wang
- Graduate School of Sports Coaching, Kyungil University, Gyeongsan-si, Gyeongsangbuk-do, South Korea
| | - Hongwei Wang
- College of Physical Education, Northwest Normal University, Lanzhou, Gansu, China
| | - Lunan Zhao
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Weina Niu
- Basic Department, Qilu Institute of Technology, Qufu, Shandong, China
| | - Chao Yi
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| | - Fugao Jiang
- School of Physical Education and Sports Science, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
4
|
Dong Y, Dong Y, Zhu C, Yang L, Wang H, Li J, Zheng Z, Zhao H, Xie W, Chen M, Jie Z, Li J, Zang Y, Shi J. Targeting CCL2-CCR2 signaling pathway alleviates macrophage dysfunction in COPD via PI3K-AKT axis. Cell Commun Signal 2024; 22:364. [PMID: 39014433 PMCID: PMC11253350 DOI: 10.1186/s12964-024-01746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) remains a leading cause of morbidity and mortality worldwide, characterized by persistent respiratory symptoms and airflow limitation. The involvement of C-C motif chemokine ligand 2 (CCL2) in COPD pathogenesis, particularly in macrophage regulation and activation, is poorly understood despite its recognized role in chronic inflammation. Our study aims to elucidate the regulatory role and molecular mechanisms of CCL2 in the pathogenesis of COPD, providing new insights for therapeutic strategies. METHODS This study focused on the CCL2-CCR2 signaling pathway, exploring its role in COPD pathogenesis using both Ccl2 knockout (KO) mice and pharmacological inhibitors. To dissect the underlying mechanisms, we employed various in vitro and in vivo methods to analyze the secretion patterns and pathogenic effects of CCL2 and its downstream molecular signaling through the CCL2-CCR2 axis. RESULTS Elevated Ccl2 expression was confirmed in the lungs of COPD mice and was associated with enhanced recruitment and activation of macrophages. Deletion of Ccl2 in knockout mice, as well as treatment with a Ccr2 inhibitor, resulted in protection against CS- and LPS-induced alveolar injury and airway remodeling. Mechanistically, CCL2 was predominantly secreted by bronchial epithelial cells in a process dependent on STAT1 phosphorylation and acted through the CCR2 receptor on macrophages. This interaction activated the PI3K-AKT signaling pathway, which was pivotal for macrophage activation and the secretion of inflammatory cytokines, further influencing the progression of COPD. CONCLUSIONS The study highlighted the crucial role of CCL2 in mediating inflammatory responses and remodeling in COPD. It enhanced our understanding of COPD's molecular mechanisms, particularly how CCL2's interaction with the CCR2 activates critical signaling pathways. Targeting the CCL2-CCR2 axis emerged as a promising strategy to alleviate COPD pathology.
Collapse
Affiliation(s)
- Yue Dong
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Dong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chengyue Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China
| | - Lan Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hanlin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junqing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Zixuan Zheng
- Department of General Medicine, Zhuanqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Hanwei Zhao
- Department of General Medicine, Zhuanqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Wanji Xie
- Department of General Medicine, Hongqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Meiting Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhijun Jie
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Yi Zang
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China.
| | - Jindong Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Xiong K, Ao K, Wei W, Dong J, Li J, Yang Y, Tang B, Li Y. Periodontitis aggravates COPD through the activation of γδ T cell and M2 macrophage. mSystems 2024; 9:e0057223. [PMID: 38214520 PMCID: PMC10878042 DOI: 10.1128/msystems.00572-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic systemic inflammatory disease with high morbidity and mortality. Periodontitis exacerbates COPD progression; however, the immune mechanisms by which periodontitis affects COPD remain unclear. Here, by constructing periodontitis and COPD mouse models, we demonstrated that periodontitis and COPD could mutually aggravate disease progression. For the first time, we found that the progression was associated with the activation of γδ T cells and M2 macrophages, and M2 polarization of macrophages was affected by γδ T cells activation. In the lung tissues of COPD with periodontitis, the activation of γδ T cells finally led to the increase of IL 17 and IFN γ expression and M2 macrophage polarization. Furthermore, we found that the periodontitis-associated bacteria Porphyromonas gingivalis (P. gingivalis) promoted the activation of γδ T cells and M2 macrophages ex vivo. The data from clinical bronchoalveolar lavage fluid (BALF) samples were consistent with the in vivo and ex vivo experiments. For the first time, our results identified the crucial role of γδ T-M2 immune mechanism in mediating periodontitis-promoted COPD progression. Therefore, targeting at periodontitis treatment and the γδ T-M2 immune mechanism might provide a new practical strategy for COPD prevention or control.IMPORTANCEPeriodontitis exacerbates chronic obstructive pulmonary disease (COPD) progression. For the first time, the current study identified that the impact of periodontitis on COPD progression was associated with the activation of γδ T cells and M2 macrophages and that M2 polarization of macrophages was affected by γδ T cells activation. The results indicated that targeting at periodontitis treatment and the γδ T-M2 immune mechanism might provide a new practical strategy for COPD prevention or control.
Collapse
Affiliation(s)
- Kaixin Xiong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Keping Ao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yutao Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Lea S, Higham A, Beech A, Singh D. How inhaled corticosteroids target inflammation in COPD. Eur Respir Rev 2023; 32:230084. [PMID: 37852657 PMCID: PMC10582931 DOI: 10.1183/16000617.0084-2023] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 10/20/2023] Open
Abstract
Inhaled corticosteroids (ICS) are the most commonly used anti-inflammatory drugs for the treatment of COPD. COPD has been previously described as a "corticosteroid-resistant" condition, but current clinical trial evidence shows that selected COPD patients, namely those with increased exacerbation risk plus higher blood eosinophil count (BEC), can benefit from ICS treatment. This review describes the components of inflammation modulated by ICS in COPD and the reasons for the variation in response to ICS between individuals. There are corticosteroid-insensitive inflammatory pathways in COPD, such as bacteria-induced macrophage interleukin-8 production and resultant neutrophil recruitment, but also corticosteroid-sensitive pathways including the reduction of type 2 markers and mast cell numbers. The review also describes the mechanisms whereby ICS can skew the lung microbiome, with reduced diversity and increased relative abundance, towards an excess of proteobacteria. BEC is a biomarker used to enable the selective use of ICS in COPD, but the clinical outcome in an individual is decided by a complex interacting network involving the microbiome and airway inflammation.
Collapse
Affiliation(s)
- Simon Lea
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
7
|
Ahmadi A, Ahrari S, Salimian J, Salehi Z, Karimi M, Emamvirdizadeh A, Jamalkandi SA, Ghanei M. p38 MAPK signaling in chronic obstructive pulmonary disease pathogenesis and inhibitor therapeutics. Cell Commun Signal 2023; 21:314. [PMID: 37919729 PMCID: PMC10623820 DOI: 10.1186/s12964-023-01337-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by persistent respiratory symptoms and airflow limitation due to airway and/or alveolar remodeling. Although the abnormalities are primarily prompted by chronic exposure to inhaled irritants, maladjusted and self-reinforcing immune responses are significant contributors to the development and progression of the disease. The p38 isoforms are regarded as pivotal hub proteins that regulate immune and inflammatory responses in both healthy and disease states. As a result, their inhibition has been the subject of numerous recent studies exploring their therapeutic potential in COPD. MAIN BODY We performed a systematic search based on the PRISMA guidelines to find relevant studies about P38 signaling in COPD patients. We searched the PubMed and Google Scholar databases and used "P38" AND "COPD" Mesh Terms. We applied the following inclusion criteria: (1) human, animal, ex vivo and in vitro studies; (2) original research articles; (3) published in English; and (4) focused on P38 signaling in COPD pathogenesis, progression, or treatment. We screened the titles and abstracts of the retrieved studies and assessed the full texts of the eligible studies for quality and relevance. We extracted the following data from each study: authors, year, country, sample size, study design, cell type, intervention, outcome, and main findings. We classified the studies according to the role of different cells and treatments in P38 signaling in COPD. CONCLUSION While targeting p38 MAPK has demonstrated some therapeutic potential in COPD, its efficacy is limited. Nevertheless, combining p38 MAPK inhibitors with other anti-inflammatory steroids appears to be a promising treatment choice. Clinical trials testing various p38 MAPK inhibitors have produced mixed results, with some showing improvement in lung function and reduction in exacerbations in COPD patients. Despite these mixed results, research on p38 MAPK inhibitors is still a major area of study to develop new and more effective therapies for COPD. As our understanding of COPD evolves, we may gain a better understanding of how to utilize p38 MAPK inhibitors to treat this disease. Video Abstract.
Collapse
Affiliation(s)
- Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sajjad Ahrari
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Chen S, Jiang J, Li T, Huang L. PANoptosis: Mechanism and Role in Pulmonary Diseases. Int J Mol Sci 2023; 24:15343. [PMID: 37895022 PMCID: PMC10607352 DOI: 10.3390/ijms242015343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
PANoptosis is a newly defined programmed cell death (PCD) triggered by a series of stimuli, and it engages three well-learned PCD forms (pyroptosis, apoptosis, necroptosis) concomitantly. Normally, cell death is recognized as a strategy to eliminate unnecessary cells, inhibit the proliferation of invaded pathogens and maintain homeostasis; however, vigorous cell death can cause excessive inflammation and tissue damage. Acute lung injury (ALI) and chronic obstructive pulmonary syndrome (COPD) exacerbation is related to several pathogens (e.g., influenza A virus, SARS-CoV-2) known to cause PANoptosis. An understanding of the mechanism and specific regulators may help to address the pathological systems of these diseases. This review presents our understanding of the potential mechanism of PANoptosis and the role of PANoptosis in different pulmonary diseases.
Collapse
Affiliation(s)
| | | | | | - Longshuang Huang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (S.C.); (J.J.); (T.L.)
| |
Collapse
|
9
|
Nourian YH, Salimian J, Ahmadi A, Salehi Z, Karimi M, Emamvirdizadeh A, Azimzadeh Jamalkandi S, Ghanei M. cAMP-PDE signaling in COPD: Review of cellular, molecular and clinical features. Biochem Biophys Rep 2023; 34:101438. [PMID: 36865738 PMCID: PMC9971187 DOI: 10.1016/j.bbrep.2023.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death among non-contagious diseases in the world. PDE inhibitors are among current medicines prescribed for COPD treatment of which, PDE-4 family is the predominant PDE isoform involved in hydrolyzing cyclic adenosine monophosphate (cAMP) that regulates the inflammatory responses in neutrophils, lymphocytes, macrophages and epithelial cells The aim of this study is to investigate the cellular and molecular mechanisms of cAMP-PDE signaling, as an important pathway in the treatment management of patients with COPD. In this review, a comprehensive literature review was performed about the effect of PDEs in COPD. Generally, PDEs are overexpressed in COPD patients, resulting in cAMP inactivation and decreased cAMP hydrolysis from AMP. At normal amounts, cAMP is one of the essential agents in regulating metabolism and suppressing inflammatory responses. Low amount of cAMP lead to activation of downstream inflammatory signaling pathways. PDE4 and PDE7 mRNA transcript levels were not altered in polymorphonuclear leukocytes and CD8 lymphocytes originating from the peripheral venous blood of stable COPD subjects compared to healthy controls. Therefore, cAMP-PDE signaling pathway is one of the most important signaling pathways involved in COPD. By examining the effects of different drugs in this signaling pathway critical steps can be taken in the treatment of this disease.
Collapse
Affiliation(s)
- Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
11
|
Chen H, Oliver BG, Pant A, Olivera A, Poronnik P, Pollock CA, Saad S. Effects of air pollution on human health - Mechanistic evidence suggested by in vitro and in vivo modelling. ENVIRONMENTAL RESEARCH 2022; 212:113378. [PMID: 35525290 DOI: 10.1016/j.envres.2022.113378] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Airborne particulate matter (PM) comprises both solid and liquid particles, including carbon, sulphates, nitrate, and toxic heavy metals, which can induce oxidative stress and inflammation after inhalation. These changes occur both in the lung and systemically, due to the ability of the small-sized PM (i.e. diameters ≤2.5 μm, PM2.5) to enter and circulate in the bloodstream. As such, in 2016, airborne PM caused ∼4.2 million premature deaths worldwide. Acute exposure to high levels of airborne PM (eg. during wildfires) can exacerbate pre-existing illnesses leading to hospitalisation, such as in those with asthma and coronary heart disease. Prolonged exposure to PM can increase the risk of non-communicable chronic diseases affecting the brain, lung, heart, liver, and kidney, although the latter is less well studied. Given the breadth of potential disease, it is critical to understand the mechanisms underlying airborne PM exposure-induced disorders. Establishing aetiology in humans is difficult, therefore, in-vitro and in-vivo studies can provide mechanistic insights. We describe acute health effects (e.g. exacerbations of asthma) and long term health effects such as the induction of chronic inflammatory lung disease, and effects outside the lung (e.g. liver and renal change). We will focus on oxidative stress and inflammation as this is the common mechanism of PM-induced disease, which may be used to develop effective treatments to mitigate the adverse health effect of PM exposure.
Collapse
Affiliation(s)
- Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, 2037, Australia
| | - Anushriya Pant
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Annabel Olivera
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Philip Poronnik
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Carol A Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia.
| |
Collapse
|
12
|
Mantov N, Zrounba M, Brollo M, Grassin-Delyle S, Glorion M, David M, Naline E, Devillier P, Salvator H. Ruxolitinib inhibits cytokine production by human lung macrophages without impairing phagocytic ability. Front Pharmacol 2022; 13:896167. [PMID: 36059986 PMCID: PMC9437255 DOI: 10.3389/fphar.2022.896167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The Janus kinase (JAK) 1/2 inhibitor ruxolitinib has been approved in an indication of myelofibrosis and is a candidate for the treatment of a number of inflammatory or autoimmune diseases. We assessed the effects of ruxolitinib on lipopolysaccharide (LPS)- and poly (I:C)-induced cytokine production by human lung macrophages (LMs) and on the LMs’ phagocytic activity.Methods: Human LMs were isolated from patients operated on for lung carcinoma. The LMs were cultured with ruxolitinib (0.5 × 10−7 M to 10–5 M) or budesonide (10–11 to 10–8 M) and then stimulated with LPS (10 ng·ml−1) or poly (I:C) (10 μg·ml−1) for 24 h. Cytokines released by the LMs into the supernatants were measured using ELISAs. The phagocytosis of labelled bioparticles was assessed using flow cytometry.Results: Ruxolitinib inhibited both the LPS- and poly (I:C)-stimulated production of tumor necrosis factor alpha, interleukin (IL)-6, IL-10, chemokines CCL2, and CXCL10 in a concentration-dependent manner. Ruxolitinib also inhibited the poly (I:C)- induced (but not the LPS-induced) production of IL-1ß. Budesonide inhibited cytokine production more strongly than ruxolitinib but failed to mitigate the production of CXCL10. The LMs’ phagocytic activity was not impaired by the highest tested concentration (10–5 M) of ruxolitinib.Conclusion: Clinically relevant concentrations of ruxolitinib inhibited the LPS- and poly (I:C)-stimulated production of cytokines by human LMs but did not impair their phagocytic activity. Overall, ruxolitinib’s anti-inflammatory activities are less intense than (but somewhat different from) those of budesonide—particularly with regard to the production of the corticosteroid-resistant chemokine CXCL-10. Our results indicate that treatment with a JAK inhibitor might be a valuable anti-inflammatory strategy in chronic obstructive pulmonary disease, Th1-high asthma, and both viral and non-viral acute respiratory distress syndromes (including coronavirus disease 2019).
Collapse
Affiliation(s)
- Nikola Mantov
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - Mathilde Zrounba
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
| | - Marion Brollo
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - S Grassin-Delyle
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
- Infection and Inflammation, Health Biotechnology Department, Paris-Saclay University, UVSQ, INSERM, Montigny le Bretonneux, France
| | - Matthieu Glorion
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Thoracic Surgery Department, Foch Hospital, Suresnes, France
| | - Mélanie David
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - Emmanuel Naline
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
| | - Philippe Devillier
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
- Faculté des Sciences de la Santé Simone Veil, UVSQ Paris-Saclay University, Montigny-le-Bretonneux, France
| | - Hélène Salvator
- Laboratory of Research in Respiratory Pharmacology—Virologie et Immunologie Moleculaire (VIM) Suresnes, V2I—UMR-0892 Paris Saclay University, Suresnes, France
- Respiratory Diseases Department, Foch Hospital, Suresnes, France
- Faculté des Sciences de la Santé Simone Veil, UVSQ Paris-Saclay University, Montigny-le-Bretonneux, France
- *Correspondence: Hélène Salvator,
| |
Collapse
|
13
|
Kadushkin AG, Tahanovich AD, Movchan LV, Dziadzichkina VV, Levandovskaya OV, Shman TV. Nortriptyline overcomes corticosteroid resistance in NK and NKT-like cells from peripheral blood of patients with chronic obstructive pulmonary disease. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.75467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: An antidepressant nortriptyline potentiates glucocorticoid (GC) action with synergistic suppression of inflammatory mediator release, but the precise molecular mechanism is unknown.
Materials and methods: Peripheral blood cells from patients with chronic obstructive pulmonary disease (COPD) (n = 21) were incubated with nortriptyline (1 µM or 10 µM), budesonide (10 nM), or their combinations, followed by stimulation with phorbol myristate acetate (PMA) and ionomycin. Cytokine production, glucocorticoid receptor β (GRβ), histone deacetylase 2 (HDAC2) and histone H4 acetylation of K8 (HAT) expression, p65 NF-kB and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation in NK (CD3-CD56+) and NKT-like (CD3+CD56+) cells were analyzed by flow cytometry.
Results: We observed that nortriptyline (10 µM) significantly attenuated the effects of PMA/ionomycin on the synthesis of interferon γ (IFNγ), interleukin 4 (IL-4), and IL-8, expression of GRβ and HAT, as well as p65 NF-kB and p38 MAPK phosphorylation in NK and NKT-like cells, whereas nortriptyline (1 µM) only inhibited IL-4 production by NK and NKT-like cells.
Discussion: The combination of nortriptyline (10 µM) and budesonide decreased IFNγ, tumor necrosis factor α, IL-4, IL-8, and GRβ expression, as well as phosphorylated p38 MAPK and p65 NF-κB levels by NK and NKT-like cells above that of budesonide alone. Furthermore, the same association of drugs enhanced HDAC2 expression in NK and NKT-like cells.
Conclusion: Collectively, our results show that nortriptyline might enhance GC function through modulation of HAT, HDAC2, GRβ, phospho-p38 MAPK expression. These data provide a strong rationale for combining nortriptyline with budesonide to treat COPD.
Collapse
|
14
|
Yuan J, Li X, Fang N, Li P, Zhang Z, Lin M, Hou Q. Perilla Leaf Extract (PLE) Attenuates COPD Airway Inflammation via the TLR4/Syk/PKC/NF-κB Pathway In Vivo and In Vitro. Front Pharmacol 2022; 12:763624. [PMID: 35058774 PMCID: PMC8764369 DOI: 10.3389/fphar.2021.763624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease characterized by persistent airflow limitation but still lacking effective treatments. Perilla frutescens (L.) Britt., an important traditional medicinal plant with excellent antioxidant and anti-inflammatory properties, is widely used for the treatment of respiratory disease in China. However, its protective activity and mechanism against COPD airway inflammation have not been fully studied. Here, the anti-inflammatory effects of the PLE were investigated, and its underlying mechanisms were then elucidated. The presented results suggested a notable effect of the PLE on airway inflammation of COPD, by significantly ameliorating inflammatory cell infiltration in lung tissue, lessening leukocytes (lymphocytes, neutrophils, and macrophages) and inflammatory mediators (interleukin 4 (IL-4), IL-6, IL-17A, interferon γ (IFN-γ), and tumor necrosis factor α (TNF-α)) in the bronchoalveolar lavage fluid (BALF) of cigarette smoke (CS)/lipopolysaccharide (LPS)-induced COPD mice in vivo and inhibiting the production of inflammatory factors (nitric oxide (NO), IL-6, and TNF-α) and intracellular reactive oxygen species (ROS) in LPS-stimulated RAW264.7 cells in vitro. For further extent, PLE treatment significantly suppressed the expression and phosphorylation of TLR4, Syk, PKC, and NF-κB p65 in vivo and their mRNA in vitro. Subsequently, by co-treating with their inhibitors in vitro, its potential mechanism via TLR4/Syk/PKC/NF-κB p65 signals was disclosed. In summary, the obtained results indicated a noteworthy effective activity of the PLE on COPD inflammation, and partly, the TLR4/Syk/PKC/NF-κB p65 axis might be the potential mechanism.
Collapse
Affiliation(s)
- Jiqiao Yuan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuyu Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Fang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqian Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingbao Lin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Hou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Aono K, Matsumoto J, Nakagawa S, Matsumoto T, Koga M, Migita K, Tominaga K, Sakai Y, Yamauchi A. Testosterone deficiency promotes the development of pulmonary emphysema in orchiectomized mice exposed to elastase. Biochem Biophys Res Commun 2021; 558:94-101. [PMID: 33906112 DOI: 10.1016/j.bbrc.2021.04.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 01/31/2023]
Abstract
Testosterone deficiency is commonly observed in male patients with chronic obstructive pulmonary disease (COPD), which is characterized by chronic inflammation of the airways and pulmonary emphysema. Although clinical trials have indicated that testosterone replacement therapy can improve respiratory function in patients with COPD, the role of testosterone in the pathogenesis of COPD remains unclear. The aim of this study was to explore the effect of testosterone deficiency on the development of pulmonary emphysema in orchiectomized (ORX) mice exposed to porcine pancreatic elastase (PPE). ORX mice developed more severe emphysematous changes 21 d after PPE inhalation than non-ORX mice. Testosterone propionate supplementation significantly reduced PPE-induced emphysematous changes in ORX mice. PPE exposure also increased the number of neutrophils and T cells in bronchoalveolar lavage fluid (BALF) of mice that had undergone ORX and sham surgery. T cell counts were significantly higher in the BALF of ORX mice than of sham mice. Testosterone supplementation reduced the infiltration of T cells into BALF and alleviated emphysematous changes in the lungs of ORX mice. Our findings suggest that testosterone, a male-specific hormone, may suppress the development of pulmonary emphysema through the regulation of T cell-mediated immunity.
Collapse
Affiliation(s)
- Kentaro Aono
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Taichi Matsumoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Mitsuhisa Koga
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Keisuke Migita
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Koji Tominaga
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Yuna Sakai
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
16
|
A Novel Putative Role of TNK1 in Atherosclerotic Inflammation Implicating the Tyk2/STAT1 Pathway. Mediators Inflamm 2020; 2020:6268514. [PMID: 32694928 PMCID: PMC7368939 DOI: 10.1155/2020/6268514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/02/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022] Open
Abstract
Objective Atherosclerosis is a chronic inflammatory disease which is responsible for many clinical manifestations. The present study was to investigate the anti-inflammatory functions and mechanisms of TNK1 in atherosclerosis. Methods The ApoE(-/-) mice and human carotid endarterectomy (CEA) atherosclerotic plaques were used to investigate the differential expression of TNK1. The ApoE(-/-) mice were fed with high-fat diet (HFD) or normal-fat diet (NFD) for 8 weeks; the aorta was separated and stained with oil red O to evaluate the formation of atherosclerosis. TNK1 in mice aorta was measured by qPCR. The human CEA were obtained and identified as ruptured and stable plaques. The level of TNK1 was measured by qPCR and Western-blot staining. Further studies were conducted in THP-1 cells to explore the anti-inflammatory effects of TNK1. We induced the formation of macrophages by incubating THP-1 cells with PMA (phorbol 12-myristate 13-acetate). Afterwards, oxidized low-density lipoprotein (oxLDL) was used to stimulate the inflammation, and the secretion of inflammatory factors was measured by ELISA and qPCR. The levels of TNK1, total STAT1 and Tyk2, and the phosphorylation of STAT1 and Tyk2 were measured by western blot to uncover the mechanisms of TNK1. Results The oil red O staining indicated obvious deposition of lipid on the aorta of ApoE(-/-) mice after 8-week HFD treatment. The TNK1 level was much higher in both the HFD-fed ApoE(-/-) mice aorta arch and the ruptured human CEA plaques. We found that TNK1 was highly expressed in THP-1 cells, compared to other atherosclerotic related cells (HUVEC, HBMEC, and HA-VSMC), indicating TNK1 might be involved in the inflammation. Suppressing the expression of TNK1 by shTNK1 inhibited the oxLDL-induced secretion of inflammatory factors, such as IL-12, IL-6, and TNF-α. ShTNK1 also inhibited the uptake of lipid and decreased the cellular cholesterol content in THP-1 cells. Furthermore, the shTNK1 suppressed the oxLDL-induced phosphorylation of Tyk2 and STAT1. Conclusion TNK1 participated in the inflammation in atherosclerosis. shTNK1 suppressed the oxLDL-induced inflammation and lipid deposition in THP-1 cells. The mechanism might be related to the Tyk2/STAT signal pathway.
Collapse
|
17
|
Sidletskaya K, Vitkina T, Denisenko Y. The Role of Toll-Like Receptors 2 and 4 in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:1481-1493. [PMID: 32606656 PMCID: PMC7320879 DOI: 10.2147/copd.s249131] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
Currently, chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide. The determination of immune mechanisms of inflammation in the disease presents an important challenge for fundamental medical research. According to modern views, Toll-like receptors (TLRs), among which TLR2 and TLR4 play a key role, are one of the essential components of inflammatory process in COPD. This review focuses on following aspects: the role of TLR2 and TLR4 in the initiation of inflammatory process in COPD; the mechanisms of influence of various exogenous factors (cigarette smoke, suspended particulate matter, and bacteria) on the expression of TLR2 and TLR4; the contribution of these TLRs to the T-helper (Th) immune response development in COPD, in particular to the Th17 immune response, which contributes to the progression of the disease and therapeutic implications of TLR2 and TLR4 in COPD.
Collapse
Affiliation(s)
- Karolina Sidletskaya
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration" - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Tatyana Vitkina
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration" - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| | - Yulia Denisenko
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration" - Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok, Russia
| |
Collapse
|
18
|
Li Q, Sun J, Chen X, Li S, Wang Y, Xu C, Zhao J, Zhu Z, Tian L. Integrative characterization of fine particulate matter-induced chronic obstructive pulmonary disease in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135687. [PMID: 31785907 DOI: 10.1016/j.scitotenv.2019.135687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The impacts of ambient fine particulate matter (PM2.5) on public health are a worldwide concern. Epidemiological evidence has shown that PM2.5-triggered inflammatory cascades and lung tissue damage are important causes of chronic obstructive pulmonary disease (COPD). However, most laboratory studies of COPD have focused on animal models of cigarette smoke exposure or combined exposure to cigarette smoke and PM2.5. Furthermore, a single method is used to evaluate the development of COPD without integrality. In this study, we investigated pulmonary pathophysiological alterations using integrated functional, morphological, and biochemical techniques and a mouse model exposed to PM2.5 alone for 3 months. Emphysema in this model was confirmed by reconstructed three-dimensional micro-CT images. Typical histopathological signs were neutrophil/macrophage infiltration and accumulation at 2 months after exposure and emphysema/atelectasis at 3 months. Respiratory mechanical parameters confirmed that PM2.5 caused a decline in respiratory function. PM2.5 also triggered complex cytokine profile changes in the lungs with characteristic inflammation-related tissue destruction. This study showed that chronic PM2.5 exposure impaired lung function, triggered emphysematous lesions, and induced pulmonary inflammation and airway wall remodeling. Most importantly, prolonged exposure to PM2.5 alone caused COPD in mice. These results improve the understanding of the mechanisms and mediators underlying PM2.5-induced COPD.
Collapse
Affiliation(s)
- Qiuyue Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jingping Sun
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaowei Chen
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Siling Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
19
|
Lea S, Li J, Plumb J, Gaffey K, Mason S, Gaskell R, Harbron C, Singh D. P38 MAPK and glucocorticoid receptor crosstalk in bronchial epithelial cells. J Mol Med (Berl) 2020; 98:361-374. [PMID: 31974640 PMCID: PMC7080672 DOI: 10.1007/s00109-020-01873-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022]
Abstract
Abstract p38 MAPK inhibition may have additive and synergistic anti-inflammatory effects when used with corticosteroids. We investigated crosstalk between p38 MAPK inhibitors and corticosteroids in bronchial epithelial cells to investigate synergistic effects on cytokine production and the molecular mechanisms involved. Effects of the p38 MAPK inhibitor BIRB-796 and dexamethasone alone and in combination on LPS, polyI:C or TNFα -induced IL-6, CXCL8 and RANTES were assessed in 16HBEs (human epithelial cell line) and on TNFα-induced IL-6 and CXCL8 in primary human epithelial cells from asthma patients and healthy controls. 16HBEs were used to assess effects of BIRB-796 alone and in combination with dexamethasone on glucocorticoid receptor (GR) activity by reporter gene assay, expression of GR target genes and nuclear localisation using Western blot. The effects of BIRB-796 on TNFα stimulated phosphorylation of p38 MAPK and GR at serine (S) 226 by Western blot. Epithelial levels of phosphorylated p38 MAPK and GR S226 were determined by immunohistochemistry in bronchial biopsies from asthma patients and healthy controls. BIRB-796 in combination with dexamethasone increased inhibition of cytokine production in a synergistic manner. Combination treatment significantly increased GR nuclear localisation compared to dexamethasone alone. BIRB-796 inhibited TNFα-induced p38 MAPK and GR S226 phosphorylation. Phosphorylated GR S226 and p38 MAPK levels were increased in bronchial epithelium of more severe asthma patients. Molecular crosstalk exists between p38 MAPK activation and GR function in human bronchial epithelial cells, which alters GR activity. Combining a p38 MAPK inhibitor and a corticosteroid may demonstrate therapeutic potential in severe asthma. Key messages • Combination of corticosteroid and p38 inhibitor in human bronchial epithelial cells • Combination increased cytokine inhibition synergistically and nuclear GR • p38 MAPK inhibition reduced TNFα-induced phosphorylation of GR at S226 but not S211 • Phosphorylated GRS226 and p38 is increased in bronchial epithelium in severe asthma • Combining a p38 inhibitor and a corticosteroid may be effective in asthma treatment Electronic supplementary material The online version of this article (10.1007/s00109-020-01873-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Lea
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK.
| | - Jian Li
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| | - Jonathan Plumb
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| | - Kate Gaffey
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| | - Sarah Mason
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| | - Rosie Gaskell
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| | - Chris Harbron
- Roche Pharmaceuticals, 6 Falcon Way, Welwyn Garden City, AL7 1TW, UK
| | - Dave Singh
- University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester, Manchester, M23 9LT, UK
| |
Collapse
|
20
|
Philipp J, Sievert W, Azimzadeh O, von Toerne C, Metzger F, Posch A, Hladik D, Subedi P, Multhoff G, Atkinson MJ, Tapio S. Data independent acquisition mass spectrometry of irradiated mouse lung endothelial cells reveals a STAT-associated inflammatory response. Int J Radiat Biol 2020; 96:642-650. [PMID: 31914348 DOI: 10.1080/09553002.2020.1712492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: Pulmonary inflammation is an adverse consequence of radiation therapy in breast cancer. The aim of this study was to elucidate biological pathways leading to this pathology.Materials and methods: Lung endothelial cells were isolated 24 h after thorax-irradiation (sham or 10 Gy X-ray) from female C57Bl/6 mice and cultivated for 6 days.Results: Quantitative proteomic analysis of lung endothelial cells was done using data independent acquisition (DIA) mass spectrometry. The data were analyzed using Ingenuity Pathway Analysis and STRINGdb. In total, 4220 proteins were identified using DIA of which 60 were dysregulated in the irradiated samples (fold change ≥2.00 or ≤0.50; q-value <0.05). Several (12/40) upregulated proteins formed a cluster of inflammatory proteins with STAT1 and IRF3 as predicted upstream regulators. The several-fold increased expression of STAT1 and STAT-associated ISG15 was confirmed by immunoblotting. The expression of antioxidant proteins SOD1 and PRXD5 was downregulated suggesting radiation-induced oxidative stress. Similarly, the phosphorylated (active) forms of STING and IRF3, both members of the cGAS/STING pathway, were downregulated.Conclusions: These data suggest the involvement of JAK/STAT and cGas/STING pathways in the genesis of radiation-induced lung inflammation. These pathways may be used as novel targets for the prevention of radiation-induced lung damage.
Collapse
Affiliation(s)
- Jos Philipp
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | - Wolfgang Sievert
- Radiation Immuno Oncology Group, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | - Christine von Toerne
- Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Research Unit Protein Science, Munich, Germany
| | - Fabian Metzger
- Helmholtz Zentrum München, German Research Centre for Environmental Health GmbH, Research Unit Protein Science, Munich, Germany
| | - Anton Posch
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | - Daniela Hladik
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | - Prabal Subedi
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | - Gabriele Multhoff
- Radiation Immuno Oncology Group, Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Michael J Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| |
Collapse
|
21
|
Mukharjee S, Bank S, Maiti S. Chronic Tobacco Exposure by Smoking Develops Insulin Resistance. Endocr Metab Immune Disord Drug Targets 2020; 20:869-877. [PMID: 32065107 DOI: 10.2174/1871530320666200217123901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES The present review critically discusses the high occurrence rate, insulin resistance and type-2 diabetes in tobacco exposed individuals. Tobacco extracts and smoke contain a large number of toxic materials and a significant number of those are metabolic disintegrators. DISCUSSION Glucose and lipid homeostasis is severely impaired by this compound. Tobacco exposure contributes to adverse effects by impairing the physical, biochemical and molecular mechanisms in the tissues. The immunological components are damaged by tobacco with high production of proinflammatory cytokines (IL-6, TNF-∞) and augmentation of inflammatory responses. These events result in damages to cytoskeletal structures of different tissues. Degradation of matrix structure (by activation of different types of MMPs) results in the permanent damages to the tissues and their metabolic functions. Cellular antioxidant defense system mostly cannot or hardly nullify CS-induced ROS production that activates polymorphonuclear neutrophils (PMNs), which are a major source of cytokines and chemokines (TNFα, IL6, IL8, INFγ). Additive effects of these immediately promote the low energy-metabolism as well as inflammation. Oxidative stress, mitochondrial dysfunction, and inflammation contribute to the direct nicotine toxicity via nAChRs in diabetes. The investigator identified that skeletal muscle insulin-resistance occurs in smokers due to phosphorylation of insulin receptor substrate1 (IRS1) at Ser-636 position. CONCLUSION Tobacco exposure initiates free radical related immunological impairment, DNA damage, and inflammation. So, the present analysis is of importance to figure out the mechanistic layout of tobacco-induced tissue damage and its possible therapeutic interventions.
Collapse
Affiliation(s)
- Suchismita Mukharjee
- Post Graduate Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Rangamati, Midnapore, WB, 721102, India
| | - Sarbashri Bank
- Post Graduate Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Rangamati, Midnapore, WB, 721102, India
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Rangamati, Midnapore, WB, 721102, India
| |
Collapse
|
22
|
Adams RCM, Smith C. Chronic Gestational Inflammation: Transfer of Maternal Adaptation over Two Generations of Progeny. Mediators Inflamm 2019; 2019:9160941. [PMID: 31582905 PMCID: PMC6754931 DOI: 10.1155/2019/9160941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Changes in the in utero environment result in generational transfer of maladapted physiology in the context of conditions such as stress, obesity, and anxiety. Given the significant contribution of noncommunicable diseases-which are characterised by chronic inflammation-to population mortality, the potential for chronic maternal inflammation mediating foetal programming is a growing concern. The extent of generational transfer in terms of immune functionality and leukocyte glucocorticoid sensitivity was investigated over two generations of offspring (F1 and F2) in a model of chronic LPS-induced maternal inflammation in C57/BL/6 mice. Maternal inflammation resulted in glucocorticoid hypersensitivity (increased glucocorticoid receptor expression levels) in the majority of leukocyte subpopulations in both F1 and F2 offspring. Furthermore, splenocytes stimulated with LPS in vitro exhibited exacerbated inflammatory cytokine responses, which were even more prominent in F2 than F1; this effect could be ascribed to NLRP3 inflammasome hyperactivity in F1 but not F2. Current data illustrates that parental chronic inflammation may mediate the inflammatory profile in offspring, potentially propagating a maladapted proinflammatory phenotype in subsequent generations.
Collapse
Affiliation(s)
- R. C. M. Adams
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, South Africa
- Fluorescence Microscopy Unit, Central Analytical Facilities, Stellenbosch University, South Africa
| | - C. Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, South Africa
| |
Collapse
|
23
|
Mei D, Tan WSD, Wong WSF. Pharmacological strategies to regain steroid sensitivity in severe asthma and COPD. Curr Opin Pharmacol 2019; 46:73-81. [PMID: 31078066 DOI: 10.1016/j.coph.2019.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 11/19/2022]
Abstract
Corticosteroid is the most widely used anti-inflammatory agent for asthma and chronic obstructive pulmonary disease (COPD). However, most of the severe asthmatics and COPD patients show poor response to the anti-inflammatory benefits of corticosteroids. Corticosteroid resistance is a major therapeutic challenge to the treatment of severe asthma and COPD. Cellular and molecular mechanisms underlying steroid insensitivity in severe asthma and COPD are still not fully understood. This review aims to recapitulate recent discoveries of potential contributing mechanisms of steroid resistance, and to appraise new therapeutic strategies shown to restore steroid sensitivity in experimental models of severe asthma and COPD, and in human clinical trials. It has been revealed that pro-inflammatory cytokines such as IFN-γ, TNF-α, TGF-β, IL-17A, IL-27, IL-33 and thymic stromal lymphopoietin (TSLP) may contribute to steroid resistance in severe asthma and COPD. These cytokines together with allergens, pathogens, and cigarette smoke can modulate multiple signaling pathways including PI3Kδ/Akt/mTOR, JAK1/2-STAT1/5, p38MAPK/JNK, Nrf2/HDAC2/c-Jun, heightened glucocorticoid receptor (GR)β/GRα ratio, and casein kinase 1 (CK1δ/ε)/cofilin 1, to induce steroid insensitivity. More recently, microRNAs such as miR-9, miR-21, and miR-126 have been implicated for corticosteroid insensitivity in asthma and COPD. Therapeutic strategies such as cytokine-specific biologics, signaling molecule-specific small molecule inhibitors, and microRNA-specific antagomir oligonucleotides are potentially promising approaches to reverse corticosteroid resistance. A panel of clinically effective drugs have shown promise in restoring steroid resistance in experimental models, and it is highly probable that some of these molecules can be successfully repositioned for the clinical use in COPD and severe asthma.
Collapse
Affiliation(s)
- Dan Mei
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600, Singapore
| | - Wan Shun Daniel Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600, Singapore
| | - Wai Shiu Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600, Singapore; Immunology Program, Life Science Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, 1 CREATE Way, 138602, Singapore.
| |
Collapse
|
24
|
Anti-inflammatory effects of the phosphodiesterase type 4 inhibitor CHF6001 on bronchoalveolar lavage lymphocytes from asthma patients. Cytokine 2018; 113:68-73. [PMID: 29934047 DOI: 10.1016/j.cyto.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/09/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lymphocytes play a key role in asthma pathophysiology, secreting various cytokines involved in chronic inflammation. CHF6001 is a highly potent and selective phosphodiesterase type 4 (PDE4) inhibitor designed for inhaled administration and has been shown to reduce the late asthmatic response. However, the effect of PDE4 inhibition on the different cytokines produced by lung lymphocytes from asthma patients has not been examined. METHODS This study investigated the anti-inflammatory effects of CHF6001 and the corticosteroid, 17-BMP, on T-cell receptor (TCR) stimulated Th1, Th2 and Th17 cytokine release from bronchoalveolar lavage (BAL) cells from mild (n = 12) and moderate asthma (n = 12) patients. RESULTS CHF6001 inhibited IFNγ, IL-2 and IL-17, but not IL-13, secretion from both mild and moderate asthma patient BAL cells; there was a greater effect on IFNγ and IL-2 than IL-17. The corticosteroid inhibited all four cytokines from both patient groups, but was less effective in cells from more severe patients. CHF6001 had a greater inhibitory effect on IFNγ and IL-2 than 17-BMP. CONCLUSION The PDE4 inhibitor CHF6001 had a greater effect on Th1 cytokines from TCR-stimulated BAL cells than corticosteroid. This pharmacological effect suggests the therapeutic potential for PDE4 inhibitors to be used in the subset of more severe asthma patients with increased airway levels of IFNγ.
Collapse
|
25
|
Southworth T, Mason S, Bell A, Ramis I, Calbet M, Domenech A, Prats N, Miralpeix M, Singh D. PI3K, p38 and JAK/STAT signalling in bronchial tissue from patients with asthma following allergen challenge. Biomark Res 2018; 6:14. [PMID: 29651336 PMCID: PMC5896031 DOI: 10.1186/s40364-018-0128-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/02/2018] [Indexed: 01/01/2023] Open
Abstract
Background Inhaled allergen challenges are often used to evaluate novel asthma treatments in early phase clinical trials. Current novel therapeutic targets in asthma include phosphoinositide 3-kinases (PI3K) delta and gamma, p38 mitogen-activated protein kinase (p38) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signalling pathways. The activation of these pathways following allergen exposure in atopic asthma patients it is not known. Methods We collected bronchial biopsies from 11 atopic asthma patients at baseline and after allergen challenge to investigate biomarkers of PI3K, p38 MAPK and JAK/STAT activation by immunohistochemistry. Cell counts and levels of eosinophil cationic protein and interleukin-5 were also assessed in sputum and bronchoalvelar lavage. Results Biopsies collected post-allergen had an increased percentage of epithelial cells expressing phospho-p38 (17.5 vs 25.6%, p = 0.04), and increased numbers of sub-epithelial cells expressing phospho-STAT5 (122.2 vs 540.6 cells/mm2, p = 0.01) and the PI3K marker phospho-ribosomal protein S6 (180.7 vs 777.3 cells/mm2,p = 0.005). Type 2 inflammation was increased in the airways post allergen, with elevated levels of eosinophils, interleukin-5 and eosinophil cationic protein. Conclusions Future clinical trials of novel kinase inhibitors could use the allergen challenge model in proof of concept studies, while employing these biomarkers to investigate pharmacological inhibition in the lungs.
Collapse
Affiliation(s)
- Thomas Southworth
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK.,3The University of Manchester, 2nd Floor Education and Research Center, Wythenshawe Hospital, Southmoor Road, Manchester, M23 9LT UK
| | - Sarah Mason
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Alan Bell
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Isabel Ramis
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Marta Calbet
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Anna Domenech
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Neus Prats
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Dave Singh
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
26
|
MiR-3202 protects smokers from chronic obstructive pulmonary disease through inhibiting FAIM2: An in vivo and in vitro study. Exp Cell Res 2017; 362:370-377. [PMID: 29208459 DOI: 10.1016/j.yexcr.2017.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022]
Abstract
Previous study found the variable miR-3202 as a potential biomarker in smoker with or without chronic obstructive pulmonary disease (COPD). This study aims to identify the molecular involvement of miR-3202 in the pathophysiology of COPD. Level of miR-3202 in blood sample of non-smoker non-COPD(C), smoker without COPD(S), smoker with stable COPD(S-COPD) and smoker with acute exacerbation COPD(AE-COPD) was observed by quantitative real-time PCR. By bioinformatics prediction, Fas apoptotic inhibitory molecule 2 (FAIM2) was identified as a potential target of miR-3202. In vitro, human bronchial epithelial (HBE) cells and cigarette smoke extract (CSE) stimulated T lymphocytes were co-cultured. Cell proliferation and apoptosis of HBE cells were determinated. In vivo, rats were exposed in cigarette smoke for 30 days and expression of miR-3202 and FAIM2 in bronchia were detected. Results showed that The miR-3202 was down-regulated in S, S-COPD and AE-COPD group when compared with C group. Decreased level of miR-3202 was also observed in CSE treated T lymphocyte. Additionally, CSE stimulation increased INF-γ and TNF-α levels and FAIM2 expression whereas inhibited Fas and FasL expressions in T lymphocytes. However, these effects were significantly suppressed by miR-3202 overexpression and enhanced by miR-3202 inhibitor. Likely to exogenous miR-3202, FAIM2 knockdown significantly inhibited HBE cells apoptosis, as well as inhibited INF-γ and TNF-α levels. In COPD rats model, miR-3202 was reduced while FAIM2 was up-regulated accordingly. Here, results suggest that high level miR-3202 in T lymphocytes may protect epithelial cells through targeting FAIM2. MiR-3202 might be used as a notable biomarker of COPD.
Collapse
|
27
|
Ufuk A, Assmus F, Francis L, Plumb J, Damian V, Gertz M, Houston JB, Galetin A. In Vitro and in Silico Tools To Assess Extent of Cellular Uptake and Lysosomal Sequestration of Respiratory Drugs in Human Alveolar Macrophages. Mol Pharm 2017; 14:1033-1046. [PMID: 28252969 DOI: 10.1021/acs.molpharmaceut.6b00908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of respiratory drugs in human alveolar macrophages (AMs) has not been extensively studied in vitro and in silico despite its potential impact on therapeutic efficacy and/or occurrence of phospholipidosis. The current study aims to characterize the accumulation and subcellular distribution of drugs with respiratory indication in human AMs and to develop an in silico mechanistic AM model to predict lysosomal accumulation of investigated drugs. The data set included 9 drugs previously investigated in rat AM cell line NR8383. Cell-to-unbound medium concentration ratio (Kp,cell) of all drugs (5 μM) was determined to assess the magnitude of intracellular accumulation. The extent of lysosomal sequestration in freshly isolated human AMs from multiple donors (n = 5) was investigated for clarithromycin and imipramine (positive control) using an indirect in vitro method (±20 mM ammonium chloride, NH4Cl). The AM cell parameters and drug physicochemical data were collated to develop an in silico mechanistic AM model. Three in silico models differing in their description of drug membrane partitioning were evaluated; model (1) relied on octanol-water partitioning of drugs, model (2) used in vitro data to account for this process, and model (3) predicted membrane partitioning by incorporating AM phospholipid fractions. In vitro Kp,cell ranged >200-fold for respiratory drugs, with the highest accumulation seen for clarithromycin. A good agreement in Kp,cell was observed between human AMs and NR8383 (2.45-fold bias), highlighting NR8383 as a potentially useful in vitro surrogate tool to characterize drug accumulation in AMs. The mean Kp,cell of clarithromycin (81, CV = 51%) and imipramine (963, CV = 54%) were reduced in the presence of NH4Cl by up to 67% and 81%, respectively, suggesting substantial contribution of lysosomal sequestration and intracellular binding in the accumulation of these drugs in human AMs. The in vitro data showed variability in drug accumulation between individual human AM donors due to possible differences in lysosomal abundance, volume, and phospholipid content, which may have important clinical implications. Consideration of drug-acidic phospholipid interactions significantly improved the performance of the in silico models; use of in vitro Kp,cell obtained in the presence of NH4Cl as a surrogate for membrane partitioning (model (2)) captured the variability in clarithromycin and imipramine Kp,cell observed in vitro and showed the best ability to predict correctly positive and negative lysosomotropic properties. The developed mechanistic AM model represents a useful in silico tool to predict lysosomal and cellular drug concentrations based on drug physicochemical data and system specific properties, with potential application to other cell types.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Frauke Assmus
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Laura Francis
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Jonathan Plumb
- Respiratory and Allergy Clinical Research Facility, University Hospital of South Manchester , Manchester, U.K
| | - Valeriu Damian
- Computational Modeling Sciences, DDS, GlaxoSmithKline , Upper Merion, Pennsylvania 19406, United States
| | - Michael Gertz
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K.,Pharmaceutical Sciences, pRED, Roche Innovation Center , Basel, Switzerland
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| |
Collapse
|
28
|
Chu JH, Hart JE, Chhabra D, Garshick E, Raby BA, Laden F. Gene expression network analyses in response to air pollution exposures in the trucking industry. Environ Health 2016; 15:101. [PMID: 27809917 PMCID: PMC5093980 DOI: 10.1186/s12940-016-0187-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/24/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND Exposure to air pollution, including traffic-related pollutants, has been associated with a variety of adverse health outcomes, including increased cardiopulmonary morbidity and mortality, and increased lung cancer risk. METHODS To better understand the cellular responses induced by air pollution exposures, we performed genome-wide gene expression microarray analysis using whole blood RNA sampled at three time-points across the work weeks of 63 non-smoking employees at 10 trucking terminals in the northeastern US. We defined genes and gene networks that were differentially activated in response to PM2.5 (particulate matter ≤ 2.5 microns in diameter) and elemental carbon (EC) and organic carbon (OC). RESULTS Multiple transcripts were strongly associated (padj < 0.001) with pollutant levels (48, 260, and 49 transcripts for EC, OC, and PM2.5, respectively), including 63 that were statistically significantly correlated with at least two out of the three exposures. These genes included many that have been implicated in ischemic heart disease, chronic obstructive pulmonary disease (COPD), lung cancer, and other pollution-related illnesses. Through the combination of Gene Set Enrichment Analysis and network analysis (using GeneMANIA), we identified a core set of 25 interrelated genes that were common to all three exposure measures and were differentially expressed in two previous studies assessing gene expression attributable to air pollution. Many of these are members of fundamental cancer-related pathways, including those related to DNA and metal binding, and regulation of apoptosis and also but include genes implicated in chronic heart and lung diseases. CONCLUSIONS These data provide a molecular link between the associations of air pollution exposures with health effects.
Collapse
Affiliation(s)
- Jen-hwa Chu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Jaime E. Hart
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Divya Chhabra
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Eric Garshick
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA USA
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Francine Laden
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
29
|
Southworth T, Plumb J, Gupta V, Pearson J, Ramis I, Lehner MD, Miralpeix M, Singh D. Anti-inflammatory potential of PI3Kδ and JAK inhibitors in asthma patients. Respir Res 2016; 17:124. [PMID: 27716212 PMCID: PMC5051065 DOI: 10.1186/s12931-016-0436-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/17/2016] [Indexed: 01/20/2023] Open
Abstract
Background Phosphatidylinositol 3-kinase delta (PI3Kδ) and Janus-activated kinases (JAK) are both novel anti-inflammatory targets in asthma that affect lymphocyte activation. We have investigated the anti-inflammatory effects of PI3Kδ and JAK inhibition on cytokine release from asthma bronchoalveolar lavage (BAL) cells and T-cell activation, and measured lung PI3Kδ and JAK signalling pathway expression. Method Cells isolated from asthma patients and healthy subjects were treated with PI3Kδ or JAK inhibitors, and/or dexamethasone, before T-cell receptor stimulation. Levels of IFNγ, IL-13 and IL-17 were measured by ELISA and flow cytometry was used to assess T-cell activation. PI3Kδ, PI3Kγ, phosphorylated protein kinase B (pAKT) and Signal Transducer and Activator of Transcription (STAT) protein expression were assessed by immunohistochemistry in bronchial biopsy tissue from asthma patients and healthy subjects. PI3Kδ expression in BAL CD3 cells was measured by flow cytometry. Results JAK and PI3Kδ inhibitors reduced cytokine levels from both asthma and healthy BAL cells. Combining dexamethasone with either a JAK or PI3Kδ inhibitor showed an additive anti-inflammatory effect. JAK and PI3Kδ inhibitors were shown to have direct effects on T-cell activation. Immunohistochemistry showed increased numbers of PI3Kδ expressing cells in asthma bronchial tissue compared to controls. Asthma CD3 cells in BAL expressed higher levels of PI3Kδ protein compared to healthy cells. Conclusions Targeting PI3Kδ or JAK may prove effective in reducing T-cell activation and the resulting cytokine production in asthma. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0436-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Southworth
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK.
| | - Jonathan Plumb
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| | - Vandana Gupta
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| | - James Pearson
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| | - Isabel Ramis
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Martin D Lehner
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Dave Singh
- The University of Manchester; Division of Infection, Immunity & Respiratory Medicine; Manchester Academic Health Science Centre; University Hospital South Manchester NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, UK
| |
Collapse
|
30
|
Roy A, Srivastava M, Saqib U, Liu D, Faisal SM, Sugathan S, Bishnoi S, Baig MS. Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int Immunopharmacol 2016; 40:79-89. [PMID: 27584057 DOI: 10.1016/j.intimp.2016.08.026] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022]
Abstract
Inflammation is set off when innate immune cells detect infection or tissue injury. Tight control of the severity, duration, and location of inflammation is an absolute requirement for an appropriate balance between clearance of injured tissue and pathogens versus damage to host cells. Impeding the risk associated with the imbalance in the inflammatory response requires precise identification of potential therapeutic targets involved in provoking the inflammation. Toll-like receptors (TLRs) primarily known for the pathogen recognition and subsequent immune responses are being investigated for their pathogenic role in various chronic diseases. A mammalian homologue of Drosophila Toll receptor 4 (TLR4) was shown to induce the expression of genes involved in inflammatory responses. Signaling pathways via TLR4 activate various transcription factors like Nuclear factor kappa-light-chain-enhancer (NF-κB), activator protein 1 (AP1), Signal Transducers and Activators of Transcription family of transcription factors (STAT1) and Interferon regulatory factors (IRF's), which are the key players regulating the inflammatory response. Inhibition of these targets and their upstream signaling molecules provides a potential therapeutic approach to treat inflammatory diseases. Here we review the therapeutic targets involved in TLR-4 signaling pathways that are critical for suppressing chronic inflammatory disorders.
Collapse
Affiliation(s)
- Anjali Roy
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Mansi Srivastava
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Uzma Saqib
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore (IITI), Indore, MP, India
| | - Dongfang Liu
- Center for Inflammation & Epigenetics, Houston Methodist Research Institute, Houston, TX, USA
| | - Syed M Faisal
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Subi Sugathan
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Suman Bishnoi
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Mirza S Baig
- Center for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India.
| |
Collapse
|
31
|
Ji J, von Schéele I, Billing B, Dahlén B, Lantz AS, Larsson K, Palmberg L. Effects of budesonide on toll-like receptor expression in alveolar macrophages from smokers with and without COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:1035-43. [PMID: 27274225 PMCID: PMC4876676 DOI: 10.2147/copd.s102668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Alveolar macrophages (AMs) are equipped with innate immune receptors such as toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4). In primary bronchial epithelial cells, exposure of toll-like receptor (TLR) ligands or tumor necrosis factor-alpha (TNF-α) increased TLR2 mRNA expression and reduced interleukin-8 (IL-8) release when coincubated with glucocorticosteroids. The aim of this study was to compare TLR2 and TLR4 expression levels and the effect of a glucocorticosteroid after stimulation with TLR ligands on AMs from smokers with and without COPD compared with the healthy controls. SUBJECTS AND METHODS Bronchoalveolar lavage was performed, and AMs were isolated from smokers with (n=10) and without COPD (n=11) and healthy controls (n=10) and stimulated ex vivo with peptidoglycan (PGN), lipopolysaccharide (LPS), or TNF-α ± budesonide (Bud). Blocking antibodies to TLR2 or TLR4 were added before stimulation with LPS or PGN ± Bud, respectively. The release of proinflammatory cytokine (TNF-α), chemoattractant (CXCL8), and TLR expression was analyzed by enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction. RESULTS LPS, PGN, and TNF-α induced an increased release of IL-8 and TNF-α in the AMs in all the groups independent of smoking or disease. These responses were inhibited by a glucocorticosteroid (Bud) in all the three groups, except PGN-induced IL-8 secretion in smokers without COPD. Bud increased TLR2 expression in the healthy controls and smokers without COPD. Costimulation of TLR ligands and Bud significantly enhanced TLR2 mRNA expression in both groups of smokers compared with TLR ligands alone. In smokers, costimulation with PGN and Bud significantly increased TLR2 expression when compared with Bud alone. On stimulation with the TLR4 agonist, LPS downregulated TLR4 mRNA expression in all the three groups. CONCLUSION The combination of glucocorticosteroids with TLR ligands can increase TLR2 expression, thereby improving host defense in smokers. Also this combination can decrease the secretion of proinflammatory cytokines and chemokines as an anti-inflammatory response. Our findings indicate that glucocorticosteroid therapy strengthens immune defense pathways, which may have implication during exacerbation caused by microorganisms.
Collapse
Affiliation(s)
- Jie Ji
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ida von Schéele
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bo Billing
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Barbro Dahlén
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ann-Sofie Lantz
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kjell Larsson
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lena Palmberg
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Bal SM, Bernink JH, Nagasawa M, Groot J, Shikhagaie MM, Golebski K, van Drunen CM, Lutter R, Jonkers RE, Hombrink P, Bruchard M, Villaudy J, Munneke JM, Fokkens W, Erjefält JS, Spits H, Ros XR. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol 2016; 17:636-45. [DOI: 10.1038/ni.3444] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/22/2016] [Indexed: 12/14/2022]
|
33
|
Lea S, Harbron C, Khan N, Booth G, Armstrong J, Singh D. Corticosteroid insensitive alveolar macrophages from asthma patients; synergistic interaction with a p38 mitogen-activated protein kinase (MAPK) inhibitor. Br J Clin Pharmacol 2016; 79:756-66. [PMID: 25358442 DOI: 10.1111/bcp.12536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/28/2014] [Indexed: 02/06/2023] Open
Abstract
AIMS Some asthma patients remain symptomatic despite using high doses of inhaled corticosteroids (ICS). We used alveolar macrophages to identify individual patients with insensitivity to corticosteroids and to evaluate the anti-inflammatory effects of a p38 mitogen-activated protein kinase (MAPK) inhibitor combined with a corticosteroid on these cells. METHODS Alveolar macrophages from 27 asthma patients (classified according to the Global Initiative for Asthma (GINA) treatment stage. Six GINA1, 10 GINA2 and 11 GINA3/4) were stimulated with lipoploysaccharide (LPS) (1 μg ml(-1)). The effects of dexamethasone (dex 1-1000 nm), the p38 MAPK inhibitor 1-(5-tert-butyl-2-p-tolyl-2Hpyrazol-3-yl)-3(4-(2-morpholin-4-yl-ethoxy)naphthalen-1-yl)urea (BIRB-796 1-1000 nm) and both drugs combined at all concentrations on supernatant TNFα, IL-6 and CXCL-8 concentrations were analyzed by ELISA. Dose-sparing and efficacy enhancing effects of combination treatment were determined. RESULTS Dexamethasone reduced LPS-induced TNFα, IL-6 and CXCL-8 in all groups, but maximum inhibition was significantly reduced for GINA3/4 compared with GINA2 and GINA1 (P < 0.01). A subgroup of corticosteroid insensitive patients with a reduced effect of dexamethasone on cytokine secretion were identified. BIRB-796 in combination with dexamethasone significantly increased cytokine inhibition compared with either drug alone (P < 0.001) in all groups. This effect was greater in corticosteroid insensitive compared with sensitive patients. There were significant synergistic dose-sparing effects (P < 0.05) for the combination treatment on inhibition of TNFα, IL-6 and CXCL-8 in all groups. There was also significant efficacy enhancing benefits (P < 0.05) on TNFα and IL-6. CONCLUSIONS p38 MAPK inhibitors synergistically enhance efficacy of corticosteroids in macrophages from asthma patients. This effect is greater in corticosteroid insensitive asthma patients, suggesting that this class of drug should be targeted to this patient phenotype.
Collapse
Affiliation(s)
- Simon Lea
- Manchester Academic Health Science Centre, University Hospital South Manchester NHS Foundation Trust, NIHR South Manchester Respiratory and Allergy Clinical Research Facility, The University of Manchester, Manchester, M23 9LT, UK
| | | | | | | | | | | |
Collapse
|
34
|
Bartko J, Stiebellehner L, Derhaschnig U, Schoergenhofer C, Schwameis M, Prosch H, Jilma B. Dissociation between systemic and pulmonary anti-inflammatory effects of dexamethasone in humans. Br J Clin Pharmacol 2016; 81:865-77. [PMID: 26647918 PMCID: PMC4834593 DOI: 10.1111/bcp.12857] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022] Open
Abstract
Aims The local pulmonary inflammatory response has a different temporal and qualitative profile compared with the systemic inflammatory response. Although glucocorticoids substantially downregulate the systemic release of acute‐phase mediators, it is not clear whether they have comparable inhibitory effects in the human lung compartment. Therefore, we compared the anti‐inflammatory effects of a pure glucocorticoid agonist, dexamethasone, on bronchoalveolar lavage and blood cytokine concentrations in response to bronchially instilled endotoxin. Methods In this randomized, double‐blind and placebo‐controlled trial, 24 volunteers received dexamethasone or placebo and had endotoxin instilled into a lung segment and saline instilled into a contralateral segment, followed by bronchoalveolar lavage. Results Bronchially instilled endotoxin induced a local and systemic inflammatory response. Dexamethasone strongly blunted the systemic interleukin (IL) 6 and C‐reactive protein release. In sharp contrast, dexamethasone left the local release of acute‐phase mediators in the lungs virtually unchanged: bronchoalveolar lavage levels of IL‐6 were only 18% lower and levels of IL‐8 were even higher with dexamethasone compared with placebo, although the differences between treatments were not statistically significant (P = 0.07 and P = 0.08, respectively). However, dexamethasone had inhibitory effects on pulmonary protein extravasation and neutrophil migration. Conclusions The present study demonstrated a remarkable dissociation between the systemic anti‐inflammatory effects of glucocorticoids and its protective effects on capillary leak on the one hand and surprisingly low anti‐inflammatory effects in the lungs on the other.
Collapse
Affiliation(s)
- Johann Bartko
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Ulla Derhaschnig
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Michael Schwameis
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- Department of Radiology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Nurwidya F, Damayanti T, Yunus F. The Role of Innate and Adaptive Immune Cells in the Immunopathogenesis of Chronic Obstructive Pulmonary Disease. Tuberc Respir Dis (Seoul) 2016; 79:5-13. [PMID: 26770229 PMCID: PMC4701795 DOI: 10.4046/trd.2016.79.1.5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 01/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic and progressive inflammatory disease of the airways and lungs that results in limitations of continuous airflow and is caused by exposure to noxious gasses and particles. A major cause of morbidity and mortality in adults, COPD is a complex disease pathologically mediated by many inflammatory pathways. Macrophages, neutrophils, dendritic cells, and CD8+ T-lymphocytes are the key inflammatory cells involved in COPD. Recently, the non-coding small RNA, micro-RNA, have also been intensively investigated and evidence suggest that it plays a role in the pathogenesis of COPD. Here, we discuss the accumulated evidence that has since revealed the role of each inflammatory cell and their involvement in the immunopathogenesis of COPD. Mechanisms of steroid resistance in COPD will also be briefly discussed.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Respiratory Medicine, Persahabatan General Hospital, University of Indonesia Faculty of Medicine, Jakarta, Indonesia
| | - Triya Damayanti
- Department of Respiratory Medicine, Persahabatan General Hospital, University of Indonesia Faculty of Medicine, Jakarta, Indonesia
| | - Faisal Yunus
- Department of Respiratory Medicine, Persahabatan General Hospital, University of Indonesia Faculty of Medicine, Jakarta, Indonesia
| |
Collapse
|
36
|
Higham A, Booth G, Lea S, Southworth T, Plumb J, Singh D. The effects of corticosteroids on COPD lung macrophages: a pooled analysis. Respir Res 2015; 16:98. [PMID: 26289362 PMCID: PMC4545868 DOI: 10.1186/s12931-015-0260-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is large variation in the therapeutic response to inhaled corticosteroids (ICS) in COPD patients. We present a pooled analysis of our previous studies investigating the effects of corticosteroids on lung macrophages, in order to robustly determine whether corticosteroid sensitivity in COPD cells is reduced compared to controls, and also to evaluate the degree of between individual variation in drug response. METHODS Data from 20 never smokers (NS), 27 smokers (S) and 45 COPD patients was used. Lung macropahges had been stimulated with lipopolysaccharide (LPS), with or without the corticosteroid dexamethasone, and tumour necrosis factor (TNF)-α, interleukin (IL)-6 and chemokine C-X-C motif ligand (CXCL) 8 production was measured. RESULTS There was no difference in the anti-inflammatory effects of corticosteroids when comparing group mean data of COPD patients versus controls. The inhibition of TNF-α and IL-6 was greater than CXCL8. The effects of corticosteroids varied considerably between subjects, particularly at lower corticosteroid concentrations. CONCLUSIONS We confirm that overall corticosteroid sensitivity in COPD lung macrophages is not reduced compared to controls. The varied effect of corticosteroids between subjects suggests that some individuals have an inherently poor corticosteroid response. The limited suppression of lung macrophage derived CXCL8 may promote neutrophilic inflammation in COPD.
Collapse
Affiliation(s)
- Andrew Higham
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK.
| | - George Booth
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK.
| | - Simon Lea
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK.
| | - Thomas Southworth
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK.
| | - Jonathan Plumb
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK.
| | - Dave Singh
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
37
|
O'Connell D, Bouazza B, Kokalari B, Amrani Y, Khatib A, Ganther JD, Tliba O. IFN-γ-induced JAK/STAT, but not NF-κB, signaling pathway is insensitive to glucocorticoid in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L348-59. [PMID: 26092996 PMCID: PMC4538237 DOI: 10.1152/ajplung.00099.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/12/2015] [Indexed: 12/14/2022] Open
Abstract
Although the majority of patients with asthma are well controlled by inhaled glucocorticoids (GCs), patients with severe asthma are poorly responsive to GCs. This latter group is responsible for a disproportionate share of health care costs associated with asthma. Recent studies in immune cells have incriminated interferon-γ (IFN-γ) as a possible trigger of GC insensitivity in severe asthma; however, little is known about the role of IFN-γ in modulating GC effects in other clinically relevant nonimmune cells, such as airway epithelial cells. We hypothesized that IFN-γ-induced JAK/STAT-associated signaling pathways in airway epithelial cells are insensitive to GCs and that strategies aimed at inhibiting JAK/STAT pathways can restore steroid responsiveness. Using Western blot analysis we found that all steps of the IFN-γ-induced JAK/STAT signaling pathway were indeed GC insensitive. Transfection of cells with reporter plasmid showed IFN-γ-induced STAT1-dependent gene transcription to be also GC insensitive. Interestingly, real-time PCR analysis showed that IFN-γ-inducible genes (IIGs) were differentially affected by GC, with CXCL10 being GC sensitive and CXCL11 and IFIT2 being GC insensitive. Further investigation showed that the differential sensitivity of IIGs to GC was due to their variable dependency to JAK/STAT vs. NF-κB signaling pathways with GC-sensitive IIGs being more NF-κB dependent and GC-insensitive IIGs being more JAK/STAT dependent. Importantly, transfection of cells with siRNA-STAT1 was able to restore steroid responsiveness of GC-insensitive IIGs. Taken together, our results show the insensitivity of IFN-γ-induced JAK/STAT signaling pathways to GC effects in epithelial cells and also suggest that targeting STAT1 could restore GC responsiveness in patients with severe asthma.
Collapse
Affiliation(s)
- Danielle O'Connell
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania; and
| | - Belaid Bouazza
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania; and
| | - Blerina Kokalari
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania; and
| | - Yassine Amrani
- Institute for Lung Health, Department of Infection, Inflammation and Immunity, University of Leicester, Leicester, United Kingdom
| | - Alaa Khatib
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania; and
| | - John David Ganther
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania; and
| | - Omar Tliba
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania; and
| |
Collapse
|
38
|
Kohno K, Ohashi E, Sano O, Kusano H, Kunikata T, Arai N, Hanaya T, Kawata T, Nishimoto T, Fukuda S. Anti-inflammatory effects of adenosine N1-oxide. J Inflamm (Lond) 2015; 12:2. [PMID: 25632271 PMCID: PMC4308844 DOI: 10.1186/s12950-014-0045-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 12/16/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Adenosine is a potent endogenous anti-inflammatory and immunoregulatory molecule. Despite its promise, adenosine's extremely short half-life in blood limits its clinical application. Here, we examined adenosine N1-oxide (ANO), which is found in royal jelly. ANO is an oxidized product of adenosine at the N1 position of the adenine base moiety. We found that it is refractory to adenosine deaminase-mediated conversion to inosine. We further examined the anti-inflammatory activities of ANO in vitro and in vivo. METHODS The effect of ANO on pro-inflammatory cytokine secretion was examined in mouse peritoneal macrophages and the human monocytic cell line THP-1, and compared with that of adenosine, synthetic adenosine receptor (AR)-selective agonists and dipotassium glycyrrhizate (GK2). The anti-inflammatory activity of ANO in vivo was examined in an LPS-induced endotoxin shock model in mice. RESULTS ANO inhibited secretion of inflammatory mediators at much lower concentrations than adenosine and GK2 when used with peritoneal macrophages and THP-1 cells that were stimulated by LPS plus IFN-γ. The potent anti-inflammatory activity of ANO could not be solely accounted for by its refractoriness to adenosine deaminase. ANO was superior to the synthetic A1 AR-selective agonist, 2-chloro-N(6)-cyclopentyladenosine (CCPA), A2A AR-selective agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamideadenosine hydrochloride (CGS21680), and A3 AR-selective agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), in suppressing the secretion of a broad spectrum of pro-inflammatory cytokines by peritoneal macrophages. The capacities of ANO to inhibit pro-inflammatory cytokine production by THP-1 cells were comparable with those of CCPA and IB-MECA. Reflecting its potent anti-inflammatory effects in vitro, intravenous administration of ANO significantly reduced lethality of LPS-induced endotoxin shock. A significant increase in survival rate was also observed by oral administration of ANO. Mechanistic analysis suggested that the up-regulation of the anti-inflammatory transcription factor c-Fos was, at least in part, involved in the ANO-induced suppression of pro-inflammatory cytokine secretion. CONCLUSIONS Our data suggest that ANO, a naturally occurring molecule that is structurally close to adenosine but is functionally more potent, presents potential strategies for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Keizo Kohno
- />Core Technology Division, Research and Development Center, Hayashibara Co., Ltd, Okayama, Japan
| | - Emiko Ohashi
- />Core Technology Division, Research and Development Center, Hayashibara Co., Ltd, Okayama, Japan
| | - Osamu Sano
- />Core Technology Division, Research and Development Center, Hayashibara Co., Ltd, Okayama, Japan
| | - Hajime Kusano
- />Functional Dye Division, Functional Dye Department, Hayashibara Co., Ltd, Okayama, Japan
| | - Toshio Kunikata
- />Core Technology Division, Research and Development Center, Hayashibara Co., Ltd, Okayama, Japan
| | - Norie Arai
- />Applied Technology Division, Research and Development Center, Hayashibara Co., Ltd, Okayama, Japan
| | - Toshiharu Hanaya
- />Core Technology Division, Research and Development Center, Hayashibara Co., Ltd, Okayama, Japan
| | - Toshio Kawata
- />Functional Dye Division, Functional Dye Department, Hayashibara Co., Ltd, Okayama, Japan
| | - Tomoyuki Nishimoto
- />Core Technology Division, Research and Development Center, Hayashibara Co., Ltd, Okayama, Japan
| | - Shigeharu Fukuda
- />Core Technology Division, Research and Development Center, Hayashibara Co., Ltd, Okayama, Japan
- />Applied Technology Division, Research and Development Center, Hayashibara Co., Ltd, Okayama, Japan
| |
Collapse
|
39
|
Zuo L, He F, Sergakis GG, Koozehchian MS, Stimpfl JN, Rong Y, Diaz PT, Best TM. Interrelated role of cigarette smoking, oxidative stress, and immune response in COPD and corresponding treatments. Am J Physiol Lung Cell Mol Physiol 2014; 307:L205-18. [DOI: 10.1152/ajplung.00330.2013] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cigarette smoking (CS) can impact the immune system and induce pulmonary disorders such as chronic obstructive pulmonary disease (COPD), which is currently the fourth leading cause of chronic morbidity and mortality worldwide. Accordingly, the most significant risk factor associated with COPD is exposure to cigarette smoke. The purpose of the present study is to provide an updated overview of the literature regarding the effect of CS on the immune system and lungs, the mechanism of CS-induced COPD and oxidative stress, as well as the available and potential treatment options for CS-induced COPD. An extensive literature search was conducted on the PubMed/Medline databases to review current COPD treatment research, available in the English language, dating from 1976 to 2014. Studies have investigated the mechanism by which CS elicits detrimental effects on the immune system and pulmonary function through the use of human and animal subjects. A strong relationship among continued tobacco use, oxidative stress, and exacerbation of COPD symptoms is frequently observed in COPD subjects. In addition, therapeutic approaches emphasizing smoking cessation have been developed, incorporating counseling and nicotine replacement therapy. However, the inability to reverse COPD progression establishes the need for improved preventative and therapeutic strategies, such as a combination of intensive smoking cessation treatment and pharmaceutical therapy, focusing on immune homeostasis and redox balance. CS initiates a complex interplay between oxidative stress and the immune response in COPD. Therefore, multiple approaches such as smoking cessation, counseling, and pharmaceutical therapies targeting inflammation and oxidative stress are recommended for COPD treatment.
Collapse
Affiliation(s)
- Li Zuo
- Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Feng He
- Department of Health and Kinesiology, Purdue University, Lafayette, Indiana
| | - Georgianna G. Sergakis
- Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Majid S. Koozehchian
- Exercise and Sport Nutrition Laboratory, Department of Health & Kinesiology, Texas A&M University, College Station, Texas
| | - Julia N. Stimpfl
- Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yi Rong
- Department of Radiation Oncology, James Cancer Hospital, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Philip T. Diaz
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Thomas M. Best
- Division of Sports Medicine, Department of Family Medicine, Sports Health & Performance Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
40
|
Jenkins BJ. Transcriptional regulation of pattern recognition receptors by Jak/STAT signaling, and the implications for disease pathogenesis. J Interferon Cytokine Res 2014; 34:750-8. [PMID: 25051239 DOI: 10.1089/jir.2014.0081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cytokines are well known for their pleiotropism, affecting a large number of cellular responses, including proliferation, survival, functional maturation, and immunomodulation. It is, therefore, not surprising that both the deregulated expression of cytokines and the subsequent activation of their downstream signaling pathways is a common feature of many cancers, as well as chronic inflammatory, autoimmune, metabolic, and cardiovascular diseases. In this regard, activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is the predominant intracellular signaling event triggered by cytokines, with STAT1 and STAT3 having the greatest diversity of biological functions among the 7 known members of the STAT family of latent transcription factors. Notably, over recent years, it has emerged that STAT1 and STAT3 are employed by various cytokines to manipulate the signal output of heterologous receptors of the innate immune system, namely pattern recognition receptors (PRRs), with both immune and nonimmune (eg, oncogenic, metabolic) cellular processes being affected. This review highlights these pivotal advancements in our understanding of how a cross talk between cytokine and PRR signaling networks can impact on a variety of cellular responses during disease pathogenesis, and the potential therapeutic implications of targeting these networks.
Collapse
Affiliation(s)
- Brendan John Jenkins
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research (formerly Monash Institute of Medical Research) , Clayton, Victoria, Australia
| |
Collapse
|
41
|
Higham A, Lea S, Ray D, Singh D. Corticosteroid effects on COPD alveolar macrophages: dependency on cell culture methodology. J Immunol Methods 2014; 405:144-53. [PMID: 24530567 PMCID: PMC4004046 DOI: 10.1016/j.jim.2014.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 01/01/2023]
Abstract
It is unclear whether cell culture methodology affects the corticosteroid sensitivity of chronic obstructive pulmonary disease (COPD) alveolar macrophages. We compared the effect of a short and a long isolation procedure on corticosteroid inhibition of lipopolysaccharide (LPS) stimulated cytokine release from COPD alveolar macrophages. We also investigated signalling pathways associated with macrophage activation during cell isolation. Macrophages cultured using a short isolation protocol released higher unstimulated levels of tumour necrosis factor (TNF)-α and chemokine C-X-C motif ligand (CXCL) 8; these macrophages were less sensitive to corticosteroid inhibition of LPS stimulated TNF-α and CXCL8 release when compared to a long isolation procedure. This was associated with increased p38 mitogen activated kinase (MAPK) activation. The p38 MAPK inhibitor, BIRB-796, significantly reduced unstimulated cytokine release. A key finding of this study was that both cell culture methods showed no difference in the corticosteroid sensitivity between COPD and control macrophages. We conclude that the culture of alveolar macrophages using a short isolation procedure alters cytokine production through p38 MAPK activation; this is associated with a change in corticosteroid sensitivity.
Collapse
Affiliation(s)
- Andrew Higham
- The University of Manchester, Manchester Academic Health and Science Centre, University Hospital of South Manchester Foundation Trust, Respiratory and Allergy Centre, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester M23 9LT, UK.
| | - Simon Lea
- The University of Manchester, Manchester Academic Health and Science Centre, University Hospital of South Manchester Foundation Trust, Respiratory and Allergy Centre, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester M23 9LT, UK
| | - David Ray
- The University of Manchester, Manchester Academic Health and Science Centre, Central Manchester University Hospitals Foundation Trust, Centre for Endocrinology and Diabetes, Institute for Human Development, Faculty of Medical and Human Sciences, Manchester M13 9PT, UK
| | - Dave Singh
- The University of Manchester, Manchester Academic Health and Science Centre, University Hospital of South Manchester Foundation Trust, Respiratory and Allergy Centre, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester M23 9LT, UK
| |
Collapse
|
42
|
Wei Q, Sha Y, Bhattacharya A, Abdel Fattah E, Bonilla D, Jyothula SSSK, Pandit L, Khurana Hershey GK, Eissa NT. Regulation of IL-4 receptor signaling by STUB1 in lung inflammation. Am J Respir Crit Care Med 2014; 189:16-29. [PMID: 24251647 DOI: 10.1164/rccm.201305-0874oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE IL-4Rα, the common receptor component for IL-4 and IL-13, plays a critical role in IL-4- and IL-13-mediated signaling pathways that regulate airway inflammation and remodeling. However, the regulatory mechanisms underlying IL-4Rα turnover and its signal termination remain elusive. OBJECTIVES To evaluate the role of STUB1 (STIP1 homology and U-Box containing protein 1) in regulating IL-4R signaling in airway inflammation. METHODS The roles of STUB1 in IL-4Rα degradation and its signaling were investigated by immunoblot, immunoprecipitation, and flow cytometry. The involvement of STUB1 in airway inflammation was determined in vivo by measuring lung inflammatory cells infiltration, mucus production, serum lgE levels, and alveolar macrophage M2 activation in STUB1(-/-) mice. STUB1 expression was evaluated in airway epithelium of patients with asthma and lung tissues of subjects with chronic obstructive pulmonary disease. MEASUREMENTS AND MAIN RESULTS STUB1 interacted with IL-4Rα and targeted it for ubiquitination-mediated proteasomal degradation, terminating IL-4 or IL-13 signaling. STUB1 knockout cells showed increased levels of IL-4Rα and sustained STAT6 activation, whereas STUB1 overexpression reduced IL-4Rα levels. Mice deficient in STUB1 had spontaneous airway inflammation, alternative M2 activation of alveolar macrophage, and increased serum IgE. STUB1 levels were increased in airways of subjects with asthma or chronic obstructive pulmonary disease, suggesting that up-regulation of STUB1 might be an important feedback mechanism to dampen IL-4R signaling in airway inflammation. CONCLUSIONS Our study identified a previously uncharacterized role for STUB1 in regulating IL-4R signaling, which might provide a new strategy for attenuating airway inflammation.
Collapse
Affiliation(s)
- Qin Wei
- 1 Department of Medicine, Baylor College of Medicine, Houston, Texas; and
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bao H, Wang J, Zhou D, Han Z, Su L, Zhang Y, Ye X, Xu C, Wang Y, Li Q. Protein-protein interaction network analysis in chronic obstructive pulmonary disease. Lung 2014; 192:87-93. [PMID: 24241792 DOI: 10.1007/s00408-013-9509-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/02/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND The aim of this study was to investigate the gene expression profile of chronic obstructive pulmonary disease (COPD) patients and non-COPD patients. METHODS Microarray raw data (GSE29133) was downloaded from Gene Expression Omnibus, including three COPD samples and three normal controls. Gene expression profiling was performed using Affymetrix human genome u133 plus 2.0 GeneChip. Differentially expressed genes were identified by Student's t test and genes with p < 0.05 were considered significantly changed. Up- and downregulated genes were submitted to the molecular signatures database (MSigDB) to search for a possible association with other previously published gene expression signatures. Furthermore, we constructed a COPD protein-protein interaction (PPI) network and used the connectivity map (cMap) to query for potential drugs for COPD. RESULTS A total of 680 upregulated genes and 530 downregulated genes in COPD were identified. The MSigDB investigation found that upregulated genes were highly similar to gene signatures that respond to interferon and downregulated genes were similar to erythroid progenitor cells from fetal livers of E13.5 embryos with KLF1 knocked out. A PPI network consisting of 814 gene/proteins and 2,613 interactions was identified by Search Tool for the Retrieval of Interacting Genes. The cMap predicted helveticoside, disulfiram, and lanatoside C as the top three possible drugs that could perhaps treat COPD. CONCLUSION Comprehensive analysis of the gene expression profile for COPD versus control reveals helveticoside, disulfiram, and lanatoside C as potential molecular targets in COPD. This evidence provides a new breakthrough in the medical treatment of patients with COPD.
Collapse
Affiliation(s)
- Hong Bao
- Department of Respiratory Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Huinan Town, Shanghai, 201399, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Higham A, Lea S, Plumb J, Maschera B, Simpson K, Ray D, Singh D. The role of the liver X receptor in chronic obstructive pulmonary disease. Respir Res 2013; 14:106. [PMID: 24118845 PMCID: PMC3852990 DOI: 10.1186/1465-9921-14-106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/25/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There is a need for novel anti-inflammatory therapies to treat COPD. The liver X receptor (LXR) is a nuclear hormone receptor with anti-inflammatory properties. METHODS We investigated LXR gene and protein expression levels in alveolar macrophages and whole lung tissue from COPD patients and controls, the effect of LXR activation on the suppression of inflammatory mediators from LPS stimulated COPD alveolar macrophages, and the effect of LXR activation on the induction of genes associated with alternative macrophage polarisation. RESULTS The levels of LXR mRNA were significantly increased in whole lung tissue extracts in COPD patients and smokers compared to non-smokers. The expression of LXR protein was significantly increased in small airway epithelium and alveolar epithelium in COPD patients compared to controls. No differences in LXR mRNA and protein levels were observed in alveolar macrophages between patient groups. The LXR agonist GW3965 significantly induced the expression of the LXR dependent genes ABCA1 and ABCG1 in alveolar macrophage cultures. In LPS stimulated alveolar macrophages, GW3965 suppressed the production of CXCL10 and CCL5, whilst stimulating IL-10 production. CONCLUSIONS GW3965 did not significantly suppress the production of TNFα, IL-1β, or CXCL8. Our major finding is that LXR activation has anti-inflammatory effects on CXC10, CCL5 and IL-10 production from alveolar macrophages.
Collapse
Affiliation(s)
- Andrew Higham
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Simon Lea
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Jonathan Plumb
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Barbara Maschera
- GlaxoSmithKline, Respiratory CEDD, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Karen Simpson
- GlaxoSmithKline, Respiratory CEDD, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - David Ray
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| | - Dave Singh
- The University of Manchester, NIHR Translational Research Facility, University Hospital of South Manchester Foundation Trust, Southmoor Road, Manchester M23 9LT, UK
| |
Collapse
|
45
|
Kaur M, Singh D. Neutrophil chemotaxis caused by chronic obstructive pulmonary disease alveolar macrophages: the role of CXCL8 and the receptors CXCR1/CXCR2. J Pharmacol Exp Ther 2013; 347:173-80. [PMID: 23912333 DOI: 10.1124/jpet.112.201855] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Alveolar macrophages produce neutrophil chemoattractants; this cellular cross-talk contributes to neutrophilic airway inflammation in chronic obstructive pulmonary disease (COPD). We have investigated the chemotaxis cross-talk mechanisms between these cells using COPD alveolar macrophages. Using conditioned media from stimulated COPD alveolar macrophages, we investigated the relative contributions of growth-related oncogene (CXCL1), interleukin-8 (CXCL8), and regulated on activation normal T cell expressed and secreted (CCL5) to neutrophil chemotaxis and evaluated the effect of blocking the chemokine receptors CXCR1 and CXCR2 on chemotaxis caused by macrophage-conditioned media. Furthermore, we evaluated whether corticosteroid treatment of stimulated alveolar macrophages inhibited the chemotaxis ability of conditioned media. Alveolar macrophages isolated from COPD (n = 8) and smoker (S) (n = 8) lungs were treated with ultra-pure lipopolysaccharide in the presence and absence of dexamethasone (1 μM). Supernatants were used for neutrophil chemotaxis assays. SB656933 (2-hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5-methyl-furan-2-yl)-propyl]amino]-3,4-dioxo-cyclobut-1-enylamino}-benzamide) (CXCR2 antagonist) and Sch527123 [1-(2-chloro-3-fluorophenyl)-3-(4-chloro-2-hydroxy-3-piperazin-1-ylsulfonylphenyl)urea, 3-(2-chloro-3-fluoro-phenyl)-1-(4-chloro-2-hydroxy-3-piperazin-1-ylsulfonyl-phenyl)urea] (dual CXCR1 and CXCR2 antagonist) and blocking antibodies for CXCL8, CXCL1, and CCL5 were assessed. Conditioned media caused neutrophil chemotaxis in COPD and smokers (60.5 and 79.9% of total cells, respectively). Dexamethasone did not significantly reduce neutrophil chemotaxis in COPD or S. SB656933 and Sch527123 inhibited chemotaxis in a concentration-dependent manner, with the dual antagonist Sch527123 causing greater inhibition of chemotaxis. CXCL8 antibody inhibited neutrophil chemotaxis to basal levels, although there was no significant effect of blocking either CXCL1 or CCL5 (P > 0.05). CXCL8 plays a major role in neutrophil chemotaxis caused by alveolar macrophage-derived conditioned media, and this is most effectively inhibited by dual antagonism of CXCR1 and CXCR2. Corticosteroids do not inhibit chemotaxis caused by macrophage-derived chemokines.
Collapse
MESH Headings
- Aged
- Cells, Cultured
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Female
- Humans
- Interleukin-8/antagonists & inhibitors
- Interleukin-8/physiology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/pathology
- Macrophages, Alveolar/physiology
- Male
- Middle Aged
- Neutrophils/drug effects
- Neutrophils/pathology
- Neutrophils/physiology
- Phenylurea Compounds/pharmacology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Receptors, Interleukin-8A/antagonists & inhibitors
- Receptors, Interleukin-8A/physiology
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/physiology
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Manminder Kaur
- University of Manchester, Institute of Inflammation & Repair, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
| | | |
Collapse
|
46
|
Goggins BJ, Chaney C, Radford-Smith GL, Horvat JC, Keely S. Hypoxia and Integrin-Mediated Epithelial Restitution during Mucosal Inflammation. Front Immunol 2013; 4:272. [PMID: 24062740 PMCID: PMC3769679 DOI: 10.3389/fimmu.2013.00272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/27/2013] [Indexed: 12/27/2022] Open
Abstract
Epithelial damage and loss of intestinal barrier function are hallmark pathologies of the mucosal inflammation associated with conditions such as inflammatory bowel disease. In order to resolve inflammation and restore intestinal integrity the mucosa must rapidly and effectively repair the epithelial barrier. Epithelial wound healing is a highly complex and co-ordinated process and the factors involved in initiating intestinal epithelial healing are poorly defined. In order for restitution to be successful there must be a balance between epithelial cell migration, proliferation, and differentiation within and adjacent to the inflamed area. Endogenous, compensatory epithelial signaling pathways are activated by the changes in oxygen tensions that accompany inflammation. These signaling pathways induce the activation of key transcription factors, governing anti-apoptotic, and proliferative processes resulting in epithelial cell survival, proliferation, and differentiation at the site of mucosal inflammation. In this review, we will discuss the primary processes involved in epithelial restitution with a focus on the role of hypoxia-inducible factor and epithelial integrins as mediators of epithelial repair following inflammatory injury at the mucosal surface.
Collapse
Affiliation(s)
- Bridie J Goggins
- School of Biomedical Sciences and Pharmacy, University of Newcastle , Newcastle, NSW , Australia ; Hunter Medical Research Institute , New Lambton, NSW , Australia
| | | | | | | | | |
Collapse
|
47
|
Pace E, Ferraro M, Vincenzo SD, Bruno A, Giarratano A, Scafidi V, Lipari L, Benedetto DVD, Sciarrino S, Gjomarkaj M. Cigarette smoke increases BLT2 receptor functions in bronchial epithelial cells: in vitro and ex vivo evidence. Immunology 2013; 139:245-55. [PMID: 23347335 PMCID: PMC3647190 DOI: 10.1111/imm.12077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 01/18/2023] Open
Abstract
Leukotriene B(4) (LTB(4)) is a neutrophil chemotactic molecule with important involvement in the inflammatory responses of chronic obstructive pulmonary disease (COPD). Airway epithelium is emerging as a regulator of innate immune responses to a variety of insults including cigarette smoke, the major risk factor for COPD. In this study we have explored whether cigarette smoke extracts (CSE) or soluble mediators present in distal lung fluid samples (mini-bronchoalveolar lavages) from smokers alter the expression of the LTB(4) receptor 2 (BLT2) and peroxisome proliferator-activated receptor-α (PPAR-α) in bronchial epithelial cells. We also evaluated the effects of CSE on the expression of intercellular adhesion molecule 1 (ICAM-1) and on the binding of signal transducer and activator of transcription 1 (STAT-1) to ICAM-1 promoter as well as the adhesiveness of neutrophils to bronchial epithelial cells. CSE and mini-bronchoalveolar lavages from smokers increased BLT2 and ICAM-1 expression as well as the adhesiveness of neutrophils to bronchial epithelial cells and decreased PPAR-α expression. CSE induced the activation of STAT-1 and its binding to ICAM-1 promoter. These findings suggest that, in bronchial epithelial cells, CSE promote a prevalent induction of pro-inflammatory BLT2 receptors and activate mechanisms leading to increased neutrophil adhesion, a mechanism that contributes to airway neutrophilia and to tissue damage.
Collapse
Affiliation(s)
- Elisabetta Pace
- Institute of Biomedicine and Molecular Immunology, National Research CouncilPalermo, Italy
| | - Maria Ferraro
- Institute of Biomedicine and Molecular Immunology, National Research CouncilPalermo, Italy
| | - Serena Di Vincenzo
- Institute of Biomedicine and Molecular Immunology, National Research CouncilPalermo, Italy
| | - Andreina Bruno
- Institute of Biomedicine and Molecular Immunology, National Research CouncilPalermo, Italy
| | - Antonino Giarratano
- Dipartimento di Anestesia, Rianimazione e delle'Emergenze, Università degli Studi di PalermoPalermo, Italy
| | - Valeria Scafidi
- Institute of Biomedicine and Molecular Immunology, National Research CouncilPalermo, Italy
| | - Luana Lipari
- Dipartimento di Medicina Sperimentale e Scienze neurologiche, Sezione di Istologia ed Embriologia, Università degli Studi di PalermoPalermo, Italy
| | - Denise Valentina Di Benedetto
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Sezione di Otorinolaringoiatria, Università degli Studi di PalermoPalermo, Italy
| | - Serafina Sciarrino
- Institute of Biomedicine and Molecular Immunology, National Research CouncilPalermo, Italy
| | - Mark Gjomarkaj
- Institute of Biomedicine and Molecular Immunology, National Research CouncilPalermo, Italy
| |
Collapse
|
48
|
Sheng KC, Day S, Wright MD, Stojanovska L, Apostolopoulos V. Enhanced Dendritic Cell-Mediated Antigen-Specific CD4+ T Cell Responses: IFN-Gamma Aids TLR Stimulation. JOURNAL OF DRUG DELIVERY 2013; 2013:516749. [PMID: 23781340 PMCID: PMC3679806 DOI: 10.1155/2013/516749] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/18/2013] [Indexed: 12/20/2022]
Abstract
Phenotypic maturation and T cell stimulation are two functional attributes of DCs critical for immune induction. The combination of antigens, including those from cancer, with Toll-like receptor (TLR) ligands induces far superior cellular immune responses compared to antigen alone. In this study, IFN-gamma treatment of bone marrow-derived DC, followed by incubation with the TLR2, TLR4, or TLR9 agonists, enhanced DC activation compared to TLR ligation alone. Most notably, the upregulation of CD40 with LPS stimulation and CD86 with CpG stimulation was observed in in vitro cultures. Similarly, IFN-gamma coinjected with TLR ligands was able to promote DC activation in vivo, with DCs migrating from the site of immunization to the popliteal lymph nodes demonstrating increased expression of CD80 and CD86. The heightened DC activation translated to a drastic increase in T cell stimulatory capacity in both antigen independent and antigen dependent fashions. This is the first time that IFN-gamma has been shown to have a combined effect with TLR ligation to enhance DC activation and function. The results demonstrate the novel use of IFN-gamma together with TLR agonists to enhance antigen-specific T cell responses, for applications in the development of enhanced vaccines and drug targets against diseases including cancer.
Collapse
Affiliation(s)
- Kuo-Ching Sheng
- Immunology and Vaccine Laboratory, Burnet Institute, Melbourne, VIC 3004, Australia
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
| | - Stephanie Day
- Immunology and Vaccine Laboratory, Burnet Institute, Melbourne, VIC 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC 3004, Australia
| | - Mark D. Wright
- Department of Immunology, Monash University, Melbourne, VIC 3004, Australia
| | - Lily Stojanovska
- College of Health and Biomedicine, Victoria University, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Immunology and Vaccine Laboratory, Burnet Institute, Melbourne, VIC 3004, Australia
- VA Consulting Services, Melbourne, VIC 3030, Australia
| |
Collapse
|
49
|
Wang Q, Li H, Xie H, Fu M, Guo B, Ding Y, Li W, Yu H. 25-Hydroxyvitamin D3 attenuates experimental periodontitis through downregulation of TLR4 and JAK1/STAT3 signaling in diabetic mice. J Steroid Biochem Mol Biol 2013; 135:43-50. [PMID: 23333931 DOI: 10.1016/j.jsbmb.2013.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 02/05/2023]
Abstract
Vitamin D has been known to be closely associated with diabetes and periodontitis while the underlying mechanism has yet to be clarified. The present study aimed to discover the effect of 25-hydroxyvitamin D3 (25-OHD3) on glycemic control and periodontal health in mice with periodontitis superimposed on experimental diabetes (known as diabetic periodontitis). We showed that 25-OHD3 intraperitoneal injection attenuated diabetic periodontitis by reducing serum fasting blood glucose, glycosylated hemoglobin and TNF-α levels, which led to decreased alveolar bone loss. Immunohistochemical staining and western blot analysis of gingival epithelia revealed that vitamin D receptor (VDR) expression was enhanced upon 25-OHD3 treatment, while toll-like receptor 4 (TLR4) expression was reduced. The expressions of Janus family kinase (JAK) 1 and signal transducer and activator of transcription (STAT) 3 as well as their phosphorylation were inhibited in gingival epithelia of diabetic periodontitis mice, whereas the expression and phosphorylation of STAT1 remained unchanged. These results suggest that 25-OHD3 could improve diabetic periodontitis through downregulation of TLR4 and JAK1/STAT3 signaling in the gingival epithelium. Our study extends the previous findings on the regulation of diabetes with periodontitis, and may also provide a potential therapy for the patients with this disease.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 3rd Section S Renmin Road, Chengdu 610041, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Current World Literature. Curr Opin Anaesthesiol 2013; 26:244-52. [DOI: 10.1097/aco.0b013e32835f8a30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|