1
|
Johnson K, Bray JF, Heaps CL. Sexually dimorphic mechanisms of H 2O 2-mediated dilation in porcine coronary arterioles with ischemia and endurance exercise training. J Appl Physiol (1985) 2025; 138:950-963. [PMID: 40059640 DOI: 10.1152/japplphysiol.00761.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
We determined the impact of sex on H2O2-mediated dilation in coronary arterioles and the contribution of K+ channels after exercise training in ischemic heart disease. We hypothesized that arterioles from male and female swine would similarly display impaired H2O2-induced dilation after chronic occlusion that would be corrected by exercise training. Yucatan miniswine were surgically instrumented with an ameroid constrictor around the proximal left circumflex artery, gradually inducing occlusion and a collateral-dependent myocardium. Arterioles from the left anterior descending artery myocardial region served as nonoccluded controls. Eight weeks postoperatively, swine of each sex were separated into sedentary and exercise-trained (progressive treadmill regimen; 5 days/wk for 14 wk) groups. Collateral-dependent arterioles of sedentary female pigs displayed impaired sensitivity to H2O2 that was reversed with exercise training. In contrast, male pigs exhibited enhanced sensitivity to H2O2 in collateral-dependent versus nonoccluded arterioles in both sedentary and exercise-trained groups. Large-conductance, calcium-dependent K+ (BKCa) and 4-aminopyridine (AP)-sensitive voltage-gated K+ (Kv) channels contributed to H2O2-mediated dilation in nonoccluded and collateral-dependent arterioles of exercise-trained females, but not in arterioles of sedentary female or sedentary or exercise-trained male swine. BKCa channel, protein kinase A (PKA), and protein kinase G (PKG) protein levels were not significantly different between groups, nor were kinase enzymatic activities. Taken together, our studies suggest that in female swine, exercise training stimulates the coupling of H2O2 signaling with BKCa and 4-AP-sensitive Kv channels, compensating for impaired dilation in collateral-dependent arterioles. Interestingly, coronary arterioles from neither sedentary female or male swine, regardless of training status, depended upon BKCa or 4-AP-sensitive Kv channels for H2O2-mediated dilation.NEW & NOTEWORTHY The current studies reveal sexually dimorphic adaptations to H2O2-mediated dilation, and unique contributions of K+ channels, in coronary arterioles from swine subjected to chronic ischemia and exercise training; findings important for development of therapeutic strategies. In female swine, chronic ischemia attenuates dilation, which is reversed by exercise training via BKCa and Kv channel stimulation. In male swine, ischemia enhances dilation to H2O2, which is further augmented by exercise training and independent of BKCa and Kv channels.
Collapse
Affiliation(s)
- Kalen Johnson
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Jeff F Bray
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
- Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
2
|
Li T, Thoen ZE, Applebaum JM, Khalil RA. Menopause-related changes in vascular signaling by sex hormones. J Pharmacol Exp Ther 2025; 392:103526. [PMID: 40184819 DOI: 10.1016/j.jpet.2025.103526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/24/2025] [Indexed: 04/07/2025] Open
Abstract
Cardiovascular disease (CVD), such as hypertension and coronary artery disease, involves pathological changes in vascular signaling, function, and structure. Vascular signaling is regulated by multiple intrinsic and extrinsic factors that influence endothelial cells, vascular smooth muscle, and extracellular matrix. Vascular function is also influenced by environmental factors including diet, exercise, and stress, as well as genetic background, sex differences, and age. CVD is more common in adult men and postmenopausal women than in premenopausal women. Specifically, women during menopausal transition, with declining ovarian function and production of estrogen (E2) and progesterone, show marked increase in the incidence of CVD and associated vascular dysfunction. Mechanistic research suggests that E2 and E2 receptor signaling have beneficial effects on vascular function including vasodilation, decreased blood pressure, and cardiovascular protection. Also, the tangible benefits of E2 supplementation in improving menopausal symptoms have prompted clinical trials of menopausal hormone therapy (MHT) in CVD, but the results have been inconsistent. The inadequate benefits of MHT in CVD could be attributed to the E2 type, dose, formulation, route, timing, and duration as well as menopausal changes in E2/E2 receptor vascular signaling. Other factors that could affect the responsiveness to MHT are the integrated hormonal milieu including gonadotropins, progesterone, and testosterone, vascular health status, preexisting cardiovascular conditions, and menopause-related dysfunction in the renal, gastrointestinal, endocrine, immune, and nervous systems. Further analysis of these factors should enhance our understanding of menopause-related changes in vascular signaling by sex hormones and provide better guidance for management of CVD in postmenopausal women. SIGNIFICANCE STATEMENT: Cardiovascular disease is more common in adult men and postmenopausal women than premenopausal women. Earlier observations of vascular benefits of menopausal hormone therapy did not materialize in randomized clinical trials. Further examination of the cardiovascular effects of sex hormones in different formulations and regimens, and the menopausal changes in vascular signaling would help to adjust the menopausal hormone therapy protocols in order to enhance their effectiveness in reducing the risk and the management of cardiovascular disease in postmenopausal women.
Collapse
Affiliation(s)
- Tao Li
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Zachary E Thoen
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jessica M Applebaum
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Wayne N, Singamneni VS, Venkatesh R, Cherlin T, Verma SS, Guerraty MA. Genetic Insights Into Coronary Microvascular Disease. Microcirculation 2025; 32:e12896. [PMID: 39755372 DOI: 10.1111/micc.12896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025]
Abstract
Coronary microvascular disease (CMVD) affects the coronary pre-arterioles, arterioles, and capillaries and can lead to blood supply-demand mismatch and cardiac ischemia. CMVD can present clinically as ischemia or myocardial infarction with no obstructive coronary arteries (INOCA or MINOCA, respectively). Currently, therapeutic options for CMVD are limited, and there are no targeted therapies. Genetic studies have emerged as an important tool to gain rapid insights into the molecular mechanisms of human diseases. For example, coronary artery disease (CAD) genome-wide association studies (GWAS) have enrolled hundreds of thousands of patients and have identified > 320 loci, elucidating CAD pathogenic pathways and helping to identify therapeutic targets. Here, we review the current landscape of genetic studies of CMVD, consisting mostly of genotype-first approaches. We then present the hypothesis that CAD GWAS have enrolled heterogenous populations and may be better characterized as ischemic heart disease (IHD) GWAS. We discuss how several of the genetic loci currently associated with CAD may be involved in the pathogenesis of CMVD. Genetic studies could help accelerate progress in understanding CMVD pathophysiology and identifying putative therapeutic targets. Larger phenotype-first genomic studies into CMVD with adequate sex and ancestry representation are needed. Given the extensive CAD genetic and functional validation data, future research should leverage these loci as springboards for CMVD genomic research.
Collapse
Affiliation(s)
- Nicole Wayne
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Venkata S Singamneni
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rasika Venkatesh
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tess Cherlin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marie A Guerraty
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Dias P, Salam R, Moravcová M, Saadat S, Pourová J, Vopršalová M, Jirkovský E, Tebbens JD, Mladěnka P. 3-methoxycatechol causes vasodilation likely via K V channels: ex vivo, in silico docking and in vivo study. Vascul Pharmacol 2024; 156:107418. [PMID: 39159736 DOI: 10.1016/j.vph.2024.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Substituted catechols include both natural and synthetic compounds found in the environment and foods. Some of them are flavonoid metabolites formed by the gut microbiota which are absorbed afterwards. Our previous findings showed that one of these metabolites, 4-methylcatechol, exerts potent vasorelaxant effects in rats. In the current study, we aimed at testing of its 22 structural congeners in order to find the most potent structure and to investigate the mechanism of action. 3-methoxycatechol (3-MOC), 4-ethylcatechol, 3,5-dichlorocatechol, 4-tert-butylcatechol, 4,5-dichlorocatechol, 3-fluorocatechol, 3-isopropylcatechol, 3-methylcatechol and the parent 4-methylcatechol exhibited high vasodilatory activities on isolated rat aortic rings with EC50s ranging from ∼10 to 24 μM. Some significant sex-differences were found. The most potent compound, 3-MOC, relaxed also resistant mesenteric artery but not porcine coronary artery, and decreased arterial blood pressure in both male and female spontaneously hypertensive rats in vivo without affecting heart rate. It potentiated the vasodilation mediated by cAMP and cGMP, but did not impact L-type Ca2+-channels. By using two inhibitors, activation of voltage-gated potassium channels (KV) was found to be involved in the mechanism of action. This was corroborated by docking analysis of 3-MOC with the KV7.4 channel. None of the most active catechols decreased the viability of the A-10 rat embryonic thoracic aorta smooth muscle cell line. Our findings showed that various catechols can relax vascular smooth muscles and hence could provide templates for developing new antihypertensive vasodilator agents without affecting coronary circulation.
Collapse
MESH Headings
- Animals
- Vasodilation/drug effects
- Male
- Catechols/pharmacology
- Catechols/chemistry
- Molecular Docking Simulation
- Vasodilator Agents/pharmacology
- Vasodilator Agents/chemistry
- Female
- Rats, Inbred SHR
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Potassium Channels, Voltage-Gated/metabolism
- Potassium Channels, Voltage-Gated/antagonists & inhibitors
- Potassium Channels, Voltage-Gated/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Swine
- Dose-Response Relationship, Drug
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Hypertension/drug therapy
- Hypertension/physiopathology
- Hypertension/metabolism
- Arterial Pressure/drug effects
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Rats
- Sex Factors
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Structure-Activity Relationship
- Cyclic GMP/metabolism
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA; Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA.
| | - Rudy Salam
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Saina Saadat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Looft-Wilson RC, Stechmann JK, Milenski KG, Shah VM, Kulkarni PG, Arif AB, Guiot T, Beinlich NMC, Dos Santos CA, Rice SK. Myoendothelial feedback in mouse mesenteric resistance arteries is similar between the sexes, dependent on nitric oxide synthase, and independent of TPRV4. Am J Physiol Heart Circ Physiol 2024; 326:H190-H202. [PMID: 37921665 PMCID: PMC11213485 DOI: 10.1152/ajpheart.00170.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Myoendothelial feedback (MEF), the endothelium-dependent vasodilation following sympathetic vasoconstriction (mediated by smooth muscle to endothelium gap junction communication), has been well studied in resistance arteries of males, but not females. We hypothesized that MEF responses would be similar between the sexes, but different in the relative contribution of the underlying nitric oxide and hyperpolarization mechanisms, given that these mechanisms differ between the sexes in agonist-induced endothelium-dependent dilation. We measured MEF responses (diameter changes) of male and female first- to second-order mouse mesenteric arteries to phenylephrine (10 µM) over 30 min using isolated pressure myography ± blinded inhibition of nitric oxide synthase (NOS) using Nω-nitro-l-arginine methyl ester (l-NAME; 0.1-1.0 mM), hyperpolarization using 35 mM KCl, or transient receptor potential vanilloid 4 (TRPV4) channels using GSK219 (0.1-1.0 µM) or RN-1734 (30 µM). MEF was similar [%dilation (means ± SE): males = 26.7 ± 2.0 and females = 26.1 ± 1.9 at 15 min] and significantly inhibited by l-NAME (1.0 mM) at 15 min [%dilation (means ± SE): males = 8.2 ± 3.3, P < 0.01; females = 6.8 ± 1.9, P < 0.001] and over time (P < 0.01) in both sexes. l-NAME (0.1 mM) + 35 mM KCl nearly eliminated MEF in both sexes (P < 0.001-0.0001). Activation of TRPV4 with GSK101 (0.1-10 µM) induced similar dilation between the sexes. Inhibition of TRPV4, which is reportedly involved in the hyperpolarization mechanism, did not inhibit MEF in either sex. Similar expression of eNOS was found between the sexes with Western blot. Thus, MEF is prominent and similar in murine first- and second-order mesenteric resistance arteries of both sexes, and reliant primarily on NOS and secondarily on hyperpolarization, but not TRPV4.NEW & NOTEWORTHY We found that female mesenteric resistance arteries have similar postconstriction dilatory responses (i.e., myoendothelial feedback) to a sympathetic neurotransmitter analog as male arteries. Both sexes use nitric oxide synthase (NOS) and hyperpolarization, but not TRPV4, in this response. Moreover, the key protein involved in this pathway (eNOS) is similarly expressed in these arteries between the sexes. These similarities are surprising given that agonist-induced endothelium-dependent dilatory mechanisms differ in these arteries between the sexes.
Collapse
Affiliation(s)
- Robin C Looft-Wilson
- Department of Kinesiology, William and Mary, Williamsburg, Virginia, United States
| | - Jacob K Stechmann
- Department of Kinesiology, William and Mary, Williamsburg, Virginia, United States
| | - Katherine G Milenski
- Department of Kinesiology, William and Mary, Williamsburg, Virginia, United States
| | - Vishakha M Shah
- Department of Kinesiology, William and Mary, Williamsburg, Virginia, United States
| | - Preetika G Kulkarni
- Department of Kinesiology, William and Mary, Williamsburg, Virginia, United States
| | - Arusha B Arif
- Department of Kinesiology, William and Mary, Williamsburg, Virginia, United States
| | - Tanner Guiot
- Department of Kinesiology, William and Mary, Williamsburg, Virginia, United States
| | | | | | - Spencer K Rice
- Department of Kinesiology, William and Mary, Williamsburg, Virginia, United States
| |
Collapse
|
6
|
Garcia AR, Blanco I, Ramon L, Pérez-Sagredo J, Guerra-Ramos FJ, Martín-Ontiyuelo C, Tura-Ceide O, Pastor-Pérez F, Escribano-Subías P, Barberà JA. Predictors of the response to phosphodiesterase-5 inhibitors in pulmonary arterial hypertension: an analysis of the Spanish registry. Respir Res 2023; 24:223. [PMID: 37715261 PMCID: PMC10503122 DOI: 10.1186/s12931-023-02531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Achieving and maintaining a low-risk profile is associated with favorable outcome in pulmonary arterial hypertension (PAH). The effects of treatment on risk profile are variable among patients. OBJECTIVE To Identify variables that might predict the response to treatment with phosphodiesterase-5 inhibitors (PDE-5i) in PAH. METHODS We carried out a cohort analysis of the Spanish PAH registry in 830 patients diagnosed with PAH that started PDE5i treatment and had > 1 year follow-up. 644 patients started PDE-5i either in mono- or add-on therapy and 186 started combined treatment with PDE-5i and endothelin receptor antagonist (ERA). Responders were considered when at 1 year they: (1) were alive; (2) did not present clinical worsening; and (3) improved European Society of Cardiology/European Respiratory Society (ESC/ERS) risk score or remained in low-risk. Univariate and multivariate logistic regression models were used to analyze variables associated with a favorable response. RESULTS Two hundred and ten patients (33%) starting PDE-5i alone were classified as responders, irrespective of whether it was mono- or add-on therapy. In addition to known predictors of PAH outcome (low-risk at baseline, younger age), male sex and diagnosis of portopulmonary hypertension (PoPH) or HIV-PAH were independent predictors of favorable response to PDE-5i. Diffusing capacity for carbon monoxide (DLco) ≤ 40% of predicted was associated with an unfavorable response. When PDE-5i were used in upfront combination, 58% of patients were responders. In this group, diagnosis of idiopathic PAH (IPAH) was an independent predictor of favorable response, whereas connective tissue disease-PAH was associated with an unfavorable response. CONCLUSION Male sex and diagnosis of PoPH or HIV-PAH are predictors of favorable effect of PDE-5i on risk profile when used as mono- or add-on therapy. Patients with IPAH respond more favorably to PDE-5i when used in upfront combination. These results identify patient profiles that may respond favorably to PDE-5i in monotherapy and those who might benefit from alternative treatment strategies.
Collapse
Affiliation(s)
- Agustin R Garcia
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Lluis Ramon
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | | | - Francisco J Guerra-Ramos
- Department of Pulmonary Medicine, Complejo Hospitalario Universitario Insular-Materno Infantil, Las Palmas, Spain
| | - Clara Martín-Ontiyuelo
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Francisco Pastor-Pérez
- Cardiology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pilar Escribano-Subías
- Pulmonary Hypertension Unit, Cardiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Joan A Barberà
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain.
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain.
| |
Collapse
|
7
|
Sex- and Gender-Related Aspects in Pulmonary Hypertension. Heart Fail Clin 2023; 19:11-24. [PMID: 36435566 DOI: 10.1016/j.hfc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Sabe SA, Feng J, Sellke FW, Abid MR. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am J Physiol Heart Circ Physiol 2022; 322:H819-H841. [PMID: 35333122 PMCID: PMC9018047 DOI: 10.1152/ajpheart.00603.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.
Collapse
Affiliation(s)
- Sharif A Sabe
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Jun Feng
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
9
|
Cheron C, McBride SA, Antigny F, Girerd B, Chouchana M, Chaumais MC, Jaïs X, Bertoletti L, Sitbon O, Weatherald J, Humbert M, Montani D. Sex and gender in pulmonary arterial hypertension. Eur Respir Rev 2021; 30:30/162/200330. [PMID: 34750113 DOI: 10.1183/16000617.0330-2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease characterised by pulmonary vascular remodelling and elevated pulmonary pressure, which eventually leads to right heart failure and death. Registries worldwide have noted a female predominance of the disease, spurring particular interest in hormonal involvement in the disease pathobiology. Several experimental models have shown both protective and deleterious effects of oestrogens, suggesting that complex mechanisms participate in PAH pathogenesis. In fact, oestrogen metabolites as well as receptors and enzymes implicated in oestrogen signalling pathways and associated conditions such as BMPR2 mutation contribute to PAH penetrance more specifically in women. Conversely, females have better right ventricular function, translating to a better prognosis. Along with right ventricular adaptation, women tend to respond to PAH treatment differently from men. As some young women suffer from PAH, contraception is of particular importance, considering that pregnancy in patients with PAH is strongly discouraged due to high risk of death. When contraception measures fail, pregnant women need a multidisciplinary team-based approach. This article aims to review epidemiology, mechanisms underlying the higher female predominance, but better prognosis and the intricacies in management of women affected by PAH.
Collapse
Affiliation(s)
- Céline Cheron
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Susan Ainslie McBride
- Internal Medicine Residency Program, Dept of Medicine, University of Calgary, Calgary, Canada
| | - Fabrice Antigny
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Barbara Girerd
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Margot Chouchana
- Assistance Publique Hôpitaux de Paris, Service de Pharmacie Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Marie-Camille Chaumais
- Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France.,Assistance Publique Hôpitaux de Paris, Service de Pharmacie Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris-Saclay, Faculté de Pharmacie, Chatenay Malabry, France
| | - Xavier Jaïs
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Laurent Bertoletti
- Centre Hospitalier Universitaire de Saint-Etienne, Service de Médecine Vasculaire et Thérapeutique, Saint-Etienne, France.,INSERM U1059 et CIC1408, Université Jean-Monnet, Saint-Etienne, France
| | - Olivier Sitbon
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Jason Weatherald
- Division of Respirology, Dept of Medicine, University of Calgary, Calgary, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Marc Humbert
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - David Montani
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France .,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
10
|
Barbeau-Meunier CA, Bernier M, Côté S, Gilbert G, Bocti C, Whittingstall K. Sexual dimorphism in the cerebrovascular network: Brain MRI shows lower arterial density in women. J Neuroimaging 2021; 32:337-344. [PMID: 34861082 DOI: 10.1111/jon.12951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Accumulating evidence suggests that there is a sexual dimorphism in brain health, with women exhibiting greater disability following strokes of comparable size and having a higher prevalence of cognitive impairment later in life. Despite the critical implication of the cerebrovascular architecture in brain perfusion and brain health, it remains unclear whether structural differences in vessel density exist across the sexes. METHODS In this study, we used high-density MRI imaging to characterize the intracerebral arterial and venous density of 28 (14 women) sex-matched healthy young volunteers in vivo. Using an in-house vessel segmentation algorithm, we quantified and compared these vascular features across the cortical and subcortical deep gray matter, white matter, and periventricular white matter. RESULTS We found that, on average, women have reduced intracerebral arterial density in comparison to men (F 2.34 ± 0.48%, M 2.67 ± 0.39%; p<.05). This difference was most pronounced in the subcortical deep gray matter (F 1.78 ± 0.53%, M 2.38 ± 0.82%; p<.05) and periventricular white matter (F 0.68 ± 0.15%, M 1.14 ± 0.33%; p<.0005), indicating a potential sex-specific vulnerability to hypoperfusion in areas critical to core cerebral functions. In contrast, venous density did not exhibit a significant difference between sexes. CONCLUSIONS While this research remains exploratory, it raises important pathophysiological considerations for brain health, adverse cerebrovascular events, and dementia across the sexes. Our findings also highlight the need to take into account sex differences when investigating cerebral characteristics in humans.
Collapse
Affiliation(s)
| | - Michaël Bernier
- Martinos Center - MGH - Harvard Medical School, Charlestown, Massachusetts, USA
| | - Samantha Côté
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare Canada, Markham, Ontario, Canada
| | - Christian Bocti
- Research Center on Aging, Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Kevin Whittingstall
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
11
|
Bubb KJ, Tang O, Gentile C, Moosavi SM, Hansen T, Liu CC, Di Bartolo BA, Figtree GA. FXYD1 Is Protective Against Vascular Dysfunction. Hypertension 2021; 77:2104-2116. [PMID: 33934624 DOI: 10.1161/hypertensionaha.120.16884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kristen J Bubb
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia (K.J.B.)
| | - Owen Tang
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Royal North Shore Hospital, St Leonards, NSW, Australia (O.T., T.H., C.-C.L., B.A.D.B., G.A.F.)
| | - Carmine Gentile
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,University of Technology Sydney, Ultimo, NSW, Australia (C.G., S.M.M.)
| | - Seyed M Moosavi
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,University of Technology Sydney, Ultimo, NSW, Australia (C.G., S.M.M.)
| | - Thomas Hansen
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Royal North Shore Hospital, St Leonards, NSW, Australia (O.T., T.H., C.-C.L., B.A.D.B., G.A.F.)
| | - Chia-Chi Liu
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Royal North Shore Hospital, St Leonards, NSW, Australia (O.T., T.H., C.-C.L., B.A.D.B., G.A.F.).,Heart Research Institute, Newtown, NSW, Australia (C.-C.L.)
| | - Belinda A Di Bartolo
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Royal North Shore Hospital, St Leonards, NSW, Australia (O.T., T.H., C.-C.L., B.A.D.B., G.A.F.)
| | - Gemma A Figtree
- From the University of Sydney, Kolling Institute of Medical Research, Cardiothoracic and Vascular Health (K.J.B., O.T., C.G., S.M.M., T.H., C.-C.L., B.A.D.B., G.A.F.).,Royal North Shore Hospital, St Leonards, NSW, Australia (O.T., T.H., C.-C.L., B.A.D.B., G.A.F.)
| |
Collapse
|
12
|
Godo S, Shimokawa H. Gender Differences in Endothelial Function and Coronary Vasomotion Abnormalities. GENDER AND THE GENOME 2020. [DOI: 10.1177/2470289720957012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction: Structural and functional abnormalities of coronary microvasculature, referred to as coronary microvascular dysfunction (CMD), have been implicated in a wide range of cardiovascular diseases and have gained growing attention in patients with chest pain with no obstructive coronary artery disease, especially in females. The central mechanisms of coronary vasomotion abnormalities encompass enhanced coronary vasoconstrictive reactivity (ie, coronary spasm), reduced endothelium-dependent and -independent coronary vasodilator capacities, and increased coronary microvascular resistance. The 2 major endothelium-derived relaxing factors, nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) factors, modulate vascular tone in a distinct vessel size–dependent manner; NO mainly mediates vasodilatation of relatively large, conduit vessels, while EDH factors in small resistance vessels. Endothelium-dependent hyperpolarization–mediated vasodilatation is more prominent in female resistance arteries, where estrogens exert beneficial effects on endothelium-dependent vasodilatation via multiple mechanisms. In the clinical settings, therapeutic approaches targeting NO are disappointing for the treatment of various cardiovascular diseases, where endothelial dysfunction and CMD are substantially involved. Significance: In this review, we will discuss the current knowledge on the pathophysiology and molecular mechanisms of endothelial function and coronary vasomotion abnormalities from bench to bedside, with a special reference to gender differences. Results: Recent experimental and clinical studies have demonstrated distinct gender differences in endothelial function and coronary vasomotion abnormalities with major clinical implications. Moreover, recent landmark clinical trials regarding the management of stable coronary artery disease have questioned the benefit of percutaneous coronary intervention, supporting the importance of the coronary microvascular physiology. Conclusion: Further characterization and a better understanding of the gender differences in basic vascular biology as well as those in cardiovascular diseases are indispensable to improve health care and patient outcomes in cardiovascular medicine.
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Shabbir A, Rathod KS, Khambata RS, Ahluwalia A. Sex Differences in the Inflammatory Response: Pharmacological Opportunities for Therapeutics for Coronary Artery Disease. Annu Rev Pharmacol Toxicol 2020; 61:333-359. [PMID: 33035428 DOI: 10.1146/annurev-pharmtox-010919-023229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coordinated molecular responses are key to effective initiation and resolution of both acute and chronic inflammation. Vascular inflammation plays an important role in initiating and perpetuating atherosclerotic disease, specifically at the site of plaque and subsequent fibrous cap rupture. Both men and women succumb to this disease process, and although management strategies have focused on revascularization and pharmacological therapies in the acute situation to reverse vessel closure and prevent thrombogenesis, data now suggest that regulation of host inflammation may improve both morbidity and mortality, thus supporting the notion that prevention is better than cure. There is a clear sex difference in the incidence of vascular disease, and data confirm biological differences in inflammatory initiation and resolution between men and women. This article reviews contemporary opinions describing the sex difference in the initiation and resolution of inflammatory responses, with a view to explore potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Asad Shabbir
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Krishnaraj Sinhji Rathod
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Rayomand Syrus Khambata
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| | - Amrita Ahluwalia
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| |
Collapse
|
14
|
Buchmann GK, Schürmann C, Warwick T, Schulz MH, Spaeth M, Müller OJ, Schröder K, Jo H, Weissmann N, Brandes RP. Deletion of NoxO1 limits atherosclerosis development in female mice. Redox Biol 2020; 37:101713. [PMID: 32949971 PMCID: PMC7502371 DOI: 10.1016/j.redox.2020.101713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Oxidative stress is a risk factor for atherosclerosis. NADPH oxidases of the Nox family produce ROS but their contribution to atherosclerosis development is less clear. Nox2 promotes and Nox4 rather limits atherosclerosis. Although Nox1 with its cytosolic co-factors are largely expressed in epithelial cells, a role for Nox1 for atherosclerosis development was suggested. To further define the role of this homologue, the role of its essential cytosolic cofactor, NoxO1, was determined for atherosclerosis development with the aid of knockout mice. METHODS AND RESULTS Wildtype (WT) and NoxO1 knockout mice were treated with high fat diet and adeno-associated virus (AAV) overexpressing pro-protein convertase subtilisin/kexin type 9 (PCSK9) to induce hepatic low-density lipoprotein (LDL) receptor loss. As a result, massive hypercholesterolemia was induced and spontaneous atherosclerosis developed within three month. Deletion of NoxO1 reduced atherosclerosis formation in brachiocephalic artery and aortic arch in female but not male NoxO1-/- mice as compared to WT littermates. This was associated with a reduced pro-inflammatory cytokine signature in the plasma of female but not male NoxO1-/- mice. MACE-RNAseq of the vessel did not reveal this signature and the expression of the Nox1/NoxO1 system was low to not detectable. CONCLUSIONS The scaffolding protein NoxO1 plays some role in atherosclerosis development in female mice probably by attenuating the global inflammatory burden.
Collapse
Affiliation(s)
- Giulia K Buchmann
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Tim Warwick
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Marcel H Schulz
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; Institute for Cardiovascular Regeneration, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Straße 3, 24105, Kiel, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Ludwigstraße 23, 35390, Gießen, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhein Main, Theodor-Stern Kai 7, 60590, Frankfurt Am Main, Germany.
| |
Collapse
|
15
|
Nunes KP, Webb RC. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases 2020; 12:458-469. [PMID: 32970516 DOI: 10.1080/21541248.2020.1822721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
While Rho-signalling controlling vascular contraction is a canonical mechanism, with the modern approaches used in research, we are advancing our understanding and details into this pathway are often uncovered. RhoA-mediated Rho-kinase is the major regulator of vascular smooth muscle cells and a key player manoeuvring other functions in these cells. The discovery of new interactions, such as oxidative stress and hydrogen sulphide with Rho signalling are emerging addition not only in the physiology of the smooth muscle, but especially in the pathophysiology of vascular diseases. Likewise, the interplay between ageing and Rho-kinase in the vasculature has been recently considered. Importantly, in smooth muscle contraction, this pathway may also be affected by sex hormones, and consequently, sex-differences. This review provides an overview of Rho signalling mediating vascular contraction and focuses on recent topics discussed in the literature affecting this pathway such as ageing, sex differences and oxidative stress.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
16
|
Xiao S, Li Q, Hu L, Yu Z, Yang J, Chang Q, Chen Z, Hu G. Soluble Guanylate Cyclase Stimulators and Activators: Where are We and Where to Go? Mini Rev Med Chem 2019; 19:1544-1557. [PMID: 31362687 DOI: 10.2174/1389557519666190730110600] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 02/04/2023]
Abstract
Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.
Collapse
Affiliation(s)
- Sijia Xiao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University Kitashirakawa- Oiwakecho, Sakyo-Ku, kyoto, Japan
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
17
|
Fan JL, O'Donnell T, Gray CL, Croft K, Noakes AK, Koch H, Tzeng YC. Dietary nitrate supplementation enhances cerebrovascular CO 2 reactivity in a sex-specific manner. J Appl Physiol (1985) 2019; 127:760-769. [PMID: 31318615 DOI: 10.1152/japplphysiol.01116.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Insufficient nitric oxide (NO) bioavailability plays an important role in endothelial dysfunction, and increased NO has the potential to enhance cerebral blood flow (CBF). Dietary supplementation with sodium nitrate, a precursor of NO, could improve cerebrovascular function, but this has not been investigated. In 17 individuals, we examined the effects of a 7-day supplementation of dietary nitrate (0.1 mmol·kg-1·day -1) on cerebrovascular function using a randomized, single-blinded placebo-controlled crossover design. We hypothesized that 7-day dietary nitrate supplementation increases CBF response to CO2 (cerebrovascular CO2 reactivity) and cerebral autoregulation (CA). We assessed middle cerebral artery blood velocity (MCAv) and blood pressure (BP) at rest and during CO2 breathing. Transfer function analysis was performed on resting beat-to-beat MCAv and BP to determine CA, from which phase, gain, and coherence of the BP-MCAv data were derived. Dietary nitrate elevated plasma nitrate concentration by ~420% (P < 0.001) and lowered gain (d = 1.2, P = 0.025) and phase of the BP-MCAv signal compared with placebo treatment (d = 0.7, P = 0.043), while coherence was unaffected (P = 0.122). Dietary nitrate increased the MCAv-CO2 slope in a sex-specific manner (interaction: P = 0.016). Dietary nitrate increased the MCAv-CO2 slope in men (d = 1.0, P = 0.014 vs. placebo), but had no effect in women (P = 0.919). Our data demonstrate that dietary nitrate greatly increased cerebrovascular CO2 reactivity in healthy individuals, while its effect on CA remains unclear. The selective increase in the MCAv-CO2 slope observed in men indicates a clear sexual dimorphic role of NO in cerebrovascular function.NEW & NOTEWORTHY We found dietary nitrate supplementation improved the brain blood vessels' response to CO2, cerebrovascular CO2 reactivity, without affecting blood pressure in a group of healthy individuals. Meanwhile, the effect of dietary nitrate on the relationship between blood pressure and brain blood flow, cerebral autoregulation, was inconclusive. The improvement in cerebrovascular CO2 reactivity was only observed in the male participants, alluding to a sex difference in the effect of dietary nitrate on brain blood flow control. Our findings indicate that dietary nitrate could be an effective strategy to enhance cerebrovascular CO2 reactivity.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Terrence O'Donnell
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Clint Lee Gray
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand.,Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Kevin Croft
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Annabel Kate Noakes
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Henrietta Koch
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
18
|
Smoothelin-like 1 deletion enhances myogenic reactivity of mesenteric arteries with alterations in PKC and myosin phosphatase signaling. Sci Rep 2019; 9:481. [PMID: 30679490 PMCID: PMC6346088 DOI: 10.1038/s41598-018-36564-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
The role of the smoothelin-like 1 (SMTNL1) protein in mediating vascular smooth muscle contractile responses to intraluminal pressure was examined in resistance vessels. Mesenteric arterioles from wild type (WT) and SMTNL1 global knock-out (KO) mice were examined with pressure myography. SMTNL1 deletion was associated with enhanced myogenic tone in vessels isolated from male, but not female, mice. Intraluminal pressures greater than 40 mmHg generated statistically significant differences in myogenic reactivity between WT and KO vessels. No overt morphological differences were recorded for vessels dissected from KO animals, but SMTNL1 deletion was associated with loss of myosin phosphatase-targeting protein MYPT1 and increase in the myosin phosphatase inhibitor protein CPI-17. Additionally, we observed altered contractile responses of isolated arteries from SMTNL1 KO mice to phenylephrine, KCl-dependent membrane depolarization and phorbol 12,13-dibutyrate (PDBu). Using pharmacological approaches, myogenic responses of both WT and KO vessels were equally affected by Rho-associated kinase (ROCK) inhibition; however, augmented protein kinase C (PKC) signaling was found to contribute to the increased myogenic reactivity of SMTNL1 KO vessels across the 60–120 mmHg pressure range. Based on these findings, we conclude that deletion of SMTNL1 contributes to enhancement of pressure-induced contractility of mesenteric resistance vessels by influencing the activity of myosin phosphatase.
Collapse
|
19
|
Pabbidi MR, Kuppusamy M, Didion SP, Sanapureddy P, Reed JT, Sontakke SP. Sex differences in the vascular function and related mechanisms: role of 17β-estradiol. Am J Physiol Heart Circ Physiol 2018; 315:H1499-H1518. [PMID: 30192631 DOI: 10.1152/ajpheart.00194.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The incidence of cardiovascular disease (CVD) is lower in premenopausal women but increases with age and menopause compared with similarly aged men. Based on the prevalence of CVD in postmenopausal women, sex hormone-dependent mechanisms have been postulated to be the primary factors responsible for the protection from CVD in premenopausal women. Recent Women’s Health Initiative studies, Cochrane Review studies, the Early Versus Late Intervention Trial with Estradiol Study, and the Kronos Early Estrogen Prevention Study have suggested that beneficial effects of hormone replacement therapy (HRT) are seen in women of <60 yr of age and if initiated within <10 yr of menopause. In contrast, the beneficial effects of HRT are not seen in women of >60 yr of age and if commenced after 10 yr of menopause. The higher incidence of CVD and the failure of HRT in postmenopausal aged women could be partly associated with fundamental differences in the vascular structure and function between men and women and in between pre- and postmenopausal women, respectively. In this regard, previous studies from human and animal studies have identified several sex differences in vascular function and associated mechanisms. The female sex hormone 17β-estradiol regulates the majority of these mechanisms. In this review, we summarize the sex differences in vascular structure, myogenic properties, endothelium-dependent and -independent mechanisms, and the role of 17β-estradiol in the regulation of vascular function.
Collapse
Affiliation(s)
- Mallikarjuna R. Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Maniselvan Kuppusamy
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sean P. Didion
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Padmaja Sanapureddy
- Department of Primary Care and Medicine, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi
| | - Joey T. Reed
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sumit P. Sontakke
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
20
|
Bubb KJ, Ritchie RH, Figtree GA. Modified redox signaling in vasculature after chronic infusion of the insulin receptor antagonist, S961. Microcirculation 2018; 26:e12501. [PMID: 30178465 DOI: 10.1111/micc.12501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Type 2 diabetes and associated vascular complications cause substantial morbidity and mortality. It is important to investigate mechanisms and test therapies in relevant physiological models, yet few animal models adequately recapitulate all aspects of the human condition. OBJECTIVE We sought to determine the potential of using an insulin receptor antagonist, S961, in mice for investigating vascular pathophysiology. METHODS S961 was infused into mice for 4 weeks. Blood glucose was monitored, and insulin was measured at the end of the protocol. Blood pressure and pressor responses to vasodilators were measured in cannulated mice, and vascular reactive oxygen and nitrogen species were measured in isolated tissue. RESULTS S961 infusion-induced hyperglycemia and hyperinsulinemia. There was evidence of increased vascular reactive oxygen and nitrogen species and modification of NO-mediated signaling. Pressor responses to a NO donor were attenuated, but responses to bradykinin were preserved. CONCLUSIONS Infusion of S961, an insulin receptor antagonist, results in the production of a mouse model of type 2 diabetes that may be useful for investigating redox signaling in the vasculature of insulin-resistant mice over the short term. It is limited by both the transient nature of the hyperglycemia and incomplete functional analogy to the human condition.
Collapse
Affiliation(s)
- Kristen J Bubb
- Cardiovascular and Thoracic Health, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology Laboratory, Basic Science Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gemma A Figtree
- Cardiovascular and Thoracic Health, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Björling K, Joseph PD, Egebjerg K, Salomonsson M, Hansen JL, Ludvigsen TP, Jensen LJ. Role of age, Rho-kinase 2 expression, and G protein-mediated signaling in the myogenic response in mouse small mesenteric arteries. Physiol Rep 2018; 6:e13863. [PMID: 30198176 PMCID: PMC6129776 DOI: 10.14814/phy2.13863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
The myogenic response (MR) and myogenic tone (MT) in resistance vessels is crucial for maintaining peripheral vascular resistance and blood flow autoregulation. Development of MT involves G protein-coupled receptors, and may be affected by aging. AIMS (1) to estimate the mesenteric blood flow in myogenically active small mesenteric arteries; (2) to investigate the signaling from Gαq/11 and/or Gα12 activation to MT development; (3) to investigate the role of Rho-kinase 2 and aging on MT in mesenteric resistance arteries. METHODS we used pressure myography, quantitative real-time PCR, and immunolocalization to study small (<200 μm) mesenteric arteries (SMA) from young, mature adult, and middle aged mice. RESULTS Poiseuille flow calculations indicated autoregulation of blood flow at 60-120 mm Hg arterial pressure. Gαq/11 and Gα12 were abundantly expressed at the mRNA and protein levels in SMA. The Gαq/11 inhibitor YM-254890 suppressed MT development, and the Phosholipase C inhibitors U73122 and ET-18-OCH3 robustly inhibited it. We found an age-dependent increase in ROCK2 mRNA expression, and in basal MT. The specific ROCK2 inhibitor KD025 robustly inhibited MT in SMAs in all mice with an age-dependent variation in KD025 sensitivity. The inhibitory effect of KD025 was not prevented by the L-type Ca2+ channel activator BayK 8644. KD025 reversibly inhibited MT and endothelin-1 vasoconstriction in small pial arteries from Göttingen minipigs. CONCLUSIONS MT development in SMAs occurs through a Gαq/11 /PLC/Ca2+ -dependent pathway, and is maintained via ROCK2-mediated Ca2+ sensitization. Increased MT at mature adulthood can be explained by increased ROCK2 expression/activity.
Collapse
Affiliation(s)
- Karl Björling
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Philomeena D. Joseph
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Kristian Egebjerg
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| | - Max Salomonsson
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen NDenmark
- Department of Internal MedicineTrelleborg HospitalTrelleborgSweden
| | | | | | - Lars J. Jensen
- Department of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CCopenhagenDenmark
| |
Collapse
|
22
|
de Wijs-Meijler DPM, Danser AHJ, Reiss IKM, Duncker DJ, Merkus D. Sex differences in pulmonary vascular control: focus on the nitric oxide pathway. Physiol Rep 2018; 5:5/11/e13200. [PMID: 28596298 PMCID: PMC5471427 DOI: 10.14814/phy2.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 01/23/2023] Open
Abstract
Although the incidence of pulmonary hypertension is higher in females, the severity and prognosis of pulmonary vascular disease in both neonates and adults have been shown to be worse in male subjects. Studies of sex differences in pulmonary hypertension have mainly focused on the role of sex hormones. However, the contribution of sex differences in terms of vascular signaling pathways regulating pulmonary vascular function remains incompletely understood. Consequently, we investigated pulmonary vascular function of male and female swine in vivo, both at rest and during exercise, and in isolated small pulmonary arteries in vitro, with a particular focus on the NO‐cGMP‐PDE5 pathway. Pulmonary hemodynamics at rest and during exercise were virtually identical in male and female swine. Moreover, NO synthase inhibition resulted in a similar degree of pulmonary vasoconstriction in male and female swine. However, NO synthase inhibition blunted bradykinin‐induced vasodilation in pulmonary small arteries to a greater extent in male than in female swine. PDE5 inhibition resulted in a similar degree of vasodilation in male and female swine at rest, while during exercise there was a trend towards a larger effect in male swine. In small pulmonary arteries, PDE5 inhibition failed to augment bradykinin‐induced vasodilation in either sex. Finally, in the presence of NO synthase inhibition, the pulmonary vasodilator effect of PDE5 inhibition was significantly larger in female swine both in vivo and in vitro. In conclusion, the present study demonstrated significant sex differences in the regulation of pulmonary vascular tone, which may contribute to understanding sex differences in incidence, treatment response, and prognosis of pulmonary vascular disease.
Collapse
Affiliation(s)
- Daphne P M de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands .,Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Davel AP, Lu Q, Moss ME, Rao S, Anwar IJ, DuPont JJ, Jaffe IZ. Sex-Specific Mechanisms of Resistance Vessel Endothelial Dysfunction Induced by Cardiometabolic Risk Factors. J Am Heart Assoc 2018; 7:JAHA.117.007675. [PMID: 29453308 PMCID: PMC5850194 DOI: 10.1161/jaha.117.007675] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The incidence of obesity is rising, particularly among women. Microvascular dysfunction is more common with female sex, obesity, and hyperlipidemia and predicts adverse cardiovascular outcomes, but the molecular mechanisms are unclear. Because obesity is associated with mineralocorticoid receptor (MR) activation, we tested the hypothesis that MR in endothelial cells contribute to sex differences in resistance vessel dysfunction in response to cardiometabolic risk factors. Methods and Results Male and female endothelial cell–specific MR knockout mice and MR‐intact littermates were randomized to high‐fat‐diet–induced obesity or obesity with hyperlipidemia induced by adeno‐associated virus–based vector targeting transfer of the mutant stable form (DY mutation) of the human PCSK9 (proprotein convertase subtilisin/kexin type 9) gene and compared with control diet. Female but not male mice were sensitive to obesity‐induced endothelial dysfunction, whereas endothelial function was impaired in obese hyperlipidemic males and females. In males, obesity or hyperlipidemia decreased the nitric oxide component of vasodilation without altering superoxide production or endothelial nitric oxide synthase expression or phosphorylation. Decreased nitric oxide content in obese males was overcome by enhanced endothelium‐derived hyperpolarization–mediated relaxation along with increased SK3 expression. Conversely, in females, endothelium‐derived hyperpolarization was significantly impaired by obesity with lower IK1 expression and by hyperlipidemia with lower IK1 and SK3 expression, loss of H2O2‐mediated vasodilation, and increased superoxide production. Endothelial cell–MR deletion prevented endothelial dysfunction induced by risk factors only in females. Rather than restoring endothelium‐derived hyperpolarization in females, endothelial cell–MR deletion enhanced nitric oxide and prevented hyperlipidemia‐induced oxidative stress. Conclusions These data reveal distinct mechanisms driving resistance vessel dysfunction in males versus females and suggest that personalized treatments are needed to prevent the progression of vascular disease in the setting of obesity, depending on both the sex and the metabolic profile of each patient.
Collapse
Affiliation(s)
- Ana P Davel
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Qing Lu
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Sitara Rao
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Imran J Anwar
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
24
|
Sexual dimorphism of metabolic and vascular dysfunction in aged mice and those lacking the sphingosine 1-phosphate receptor 3. Exp Gerontol 2017; 99:87-97. [DOI: 10.1016/j.exger.2017.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 11/23/2022]
|
25
|
Estrogenic vascular effects are diminished by chronological aging. Sci Rep 2017; 7:12153. [PMID: 28939871 PMCID: PMC5610317 DOI: 10.1038/s41598-017-12153-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/07/2017] [Indexed: 12/22/2022] Open
Abstract
The beneficial role of estrogen in the vascular system may be due, in part, through reduction of peripheral vascular resistance. The use of estrogen therapy to prevent cardiovascular disease in post-menopausal women remains contentious. This study investigated the influence of aging and the menopause on the acute vasodilatory effects of estrogen using ex vivo human and murine resistance arteries. Vessels were obtained from young (2.9 ± 0.1 months) and aged (24.2 ± 0.1 and 28.9 ± 0.3 months) female mice and pre- (42.3 ± 0.5 years) and post-menopausal (61.9 ± 0.9 years) women. Aging was associated with profound structural alterations of murine uterine arteries, including the occurrence of outward hypertrophic remodeling and increased stiffness. Endothelial and smooth muscle function were diminished in uterine (and tail) arteries from aged mice and post-menopausal women. The acute vasodilatory effects of 17β-estradiol (non-specific estrogen receptor (ER) agonist), PPT (ERα-specific agonist) and DPN (ERβ-specific agonist) on resistance arteries were attenuated by aging and the menopause. However, the impairment of estrogenic relaxation was evident after the occurrence of age-related endothelial dysfunction and diminished distensibility. The data indicate, therefore, that chronological resistance arterial aging is a prominent factor leading to weakened vasodilatory action of estrogenic compounds.
Collapse
|
26
|
Matsumoto T, Kobayashi S, Ando M, Watanabe S, Iguchi M, Taguchi K, Kobayashi T. Impaired endothelium-derived hyperpolarization-type relaxation in superior mesenteric arteries isolated from female Otsuka Long-Evans Tokushima Fatty rats. Eur J Pharmacol 2017; 807:151-158. [PMID: 28433656 DOI: 10.1016/j.ejphar.2017.03.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/27/2017] [Accepted: 03/31/2017] [Indexed: 01/27/2023]
Abstract
Endothelium-derived hyperpolarization (EDH) is an important signaling mechanism of endothelium-dependent vasorelaxation, and little attention has been paid to the EDH-type responses in female metabolic syndrome such as that observed with type-2 diabetes. We previously reported that EDH-type relaxation was impaired in superior mesenteric arteries from male Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of type-2 diabetes, however, the response was unclear in female OLETF rat. Thus, the aim of this study was to examine if EDH-type relaxation was altered in superior mesenteric arteries isolated from female OLETF rats compared to age-matched, control female Long-Evans Tokushima Otsuka (LETO) rats at age 50-59 weeks. We investigated concentration-relaxation curves for acetylcholine (at age 50-53 weeks), NS309 (an activator of small- and intermediate-conductance calcium-activated potassium channels) (at age 50-53 weeks), and GSK1016790A (an agonist of transient receptor potential vanilloid type 4, TRPV4) (at age 58 or 59 weeks) in the presence of the nitric oxide synthase inhibitor NG-nitro-L-arginine and the cyclooxygenase inhibitor indomethacin to investigate EDH-type responses in the superior mesenteric artery. Obesity, mild hyperglycemia, hyperinsulinemia, and hyperlipidemia (i.e., increased total cholesterol, triglyceride, and non-esterified fatty acids) were more frequent in OLETF rats than in age-matched LETO rats at age 50-53 weeks. Acetylcholine-, NS309-, and GSK1016790A-induced relaxations in arteries from OLETF rats were all significantly reduced compared to those in LETO rats. These results indicated that EDH-type relaxations were impaired in female OLETF rats. This novel experimental model may provide new insights into vascular dysfunction in metabolic syndrome in females.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shota Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shun Watanabe
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Maika Iguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
27
|
Abstract
CVD remain the leading cause of death globally. Effective dietary strategies for their reduction are of high priority. Increasing evidence suggests that phytochemicals, particularly dietary flavonoids and nitrates, are key modulators of CVD risk reduction through impact on multiple risk factors. The aim of this review is to explore the evidence for the impact of flavonoid- and nitrate-rich foods and supplements on CVD risk, with specific reference to their importance as mediators of vascular health and platelet function. There is accumulating evidence to support benefits of dietary flavonoids on cardiovascular health. Dose-dependent recovery of endothelial function and lowering of blood pressure have been reported for the flavanol (-)-epicatechin, found in cocoa, apples and tea, through production and availability of endothelial nitric oxide (NO). Furthermore, flavonoids, including quercetin and its metabolites, reduce in vitro and ex vivo platelet function via inhibition of phosphorylation-dependent cellular signalling pathways, although further in vivo studies are required to substantiate these mechanistic effects. Hypotensive effects of dietary nitrates have been consistently reported in healthy subjects in acute and chronic settings, although there is less evidence for these effects in patient groups. Proposed mechanisms of actions include endothelial-independent NO availability, which is dependent on the entro-salivary circulation and microbial conversion of dietary nitrate to nitrite in the mouth. In conclusion, flavonoid- and nitrate-rich foods show promising effects on vascular function, yet further randomly controlled studies are required to confirm these findings and to determine effective doses.
Collapse
Affiliation(s)
- Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition,Department of Food and Nutritional Sciences,Reading RG6 6AP,UK
| | - Alex Stainer
- Institute for Cardiovascular and Metabolic Research (ICMR),University of Reading,Whiteknights,Reading RG6 6AP,UK
| | - Ditte A Hobbs
- Hugh Sinclair Unit of Human Nutrition,Department of Food and Nutritional Sciences,Reading RG6 6AP,UK
| |
Collapse
|
28
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 629] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
29
|
Leung SWS, Vanhoutte PM. Endothelium-dependent hyperpolarization: age, gender and blood pressure, do they matter? Acta Physiol (Oxf) 2017; 219:108-123. [PMID: 26548576 DOI: 10.1111/apha.12628] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/21/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022]
Abstract
Under physiological conditions, the endothelium generates vasodilator signals [prostacyclin, nitric oxide NO and endothelium-dependent hyperpolarization (EDH)], for the regulation of vascular tone. The relative importance of these two signals depends on the diameter of the blood vessels: as the diameter of the arteries decreases, the contribution of EDH to the regulation of vascular tone increases. The mechanism involved in EDH varies with species and blood vessel types; nevertheless, activation of endothelial intermediate- and small-conductance calcium-activated potassium channels (IKCa and SKCa , respectively) is characteristic of the EDH pathway. IKCa - and SKCa -mediated EDH are reduced with endothelial dysfunction, which develops with ageing and hypertension, and is less pronounced in female than in age-matched male until after menopause. Impaired EDH-mediated relaxation is related to a reduced involvement of SKCa , so that the response becomes more dependent on IKCa . The latter depends on the activation of adenosine monophosphate-activated protein kinase (AMPK) and silent information regulator T1 (SIRT1), proteins associated with the process of cellular senescence and vascular signalling in response to the female hormone. An understanding of the role of AMPK and/or SIRT1 in EDH-like responses may help identifying effective pharmacological strategies to prevent the development of vascular complications of different aetiologies.
Collapse
Affiliation(s)
- S. W. S. Leung
- Department of Pharmacology & Pharmacy; University of Hong Kong; Hong Kong Hong Kong SAR China
| | - P. M. Vanhoutte
- Department of Pharmacology & Pharmacy; University of Hong Kong; Hong Kong Hong Kong SAR China
| |
Collapse
|
30
|
Faber JE, Moore SM, Lucitti JL, Aghajanian A, Zhang H. Sex Differences in the Cerebral Collateral Circulation. Transl Stroke Res 2016; 8:273-283. [PMID: 27844273 DOI: 10.1007/s12975-016-0508-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022]
Abstract
Premenopausal women and intact female rodents sustain smaller cerebral infarctions than males. Several sex-dependent differences have been identified as potential contributors, but many questions remain unanswered. Mice exhibit wide variation in native collateral number and diameter (collateral extent) that is dependent on differences in genetic background, aging, and other comorbidities and that contributes to their also-wide differences in infarct volume. Likewise, variation in infarct volume correlates with differences in collateral-dependent blood flow in patients with acute ischemic stroke. We examined whether extent of pial collateral arterioles and posterior communicating collateral arteries (PComAs) differ depending on sex in young, aged, obese, hypertensive, and genetically different mice. We combined new data with meta-analysis of our previously published data. Females of C57BL/6J (B6) and BALB/cByJ (BC) strains sustained smaller infarctions than males after permanent MCA occlusion. This protection was unchanged in BC mice after introgression of the B6 allele of Dce1, the major genetic determinant of variation in pial collaterals among mouse strains. Consistent with this, collateral extent in these and other strains did not differ with sex. Extent of PComAs and primary cerebral arteries also did not vary with sex. No dimorphism was evident for loss of pial collateral number and/or diameter (collateral rarefaction) caused by aging, obesity, and hypertension, nor for collateral remodeling after pMCAO. However, rarefaction was greater in females with long-standing hypertension. We conclude that smaller infarct volume in female mice is not due to greater collateral extent, greater remodeling, or less rarefaction caused by aging, obesity, or hypertension.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Scott M Moore
- Department of Surgery, University of Colorado, Denver, CO, USA
| | - Jennifer L Lucitti
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Amir Aghajanian
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, The McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
31
|
Marra AM, Benjamin N, Eichstaedt C, Salzano A, Arcopinto M, Gargani L, D Alto M, Argiento P, Falsetti L, Di Giosia P, Isidori AM, Ferrara F, Bossone E, Cittadini A, Grünig E. Gender-related differences in pulmonary arterial hypertension targeted drugs administration. Pharmacol Res 2016; 114:103-109. [PMID: 27771466 DOI: 10.1016/j.phrs.2016.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
During the last 15 years, a real "paradigm-shift" occurred, due to the development of PAH-targeted drugs, leading to crucial improvements in symptoms, exercise capacity, hemodynamics and outcome of PAH patients. In order to describe differences regarding epidemiology and therapy in PAH according to gender, we performed a review of the available literature in "PubMed" and "Web of Science" databases. In order to find relevant articles, we combined each of the following the keywords "pulmonary arterial hypertension", "gender", "sex", "men", "woman", "male", "female", "phosphodiesterase inhibitors", "endothelin receptor antagonists", "prostanoids". While there is a substantial agreement among epidemiological studies in reporting an increased prevalence of pulmonary arterial hypertension (PAH) among women, male PAH patients are affected by a higher impairment of the right ventricular function and consequently experience poorer outcomes. With regards to PAH-targeted drug administration, endothelin receptor antagonists (ERAs) and prostacyclin analogues (PC) show better treatment results in female PAH patients, while phosphodiesterase-5 inhibitors (PD5-I) seem to exert a more beneficial effect on male patients. However, to date no clear consensus could be formed by the available literature, which is constituted mainly by retrospective studies. Females with PAH are more prone to develop PAH, while males experience poorer outcomes. Females PAH might benefit more from ERAs and PC, while males seem to have more beneficial effects from PD5-I administration. However, more research is warranted in order to assess the most effective treatment for PAH patients according to gender.
Collapse
Affiliation(s)
| | - Nicola Benjamin
- Centre for Pulmonary Hypertension Thoraxclinic, University Hospital Heidelberg, Heidelberg, Germany
| | - Christina Eichstaedt
- Centre for Pulmonary Hypertension Thoraxclinic, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrea Salzano
- Department of Traslational Medical Sciences, "Federico II" Medicine School, Naples, Italy
| | - Michele Arcopinto
- Department of Traslational Medical Sciences, "Federico II" Medicine School, Naples, Italy
| | - Luna Gargani
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Michele D Alto
- Department of Cardiology, Second University of Naples - AORN dei Colli - Monaldi Hospital, Naples, Italy
| | - Paola Argiento
- Department of Cardiology, Second University of Naples - AORN dei Colli - Monaldi Hospital, Naples, Italy
| | - Lorenzo Falsetti
- Internal and Sub-intensive Medicine Department, A.O.U. "Ospedali Riuniti", Ancona, Italy
| | - Paolo Di Giosia
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Ferrara
- Department of Cardiology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Italy
| | - Eduardo Bossone
- Department of Cardiology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Italy
| | - Antonio Cittadini
- Department of Traslational Medical Sciences, "Federico II" Medicine School, Naples, Italy
| | - Ekkehard Grünig
- Centre for Pulmonary Hypertension Thoraxclinic, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Yap FC, Weber DS, Taylor MS, Townsley MI, Comer BS, Maylie J, Adelman JP, Lin MT. Endothelial SK3 channel-associated Ca2+ microdomains modulate blood pressure. Am J Physiol Heart Circ Physiol 2016; 310:H1151-63. [PMID: 26945080 DOI: 10.1152/ajpheart.00787.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022]
Abstract
Activation of vascular endothelial small- (KCa2.3, SK3) or intermediate- (KCa3.1, IK1) conductance Ca(2+)-activated potassium channels induces vasorelaxation via an endothelium-derived hyperpolarization (EDH) pathway. Although the activation of SK3 and IK1 channels converges on EDH, their subcellular effects on signal transduction are different and not completely clear. In this study, a novel endothelium-specific SK3 knockout (SK3(-/-)) mouse model was utilized to specifically examine the contribution of SK3 channels to mesenteric artery vasorelaxation, endothelial Ca(2+) dynamics, and blood pressure. The absence of SK3 expression was confirmed using real-time quantitative PCR and Western blot analysis. Functional studies showed impaired EDH-mediated vasorelaxation in SK3(-/-) small mesenteric arteries. Immunostaining results from SK3(-/-) vessels confirmed the absence of SK3 and further showed altered distribution of transient receptor potential channels, type 4 (TRPV4). Electrophysiological recordings showed a lack of SK3 channel activity, while TRPV4-IK1 channel coupling remained intact in SK3(-/-) endothelial cells. Moreover, Ca(2+) imaging studies in SK3(-/-) endothelium showed increased Ca(2+) transients with reduced amplitude and duration under basal conditions. Importantly, SK3(-/-) endothelium lacked a distinct type of Ca(2+) dynamic that is sensitive to TRPV4 activation. Blood pressure measurements showed that the SK3(-/-) mice were hypertensive, and the blood pressure increase was further enhanced during the 12-h dark cycle when animals are most active. Taken together, our results reveal a previously unappreciated SK3 signaling microdomain that modulates endothelial Ca(2+) dynamics, vascular tone, and blood pressure.
Collapse
Affiliation(s)
- Fui C Yap
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - David S Weber
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - Mary I Townsley
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama
| | - Brian S Comer
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana
| | - James Maylie
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon; and
| | - John P Adelman
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama;
| |
Collapse
|
33
|
Stead R, Musa MG, Bryant CL, Lanham SA, Johnston DA, Reynolds R, Torrens C, Fraser PA, Clough GF. Developmental conditioning of endothelium-derived hyperpolarizing factor-mediated vasorelaxation. J Hypertens 2016; 34:452-63; discussion 463. [PMID: 26682783 PMCID: PMC4732175 DOI: 10.1097/hjh.0000000000000833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/26/2015] [Accepted: 11/20/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The endothelium maintains vascular homeostasis through the release of endothelium-derived relaxing factors (EDRF) and endothelium-derived hyperpolarization (EDH). The balance in EDH : EDRF is disturbed in cardiovascular disease and may also be susceptible to developmental conditioning through exposure to an adverse uterine environment to predispose to later risk of hypertension and vascular disease. METHODS Developmentally conditioned changes in EDH : EDRF signalling pathways were investigated in cremaster arterioles (18-32 μm diameter) and third-order mesenteric arteries of adult male mice offspring of dams fed either a fat-rich (high fat, HF, 45% energy from fat) or control (C, 10% energy from fat) diet. After weaning, offspring either continued on high fat or were placed on control diets to give four dietary groups (C/C, HF/C, C/HF, and HF/HF) and studied at 15 weeks of age. RESULTS EDH via intermediate (IKCa) and small (SKca) conductance calcium-activated potassium channels contributed less than 10% to arteriolar acetylcholine-induced relaxation in in-situ conditioned HF/C offspring compared with ∼60% in C/C (P < 0.01). The conditioned reduction in EDH signalling in HF/C offspring was reversed in offspring exposed to a high-fat diet both before and after weaning (HF/HF, 55%, P < 0.01 vs. HF/C). EDH signalling was unaffected in arterioles from C/HF offspring. The changes in EDH : EDRF were associated with altered endothelial cell expression and localization of IKCa channels. CONCLUSION This is the first evidence that EDH-mediated microvascular relaxation is susceptible to an adverse developmental environment through down-regulation of the IKCa signalling pathway. Conditioned offspring exposed to a 'second hit' (HF/HF) exhibit adaptive vascular mechanisms to preserve dilator function.
Collapse
Affiliation(s)
- Rebecca Stead
- Vascular Research Group
- Rebecca Stead and Moji G. Musa contributed equally to the writing of this article
| | - Moji G. Musa
- Vascular Research Group
- Rebecca Stead and Moji G. Musa contributed equally to the writing of this article
| | | | - Stuart A. Lanham
- Bone and Joint Research Group, Institute of Developmental Sciences
| | - David A. Johnston
- Faculty of Medicine, Biomedical Imaging Unit, University of Southampton, Southampton
| | | | | | - Paul A. Fraser
- Cardiovascular Division, BHF Centre of Research Excellence, School of Medicine, King's College London, London, United Kingdom
| | | |
Collapse
|
34
|
Mueller KB, Bender SB, Hong K, Yang Y, Aronovitz M, Jaisser F, Hill MA, Jaffe IZ. Endothelial Mineralocorticoid Receptors Differentially Contribute to Coronary and Mesenteric Vascular Function Without Modulating Blood Pressure. Hypertension 2015; 66:988-97. [PMID: 26351033 PMCID: PMC4600033 DOI: 10.1161/hypertensionaha.115.06172] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
Arteriolar vasoreactivity tightly regulates tissue-specific blood flow and contributes to systemic blood pressure (BP) but becomes dysfunctional in the setting of cardiovascular disease. The mineralocorticoid receptor (MR) is known to regulate BP via the kidney and by vasoconstriction in smooth muscle cells. Although endothelial cells (EC) express MR, the contribution of EC-MR to BP and resistance vessel function remains unclear. To address this, we created a mouse with MR specifically deleted from EC (EC-MR knockout [EC-MR-KO]) but with intact leukocyte MR expression and normal renal MR function. Telemetric BP studies reveal no difference between male EC-MR-KO mice and MR-intact littermates in systolic, diastolic, circadian, or salt-sensitive BP or in the hypertensive responses to aldosterone±salt or angiotensin II±l-nitroarginine methyl ester. Vessel myography demonstrated normal vasorelaxation in mesenteric and coronary arterioles from EC-MR-KO mice. After exposure to angiotensin II-induced hypertension, impaired endothelial-dependent relaxation was prevented in EC-MR-KO mice in mesenteric vessels but not in coronary vessels. Mesenteric vessels from angiotensin II-exposed EC-MR-KO mice showed increased maximum responsiveness to acetylcholine when compared with MR-intact vessels, a difference that is lost with indomethacin+l-nitroarginine methyl ester pretreatment. These data support that EC-MR plays a role in regulating endothelial function in hypertension. Although there was no effect of EC-MR deletion on mesenteric vasoconstriction, coronary arterioles from EC-MR-KO mice showed decreased constriction to endothelin-1 and thromboxane agonist at baseline and also after exposure to hypertension. These data support that EC-MR participates in regulation of vasomotor function in a vascular bed-specific manner that is also modulated by risk factors, such as hypertension.
Collapse
Affiliation(s)
- Katelee Barrett Mueller
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Shawn B Bender
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Kwangseok Hong
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Yan Yang
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Mark Aronovitz
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Frederic Jaisser
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Michael A Hill
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.)
| | - Iris Z Jaffe
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and Sackler School of Biomedical Graduate Studies, Tufts University School of Medicine, Boston, MA (K.B.M., M.A., I.Z.J.); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO (S.B.B.); Department of Biomedical Sciences (S.B.B.), Dalton Cardiovascular Research Center (S.B.B., K.H., Y.Y., M.A.H.), and Department of Medical Pharmacology and Physiology, School of Medicine (K.H., M.A.H.), University of Missouri, Columbia; and INSERM, UMR 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France (F.J.).
| |
Collapse
|
35
|
Mathai SC, Hassoun PM, Puhan MA, Zhou Y, Wise RA. Sex differences in response to tadalafil in pulmonary arterial hypertension. Chest 2015; 147:188-197. [PMID: 25122150 DOI: 10.1378/chest.14-0263] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive disease with high rates of morbidity and mortality. Current therapies improve symptoms, functional capacity, and, in select cases, survival. Little is known about patient factors that may predict the likelihood of patient-important, clinically relevant responses to therapy such as the 6-min walk distance (6MWD) and health-related quality of life (HRQoL). METHODS Data from the randomized clinical trial of tadalafil in PAH were used. Adjusted logistic regression models were created to examine the relationship between baseline characteristics and odds of achieving the minimal important difference (MID) in three parameters, defined as either a > 33-m increase in 6MWD, a > 5-unit increase in physical component summary score of the Medical Outcomes Study Short Form-36 (SF-36), or a > 5-unit increase in mental component summary score of the SF-36. RESULTS The study included 405 subjects. Younger age, male sex, lower baseline 6MWD, and disease etiology were associated with greater odds of achieving the MID for the 6-min walk test. Active treatment, younger age, and male sex were associated with greater odds of achieving the MID for the physical component summary score. Male sex was associated with greater odds of achieving the MID for the mental component summary score. CONCLUSIONS Age, sex, baseline functional capacity, and disease etiology are variably associated with the likelihood of achieving clinically relevant responses in patient-important outcomes to PAH-specific therapy such as 6MWD and HRQoL. The increased likelihood of response in men compared with women is a novel finding and may reflect pathophysiologic differences between sexes.
Collapse
Affiliation(s)
- Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine (Drs Mathai, Hassoun, and Wise), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine (Drs Mathai, Hassoun, and Wise), Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Milo A Puhan
- Division of Pulmonary and Critical Care Medicine (Drs Mathai, Hassoun, and Wise), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yi Zhou
- United Therapeutics Corporation, Research Triangle Park, NC
| | - Robert A Wise
- Institute of Social and Preventive Medicine, University of Zurich, Zurich, Switzerland; and United Therapeutics Corporation, Research Triangle Park, NC
| |
Collapse
|
36
|
McDermott BJ, Gray GA. Biological sex themed section: incorporating the female dimension into cardiovascular pharmacology. Br J Pharmacol 2014; 171:537-40. [PMID: 24490855 PMCID: PMC3969070 DOI: 10.1111/bph.12564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Linked ArticlesThis article is part of a themed section on ‘Biological Sex and Cardiovascular Pharmacology’.To view the other articles in this section, see Fazal et al. (2013) DOI: 10.1111/bph.12279, Franconi and Campesi (2013) DOI: 10.1111/bph.12362, Mair et al. (2013) DOI: 10.1111/bph.12281, Ostadal and Ostadal (2013): DOI: 10.1111/bph.12270.Previous linked articles are: Bubb et al. (2012) DOI: 10.1111/j.1476‐5381.2012.02036.x, Chan et al. (2012) DOI: 10.1111/j.1476‐5381.2012.02012.x, Fattore and Fratta (2010) DOI: 10.1111/j.1476‐5381.2010.00776.x, Kittikulsuth et al. (2013) DOI: 10.1111/j.1476‐5381.2012.01922.x, Nilsson et al. (2011) DOI: 10.1111/j.1476‐5381.2011.01235.x, Thangavel et al. (2013) DOI: 10.1111/j.1476‐5381.2012.02222.x, Varro and Baczko (2011) DOI: 10.1111/j.1476‐5381.2011.01367.x.
Collapse
Affiliation(s)
- Barbara J McDermott
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast
| | - Gillian A Gray
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh
| |
Collapse
|
37
|
Velmurugan S, Kapil V, Ghosh SM, Davies S, McKnight A, Aboud Z, Khambata RS, Webb AJ, Poole A, Ahluwalia A. Antiplatelet effects of dietary nitrate in healthy volunteers: involvement of cGMP and influence of sex. Free Radic Biol Med 2013; 65:1521-1532. [PMID: 23806384 PMCID: PMC3878381 DOI: 10.1016/j.freeradbiomed.2013.06.031] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/02/2013] [Accepted: 06/18/2013] [Indexed: 11/25/2022]
Abstract
Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects assessing the acute effects of dietary nitrate (250 ml beetroot juice) or potassium nitrate capsules (KNO3, 8 mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet reactivity in healthy males but not females. Our studies provide strong support for further clinical trials investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble guanylate cyclase pathway in limiting thrombotic potential.
Collapse
Affiliation(s)
- Shanti Velmurugan
- Centre of Clinical Pharmacology, William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ
| | - Vikas Kapil
- Centre of Clinical Pharmacology, William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ
| | - Suborno M Ghosh
- Centre of Clinical Pharmacology, William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ
| | - Sheridan Davies
- Centre of Clinical Pharmacology, William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ
| | - Andrew McKnight
- Centre of Clinical Pharmacology, William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ
| | - Zainab Aboud
- Centre of Clinical Pharmacology, William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ
| | - Rayomand S Khambata
- Centre of Clinical Pharmacology, William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ
| | - Andrew J Webb
- Centre of Clinical Pharmacology, William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ
| | - Alastair Poole
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Amrita Ahluwalia
- Centre of Clinical Pharmacology, William Harvey Research Institute, Barts NIHR Cardiovascular Biomedical Research Unit, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ.
| |
Collapse
|
38
|
Chinnathambi V, Yallampalli C, Sathishkumar K. Prenatal testosterone induces sex-specific dysfunction in endothelium-dependent relaxation pathways in adult male and female rats. Biol Reprod 2013; 89:97. [PMID: 23966325 DOI: 10.1095/biolreprod.113.111542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Prenatal testosterone (T) exposure impacts postnatal cardiovascular function, leading to increases in blood pressure with associated decreased endothelium-dependent vascular relaxation in adult females. Endothelial function in males is not known. Furthermore, which of the endothelial pathways contributes to endothelial dysfunction and if there exists sex differences are not known. The objective of this study was to characterize the relative contribution of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) to the impaired endothelium-dependent vasodilation in prenatal T-exposed adult males and females. Offspring of pregnant rats treated with T propionate or its vehicle were examined. Telemetric blood pressure levels and endothelium-dependent vascular reactivity were assessed with wire myography. Levels of nitric oxide synthase (NOS3) and Kcnn3 and Kcnn4 channel expression were examined in mesenteric arteries. Mean arterial pressure was significantly higher in T males and females than in controls. Endothelium-dependent acetylcholine relaxation was significantly lower in both T males and females. EDHF-mediated relaxation was specifically blunted in T males (Emax = 48.64% ± 3.73%) compared to that in control males (Emax = 81.71% ± 3.18%); however, NO-mediated relaxation was specifically impaired in T females (Emax = 36.01% ± 4.29%) compared with that in control females (Emax = 54.56% ± 6.37%). Relaxation to sodium nitroprusside and levcromakalim were unaffected with T-treatment. NOS3 protein was decreased in T females but not in T males. Kcnn3 expression was decreased in both T males and females compared to controls. These findings suggest that prenatal T leads to an increase in blood pressure in the adult offspring, associated with blunting of endothelial cell-associated relaxation and that the effects are sex-specific: EDHF-related in males and NO-related in females.
Collapse
Affiliation(s)
- Vijayakumar Chinnathambi
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
| | | | | |
Collapse
|
39
|
Bubb KJ, Wen H, Panayiotou CM, Finsterbusch M, Khan FJ, Chan MV, Priestley JV, Baker MD, Ahluwalia A. Activation of neuronal transient receptor potential vanilloid 1 channel underlies 20-hydroxyeicosatetraenoic acid-induced vasoactivity: role for protein kinase A. Hypertension 2013; 62:426-33. [PMID: 23753406 DOI: 10.1161/hypertensionaha.111.00942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A rise in intraluminal pressure triggers vasoconstriction in resistance arteries, which is associated with local generation of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE). Importantly, dysregulation of 20-HETE synthesis and activity has been implicated in several cardiovascular disease states, including ischemic disease, hypertension, and stroke; however, the exact molecular pathways involved in mediating 20-HETE bioactivity are uncertain. We investigated whether 20-HETE activates the transient receptor potential vanilloid 1 (TRPV1) and thereby regulates vascular function and blood pressure. We demonstrate that 20-HETE causes dose-dependent increases in blood pressure, coronary perfusion pressure (isolated Langendorff), and pressure-induced constriction of resistance arteries (perfusion myography) that is substantially attenuated in TRPV1 knockout mice and by treatment with the neurokinin 1 receptor antagonist RP67580. Furthermore, we show that both channel activation (via patch-clamping of dorsal root ganglion neurons) and vessel constriction are enhanced under inflammatory conditions, and our findings indicate a predominant role for protein kinase A-mediated sensitization of TRPV1 in these phenomena. Finally, we identify a prominence of these pathway in males compared with females, an effect we relate to reduced protein kinase A-induced phosphorylation of TRPV1. 20-HETE-induced activation of TRPV1, in part, mediates pressure-induced myogenic constriction and underlies 20-HETE-induced elevations in blood pressure and coronary resistance. Our findings identify a novel vasoconstrictor 20-HETE/TRPV1 pathway that may offer potential for therapeutic targeting in cardiovascular diseases associated with elevated 20-HETE implicated in dysregulated organ blood flow, such as stroke or hypertension.
Collapse
Affiliation(s)
- Kristen J Bubb
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Sq, London EC1M 6BQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|