1
|
Yamashita M, Takayasu M, Maruyama H, Hirayama K. The Immunobiological Agents for Treatment of Antiglomerular Basement Membrane Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2014. [PMID: 38004064 PMCID: PMC10673378 DOI: 10.3390/medicina59112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Combination therapy with glucocorticoids, cyclophosphamide, and plasmapheresis is recommended as the standard treatment for anti-glomerular basement membrane (anti-GBM) disease, but the prognosis of this disease remains poor. Several immunobiological agents have been administered or are expected to be useful for anti-GBM disease in light of refractory disease or the standard treatments' tolerability. Many data regarding the use of biologic agents for anti-GBM disease have accumulated, verifying the effectiveness and potential of biologic agents as a new treatment option for anti-GBM disease. Tumor necrosis factor (TNF) inhibitors were shown to be useful in animal studies, but these agents have no clinical use and were even shown to induce anti-GBM disease in several cases. Although the efficacy of the TNF-receptor antagonist has been observed in animal models, there are no published case reports of its clinical use. There are also no published reports of animal or clinical studies of anti-B-cell-activating factor, which is a member of the TNF family of agents. Anti-interleukin (IL)-6 antibodies have been demonstrated to have no effect on or to exacerbate nephritis in animal models. Anti-C5 inhibitor was observed to be useful in a few anti-GBM disease cases. Among the several immunobiological agents, only rituximab has been demonstrated to be useful in refractory or poor-tolerance patients or small uncontrolled studies. Rituximab is usually used in combination with steroids and plasma exchange and is used primarily as an alternative to cyclophosphamide, but there is insufficient evidence regarding the efficacy of rituximab for anti-GBM disease, and thus, randomized controlled studies are required.
Collapse
Affiliation(s)
| | | | | | - Kouichi Hirayama
- Department of Nephrology, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Ibaraki, Japan; (M.Y.); (M.T.); (H.M.)
| |
Collapse
|
2
|
Liang J, Liu Y. Animal Models of Kidney Disease: Challenges and Perspectives. KIDNEY360 2023; 4:1479-1493. [PMID: 37526653 PMCID: PMC10617803 DOI: 10.34067/kid.0000000000000227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Kidney disease is highly prevalent and affects approximately 850 million people worldwide. It is also associated with high morbidity and mortality, and current therapies are incurable and often ineffective. Animal models are indispensable for understanding the pathophysiology of various kidney diseases and for preclinically testing novel remedies. In the last two decades, rodents continue to be the most used models for imitating human kidney diseases, largely because of the increasing availability of many unique genetically modified mice. Despite many limitations and pitfalls, animal models play an essential and irreplaceable role in gaining novel insights into the mechanisms, pathologies, and therapeutic targets of kidney disease. In this review, we highlight commonly used animal models of kidney diseases by focusing on experimental AKI, CKD, and diabetic kidney disease. We briefly summarize the pathological characteristics, advantages, and drawbacks of some widely used models. Emerging animal models such as mini pig, salamander, zebrafish, and drosophila, as well as human-derived kidney organoids and kidney-on-a-chip are also discussed. Undoubtedly, careful selection and utilization of appropriate animal models is of vital importance in deciphering the mechanisms underlying nephropathies and evaluating the efficacy of new treatment options. Such studies will provide a solid foundation for future diagnosis, prevention, and treatment of human kidney diseases.
Collapse
Affiliation(s)
- Jianqing Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
3
|
Vernier ICS, Neres-Santos RS, Andrade-Oliveira V, Carneiro-Ramos MS. Immune Cells Are Differentially Modulated in the Heart and the Kidney during the Development of Cardiorenal Syndrome 3. Cells 2023; 12:605. [PMID: 36831272 PMCID: PMC9953884 DOI: 10.3390/cells12040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Cardiorenal syndrome type 3 (CRS 3) occurs when there is an acute kidney injury (AKI) leading to the development of an acute cardiac injury. The immune system is involved in modulating the severity of kidney injury, and the role of immune system cells in the development of CRS 3 is not well established. The present work aims to characterize the macrophage and T and B lymphocyte populations in kidney and heart tissue after AKI induced by renal I/R. Thus, C57BL/6 mice were subjected to a renal I/R protocol by occlusion of the left renal pedicle (unilateral) for 60 min, followed by reperfusion for 3, 8 and 15 days. The immune cell populations of interest were identified using flow cytometry, and RT-qPCR was used to evaluate gene expression. As a result, a significant increase in TCD4+, TCD8+ lymphocytes and M1 macrophages to the renal tissue was observed, while B cells in the heart decreased. A renal tissue repair response characterized by Foxp3 activation predominated. However, a more inflammatory profile was shown in the heart tissue influenced by IL-17RA and IL-1β. In conclusion, the AKI generated by renal I/R was able to activate and recruit T and B lymphocytes and macrophages, as well as pro-inflammatory mediators to renal and cardiac tissue, showing the role of the immune system as a bridge between both organs in the context of CRS 3.
Collapse
Affiliation(s)
- Imara Caridad Stable Vernier
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Raquel Silva Neres-Santos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Vinicius Andrade-Oliveira
- Bernardo’s Laboratory, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, São Paulo 09210-580, Brazil
| |
Collapse
|
4
|
Morgado-Pascual JL, Suarez-Alvarez B, Marchant V, Basantes P, Tharaux PL, Ortiz A, Lopez-Larrea C, Ruiz-Ortega M, Rayego-Mateos S. Type IV Collagen and SOX9 Are Molecular Targets of BET Inhibition in Experimental Glomerulosclerosis. Int J Mol Sci 2022; 24:486. [PMID: 36613933 PMCID: PMC9820124 DOI: 10.3390/ijms24010486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Progressive glomerulonephritis (GN) is characterized by an excessive accumulation of extracellular (ECM) proteins, mainly type IV collagen (COLIV), in the glomerulus leading to glomerulosclerosis. The current therapeutic approach to GN is suboptimal. Epigenetic drugs could be novel therapeutic options for human disease. Among these drugs, bromodomain and extra-terminal domain (BET) inhibitors (iBETs) have shown beneficial effects in experimental kidney disease and fibrotic disorders. Sex-determining region Y-box 9 (SOX9) is a transcription factor involved in regulating proliferation, migration, and regeneration, but its role in kidney fibrosis is still unclear. We investigated whether iBETs could regulate ECM accumulation in experimental GN and evaluated the role of SOX9 in this process. For this purpose, we tested the iBET JQ1 in mice with anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS). In NTS-injected mice, JQ1 treatment reduced glomerular ECM deposition, mainly by inhibiting glomerular COLIV accumulation and Col4a3 gene overexpression. Moreover, chromatin immunoprecipitation assays demonstrated that JQ1 inhibited the recruitment and binding of BRD4 to the Col4a3 promoter and reduced its transcription. Active SOX9 was found in the nuclei of glomerular cells of NTS-injured kidneys, mainly in COLIV-stained regions. JQ1 treatment blocked SOX9 nuclear translocation in injured kidneys. Moreover, in vitro JQ1 blocked TGF-β1-induced SOX9 activation and ECM production in cultured mesangial cells. Additionally, SOX9 gene silencing inhibited ECM production, including COLIV production. Our results demonstrated that JQ1 inhibited SOX9/COLIV, to reduce experimental glomerulosclerosis, supporting further research of iBET as a potential therapeutic option in progressive glomerulosclerosis.
Collapse
Affiliation(s)
- José Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba University, 14004 Cordoba, Spain
| | - Beatriz Suarez-Alvarez
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
- Translational Immunology, Principality of Asturias Health Research Institute (ISPA), Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
| | - Pamela Basantes
- Cellular Biology in Renal Diseases Laboratory, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Center—PARCC, INSERM, Paris Cité University, 75015 Paris, France
| | - Alberto Ortiz
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
- Division of Nephrology and Hypertension, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
| | - Carlos Lopez-Larrea
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
- Translational Immunology, Principality of Asturias Health Research Institute (ISPA), Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, Jiménez Díaz Foundation Health Research Institute, Autonomous University of Madrid, 28040 Madrid, Spain
- REDINREN Spain/Ricord2040, 28029 Madrid, Spain
| |
Collapse
|
5
|
Wang M, Yang L, Yang J, Wang C. Shen Shuai IIRecipe attenuates renal injury and fibrosis in chronic kidney disease by regulating NLRP3 inflammasome and Sirt1/Smad3 deacetylation pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:107. [PMID: 31118021 PMCID: PMC6530021 DOI: 10.1186/s12906-019-2524-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Excessive activation of NLRP3 inflammasome and down-regulation of Sirt1/Smad3 deacetylation pathway play a significant role in the evolution of renal fibrosis. In China, it has been well known that Chinese herbal medicine is markedly effective in treating chronic kidney disease (CKD). Shen Shuai IIRecipe (SSR) has been used clinically for more than 20 years and has been confirmed to be effective in improvements of renal function and fibrosis. However, the specific mechanisms under the efficacy require further research. The purpose of this study was to evaluate whether SSR could alleviate renal injury and fibrosis by regulating NLRP3 inflammasome and Sirt1/Smad3 deacetylation pathway. METHODS Four weeks after 5/6 ablation/infarction (A/I) surgery, Sprague-Dawley rats were randomly divided into the following groups: sham operation group, 5/6 (A/I) group, 5/6 (A/I) + SSR group, and 5/6 (A/I) + Losartan group (5/6 (A/I) + Los). After 8 weeks intervention,we mainly assessed the severity of renal injury and fibrosis along with the activation of NLRP3 inflammasome and Sirt1/Smad3 deacetylation pathway. RESULTS SSR significantly attenuated renal injury and fibrosis in the remnant kidneys. In addition, we found that SSR effectively inhibited activation of NLRP3/ASC/Caspase-1/IL-1βcascade, decreased inflammatory infiltration and up-regulated Sirt1/Smad3 deacetylation pathway. CONCLUSIONS SSR could contribute to renal protection by inhibiting the activation of NLRP3 inflammasome and, furthermore, strengthen the antifibrotic effects by up-regulating Sirt1/Smad3 deacetylation pathway in 5/6 renal (A/I) model.
Collapse
Affiliation(s)
- Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- Key Laboratory of Liver and Kidney Diseases,Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Liuyi Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- Key Laboratory of Liver and Kidney Diseases,Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Jing Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- Key Laboratory of Liver and Kidney Diseases,Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- Key Laboratory of Liver and Kidney Diseases,Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- TCM institute of kidney disease, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
6
|
Wen Y, Pan M, Lv L, Tang T, Zhou L, Wang B, Liu H, Wang F, Ma K, Tang R, Liu B. Artemisinin attenuates tubulointerstitial inflammation and fibrosis via the NF‐κB/NLRP3 pathway in rats with 5/6 subtotal nephrectomy. J Cell Biochem 2018; 120:4291-4300. [PMID: 30260039 DOI: 10.1002/jcb.27714] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/29/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Yi Wen
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Ming‐Ming Pan
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Lin‐Li Lv
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Tao‐Tao Tang
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Le‐Ting Zhou
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Bin Wang
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Hong Liu
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Feng‐Mei Wang
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Kun‐Ling Ma
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Ri‐Ning Tang
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| | - Bi‐Cheng Liu
- Department of Nephrology Zhong Da Hospital, Southeast University School of Medicine Nanjing China
| |
Collapse
|
7
|
Pandey KN. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genomics 2018; 50:913-928. [PMID: 30169131 DOI: 10.1152/physiolgenomics.00083.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and gene-targeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| |
Collapse
|
8
|
Toda N, Mukoyama M, Yanagita M, Yokoi H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm Regen 2018; 38:14. [PMID: 30123390 PMCID: PMC6091167 DOI: 10.1186/s41232-018-0070-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/08/2018] [Indexed: 01/27/2023] Open
Abstract
Background Glomerulonephritis, which causes inflammation in glomeruli, is a common cause of end-stage renal failure. Severe and prolonged inflammation can damage glomeruli and lead to kidney fibrosis. Connective tissue growth factor (CTGF) is a member of the CCN matricellular protein family, consisting of four domains, that regulates the signaling of other growth factors and promotes kidney fibrosis. Main body of the abstract CTGF can simultaneously interact with several factors with its four domains. The microenvironment differs depending on the types of cells and tissues and differentiation stages of these cells. The diverse biological actions of CTGF on various types of cells and tissues depend on this difference in microenvironment. In the kidney, CTGF is expressed at low levels in normal condition and its expression is upregulated by kidney fibrosis. CTGF expression is known to be upregulated in the extra-capillary and mesangial lesions of glomerulonephritis in human kidney biopsy samples. In addition to involvement in fibrosis, CTGF modulates the expression of inflammatory mediators, including cytokines and chemokines, through distinct signaling pathways, in various cell systems. In anti-glomerular basement membrane (GBM) glomerulonephritis, systemic CTGF knockout (Rosa-CTGF cKO) mice exhibit 50% reduction of proteinuria and decreased crescent formation and mesangial expansion compared with control mice. In addition to fibrotic markers, the glomerular mRNA expression of Ccl2 is increased in the control mice with anti-GBM glomerulonephritis, and this increase is reduced in Rosa-CTGF cKO mice with nephritis. Accumulation of MAC2-positive cells in glomeruli is also reduced in Rosa-CTGF cKO mice. These results suggest that CTGF may be required for the upregulation of Ccl2 expression not only in anti-GBM glomerulonephritis but also in other types of glomerulonephritis, such as IgA nephropathy; CTGF expression and accumulation of macrophages in the mesangial area have been documented in these glomerular diseases. CTGF induces the expression of inflammatory mediators and promotes cell adhesion. Short conclusion CTGF plays an important role in the development of glomerulonephritis by inducing the inflammatory process. CTGF is a potentiate target for the treatment of glomerulonephritis.
Collapse
Affiliation(s)
- Naohiro Toda
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Masashi Mukoyama
- 2Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Motoko Yanagita
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hideki Yokoi
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
9
|
Zheng X, Soroush F, Long J, Hall ET, Adishesha PK, Bhattacharya S, Kiani MF, Bhalla V. Murine glomerular transcriptome links endothelial cell-specific molecule-1 deficiency with susceptibility to diabetic nephropathy. PLoS One 2017; 12:e0185250. [PMID: 28934365 PMCID: PMC5608371 DOI: 10.1371/journal.pone.0185250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/08/2017] [Indexed: 01/03/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of kidney disease; however, there are no early biomarkers and no cure. Thus, there is a large unmet need to predict which individuals will develop nephropathy and to understand the molecular mechanisms that govern this susceptibility. We compared the glomerular transcriptome from mice with distinct susceptibilities to DN at four weeks after induction of diabetes, but before histologic injury, and identified differential regulation of genes that modulate inflammation. From these genes, we identified endothelial cell specific molecule-1 (Esm-1), as a glomerular-enriched determinant of resistance to DN. Glomerular Esm-1 mRNA and protein were lower in DN-susceptible, DBA/2, compared to DN-resistant, C57BL/6, mice. We demonstrated higher Esm-1 secretion from primary glomerular cultures of diabetic mice, and high glucose was sufficient to increase Esm-1 mRNA and protein secretion in both strains of mice. However, induction was significantly attenuated in DN-susceptible mice. Urine Esm-1 was also significantly higher only in DN-resistant mice. Moreover, using intravital microscopy and a biomimetic microfluidic assay, we showed that Esm-1 inhibited rolling and transmigration in a dose-dependent manner. For the first time we have uncovered glomerular-derived Esm-1 as a potential non-invasive biomarker of DN. Esm-1 inversely correlates with disease susceptibility and inhibits leukocyte infiltration, a critical factor in protecting the kidney from DN.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Fariborz Soroush
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Jin Long
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Evan T. Hall
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Puneeth K. Adishesha
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sanchita Bhattacharya
- Institute of Computational Health Sciences, University of California, San Francisco, California, United States of America
| | - Mohammad F. Kiani
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Cheng L, Ge M, Lan Z, Ma Z, Chi W, Kuang W, Sun K, Zhao X, Liu Y, Feng Y, Huang Y, Luo M, Li L, Zhang B, Hu X, Xu L, Liu X, Huo Y, Deng H, Yang J, Xi Q, Zhang Y, Siegenthaler JA, Chen L. Zoledronate dysregulates fatty acid metabolism in renal tubular epithelial cells to induce nephrotoxicity. Arch Toxicol 2017; 92:469-485. [PMID: 28871336 PMCID: PMC5773652 DOI: 10.1007/s00204-017-2048-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/28/2017] [Indexed: 02/05/2023]
Abstract
Zoledronate is a bisphosphonate that is widely used in the treatment of metabolic bone diseases. However, zoledronate induces significant nephrotoxicity associated with acute tubular necrosis and renal fibrosis when administered intravenously. There is speculation that zoledronate-induced nephrotoxicity may result from its pharmacological activity as an inhibitor of the mevalonate pathway but the molecular mechanisms are not fully understood. In this report, human proximal tubular HK-2 cells and mouse models were combined to dissect the molecular pathways underlying nephropathy caused by zoledronate treatments. Metabolomic and proteomic assays revealed that multiple cellular processes were significantly disrupted, including the TGFβ pathway, fatty acid metabolism and small GTPase signaling in zoledronate-treated HK-2 cells (50 μM) as compared with those in controls. Zoledronate treatments in cells (50 μM) and mice (3 mg/kg) increased TGFβ/Smad3 pathway activation to induce fibrosis and kidney injury, and specifically elevated lipid accumulation and expression of fibrotic proteins. Conversely, fatty acid transport protein Slc27a2 deficiency or co-administration of PPARA agonist fenofibrate (20 mg/kg) prevented zoledronate-induced lipid accumulation and kidney fibrosis in mice, indicating that over-expression of fatty acid transporter SLC27A2 and defective fatty acid β-oxidation following zoledronate treatments were significant factors contributing to its nephrotoxicity. These pharmacological and genetic studies provide an important mechanistic insight into zoledronate-associated kidney toxicity that will aid in development of therapeutic prevention and treatment options for this nephropathy.
Collapse
Affiliation(s)
- Lili Cheng
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Mengmeng Ge
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhou Lan
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Zhilong Ma
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Wenna Chi
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China.,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Wenhua Kuang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Kun Sun
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Xinbin Zhao
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Ye Liu
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Yaqian Feng
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Yuedong Huang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Maoguo Luo
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Liping Li
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China
| | - Bin Zhang
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoyu Hu
- Institute of Immunology, School of Medicine, Tsinghua University, Beijing, China
| | - Lina Xu
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Huo
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinliang Yang
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qiaoran Xi
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China.,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Julie A Siegenthaler
- Department of Pediatrics, Denver-Anschutz Medical Campus, University of Colorado, Aurora, USA
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, 100084, Beijing, China. .,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Choi M, Schreiber A, Eulenberg-Gustavus C, Scheidereit C, Kamps J, Kettritz R. Endothelial NF- κB Blockade Abrogates ANCA-Induced GN. J Am Soc Nephrol 2017; 28:3191-3204. [PMID: 28687535 DOI: 10.1681/asn.2016060690] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 05/18/2017] [Indexed: 01/15/2023] Open
Abstract
ANCA-associated vasculitis (AAV) is a highly inflammatory condition in which ANCA-activated neutrophils interact with the endothelium, resulting in necrotizing vasculitis. We tested the hypothesis that endothelial NF-κB mediates necrotizing crescentic GN (NCGN) and provides a specific treatment target. Reanalysis of kidneys from previously examined murine NCGN disease models revealed NF-κB activation in affected kidneys, mostly as a p50/p65 heterodimer, and increased renal expression of NF-κB-dependent tumor necrosis factor α (TNF-α). NF-κB activation positively correlated with crescent formation, and nuclear phospho-p65 staining showed NF-κB activation within CD31-expressing endothelial cells (ECs) in affected glomeruli. Therefore, we studied the effect of ANCA on NF-κB activation in neutrophil/EC cocultures in vitro ANCA did not activate NF-κB in primed human neutrophils, but ANCA-stimulated primed neutrophils activated NF-κB in ECs, at least in part via TNF-α release. This effect increased endothelial gene transcription and protein production of NF-κB-regulated interleukin-8. Moreover, upregulation of endothelial NF-κB promoted neutrophil adhesion to EC monolayers, an effect that was inhibited by a specific IKKβ inhibitor. In a murine NCGN model, prophylactic application of E-selectin-targeted immunoliposomes packed with p65 siRNA to downregulate endothelial NF-κB significantly reduced urine abnormalities, renal myeloid cell influx, and NCGN. Increased glomerular endothelial phospho-p65 staining in patients with AAV indicated that NF-κB is activated in human NCGN also. We suggest that ANCA-stimulated neutrophils activate endothelial NF-κB, which contributes to NCGN and provides a potential therapeutic target in AAV.
Collapse
Affiliation(s)
- Mira Choi
- Experimental and Clinical Research Center, the Charité Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany; .,Nephrology and Internal Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Schreiber
- Experimental and Clinical Research Center, the Charité Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany.,Nephrology and Internal Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Eulenberg-Gustavus
- Experimental and Clinical Research Center, the Charité Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany
| | | | - Jan Kamps
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ralph Kettritz
- Experimental and Clinical Research Center, the Charité Universitätsmedizin Berlin and the Max-Delbrück Center for Molecular Medicine at the Charité, Berlin, Germany.,Nephrology and Internal Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Zhen-wu-tang attenuates cationic bovine serum albumin-induced inflammatory response in membranous glomerulonephritis rat through inhibiting AGEs/RAGE/NF-κB pathway activation. Int Immunopharmacol 2016; 33:33-41. [DOI: 10.1016/j.intimp.2016.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/12/2022]
|
13
|
Effects of Yishen Pinggan Recipe on Renal Protection and NF-κB Signaling Pathway in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6435040. [PMID: 27069492 PMCID: PMC4812349 DOI: 10.1155/2016/6435040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 01/08/2023]
Abstract
Inflammation is an important etiological factor of hypertensive renal damage. The effects of Yishen Pinggan Recipe (YPR) on urine microalbumin, histology, and NF-κB/P65, IκB-α, IL-1β, IL-6, and TNF-α in renal tissues were evaluated in SHR to explore the mechanism of its renal protection in hypertensive renal damage. The SBP of 12-week-old SHR was 192.41 ± 3.93 mmHg and DBP was 142.38 ± 5.79 mmHg. Without treatment, the 24-week-old SHRs' SBP was 196.96 ± 3.77 mmHg and DBP was 146.08 ± 4.82 mmHg. After the 12-week-old SHR were administered YPR for 12 weeks, the rats' SBP was 161.45 ± 7.57 mmHg and DBP was 117.21 ± 5.17 mmHg; YPR could lower blood pressure in SHR. And renal function damage was observed in 24-week-old SHR without treatment, manifested as urine protein and morphological changes which could be inhibited by YPR. In addition, YPR could reduce the expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in kidneys. It could also inhibit the nuclear translocation of NF-κB p65 and degradation of IκB-α in renal cells, indicating that the NF-κB signaling pathway was inhibited by YPR. Finally, the study suggests that YPR could significantly improve the renal function in SHR. The mechanism could be attributed to its inhibition of renal NF-κB signaling pathway and inflammation.
Collapse
|
14
|
Zhou Q, Xiong Y, Huang XR, Tang P, Yu X, Lan HY. Identification of Genes Associated with Smad3-dependent Renal Injury by RNA-seq-based Transcriptome Analysis. Sci Rep 2015; 5:17901. [PMID: 26648110 PMCID: PMC4673424 DOI: 10.1038/srep17901] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/04/2015] [Indexed: 01/14/2023] Open
Abstract
Transforming growth factor-β/Smad3 signaling plays a critical role in the process of chronic kidney disease (CKD), but targeting Smad3 systematically may cause autoimmune disease by impairing immunity. In this study, we used whole-transcriptome RNA-sequencing to identify the differential gene expression profile, gene ontology, pathways, and alternative splicing related to TGF-β/Smad3 in CKD. To explore common dysregulation of genes associated with Smad3-dependent renal injury, kidney tissues of Smad3 wild-type and knockout mice with immune (anti-glomerular basement membrane glomerulonephritis) and non-immune (obstructive nephropathy)-mediated CKD were used for RNA-sequencing analysis. Totally 1922 differentially expressed genes (DEGs) were commonly found in these CKD models. The up-regulated genes are inflammatory and immune response associated, while decreased genes are material or electron transportation and metabolism related. Only 9 common DEGs were found to be Smad3-dependent in two models, including 6 immunoglobulin genes (Ighg1, Ighg2c, Igkv12-41, Ighv14-3, Ighv5-6 and Ighg2b) and 3 metabolic genes (Ugt2b37, Slc22a19, and Mfsd2a). Our results identify transcriptomes associated with renal injury may represent a common mechanism for the pathogenesis of CKD and reveal novel Smad3 associated transcriptomes in the development of CKD.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Li Ka Shing Institute of Health Sciences and Department of Medicine &Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
| | - Yuanyan Xiong
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China.,SYSU-CMU Shunde International Joint Research Institute, Guangzhou, China
| | - Xiao R Huang
- Li Ka Shing Institute of Health Sciences and Department of Medicine &Therapeutics, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, China
| | - Patrick Tang
- Li Ka Shing Institute of Health Sciences and Department of Medicine &Therapeutics, the Chinese University of Hong Kong, Hong Kong, China
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Y Lan
- Li Ka Shing Institute of Health Sciences and Department of Medicine &Therapeutics, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
15
|
Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS One 2014; 9:e110383. [PMID: 25329154 PMCID: PMC4201534 DOI: 10.1371/journal.pone.0110383] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/12/2014] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs contribute to the pathogenesis of certain diseases and may serve as biomarkers. We analyzed glomerular microRNA expression in B6.MRLc1, which serve as a mouse model of autoimmune glomerulonephritis. We found that miR-26a was the most abundantly expressed microRNA in the glomerulus of normal C57BL/6 and that its glomerular expression in B6.MRLc1 was significantly lower than that in C57BL/6. In mouse kidneys, podocytes mainly expressed miR-26a, and glomerular miR-26a expression in B6.MRLc1 mice correlated negatively with the urinary albumin levels and podocyte-specific gene expression. Puromycin-induced injury of immortalized mouse podocytes decreased miR-26a expression, perturbed the actin cytoskeleton, and increased the release of exosomes containing miR-26a. Although miR-26a expression increased with differentiation of immortalized mouse podocytes, silencing miR-26a decreased the expression of genes associated with the podocyte differentiation and formation of the cytoskeleton. In particular, the levels of vimentin and actin significantly decreased. In patients with lupus nephritis and IgA nephropathy, glomerular miR-26a levels were significantly lower than those of healthy controls. In B6.MRLc1 and patients with lupus nephritis, miR-26a levels in urinary exosomes were significantly higher compared with those for the respective healthy control. These data indicate that miR-26a regulates podocyte differentiation and cytoskeletal integrity, and its altered levels in glomerulus and urine may serve as a marker of injured podocytes in autoimmune glomerulonephritis.
Collapse
|
16
|
Kułdo J, Ásgeirsdóttir S, Zwiers P, Bellu A, Rots M, Schalk J, Ogawara K, Trautwein C, Banas B, Haisma H, Molema G, Kamps J. Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo. J Control Release 2013; 166:57-65. [DOI: 10.1016/j.jconrel.2012.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 01/14/2023]
|
17
|
Abstract
Most methods for large-scale gene expression microarray and RNA-Seq data analysis are designed to determine the lists of genes or gene products that show distinct patterns and/or significant differences. The most challenging and rate-liming step, however, is to determine what the resulting lists of genes and/or transcripts biologically mean. Biomedical ontology and pathway-based functional enrichment analysis is widely used to interpret the functional role of tightly correlated or differentially expressed genes. The groups of genes are assigned to the associated biological annotations using Gene Ontology terms or biological pathways and then tested if they are significantly enriched with the corresponding annotations. Unlike previous approaches, Gene Set Enrichment Analysis takes quite the reverse approach by using pre-defined gene sets. Differential co-expression analysis determines the degree of co-expression difference of paired gene sets across different conditions. Outcomes in DNA microarray and RNA-Seq data can be transformed into the graphical structure that represents biological semantics. A number of biomedical annotation and external repositories including clinical resources can be systematically integrated by biological semantics within the framework of concept lattice analysis. This array of methods for biological knowledge assembly and interpretation has been developed during the past decade and clearly improved our biological understanding of large-scale genomic data from the high-throughput technologies.
Collapse
Affiliation(s)
- Ju Han Kim
- Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Inoue T, Suzuki H, Okada H. Targeted expression of a pan-caspase inhibitor in tubular epithelium attenuates interstitial inflammation and fibrogenesis in nephritic but not nephrotic mice. Kidney Int 2012; 82:980-9. [PMID: 22785176 DOI: 10.1038/ki.2012.243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The caspase family of enzymes participates in apoptotic and proinflammatory reactions in any cell. Here we studied the role of caspase activation in the tubular epithelium of diseased kidneys using mice transgenic for the baculovirus pan-caspase inhibitor p35 gene held in a nonexpressed state (control mice) but target-expressed in the renal proximal tubule cells when crossed with mice expressing Cre recombinase under the control of the γ-glutamyltransferase promoter. Proinflammatory and profibrogenic parameters such as the number of monocytes and fibroblasts in the kidneys were significantly increased at 28 days in the control mice, but not in the renal tubule-targeted mice expressing p35 in a nephrotoxic serum nephritis model of disease. These cellular changes paralleled the number of apoptotic tubular cells and protein levels of active caspase-3 in the kidneys at 7 and 28 days of both the control and proximal tubule-targeted mice. Surprisingly, all of these parameters were not significantly affected at 7 and 28 days by targeted p35 expression in tubular epithelium when compared with nontargeted control mice in a model of adriamycin nephrosis. Thus, our study shows the critical role of caspase activation in the tubular epithelium in apoptosis along with proinflammatory and profibrogenic processes in nephrotoxic serum nephritis but not adriamycin nephrosis.
Collapse
Affiliation(s)
- Tsutomu Inoue
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | | | | |
Collapse
|
19
|
Cho MH, Jung KJ, Jang HS, Kim JI, Park KM. Orchiectomy attenuates kidney fibrosis after ureteral obstruction by reduction of oxidative stress in mice. Am J Nephrol 2011; 35:7-16. [PMID: 22143161 DOI: 10.1159/000334598] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/17/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND/AIMS Men are generally more prone to chronic kidney disease and progression to end-stage renal disease than women. However, the underlying mechanisms remain unclear. In this study, we investigated the role of reactive oxygen species and testosterone in the progression of renal fibrosis in mice with unilateral ureteral obstruction (UUO). METHODS Mice were subjected to either orchiectomy or sham operation 14 days before either UUO or sham surgery. Harvesting of the kidney was performed 7 days after the UUO surgery to measure the production of reactive oxygen species and expression of antioxidants such as catalase, copper-zinc superoxide dismutase, and manganese superoxide dismutase, as well as fibrosis markers including α-smooth muscle actin (α-SMA) and collagen. RESULTS UUO resulted in increased expression of α-SMA and collagen deposition in the kidneys of both female and male mice. These increases were significantly greater in males than females. Orchiectomy significantly reduced increases in α-SMA expression and collagen deposition when compared with intact male. UUO increased the production of hydrogen peroxide and lipid peroxidation along with the decreases in expression of manganese superoxide dismutase, copper-zinc superoxide dismutase, and catalase. These changes induced by UUO were significantly attenuated by orchiectomy. CONCLUSION Males are more susceptible to UUO-induced kidney fibrosis compared with females, and the higher susceptibility of males is obviated by orchiectomy along with reduction in oxidative stress.
Collapse
Affiliation(s)
- Min Hyun Cho
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | | | | | |
Collapse
|
20
|
Stangou M, Papagianni A, Bantis C, Liakou H, Pliakos K, Giamalis P, Gionanlis L, Pantzaki A, Efstratiadis G, Memmos D. Detection of multiple cytokines in the urine of patients with focal necrotising glomerulonephritis may predict short and long term outcome of renal function. Cytokine 2011; 57:120-6. [PMID: 22057032 DOI: 10.1016/j.cyto.2011.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/12/2011] [Accepted: 10/16/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Detection of urinary cytokines in pauci-immune focal segmental necrotizing glomerulonephritis (FSNGN) may provide valuable information about disease pathogenesis and prognosis. METHODS Epidermal growth factor (EGF), transforming growth factor (TGF-β1) and vascular endothelial growth factor (VEGF) were measured by ELISA, and Interleukins, monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein (MIP1β) by a multiplex cytokine assay, in 38 patients with FSNGN. Their levels were correlated with severity of histological findings and renal function outcome in short and long term. RESULTS The percentage of crescents in renal biopsy had positive correlation with TGF-β1 (p=0.004) and IL-15 urinary excretion (p=0.01), and negative correlation with EGF (p=0.01). Increased urinary excretion of IL-6, IL-15, VEGF and MIP-1β was associated with poor renal function outcome, but increased levels of EGF, IL-2 and IL-9 predicted a favourable prognosis. In multiple regression analysis IL-6 and VEGF urinary levels were independent predictors of no-response at the acute phase (p=0.001 and p<0.0001, respectively), while, IL-6 was the only factor (p=0.03) predicted worse outcome at the end of follow-up (39.4±45 months). CONCLUSION Increased urinary excretion of IL-6, IL-15, VEGF, TGF-β1, MCP-1 and MIP-1β and reduced EGF, IL-2, IL-9 may be associated with histological damage and influence response to treatment in pauci-immune FSNGN.
Collapse
Affiliation(s)
- Maria Stangou
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration General Hospital, 49 Konstantinoupoleos Str., 54642 Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Park SJ, Kim JH, Shin JI. The influence of age on the clinical features and outcomes of anti-glomerular basement membrane disease. Am J Kidney Dis 2011; 58:678; author reply 678-9. [PMID: 21944964 DOI: 10.1053/j.ajkd.2011.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/27/2011] [Indexed: 11/11/2022]
|
22
|
Ju W, Brosius FC. Understanding kidney disease: toward the integration of regulatory networks across species. Semin Nephrol 2011; 30:512-9. [PMID: 21044762 DOI: 10.1016/j.semnephrol.2010.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animal models have long been useful in investigating both normal and abnormal human physiology. Systems biology provides a relatively new set of approaches to identify similarities and differences between animal models and human beings that may lead to a more comprehensive understanding of human kidney pathophysiology. In this review, we briefly describe how genome-wide analyses of mouse models have helped elucidate features of human kidney diseases, discuss strategies to achieve effective network integration, and summarize currently available web-based tools that may facilitate integration of data across species. The rapid progress in systems biology and orthology, as well as the advent of web-based tools to facilitate these processes, now make it possible to take advantage of knowledge from distant animal species in targeted identification of regulatory networks that may have clinical relevance for human kidney diseases.
Collapse
Affiliation(s)
- Wenjun Ju
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109-0680, USA
| | | |
Collapse
|
23
|
Lee KM, Han S, Park WY, Kang D. Identification and application of biomarkers in molecular and genomic epidemiologic research. J Prev Med Public Health 2011; 42:349-55. [PMID: 20009480 DOI: 10.3961/jpmph.2009.42.6.349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Biomarkers are characteristic biological properties that can be detected and measured in a variety of biological matrices in the human body, including the blood and tissue, to give an indication of whether there is a threat of disease, if a disease already exists, or how such a disease may develop in an individual case. Along the continuum from exposure to clinical disease and progression, exposure, internal dose, biologically effective dose, early biological effect, altered structure and/or function, clinical disease, and disease progression can potentially be observed and quantified using biomarkers. While the traditional discovery of biomarkers has been a slow process, the advent of molecular and genomic medicine has resulted in explosive growth in the discovery of new biomarkers. In this review, issues in evaluating biomarkers will be discussed and the biomarkers of environmental exposure, early biologic effect, and susceptibility identified and validated in epidemiological studies will be summarized. The spectrum of genomic approaches currently used to identify and apply biomarkers and strategies to validate genomic biomarkers will also be discussed.
Collapse
Affiliation(s)
- Kyoung-Mu Lee
- Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | | | | | | |
Collapse
|
24
|
Shao WH, Zhen Y, Rosenbaum J, Eisenberg RA, McGaha TL, Birkenbach M, Cohen PL. A protective role of Mer receptor tyrosine kinase in nephrotoxic serum-induced nephritis. Clin Immunol 2010; 136:236-44. [PMID: 20444650 DOI: 10.1016/j.clim.2010.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/29/2010] [Accepted: 04/01/2010] [Indexed: 12/30/2022]
Abstract
The Mer receptor tyrosine kinase is strongly expressed in the glomerulus. We wondered if this molecule might modify immune-mediated glomerular disease through its functions as a receptor for apoptotic cells and immunoregulatory molecule. Mer-knockout (KO) mice showed decreased survival rate and greatly increased proteinuria and serum urea levels compared to wild type (WT) mice by day 3 after injection of NTS. Their glomeruli were hyperplastic and later became necrotic. In the glomerulus of WT mice, a significant increase of Mer expression was observed. Apoptotic bodies were evident in NTS-treated Mer-KO kidneys, but not in normal controls. NTS-treated Mer-KO mice had massive neutrophil infiltration and inflammatory cytokine expression. Mer thus has a critical role in attenuating renal inflammation, both as a receptor for apoptotic cells and as a molecule that downregulates inflammation.
Collapse
Affiliation(s)
- Wen-Hai Shao
- Department of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Ichii O, Otsuka S, Sasaki N, Yabuki A, Ohta H, Takiguchi M, Hashimoto Y, Endoh D, Kon Y. Local overexpression of interleukin-1 family, member 6 relates to the development of tubulointerstitial lesions. J Transl Med 2010; 90:459-75. [PMID: 20101239 DOI: 10.1038/labinvest.2009.148] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Identification of factors that exacerbate a disease is important for the development of biomarkers. In this study, we discovered ectopic overexpression of interleukin-1 family, member-6 (IL-1F6) in several murine renal diseases. IL-1F6 participates in cytokine/chemokine production in the epithelium. In PCR array analysis for inflammatory mediators, Il1f6 showed the highest expression in the kidney of the B6.MRLc1 glomerulonephritis model. IL-1F6 was localized in the epithelium from the DCTs to CCDs, which showed tubular dilations or epithelial deciduations. Ultrastructual examination of the epithelial cells revealed that IL-1F6 was localized on the cytoplasmic ribosome, vesicles, and nucleus. In and around these tubules, we found infiltrations of CD3-positive T-cells and nestin- or alpha-smooth-muscle actin-positive mesenchymal cells. Expression of the IL-1F6 protein and Il1f6 mRNA in the kidney was increased by the development of TILs in the B6.MRLc1 model and in lupus (BXSB, NZB/WF1, and MRL/lpr), nephrotic syndrome (ICGN), and streptozotocin-induced diabetic models. IL-1F6 was also detected in the epithelia having squamous or deciduous contours in other organs such as the skin, esophagus, thymus, or uterus. In vitro analysis using M-1 cells from the murine collecting duct revealed that Il1f6 mRNA induction was related to the upregulation of IL-6, TGF-beta receptor-1, and mesenchymal markers and to the downregulation of epithelial markers and changes in the squamous cells of the epithelium. Interestingly, urine Il1f6 mRNA expression was detected earlier than renal dysfunctions in these mouse models. Ectopic overexpression of IL-1F6 in kidneys is associated with TILs and especially with cell infiltrations and changes in epithelial morphology. We propose that local overexpression of IL-1F6 is related to the development of TILs.
Collapse
Affiliation(s)
- Osamu Ichii
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wenderfer SE, Dubinsky WP, Hernandez-Sanabria M, Braun MC. Urine proteome analysis in murine nephrotoxic serum nephritis. Am J Nephrol 2009; 30:450-8. [PMID: 19776558 DOI: 10.1159/000242430] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/14/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND Urine contains serum proteins filtered by the glomerulus or secreted by the renal tubules and proteins produced locally by the urinary tract. Proteomic analysis of urine holds the potential as a noninvasive means of studying or monitoring disease activity. In mice, large concentrations of albumin and lipocalins have complicated the ability to identify urinary biomarkers in disease models. METHODS Passive nephrotoxic serum nephritis was induced in mice. Urine proteins were identified and quantified by iTRAQ and MALDI-TOF mass spectrometry. Results were compared to Western blotting and multiplex immunoassays. RESULTS Large concentrations of major urinary proteins dominate the urine proteome of mice even in the context of acute nephritis. Increased proteinuria caused by nephrotoxic serum nephritis is transient and includes increased albumin excretion. There were no alterations in chemokine excretion. Altered hepcidin excretion was identified, most likely reflecting local production and renal retention. CONCLUSION Proteomic analysis of mouse urine remains challenging due to the abundance of a limited subset of proteins. iTRAQ analysis does not circumvent these challenges, but can provide information on post-translational processing of some proteins. Hepcidin is identified as a potential urinary marker of nephritis and its role in disease pathogenesis warrants further study.
Collapse
Affiliation(s)
- Scott E Wenderfer
- The Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
27
|
Giannakis E, Samuel CS, Hewitson TD, Boon WM, Macris M, Reeve S, Lawrence J, Ian Smith A, Tregear GW, Wade JD. Aberrant protein expression in plasma and kidney tissue during experimental obstructive nephropathy. Proteomics Clin Appl 2009; 3:1211-24. [PMID: 21136945 DOI: 10.1002/prca.200900021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/26/2009] [Accepted: 06/29/2009] [Indexed: 11/10/2022]
Abstract
Kidney failure is a major health problem worldwide. Patients with end-stage renal disease require intensive medical support by dialysis or kidney transplantation. Current methods for diagnosis of kidney disease are either invasive or insensitive, and renal function may decline by as much as 50% before it can be detected using current techniques. The goal of this study was, therefore, to identify biomarkers of kidney disease (associated with renal fibrosis) that can be used for the development of a non-invasive clinical test for early disease detection. We utilized two protein-profiling technologies (SELDI-TOF MS and 2-D) to screen the plasma and kidney proteome for aberrantly expressed proteins in an experimental mouse model of unilateral uretric obstruction, which mimics the pathology of human renal disease. Several differentially regulated proteins were detected at the plasma level of day-3-obstructed animals, which included serum amyloid A1, fibrinogen α, haptoglobin precursor protein, haptoglobin and major urinary proteins 11 and 8. Differentially expressed proteins detected at the tissue level included ras-like activator protein 2, haptoglobin precursor protein, malate dehydrogenase, α enolase and murine urinary protein (all p<0.05 versus controls). Immunohistochemistry was used to confirm the up-regulation of fibrinogen. Interestingly, these proteins are largely separated into four major classes: (i) acute-phase reactants (ii) cell-signaling molecules (iii) molecules involved in cell growth and metabolism and (iv) urinary proteins. These results provide new insights into the pathology of obstructive nephropathy and may facilitate the development of specific assay(s) to detect and monitor renal fibrosis.
Collapse
Affiliation(s)
- Eleni Giannakis
- Howard Florey Institute, The University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The effect of root of rhododendron on the activation of NF-κ B in a chronic glomerulonephritis rat model. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1007-4376(09)60031-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Kang JH, Huh JK, Lee YS, Han JY, Ha IS. Effect of renin inhibition on an experimental glomerulonephritis - a preliminary report. KOREAN JOURNAL OF PEDIATRICS 2009. [DOI: 10.3345/kjp.2009.52.8.938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ju Hyung Kang
- Department of Pediatrics, College of Medicine, Eulji University, Daejeon, Korea
| | - Jae Kyung Huh
- Department of Pediatrics, College of Medicine, Eulji University, Daejeon, Korea
| | - Young Sook Lee
- Department of Internal Medicine, College of Medicine, Eulji University, Daejeon, Korea
| | - Ji Young Han
- Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Il Soo Ha
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
30
|
Nam DH, Jeon HM, Kim S, Kim MH, Lee YJ, Lee MS, Kim H, Joo KM, Lee DS, Price JE, Bang SI, Park WY. Activation of Notch Signaling in a Xenograft Model of Brain Metastasis. Clin Cancer Res 2008; 14:4059-66. [DOI: 10.1158/1078-0432.ccr-07-4039] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Yang SH, Shin SJ, Oh JE, Jin JZ, Chung NH, Lim CS, Kim S, Kim YS. The protective role of uteroglobin through the modulation of tissue transglutaminase in the experimental crescentic glomerulonephritis. Nephrol Dial Transplant 2008; 23:3437-45. [PMID: 18558621 DOI: 10.1093/ndt/gfn268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND METHODS Tissue transglutaminase (tTG) may induce pro-inflammatory cytokines and produce irreversible end-products, thus promoting renal scarring. It has recently been confirmed that the crescent formation in murine experimental crescentic glomerulonephritis (ecGN) has been inhibited by the administration of recombinant uteroglobin (rUG). However, the ability of UG on tTG modulation has not been thoroughly assessed. In this study, we investigated the feasible protective role of UG in murine ecGN through the modulation of tTG and TGF-beta1 expressions. ecGN was induced by the administration of anti-GBM Ab into C57BL/6 mice. RESULTS Both proteinuria and BUN levels were distinctively lower in rUG-treated mice compared to those of disease control mice. Glomerular injuries such as mesangial proliferation, matrix production and crescent formation were lessened with the rUG treatment, and these findings were parallel with the attenuated expression of tTG and TGF-beta1. tTG and TGF-beta1 were expressed mainly on mesangial areas by the induction of ecGN and rUG treatment markedly attenuated the expressions of these proteins in glomeruli without spatial changes. With the addition of LPS to mesangial cells, the expressions of tTG and TGF-beta1 were up-regulated, whilst the addition of cysteamine, tTG inhibitor, attenuated the expression of tTG and TGF-beta1 as well as the cellular proliferation which was further induced by LPS. CONCLUSION We demonstrate for the first time that rUG is able to attenuate the renal injury through the modulation of expressions of tTG and TGF-beta1 in ecGN and further suggest a wide range of feasible molecular targets to reduce the severity of human glomerulonephritis.
Collapse
Affiliation(s)
- Seung Hee Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-744, Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang Y, Zhang H, Hou P, Liang X, Li Z, Wang H. The novel gene AngRem104 downregulates glucocorticoid receptor expression and activates NF-kappaB in human mesangial cells. Biochem Biophys Res Commun 2008; 369:1057-60. [PMID: 18331827 DOI: 10.1016/j.bbrc.2008.02.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
AngRem104 [angiotensin II (Ang II)-related genes in human mesangial cells (MCs), clone104], a novel gene in human MCs induced by Ang II, was previously identified in human MCs and found to interact with several proteins. The current study used a yeast two-hybrid system and co-immunoprecipitation to investigate the interaction between AngRem104 and glucocorticoid receptor (GR) AF-1-specific elongation factor (GR-EF). GR expression was downregulated and the number of MCs positive for activated nuclear factor kappaB (NF-kappaB) was increased when AngRem104 was overexpressed. Transfection with antisense AngRem104 vector resulted in the upregulation of GR protein and reduced numbers of MCs with activated NF-kappaB. These results indicate that the novel gene AngRem104 is involved in the in vivo regulation of GR expression and the activation of NF-kappaB through interaction with GR-EF in human MCs.
Collapse
Affiliation(s)
- Yanling Zhang
- Renal Division, Peking University First Hospital, Institute of Nephrology, Peking University, No. 8, Xishiku Street, Beijing 100034, China
| | | | | | | | | | | |
Collapse
|
33
|
Kim N, Park WY, Kim JM, Park JH, Kim JS, Jung HC, Song IS. Gene expression of AGS cells stimulated with released proteins by Helicobacter pylori. J Gastroenterol Hepatol 2008; 23:643-51. [PMID: 18070016 DOI: 10.1111/j.1440-1746.2007.05241.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Interactions between released proteins by Helicobacter pylori (H. pylori) and the cells of gastric epithelium to which it adheres may contribute to gastric inflammation and epithelial damage. The present study was performed to evaluate the gene expression of AGS gastric cancer cells stimulated with released proteins by H. pylori. METHODS Gene expression of AGS cells to the stimulation by H. pylori-released proteins (G27 strain) were monitored using oligonucleotide microarrays. RESULTS Eighty-eight genes (0.88%) and eight genes (0.08%) were up- or downregulated, respectively, by treating AGS cells with H. pylori-released proteins but not by H. pylori adhesion after 12 h of coculture. Out of the selected 40 up- and five downregulated genes, 29 upregulated genes classified as general RNA polymerase II transcription factor activity (GTF2B, PPARGC1A), SH3/SH2 adaptor activity (CRKL), transferase activity (ACLY, CRKL, PIGC, PLK4), and oxidoreductase activity (IDH1) were confirmed to be upregulated by released proteins and not by H. pylori adhesion by real-time reverse transcription-polymerase chain reaction. When the concentrated H. pylori-cultured supernatant prepared by our protocol was treated by boiling, the upregulations of 26 of these 29 genes (89.7%) except for CD160, ZNF268, and PSAT1 disappeared. This confirmed that most of these upregulations were caused by released proteins. CONCLUSION Host genes involving transcription, signaling and stress are significantly modulated by the proteins released by H. pylori. This might strengthen the gastroduodenal pathogenesis induced by H. pylori.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
BioLattice: a framework for the biological interpretation of microarray gene expression data using concept lattice analysis. J Biomed Inform 2007; 41:232-41. [PMID: 18093880 DOI: 10.1016/j.jbi.2007.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 09/22/2007] [Accepted: 10/13/2007] [Indexed: 02/05/2023]
Abstract
MOTIVATION A challenge in microarray data analysis is to interpret observed changes in terms of biological properties and relationships. One powerful approach is to make associations of gene expression clusters with biomedical ontologies and/or biological pathways. However, this approach evaluates only one cluster at a time, returning long unordered lists of annotations for clusters without considering the overall context of the experiment under investigation. RESULTS BioLattice is a mathematical framework based on concept lattice analysis for the biological interpretation of gene expression data. By considering gene expression clusters as objects and associated annotations as attributes and by using set inclusion relationships BioLattice orders them to create a lattice of concepts, providing an 'executive' summary of the experimental context. External knowledge resources such as Gene Ontology trees and pathway graphs can be added incrementally. We propose two quantitative structural analysis methods, 'prominent sub-lattice' and 'core-periphery' analyses, enabling systematic comparison of experimental concepts and contexts. BioLattice is implemented as a web-based utility using Scalable Vector Graphics for interactive visualization. We applied it to real microarray datasets with improved biological interpretations of the experimental contexts.
Collapse
|
35
|
Schanstra JP, Bachvarova M, Neau E, Bascands JL, Bachvarov D. Gene expression profiling in the remnant kidney model of wild type and kinin B1 and B2 receptor knockout mice. Kidney Int 2007; 72:442-54. [PMID: 17579666 DOI: 10.1038/sj.ki.5002172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Angiotensin-converting enzyme inhibitors are the most efficient pharmacologic agents to delay the development of end-stage renal disease (ESRD). This is a multipharmacologic approach that inhibits angiotensin II formation while increasing kinin concentrations. Considerable attention has been focused on the role of decreased angiotensin II levels; however, the role of increased kinin levels is gaining in interest. Kinins affect cellular physiology by interacting with one of two receptors being the more inducible B1 and the more constitutive B2 receptors. This study utilizes the mouse remnant kidney of 20 weeks duration as a model of ESRD. Whole mouse genome microarrays were used to evaluate gene expression in the remnant kidneys of wild type, B1 and B2 receptor knockout animals. The microarray data indicate that gene families involved in vascular damage, inflammation, fibrosis, and proteinuria were upregulated, whereas gene families involved in cell growth, metabolism, lipid, and protein biosynthesis were downregulated in the remnant kidneys. Interestingly, the microarray analyses coupled to histological evaluations are suggestive of a possible protective role of kinins operating through the B2 receptor subtype in this model of renal disease. The results highlight the potential of microarray technology for unraveling complex mechanisms contributing to chronic renal failure.
Collapse
MESH Headings
- Animals
- Blood Pressure
- Cell Proliferation
- Cluster Analysis
- Creatinine/blood
- Creatinine/urine
- Disease Models, Animal
- Fibrosis/genetics
- Fibrosis/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Gene Regulatory Networks
- Inflammation/genetics
- Inflammation/metabolism
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Kidney/surgery
- Kidney Failure, Chronic/complications
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/pathology
- Kidney Failure, Chronic/physiopathology
- Lipid Metabolism/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nephrectomy
- Oligonucleotide Array Sequence Analysis
- Polymerase Chain Reaction
- Protein Biosynthesis/genetics
- Proteinuria/genetics
- Proteinuria/metabolism
- RNA, Messenger/metabolism
- Receptor, Bradykinin B1/deficiency
- Receptor, Bradykinin B1/genetics
- Receptor, Bradykinin B1/metabolism
- Receptor, Bradykinin B2/deficiency
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Reproducibility of Results
- Time Factors
Collapse
|
36
|
Post hoc pattern matching: assigning significance to statistically defined expression patterns in single channel microarray data. BMC Bioinformatics 2007; 8:240. [PMID: 17615071 PMCID: PMC1934919 DOI: 10.1186/1471-2105-8-240] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 07/05/2007] [Indexed: 11/28/2022] Open
Abstract
Background Researchers using RNA expression microarrays in experimental designs with more than two treatment groups often identify statistically significant genes with ANOVA approaches. However, the ANOVA test does not discriminate which of the multiple treatment groups differ from one another. Thus, post hoc tests, such as linear contrasts, template correlations, and pairwise comparisons are used. Linear contrasts and template correlations work extremely well, especially when the researcher has a priori information pointing to a particular pattern/template among the different treatment groups. Further, all pairwise comparisons can be used to identify particular, treatment group-dependent patterns of gene expression. However, these approaches are biased by the researcher's assumptions, and some treatment-based patterns may fail to be detected using these approaches. Finally, different patterns may have different probabilities of occurring by chance, importantly influencing researchers' conclusions about a pattern and its constituent genes. Results We developed a four step, post hoc pattern matching (PPM) algorithm to automate single channel gene expression pattern identification/significance. First, 1-Way Analysis of Variance (ANOVA), coupled with post hoc 'all pairwise' comparisons are calculated for all genes. Second, for each ANOVA-significant gene, all pairwise contrast results are encoded to create unique pattern ID numbers. The # genes found in each pattern in the data is identified as that pattern's 'actual' frequency. Third, using Monte Carlo simulations, those patterns' frequencies are estimated in random data ('random' gene pattern frequency). Fourth, a Z-score for overrepresentation of the pattern is calculated ('actual' against 'random' gene pattern frequencies). We wrote a Visual Basic program (StatiGen) that automates PPM procedure, constructs an Excel workbook with standardized graphs of overrepresented patterns, and lists of the genes comprising each pattern. The visual basic code, installation files for StatiGen, and sample data are available as supplementary material. Conclusion The PPM procedure is designed to augment current microarray analysis procedures by allowing researchers to incorporate all of the information from post hoc tests to establish unique, overarching gene expression patterns in which there is no overlap in gene membership. In our hands, PPM works well for studies using from three to six treatment groups in which the researcher is interested in treatment-related patterns of gene expression. Hardware/software limitations and extreme number of theoretical expression patterns limit utility for larger numbers of treatment groups. Applied to a published microarray experiment, the StatiGen program successfully flagged patterns that had been manually assigned in prior work, and further identified other gene expression patterns that may be of interest. Thus, over a moderate range of treatment groups, PPM appears to work well. It allows researchers to assign statistical probabilities to patterns of gene expression that fit a priori expectations/hypotheses, it preserves the data's ability to show the researcher interesting, yet unanticipated gene expression patterns, and assigns the majority of ANOVA-significant genes to non-overlapping patterns.
Collapse
|
37
|
Okada H, Inoue T, Kikuta T, Watanabe Y, Kanno Y, Ban S, Sugaya T, Horiuchi M, Suzuki H. A possible anti-inflammatory role of angiotensin II type 2 receptor in immune-mediated glomerulonephritis during type 1 receptor blockade. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1577-89. [PMID: 17071582 PMCID: PMC1780194 DOI: 10.2353/ajpath.2006.060178] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously reported that angiotensin II type 1 receptor (AT1R) blockade attenuates renal inflammation/fibrogenesis in immune-mediated glomerulonephritis via angiotensin II type 2 receptor (AT2R). In the present study, further in vivo experiments revealed that AT2R was expressed in tubular epithelial cells of nephritic kidneys in mice, and feedback activation of the renin-angiotensin system during AT1R blockade significantly reduced p-ERK, but not intranuclear nuclear factor-kappaB, levels via AT2R. This led to reduction in mRNA levels of the proinflammatory mediator monocyte chemoattractant protein-1 and overall interstitial inflammation and subsequent fibrogenesis. Specific blockade of ERK expression in tubular epithelium by anti-sense oligodeoxynucleotides also attenuated interstitial inflammation, mimicking the anti-inflammatory action of AT2R in nephritic kidneys. Alternatively, we succeeded in confirming such an AT(2)R function by demonstrating that AT1R blockade did not confer renoprotection in nephritic, AT2R gene-deficient mice. Additional in vitro experiments revealed that AT2R activation did not affect nuclear factor-kappaB activation by tumor necrosis factor-alpha in cultured tubular epithelial cells, although it inhibited ERK phosphorylation, which reduced monocyte chemoattractant protein-1 mRNA levels. These results suggest that feedback activation of AT2Rs in tubular epithelium of nephritic kidneys plays an important role in attenuating interstitial inflammation.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Anti-Glomerular Basement Membrane Disease/immunology
- Anti-Glomerular Basement Membrane Disease/pathology
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Enzyme Activation/drug effects
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/pathology
- Epithelium/drug effects
- Epithelium/pathology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation/drug effects
- Inflammation/immunology
- Kidney Tubules/drug effects
- Male
- Mice
- NF-kappa B/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Time Factors
Collapse
Affiliation(s)
- Hirokazu Okada
- Department of Nephrology, Saitama Medical School, 38 Morohongo, Irumagun, Saitama 350-0495, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Peltier J, Bellocq A, Perez J, Doublier S, Dubois YCX, Haymann JP, Camussi G, Baud L. Calpain activation and secretion promote glomerular injury in experimental glomerulonephritis: evidence from calpastatin-transgenic mice. J Am Soc Nephrol 2006; 17:3415-23. [PMID: 17082241 DOI: 10.1681/asn.2006050542] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glomerular injury and albuminuria in acute glomerulonephritis are related to the severity of inflammatory process. Calpain, a calcium-activated cysteine protease, has been shown to participate in the development of the inflammatory process. Therefore, for determination of the role of calpain in the pathophysiology of acute glomerulonephritis, transgenic mice that constitutively express high levels of calpastatin, a calpain-specific inhibitor protein, were generated. Wild-type mice that were subjected to anti-glomerular basement membrane nephritis exhibited elevated levels of calpain activity in kidney cortex at the heterologous phase of the disease. This was associated with the appearance in urine of calpain activity, which originated potentially from inflammatory cells, abnormal transglomerular passage of plasma proteins, and tubular secretion. In comparison with nephritic wild-type mice, nephritic calpastatin-transgenic mice exhibited limited activation of calpain in kidney cortex and limited secretion of calpain activity in urine. This was associated with less severe glomerular injury (including capillary thrombi and neutrophil activity) and proteinuria. There was a reduction in NF-kappaB activation, suggesting that calpain may participate in inflammatory lesions through NF-kappaB activation. There also was a reduction in nephrin disappearance from the surface of podocytes, indicating that calpain activity would enhance proteinuria by affecting nephrin expression. Exposure of cultured podocytes to calpain decreased nephrin expression, and, conversely, exposure of these cells to calpastatin prevented TNF-alpha from decreasing nephrin expression, demonstrating a role for the secreted form of calpain. Thus, both activation and secretion of calpains participate in the development of immune glomerular injury.
Collapse
Affiliation(s)
- Julie Peltier
- INSERM U702, 7Université Pierre et Marie Curie-Paris6, UMRS702, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee MS, Jun DH, Hwang CI, Park SS, Kang JJ, Park HS, Kim J, Kim JH, Seo JS, Park WY. Selection of neural differentiation-specific genes by comparing profiles of random differentiation. Stem Cells 2006; 24:1946-55. [PMID: 16627687 DOI: 10.1634/stemcells.2005-0325] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Differentiation of embryonic stem cells (ESCs) into neurons requires a high level of transcriptional regulation. To further understand the transcriptional regulation of neural differentiation of ESCs, we used oligonucleotide microarray to examine the gene expressions of the guided differentiation (GD) model for dopaminergic (DA) neurons from mouse ESCs. We also determined the gene expression profiles of the random differentiation (RD) model of mouse ESCs into embryoid bodies. From K-means clustering analysis using the expression patterns of the two models, most of the genes (1,282 of 1,884 genes [68.0%]) overlapped in their expression patterns. Six hundred twenty-two differentially expressed genes (DEGs) from the GD model by random variance F-test were classified by their critical molecular functions in neurogenesis and DNA replication (Gene Ontology analysis). However, 400 genes among GD-DEGs (64.3%) showed a high correlation with RD in Spearman's correlation analysis (Spearman's coefficient p(s) >or= .6). The genes showing marginal correlation (-.4 < p(s) < .6) were present in the early stages of differentiation of both GD and RD, which were non-specific to brain development. Finally, we distinguished 66 GD-specific genes based on p(s) <or= -.4, the molecular functions of which were related mainly to vesicle formation, neurogenesis, and transcription factors. From among these GD-specific genes, we confirmed the expression of Serpini1 and Rab33a in P19 differentiation models and adult brains. From these results, we identified the specific genes required for neural differentiation by comparing gene expressions of GD with RD; these would potentially be the highly specific candidate genes necessary for differentiation of DA neurons.
Collapse
Affiliation(s)
- Min Su Lee
- Department of Computer Science and Engineering, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen YT, Kobayashi A, Kwan KM, Johnson RL, Behringer RR. Gene expression profiles in developing nephrons using Lim1 metanephric mesenchyme-specific conditional mutant mice. BMC Nephrol 2006; 7:1. [PMID: 16464245 PMCID: PMC1413522 DOI: 10.1186/1471-2369-7-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 02/07/2006] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Lim1 is a homeobox gene that is essential for nephrogenesis. During metanephric kidney development, Lim1 is expressed in the nephric duct, ureteric buds, and the induced metanephric mesenchyme. Conditional ablation of Lim1 in the metanephric mesenchyme blocks the formation of nephrons at the nephric vesicle stage, leading to the production of small, non-functional kidneys that lack nephrons. METHODS In the present study, we used Affymetrix probe arrays to screen for nephron-specific genes by comparing the expression profiles of control and Lim1 conditional mutant kidneys. Kidneys from two developmental stages, embryonic day 14.5 (E14.5) and 18.5 (E18.5), were examined. RESULTS Comparison of E18.5 kidney expression profiles generated a list of 465 nephron-specific gene candidates that showed a more than 2-fold increase in their expression level in control kidney versus the Lim1 conditional mutant kidney. Computational analysis confirmed that this screen enriched for kidney-specific genes. Furthermore, at least twenty-eight of the top fifty (56%) candidates (or their vertebrate orthologs) were previously reported to have a nephron-specific expression pattern. Our analysis of E14.5 expression data yielded 41 candidate genes that are up-regulated in the control kidneys compared to the conditional mutants. Three of them are related to the Notch signaling pathway that is known to be important in cell fate determination and nephron patterning. CONCLUSION Therefore, we demonstrate that Lim1 conditional mutant kidneys serve as a novel tissue source for comprehensive expression studies and provide a means to identify nephron-specific genes.
Collapse
Affiliation(s)
- You-Tzung Chen
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Akio Kobayashi
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kin Ming Kwan
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Richard R Behringer
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
41
|
Jalal DI, Kone BC. Src activation of NF-kappaB augments IL-1beta-induced nitric oxide production in mesangial cells. J Am Soc Nephrol 2005; 17:99-106. [PMID: 16338964 DOI: 10.1681/asn.2005070693] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
NF-kappaB is a critical transcription factor that is involved in glomerulonephritis and inflammatory host responses and a critical transactivator of the inducible nitric oxide (NO) synthase gene in mesangial cells. The Src protein tyrosine kinases (SFK) are involved in several signaling pathways and have been proposed to mediate cytokine activation of NF-kappaB in a few cell types. However, the specific involvement of SFK in IL-1beta induction of NO production has not been clearly established. Accordingly, pharmacologic and molecular tools were used to clarify this issue in cultured murine mesangial cells. The SFK antagonist 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo(3,4-d)pyrimidine (PP2) dramatically inhibited IL-1beta-mediated induction of endogenous NO production as measured by the Griess reaction, as well as the induction of NF-kappaB p50/p65 DNA-binding activity in gel shift assays and the activity of an NF-kappaB-responsive promoter-reporter construct transiently transfected into the cells. Immunoprecipitation and immunoblotting with anti-IkappaBalpha and anti-phosphotyrosine antibodies revealed that PP2 also inhibited IL-1beta-stimulated tyrosine phosphorylation of IkappaBalpha, a requisite step in NF-kappaB activation in this signaling cascade. In agreement with the pharmacologic inhibition studies, siRNA directed against c-Src specifically limited c-Src protein expression and inhibited IL-1beta-mediated induction of NF-kappaB DNA-binding activity, whereas control siRNA had no effect. Conversely, overexpression of constitutively active c-Src augmented basal and IL-1beta-mediated induction of NF-kappaB DNA-binding activity and NO production. Thus, SFK play a key role in IL-1beta-induced NO production in mesangial cells and do so via tyrosine phosphorylation of IkappaBalpha and consequent NF-kappaB activation.
Collapse
Affiliation(s)
- Diane I Jalal
- Department of Internal Medicine, The University of Texas Medical School at Houston, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | | |
Collapse
|
42
|
Ottonello L, Bertolotto M, Montecucco F, Dapino P, Dallegri F. Dexamethasone -induced apoptosis of human monocytes exposed to immune complexes. Intervention of CD95- and XIAP-dependent pathways. Int J Immunopathol Pharmacol 2005; 18:403-415. [PMID: 16164824 DOI: 10.1177/039463200501800302] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Monocytes and macrophages play a key role in the initiation and persistence of inflammatory reactions. The possibility to interfere with the survival of these cells, once recruited and activated at sites of inflammation, is an attractive therapeutic option. Although resting monocytes are susceptible to pharmacologically induced apoptosis, no data are available about the possibility to modulate the survival of activated monocytes. The present work was planned to investigate if dexamethasone is able to promote apoptosis of human monocytes activated by immune complexes. When monocytes were cultured with immune complexes, a dose-dependent inhibition of apoptosis was observed. Dexamethasone stimulated apoptosis of resting and activated monocytes in a dose-dependent manner. Both the immune complex inhibitory activity and dexamethasone stimulatory properties depend on NF-kappaB/XIAP and Ras/MEK/ERK/CD95 pathways. In fact, the exposure of monocytes to immune complexes increased NF-kB activation and XIAP expression, which in turn were inhibited by dexamethasone. On the other hand, immune complex-stimulated monocytes displayed a reduced expression of CD95, which is prevented by dexamethasone, as well as by MEK inhibitor U0126. Furthermore, anti-CD95 ZB4 mAb prevented dexamethasone-induced apoptosis in immune complex stimulated monocytes. Similarly, ZB4 inhibited dexamethasone-mediated augmentation of caspase 3 activity. The present findings suggest that Fc triggering by insoluble immune complexes result in the activation of two intracellular pathways crucial for the survival of monocytes: 1. Ras/MEK/ERK pathway responsible for the down-regulation of CD95 expression; 2. NF-kappaB pathway governing the expression of XIAP. Both the pathways are susceptible to inhibition by monocyte treatment with pharmacologic concentrations of dexamethasone.
Collapse
Affiliation(s)
- L Ottonello
- Laboratory of Phagocyte Physiopathology and Inflammation, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | | | | | | | | |
Collapse
|