1
|
Specchio N, Auvin S. To what extent does status epilepticus contribute to brain damage in the developmental and epileptic Encephalopathies. Epilepsy Behav 2025; 164:110271. [PMID: 39883989 DOI: 10.1016/j.yebeh.2025.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
This paper is based on a presentation made at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures in April 2024. Status Epilepticus (SE) is a neurological emergency involving prolonged seizures that disrupt brain function and may cause severe, long-term neurological damage. Developmental and Epileptic Encephalopathies (DEEs), a group of severe genetic disorders with early-onset epilepsy, often exhibit SE episodes that compound their inherent cognitive and developmental challenges. In patients with DEEs, SE may intensify excitotoxicity, metabolic strain, and neuroinflammatory processes, exacerbating developmental delays and cognitive deficits. SE episodes in DEEs frequently resist conventional anti-seizure medications, posing heightened risks of progressive neurological decline and mortality. This paper explores how SE contributes to worsening neurodevelopmental outcomes in DEEs, particularly through sustained structural and functional brain alterations observed in human neuroimaging and animal models. Findings from clinical studies and neuroimaging highlight SE's role in structural damage, including cortical atrophy, hippocampal sclerosis, and gray matter loss. Rodent models replicate SE through chemical or electrical induction, providing insights into SE-induced neurodegeneration, network reorganization, especially in critical areas like the hippocampus, which is more known, however few of scientists look that much outside it. The models reveal a progressive cycle where recurrent SE episodes increase brain excitability, predisposing to further seizures and cumulative developmental impairment. Moreover, genetic animal models of DEEs suggest that early-life seizures exacerbate the severity of the epilepsy phenotype and neurocognitive deficits. This paper underscores the need for advanced, individualized therapies to manage SE in DEE patients and prevent recurrence, aiming to minimize long-term neurological and developmental sequelae.
Collapse
Affiliation(s)
- Nicola Specchio
- Neurology Epilepsy and Movement Disorders Unit Bambino Gesù Children's Hospital IRCCS Full Member of European Reference Network On Rare and Complex Epilepsies EpiCARE Rome Italy; University Hospitals KU Leuven Belgium.
| | - Stéphane Auvin
- APHP. Service de Neurologie Pédiatrique Centre de Référence Epilepsies Rares Membre EpiCARE Hôpital Universitaire Robert-Debré Université Paris-Cité INSERM Neuro Diderot Institut Universitaire de France (IUF) Paris France
| |
Collapse
|
2
|
Kambli L, Raut D, Bhatt LK. Sulfamethizole Attenuates Pentylenetetrazole-Induced Seizures in Mice via mTOR Inhibition. Drug Dev Res 2025; 86:e70039. [PMID: 39723688 DOI: 10.1002/ddr.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Epilepsy affects at least 1% of the global population of all socioeconomic backgrounds. Data obtained from previous studies suggest the role of mTOR signaling in epileptogenesis. The present study aimed to investigate the hypothesis that mTOR inhibitor sulfamethizole might produce antiepileptic effects in pentylenetetrazole (PTZ)-induced kindling seizures in mice. For induction of kindling, mice were administered 40 mg/kg PTZ on alternate days for 13 days. The severity of kindling was analyzed using a seizure intensity score. Rotarod performance, actophotometer, and chimney tests were performed to check muscle coordination and locomotor functions. mTOR and IL-6 levels were measured in the brain homogenate. Histological analyses were done using hematoxylin-eosin and cresyl violet stains. Sulfamethizole was administered daily at 10 and 50 mg/kg doses. PTZ administration resulted in kindling seizures in the PTZ-veh group. In addition, mice from the PTZ-veh group showed decreased fall time in rotarod performance, reduced locomotor activity, and failed chimney tests. mTOR and IL-6 levels were also increased in the brain, along with neuronal degeneration and a decreased layer of neuronal cells in the hippocampus. Treatment with sulfamethizole at 50 mg/kg significantly ameliorated seizure intensity score, seizure latency and duration, muscle coordination, and locomotor functions compared to the PTZ-veh group. It also downregulated brain mTOR and IL-6 expression significantly. In conclusion, sulfamethizole showed antiepileptic activity against PTZ-induced kindling seizure in mice via mTOR inhibition.
Collapse
Affiliation(s)
- Lazari Kambli
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Dezaree Raut
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Löscher W. Mammalian models of status epilepticus - Their value and limitations. Epilepsy Behav 2024; 158:109923. [PMID: 38944026 DOI: 10.1016/j.yebeh.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Status epilepticus (SE) is a medical and neurologic emergency that may lead to permanent brain damage, morbidity, or death. Animal models of SE are particularly important to study the pathophysiology of SE and mechanisms of SE resistance to antiseizure medications with the aim to develop new, more effective treatments. In addition to rodents (rats or mice), larger mammalian species such as dogs, pigs, and nonhuman primates are used. This short review describes and discusses the value and limitations of the most frequently used mammalian models of SE. Issues that are discussed include (1) differences between chemical and electrical SE models; (2) the role of genetic background and environment on SE in rodents; (3) the use of rodent models (a) to study the pathophysiology of SE and mechanisms of SE resistance; (b) to study developmental aspects of SE; (c) to study the efficacy of new treatments, including drug combinations, for refractory SE; (d) to study the long-term consequences of SE and identify biomarkers; (e) to develop treatments that prevent or modify epilepsy; (e) to study the pharmacology of spontaneous seizures; (4) the limitations of animal models of induced SE; and (5) the advantages (and limitations) of naturally (spontaneously) occurring SE in epileptic dogs and nonhuman primates. Overall, mammalian models of SE have significantly increased our understanding of the pathophysiology and drug resistance of SE and identified potential targets for new, more effective treatments. This paper was presented at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in April 2024.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
De Meulemeester AS, Reid C, Auvin S, Carlen PL, Andrew CJ, Szlendak R, Di Sapia R, Moshé SL, Sankar R, O’Brien TJ, Baulac S, Henshall DC, Akman Ö, Galanopoulou AS. WONOEP appraisal: Modeling early onset epilepsies. Epilepsia 2024; 65:2553-2566. [PMID: 39042520 PMCID: PMC11534511 DOI: 10.1111/epi.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
Epilepsy has a peak incidence during the neonatal to early childhood period. These early onset epilepsies may be severe conditions frequently associated with comorbidities such as developmental deficits and intellectual disability and, in a significant percentage of patients, may be medication-resistant. The use of adult rodent models in the exploration of mechanisms and treatments for early life epilepsies is challenging, as it ignores significant age-specific developmental differences. More recently, models developed in immature animals, such as rodent pups, or in three-dimensional organoids may more closely model aspects of the immature brain and could result in more translatable findings. Although models are not perfect, they may offer a more controlled screening platform in studies of mechanisms and treatments, which cannot be done in pediatric patient cohorts. On the other hand, more simplified models with higher throughput capacities are required to deal with the large number of epilepsy candidate genes and the need for new treatment options. Therefore, a combination of different modeling approaches will be beneficial in addressing the unmet needs of pediatric epilepsy patients. In this review, we summarize the discussions on this topic that occurred during the XVI Workshop on Neurobiology of Epilepsy, organized in 2022 by the Neurobiology Commission of the International League Against Epilepsy. We provide an overview of selected models of early onset epilepsies, discussing their advantages and disadvantages. Heterologous expression models provide initial functional insights, and zebrafish, rodent models, and brain organoids present increasingly complex platforms for modeling and validating epilepsy-related phenomena. Together, these models offer valuable insights into early onset epilepsies and accelerate hypothesis generation and therapy discovery.
Collapse
Affiliation(s)
- Ann-Sofie De Meulemeester
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Christopher Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | - Stéphane Auvin
- AP-HP, Robert-Debré University Hospital, Pediatric Neurology Department, CRMR épilepsies rares, EpiCARE member, Paris, France
- Université Paris Cité, INSERM NeuroDiderot, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Peter L. Carlen
- Krembil Research Institute, 60 Leonard Ave, 7KDT430, Toronto, ON, Canada M5T 0S8
- Institute of Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College St Room 407, Toronto, ON, Canada, M5S 3G9
- Departments of Medicine and Physiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON, Canada, M5S 1A8
| | - Cole J. Andrew
- MGH Epilepsy Service, Division of Clinical Neurophysiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roza Szlendak
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17A, 01-211 Warsaw, Poland
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
- Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Raman Sankar
- Department of Neurology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Terence J. O’Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004 Victoria, Australia
- Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004 Victoria, Australia
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France
| | - David C. Henshall
- FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, D02 YN7
| | - Özlem Akman
- Demiroglu Bilim University, Faculty of Medicine Department of Physiology, Istanbul, Turkey
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
- Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
López-Meraz ML, Álvarez-Croda DM. Microglia and Status Epilepticus in the Immature Brain. Epilepsia Open 2022; 8 Suppl 1:S73-S81. [PMID: 35531942 PMCID: PMC10173848 DOI: 10.1002/epi4.12610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/21/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia are the resident immune cells of the Central Nervous System (CNS), which are activated due to brain damage, as part of the neuroinflammatory response. Microglia undergo morphological and biochemical modifications during activation, adopting a pro-inflammatory or an anti-inflammatory state. In the developing brain, status epilepticus (SE) promotes microglia activation that is associated with neuronal injury in some areas of the brain, such as the hippocampus, thalamus and amygdala. However, the timing of this activation, the anatomical pattern, and the morphological and biochemical characteristics of microglia in the immature brain are age-dependent and have not been fully characterized. Therefore, this review focuses on the response of microglia to SE and its relationship to neurodegeneration.
Collapse
|
6
|
Vega-García A, Rocha L, Guevara-Guzmán R, Guerra-Araiza C, Feria-Romero I, Gallardo JM, Neri-Gomez T, Suárez-Santiago JE, Orozco-Suarez S. Magnolia officinalis Reduces Inflammation and Damage Induced by Recurrent Status Epilepticus in Immature Rats. Curr Pharm Des 2020; 26:1388-1401. [PMID: 32196444 DOI: 10.2174/1381612826666200320121813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuroinflammation induced in response to damage caused by status epilepticus (SE) activates the interleukin (IL)1-β pathway and proinflammatory proteins that increase vulnerability to the development of spontaneous seizure activity and/or epilepsy. OBJECTIVES The study aimed to assess the short-term anti-inflammatory and neuroprotective effects of Magnolia officinalis (MO) on recurrent SE in immature rats. METHODS Sprague-Dawley rats at PN day 10 were used; n = 60 rats were divided into two control groups, SHAM and KA, and two experimental groups, MO (KA-MO) and Celecoxib (KA-Clbx). The anti-inflammatory effect of a single dose of MO was evaluated at 6 and 24 hr by Western blotting and on day 30 PN via a subchronic administration of MO to assess neuronal preservation and hippocampal gliosis by immunohistochemistry for NeunN and GFAP, respectively. RESULTS KA-MO caused a decrease in the expression of IL1-β and Cox-2 at 6 and 24 h post-treatment, a reduction in iNOS synthase at 6 and 24 hr post-treatment and reduced neuronal loss and gliosis at postnatal day 30, similar to Clbx. CONCLUSION The results indicating that Magnolia officinalis is an alternative preventive treatment for early stages of epileptogenesis are encouraging.
Collapse
Affiliation(s)
- Angélica Vega-García
- Unidad de Investigacion Medica en Enfermedades Neurologicas, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico.,Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiologia, Centro de Investigacion y Estudios Avanzados, Tlalpan, Ciudad de Mexico, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigacion Medica en Farmacologia, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico
| | - Iris Feria-Romero
- Unidad de Investigacion Medica en Enfermedades Neurologicas, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico
| | - Juan M Gallardo
- Unidad de Investigacion Medica en Enfermedades Nefrologicas, Hospital de Especialidades, "Dr. Bernardo Sepulveda", Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, IMSS, Ciudad de Mexico, Mexico
| | - Teresa Neri-Gomez
- Unidad de Investigacion Biomolecular del Hospital de Cardiologia, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico DF, Mexico
| | | | - Sandra Orozco-Suarez
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
7
|
Presynaptic L-Type Ca 2+ Channels Increase Glutamate Release Probability and Excitatory Strength in the Hippocampus during Chronic Neuroinflammation. J Neurosci 2020; 40:6825-6841. [PMID: 32747440 DOI: 10.1523/jneurosci.2981-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of several neurologic disorders, including epilepsy. Both changes in the input/output functions of synaptic circuits and cell Ca2+ dysregulation participate in neuroinflammation, but their impact on neuron function in epilepsy is still poorly understood. Lipopolysaccharide (LPS), a toxic byproduct of bacterial lysis, has been extensively used to stimulate inflammatory responses both in vivo and in vitro LPS stimulates Toll-like receptor 4, an important mediator of the brain innate immune response that contributes to neuroinflammation processes. Although we report that Toll-like receptor 4 is expressed in both excitatory and inhibitory mouse hippocampal neurons (both sexes), its chronic stimulation by LPS induces a selective increase in the excitatory synaptic strength, characterized by enhanced synchronous and asynchronous glutamate release mechanisms. This effect is accompanied by a change in short-term plasticity with decreased facilitation, decreased post-tetanic potentiation, and increased depression. Quantal analysis demonstrated that the effects of LPS on excitatory transmission are attributable to an increase in the probability of release associated with an overall increased expression of L-type voltage-gated Ca2+ channels that, at presynaptic terminals, abnormally contributes to evoked glutamate release. Overall, these changes contribute to the excitatory/inhibitory imbalance that scales up neuronal network activity under inflammatory conditions. These results provide new molecular clues for treating hyperexcitability of hippocampal circuits associated with neuroinflammation in epilepsy and other neurologic disorders.SIGNIFICANCE STATEMENT Neuroinflammation is thought to have a pathogenetic role in epilepsy, a disorder characterized by an imbalance between excitation/inhibition. Fine adjustment of network excitability and regulation of synaptic strength are both implicated in the homeostatic maintenance of physiological levels of neuronal activity. Here, we focused on the effects of chronic neuroinflammation induced by lipopolysaccharides on hippocampal glutamatergic and GABAergic synaptic transmission. Our results show that, on chronic stimulation with lipopolysaccharides, glutamatergic, but not GABAergic, neurons exhibit an enhanced synaptic strength and changes in short-term plasticity because of an increased glutamate release that results from an anomalous contribution of L-type Ca2+ channels to neurotransmitter release.
Collapse
|
8
|
Eslami F, Rahimi N, Ostovaneh A, Ghasemi M, Dejban P, Abbasi A, Dehpour AR. Sumatriptan reduces severity of status epilepticus induced by lithium-pilocarpine through nitrergic transmission and 5-HT 1B/D receptors in rats: A pharmacological-based evidence. Fundam Clin Pharmacol 2020; 35:131-140. [PMID: 32662118 DOI: 10.1111/fcp.12590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/22/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Status epilepticus (SE) is a life-threatening neurologic disorder that can be as both cause and consequence of neuroinflammation. In addition to previous reports on anti-inflammatory property of the anti-migraine medication sumatriptan, we have recently shown its anticonvulsive effects on pentylenetetrazole-induced seizure in mice. In the present study, we investigated further (i) the effects of sumatriptan in the lithium-pilocarpine SE model in rats, and (ii) the possible involvement of nitric oxide (NO), 5-hydroxytryptamin 1B/1D (5-HT1B/1D ) receptor, and inflammatory pathways in such effects of sumatriptan. Status epilepticus was induced by lithium chloride (127 mg/kg, i.p) and pilocarpine (60 mg/kg, i.p.) in Wistar rats. While SE induction increased SE scores and mortality rate, sumatriptan (0.001-1 mg/kg, i.p.) improved it (P < 0.001). Administration of the selective 5-HT1B/1D antagonist GR-127935 (0.01 mg/kg, i.p.) reversed the anticonvulsive effects of sumatriptan (0.01 mg/kg, i.p.). Although both tumor necrosis factor-α (TNF-α) and NO levels were markedly elevated in the rats' brain tissues post-SE induction, pre-treatment with sumatriptan significantly reduced both TNF-α (P < 0.05) and NO (P < 0.001) levels. Combined GR-127935 and sumatriptan treatment inhibited these anti-inflammatory effects of sumatriptan, whereas combined non-specific NOS (L-NAME) or selective neuronal NOS (7-nitroindazole) inhibitors and sumatriptan further reduced NO levels. In conclusion, sumatriptan exerted a protective effect against the clinical manifestations and mortality rate of SE in rats which is possibly through targeting 5-HT1B/1D receptors, neuroinflammation, and nitrergic transmission.
Collapse
Affiliation(s)
- Faezeh Eslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 14155-6559, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, 14155-6559, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 14155-6559, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, 14155-6559, Iran
| | - Aysa Ostovaneh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 14155-6559, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, 14155-6559, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts, 01655, USA
| | - Pegah Dejban
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 14155-6559, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, 14155-6559, Iran
| | - Ata Abbasi
- Department of Pathology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 5715799313, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 14155-6559, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Tehran, 14155-6559, Iran
| |
Collapse
|
9
|
Bosco DB, Tian DS, Wu LJ. Neuroimmune interaction in seizures and epilepsy: focusing on monocyte infiltration. FEBS J 2020; 287:4822-4837. [PMID: 32473609 DOI: 10.1111/febs.15428] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Epilepsy is a major neurological condition that affects millions of people globally. While a number of interventions have been developed to mitigate this condition, a significant number of patients are refractory to these treatments. Consequently, other avenues of research are needed. One such avenue is modulation of the immune system response to this condition, which has mostly focused on microglia, the resident immune cells of the central nervous system (CNS). However, other immune cells can impact neurological conditions, principally blood-borne monocytes that can infiltrate into brain parenchyma after seizures. As such, this review will first discuss how monocytes can be recruited to the CNS and how they can be distinguished from there immunological cousins, microglia. Then, we will explore what is known about the role monocytes have within seizure pathogenesis and epilepsy. Considering how little is known about monocyte function in seizure- and epilepsy-related pathologies, further studies are warranted that investigate infiltrated blood-borne monocytes as a potential therapeutic target for epilepsy treatment.
Collapse
Affiliation(s)
- Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dai-Shi Tian
- Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Wu C, Zhang G, Chen L, Kim S, Yu J, Hu G, Chen J, Huang Y, Zheng G, Huang S. The Role of NLRP3 and IL-1β in Refractory Epilepsy Brain Injury. Front Neurol 2020; 10:1418. [PMID: 32116990 PMCID: PMC7025579 DOI: 10.3389/fneur.2019.01418] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/30/2019] [Indexed: 12/25/2022] Open
Abstract
Objective: The objective of this study was to investigate the roles and mechanisms of inflammatory mediators NLRP3 and IL-1β in refractory temporal epilepsy brain injury. Method: First, the brain tissue and the peripheral blood of children undergoing intractable temporal lobe epilepsy surgery were analyzed as research objects. The expression levels of NLRP3 in brain tissue and IL-1β in blood were measured. A model of temporal lobe epilepsy was established using wild-type and NLRP3 knockout 129 mice. Pilocarpine was injected intraperitoneally into the experimental group, and isovolumetric saline was injected intraperitoneally into the control group (n = 8 in each group). The expression of IL-1β in the peripheral blood, cerebral cortex, and hippocampus of mice was measured by ELISA at 3 h, 24 h, 3 days, and 7 days after modeling. Fluoro-Jade B (FJB) and TUNEL methods were used to determine necrosis and apoptosis in hippocampal neurons, respectively, and the expression of NLRP3 in the cortex was measured by immunofluorescence methods. Result: (1) The IL-1β levels in the peripheral blood of children with intractable temporal lobe epilepsy were higher than those in the control group (t = 2.813, P = 0.01). There was also a positive correlation between IL-1β expression levels and the onset time of a single convulsion in patients with refractory epilepsy (r = 0.9735, P < 0.05). The expression level of NLRP3 in the cerebral cortex of patients with refractory temporal lobe epilepsy was higher than that in the control group. (2) The expression level of NLRP3 in the hippocampus of wild-type mice increased 3 days after modeling and decreased slightly at 7 days but remained higher than that of the control group. IL-1β levels in peripheral blood were significantly higher than those in the control group at 3 days (t = 8.259, P < 0.0001). The IL-1β levels in the peripheral blood of NLRP3 knockout mice were lower than those in the wild-type group at 3 days (t = 3.481, P = 0.004). At day 7, the neuronal necrosis and apoptosis levels in the CA3 region of the hippocampus decreased. Conclusion: NLRP3 may be involved in the development of refractory temporal lobe epilepsy. Inhibiting NLRP3 may alleviate local brain injury by downregulating the IL-1β expression. The IL-1β levels in the peripheral blood of patients with refractory temporal lobe epilepsy may reflect the severity of convulsions.
Collapse
Affiliation(s)
- Chunfeng Wu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Zhang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Samuel Kim
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jie Yu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guo Hu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Chen
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yanjun Huang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guo Zheng
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Rawat C, Kukal S, Dahiya UR, Kukreti R. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation 2019; 16:197. [PMID: 31666079 PMCID: PMC6822425 DOI: 10.1186/s12974-019-1592-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting nearly 1% of the world population. Despite decades of extensive research on understanding its underlying mechanism and developing the pharmacological treatment, very little is known about the biological alterations leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ujjwal Ranjan Dahiya
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India.
| |
Collapse
|
12
|
Baccus B, Auvin S, Dorandeu F. Electro-behavioral phenotype and cell injury following exposure to paraoxon-ethyl in mice: Effect of the genetic background. Chem Biol Interact 2018; 290:119-125. [PMID: 29800574 DOI: 10.1016/j.cbi.2018.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Organophosphorus compounds (OP) are irreversible inhibitors of both central and peripheral cholinesterases (ChE). They still represent a major health issue in some countries as well as a terrorist and military threat. In order to design appropriate medical counter-measures, a better understanding of the pathophysiology of the poisoning is needed. Little to nothing is known regarding the impact of the genetic background on OP-induced seizures and seizure-related cell injury. Using two different mouse strains, Swiss and C57BL/6J, exposed to a convulsing dose of the OP pesticide paraoxon-ethyl (POX), our study focused on seizure susceptibility, especially the occurrence of SE and related mortality. We also evaluated the initial neuropathological response and SE-induced cell injury. Following the administration of 2.4 mg/kg POX, more Swiss mice experienced SE than C57BL/6J (55.6% versus 17.2%) but the duration of their SE, based on EEG recordings, was shorter (64.3 ± 19.5 min versus 180.8 ± 36.8 min). No significant difference was observed between strains regarding mortality (33% versus 14%). In both strains limited cell injury was observed in the medial temporal cortex, the dentate gyrus and the CA3 field without inter-strain differences (Fluorojade C-positive cells/mm2). Conversely, only C57BL/6J mice showed cell injury in the CA1 field. There was no obvious correlation between the number of Fluorojade C-positive cells and the duration of the EEG discharges. Our work suggests some differences between Swiss and C57BL/6J mice and lay ground to further studies on the impact of strains in the development of central nervous system toxicity of OP.
Collapse
Affiliation(s)
- Benjamin Baccus
- Institut de recherche biomédicale des armées (French armed forces biomedical research institute), 1 Place Général Valérie André, BP 73, 91223 Brétigny sur Orge cedex, France; Inserm U1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France; Ecole du Val de Grâce, 1 Place Alphonse Laveran, 75005 Paris, France.
| | - Stéphane Auvin
- Inserm U1141, Hôpital Robert Debré, 48 Boulevard Sérurier, 75019 Paris, France
| | - Frédéric Dorandeu
- Institut de recherche biomédicale des armées (French armed forces biomedical research institute), 1 Place Général Valérie André, BP 73, 91223 Brétigny sur Orge cedex, France; Ecole du Val de Grâce, 1 Place Alphonse Laveran, 75005 Paris, France
| |
Collapse
|
13
|
Volumetric response of the adult brain to seizures depends on the developmental stage when systemic inflammation was induced. Epilepsy Behav 2018; 78:280-287. [PMID: 29128467 DOI: 10.1016/j.yebeh.2017.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/07/2023]
Abstract
Inflammation has detrimental influences on the developing brain including triggering the epileptogenesis. On the other hand, seizure episodes may induce inflammatory processes and further increase of brain excitability. The present study focuses on the problem whether transitory systemic inflammation during developmental period may have critical importance to functional and/or structural features of the adult brain. An inflammatory status was induced with lipopolysaccharide (LPS) in 6- or 30-day-old rats. Two-month-old rats which experienced the inflammation and untreated controls received injections of pilocarpine, and the intensity of their seizure behavior was rated during a 6-hour period. Three days thereafter, the animals were perfused; their brains were postfixed and subjected to magnetic resonance imaging (MRI) scans. Then, volumes of the brain and of its main regions were assessed. LPS injections alone performed at different developmental stages led to different changes in the volume of adult brain and also to different susceptibility to seizures induced in adulthood. Moreover, the LPS pretreatments modified different volumetric responses of the brain and of its regions to seizures. The responses showed strong inverse correlations with the intensity of seizures but exclusively in rats treated with LPS on postnatal day 30. It could be concluded that generalized inflammation elicited at developmental stages may have strong age-dependent effects on the adult brain regarding not only its susceptibility to action of a seizuregenic agent but also its volumetric reactivity to seizures.
Collapse
|
14
|
Different response to antiepileptic drugs according to the type of epileptic events in a neonatal ischemia-reperfusion model. Neurobiol Dis 2016; 99:145-153. [PMID: 28042096 DOI: 10.1016/j.nbd.2016.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/16/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Perinatal arterial stroke is the most frequent form of cerebral infarction in children. Neonatal seizures are the most frequent symptom during the neonatal period. The current management of perinatal stroke is based on supportive care. It is currently unknown if treatment of the seizures modifies the outcome, and no clinical studies have focused on seizures during neonatal stroke. We studied the effect of phenobarbital and levetiracetam on an ischemic-reperfusion stroke model in P7 rats using prolonged electroencephalographic recordings and a histologic analysis of the brain (24h after injury). The following two types of epileptic events were observed: 1) bursts of high amplitude spikes during ischemia and the first hours of reperfusion and 2) organized seizures consisting in discharges of a 1-2Hz spike-and-wave. Both phenobarbital and levetiracetam decreased the total duration of the bursts of high amplitude spikes. Phenobarbital also delayed the start of seizures without changing the total duration of epileptic discharges. The markedly limited efficacy of the antiepileptic drugs studied in our neonatal stroke rat model is frequently observed in human neonatal seizures. Both drugs did not modify the stroke volume, which suggests that the modification of the quantity of bursts of high amplitude spikes does not influence the infarct size. In the absence of a reduction in seizure burden by the antiepileptic drugs, we increased the seizure burden and stroke volume by combining our neonatal stroke model with a lithium-pilocarpine-induced status epilepticus. Our data suggest that the reduction of burst of spikes did not influence the stroke volume. The presence of organized seizure with a pattern close to what is observed in human newborns seems related to the presence of the infarct. Further research is required to determine the relationship between seizure burden and infarct volume.
Collapse
|
15
|
Vezzani A, Fujinami RS, White HS, Preux PM, Blümcke I, Sander JW, Löscher W. Infections, inflammation and epilepsy. Acta Neuropathol 2016; 131:211-234. [PMID: 26423537 DOI: 10.1007/s00401-015-1481-5] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 12/15/2022]
Abstract
Epilepsy is the tendency to have unprovoked epileptic seizures. Anything causing structural or functional derangement of brain physiology may lead to seizures, and different conditions may express themselves solely by recurrent seizures and thus be labelled "epilepsy." Worldwide, epilepsy is the most common serious neurological condition. The range of risk factors for the development of epilepsy varies with age and geographic location. Congenital, developmental and genetic conditions are mostly associated with the development of epilepsy in childhood, adolescence and early adulthood. Head trauma, infections of the central nervous system (CNS) and tumours may occur at any age and may lead to the development of epilepsy. Infections of the CNS are a major risk factor for epilepsy. The reported risk of unprovoked seizures in population-based cohorts of survivors of CNS infections from developed countries is between 6.8 and 8.3 %, and is much higher in resource-poor countries. In this review, the various viral, bacterial, fungal and parasitic infectious diseases of the CNS which result in seizures and epilepsy are discussed. The pathogenesis of epilepsy due to brain infections, as well as the role of experimental models to study mechanisms of epileptogenesis induced by infectious agents, is reviewed. The sterile (non-infectious) inflammatory response that occurs following brain insults is also discussed, as well as its overlap with inflammation due to infections, and the potential role in epileptogenesis. Furthermore, autoimmune encephalitis as a cause of seizures is reviewed. Potential strategies to prevent epilepsy resulting from brain infections and non-infectious inflammation are also considered.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, IRCCS-"Mario Negri" Institute for Pharmacological Research, Milan, Italy
| | - Robert S Fujinami
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - H Steve White
- Department of Pharmacology, University of Utah, Salt Lake City, UT, USA
| | - Pierre-Marie Preux
- INSERM UMR1094, Tropical Neuroepidemiology, Limoges, France
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, University of Limoges, Limoges, France
- Center of Epidemiology, Biostatistics, and Research Methodology, CHU Limoges, Limoges, France
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, WC1N £BG, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
16
|
Iori V, Frigerio F, Vezzani A. Modulation of neuronal excitability by immune mediators in epilepsy. Curr Opin Pharmacol 2015; 26:118-23. [PMID: 26629681 DOI: 10.1016/j.coph.2015.11.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/08/2015] [Indexed: 01/02/2023]
Abstract
A complex set of inflammatory molecules and their receptors has been described in epileptogenic foci in different forms of pharmacoresistant epilepsies. By activating receptor-mediated pathways in neurons, these molecules have profound neuromodulatory effects that are distinct from their canonical activation of immune functions. Importantly, the neuromodulatory actions of some inflammatory molecules contribute to hyperexcitability in neural networks that underlie seizures. This review summarizes recent findings related to the role of cytokines (IL-1beta and TNF-alpha) and danger signals (HMGB1) in decreasing seizure threshold, thereby contributing to seizure generation and the associated neuropathology. We will discuss preclinical studies suggesting that pharmacological inhibition of specific inflammatory signals may be useful to treat drug-resistant seizures in human epilepsy, and possibly arrest epileptogenesis in individuals at risk of developing the disease.
Collapse
Affiliation(s)
- Valentina Iori
- IRCCS-Mario Negri Institute for Pharmacological Research, Department of Neuroscience, Milano, Italy
| | - Federica Frigerio
- IRCCS-Mario Negri Institute for Pharmacological Research, Department of Neuroscience, Milano, Italy
| | - Annamaria Vezzani
- IRCCS-Mario Negri Institute for Pharmacological Research, Department of Neuroscience, Milano, Italy.
| |
Collapse
|
17
|
Torolira D, Suchomelova L, Wasterlain CG, Niquet J. Widespread neuronal injury in a model of cholinergic status epilepticus in postnatal day 7 rat pups. Epilepsy Res 2015; 120:47-54. [PMID: 26709882 DOI: 10.1016/j.eplepsyres.2015.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/27/2015] [Accepted: 11/09/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Status Epilepticus (SE) is common in neonates and infants, and is associated with neuronal injury and adverse developmental outcomes. However, the role of SE in this injury is uncertain. Until now, we have lacked an animal model in which seizures result in neuronal injury in rodent models at ages below postnatal day 12 (P12) unless seizures are combined with inflammatory stressors. METHODS We induced SE with high-dose lithium and pilocarpine in P7 rats, which are developmentally close to human neonates. Several EEG measures and O2 saturation were recorded during the 6h following initiation of SE. We assessed neuronal injury at 6 and 24h post-SE onset using Fluoro-Jade B staining (FJB) and caspase-3a immunoreactivity (IR). RESULTS EEGs showed continuous polyspikes activity for 54.3 ± 6.7 min, while O2 saturation showed no significant hypoxemia. By 24h after SE onset, significant neuronal injury was observed in CA1/subiculum, CA3, dentate gyrus, thalamus, neocortex, amygdala, piriform cortex, lateral entorhinal cortex, hypothalamus, caudate putamen, globus pallidus, ventral pallidum, and nucleus accumbens. At 24h post-SE, caspase-3a IR was significantly increased in CA1/subiculum, thalamus, and neocortex compared to sham, and caspase-3a IR neurons had fragmented nuclei, suggesting that SE triggered an irreversible form of cell injury. SIGNIFICANCE In conclusion, we have developed a model of cholinergic SE in P7 rat pups, which combines high survival (69.9% survival at 24h) and widespread brain injury. These studies suggest that the immature brain is vulnerable to severe forms of SE.
Collapse
Affiliation(s)
- Daniel Torolira
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Lucie Suchomelova
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Claude G Wasterlain
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerome Niquet
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Suchomelova L, Lopez-Meraz ML, Niquet J, Kubova H, Wasterlain CG. Hyperthermia aggravates status epilepticus-induced epileptogenesis and neuronal loss in immature rats. Neuroscience 2015; 305:209-24. [PMID: 26259902 DOI: 10.1016/j.neuroscience.2015.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/20/2015] [Accepted: 08/03/2015] [Indexed: 01/16/2023]
Abstract
This study tightly controlled seizure duration and severity during status epilepticus (SE) in postnatal day 10 (P10) rats, in order to isolate hyperthermia as the main variable and to study its consequences. Body temperature was maintained at 39 ± 1 °C in hyperthermic SE rats (HT+SE) or at 35 ± 1 °C in normothermic SE animals (NT+SE) during 30 min of SE, which was induced by lithium-pilocarpine (3 mEq/kg, 60 mg/kg) and terminated by diazepam and cooling to NT. All video/EEG measures of SE severity were similar between HT+SE and NT+SE pups. At 24h, neuronal injury was present in the amygdala in the HT+SE group only, and was far more severe in the hippocampus in HT+SE than NT+SE pups. Separate groups of animals were monitored four months later for spontaneous recurrent seizures (SRS). Only HT+SE animals developed convulsive SRS. Both HT+SE and NT+SE animals developed electrographic SRS (83% vs. 55%), but SRS frequency and severity were higher in hyperthermic animals (12.5 ± 3.5 vs. 4.2 ± 2.0 SRS/day). The density of hilar neurons was lower, thickness of the amygdala and perirhinal cortex was reduced, and lateral ventricles were enlarged in HT+SE over NT+SE littermates and HT/NT controls. In this model, hyperthermia greatly increased the epileptogenicity of SE and its neuropathological sequelae.
Collapse
Affiliation(s)
- L Suchomelova
- Veterans Administration Greater Los Angeles Healthcare System, Epilepsy Research (151), 11 301 Wilshire Boulevard, Building 114, Room 139, Los Angeles, CA 90073, USA.
| | - M L Lopez-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Veracruz 91190, Mexico
| | - J Niquet
- Veterans Administration Greater Los Angeles Healthcare System, Epilepsy Research (151), 11 301 Wilshire Boulevard, Building 114, Room 139, Los Angeles, CA 90073, USA
| | - H Kubova
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 14220, Czech Republic
| | - C G Wasterlain
- Department of Neurology, David Geffen School of Medicine at UCLA, VA Medical Center (127), 11 301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| |
Collapse
|
19
|
Eun BL, Abraham J, Mlsna L, Kim MJ, Koh S. Lipopolysaccharide potentiates hyperthermia-induced seizures. Brain Behav 2015; 5:e00348. [PMID: 26357586 PMCID: PMC4559014 DOI: 10.1002/brb3.348] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/25/2015] [Accepted: 04/05/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged febrile seizures (FS) have both acute and long-lasting effects on the developing brain. Because FS are often associated with peripheral infection, we aimed to develop a preclinical model of FS that simulates fever and immune activation in order to facilitate the implementation of targeted therapy after prolonged FS in young children. METHODS The innate immune activator lipopolysaccharide (LPS) was administered to postnatal day 14 rat (200 μg/kg) and mouse (100 μg/kg) pups 2-2.5 h prior to hyperthermic seizures (HT) induced by hair dryer or heat lamp. To determine whether simulation of infection enhances neuronal excitability, latency to seizure onset, threshold temperature and total number of seizures were quantified. Behavioral seizures were correlated with electroencephalographic changes in rat pups. Seizure-induced proinflammatory cytokine production was assessed in blood samples at various time points after HT. Seizure-induced microglia activation in the hippocampus was quantified using Cx3cr1(GFP/+) mice. RESULTS Lipopolysaccharide priming increased susceptibility of rats and mice to hyperthemic seizures and enhanced seizure-induced proinflammatory cytokine production and microglial activation. CONCLUSIONS Peripheral inflammation appears to work synergistically with hyperthermia to potentiate seizures and to exacerbate seizure-induced immune responses. By simulating fever, a regulated increase in body temperature from an immune challenge, we developed a more clinically relevant animal model of prolonged FS.
Collapse
Affiliation(s)
- Baik-Lin Eun
- Department of Pediatrics, Korea University College of Medicine Seoul, Korea
| | - Jayne Abraham
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, Illinois
| | - Lauren Mlsna
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, Illinois
| | - Min Jung Kim
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, Illinois
| | - Sookyong Koh
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago Stanley Manne Children's Research Institute, Northwestern University Feinberg School of Medicine Chicago, Illinois
| |
Collapse
|
20
|
Mumoli L, Labate A, Coppola A, De Sarro G, Russo E, Gambardella A. Epilepsy and Immune System: A Tour Around the Current Literature. CONTEMPORARY CLINICAL NEUROSCIENCE 2015:163-182. [DOI: 10.1007/978-3-319-12283-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Dupuis N, Auvin S. Inflammation and epilepsy in the developing brain: clinical and experimental evidence. CNS Neurosci Ther 2014; 21:141-51. [PMID: 25604829 DOI: 10.1111/cns.12371] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022] Open
Abstract
There is an increasing evidence to support a role of inflammatory processes in epilepsy. However, most clinical and experimental studies have been conducted in adult patients or using adult rodents. The pediatric epilepsies constitute a varied group of diseases that are most frequently age specific. In this review, we will focus on the possible role of inflammation in pediatric epilepsy syndromes. We will first describe the clinical data available and provide an overview of our current understanding of the role of inflammation in these clinical situations. We will then review experimental data regarding the role of inflammation in epilepsy in the developing brain. To summarize, inflammation contributes to seizure precipitation, and reciprocally, prolonged seizures induce inflammation. There is also a relationship between inflammation and cell injury following status epilepticus, which differs according to the developmental stage. Finally, inflammation seems to contribute to epileptogenesis even in the developing brain. Based on the available data, we highlight the need for further studies dissecting the exact role of inflammation in epilepsy during development.
Collapse
Affiliation(s)
- Nina Dupuis
- INSERM U1141, Paris, France; APHP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, DHU Protect, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
22
|
Medel-Matus JS, Álvarez-Croda DM, Martínez-Quiroz J, Beltrán-Parrazal L, Morgado-Valle C, López-Meraz ML. IL-1β increases necrotic neuronal cell death in the developing rat hippocampus after status epilepticus by activating type I IL-1 receptor (IL-1RI). Int J Dev Neurosci 2014; 38:232-40. [PMID: 25449684 DOI: 10.1016/j.ijdevneu.2014.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/27/2014] [Accepted: 09/30/2014] [Indexed: 12/21/2022] Open
Abstract
Interleukin-1β (IL-1β) is associated with seizure-induced neuronal cell death in the adult brain. The contribution of IL-1β to neuronal injury induced by status epilepticus (SE) in the immature brain remains unclear. In the present study, we investigated the effects of IL-1β administration on hippocampal neuronal cell death associated with SE in the immature brain, and the role of the type I receptor of IL-1β (IL-1RI). SE was induced with lithium-pilocarpine in 14-days-old (P14) rat pups. Six hours after SE onset, pups were i.c.v. injected in the right ventricle with IL-1β (0, 0.3, 3, 30, or 300 ng), 30 ng of IL-1RI antagonist (IL-1Ra) alone, or 30 ng of IL-1Ra plus 3ng of IL-1β. As control groups, pups without seizures were injected with 3 ng of IL-1β or vehicle. Twenty-four hours after SE onset, neuronal cell death in the CA1 field of dorsal hippocampus was assessed by hematoxylin-eosin, Fluoro-Jade B and in vivo propidium iodide (PI) staining; expression of active caspase-3 (aCas-3) was also determined, using immunohistochemistry. The concentration-response curve of IL-1β showed a bell-shape. Only pups injected with 3 ng of IL-1β after SE showed a significant increase in the number of cells with eosinophilic cytoplasm and pyknotic nuclei, as well as F-JB positive cells with respect to the vehicle group. This effect was prevented when IL-1β was injected with IL-1Ra. Injection of 3 ng of IL-1β increased the number of PI-positive cells in CA1 area after SE. Injection of 3 ng of IL-1β did not produce hippocampal cell death in rats without seizures. Active caspase-3 expression was not observed after treatments in hippocampus. The activation of the IL-1β/IL-1RI system increases necrotic neuronal cell death caused by SE in rat pups.
Collapse
Affiliation(s)
- Jesús-Servando Medel-Matus
- Doctorado en Neuroetología, Instituto de Neuroetología, Universidad Veracruzana, Av. Luis Castelazo s/n Carr. Xalapa-Veracruz, Km. 3.5 Col. Industrial-Ánimas, C.P. 91190 Xalapa, Veracruz, Mexico; Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, C.P. 91010 Xalapa, Veracruz, Mexico
| | - Dulce-Mariely Álvarez-Croda
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, C.P. 91010 Xalapa, Veracruz, Mexico
| | - Joel Martínez-Quiroz
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas-IPN, Wilfrido Massieu s/n Unidad Profesional Adolfo López Mateos, Gustavo A. Madero, C.P. 07738 México D.F., Mexico
| | - Luis Beltrán-Parrazal
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, C.P. 91010 Xalapa, Veracruz, Mexico
| | - Consuelo Morgado-Valle
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, C.P. 91010 Xalapa, Veracruz, Mexico
| | - María-Leonor López-Meraz
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, C.P. 91010 Xalapa, Veracruz, Mexico.
| |
Collapse
|
23
|
Fukuda M, Hino H, Suzuki Y, Takahashi H, Morimoto T, Ishii E. Postnatal interleukin-1β enhances adulthood seizure susceptibility and neuronal cell death after prolonged experimental febrile seizures in infantile rats. Acta Neurol Belg 2014; 114:179-85. [PMID: 24002650 DOI: 10.1007/s13760-013-0246-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/14/2013] [Indexed: 12/30/2022]
Abstract
Febrile seizures (FS) are recognized as an antecedent to the development of temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), but it is unclear whether prolonged FS are a direct cause of TLE-HS. Here, we used a rat model of infantile FS to study the effects of inflammatory cytokines on seizure susceptibility and neuronal death in adults. Prolonged hyperthermia-induced seizures (pHS) were induced in male Lewis rats at post natal day (P) 10. Cytokines were administered twice intranasally, once immediately after pHS and once the following day. The effects of intranasal interleukin (IL)-1β or tumor necrosis factor (TNF) α were tested in rats undergoing a single episode of pHS (P10) and in rats undergoing repeated pHS (P10 and P12). Seizure susceptibility was tested at P70-73 by quantifying the seizure onset time (SOT) after kainic acid administration, and neuronal cell injury and gliosis in adulthood. SOT significantly reduced in rats receiving IL-1β together with repeated pHS, whereas no significant effects were seen in rats receiving IL-1β after a single pHS episode, or in rats receiving TNFα. Hippocampal neuronal cell loss was observed in the CA3 region of rats receiving IL-1β together with repeated pHS; however, there was no significant change in gliosis among each group. Our results are consistent with the hypothesis that excessive production of IL-1β after repeated prolonged FS can enhance adult seizure susceptibility and neuronal cell death, and might contribute to the development of TLE-HS.
Collapse
Affiliation(s)
- Mitsumasa Fukuda
- Department of Pediatrics, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan,
| | | | | | | | | | | |
Collapse
|
24
|
Ding DX, Tian FF, Guo JL, Li K, He JX, Song MY, Li L, Huang X. Dynamic expression patterns of ATF3 and p53 in the hippocampus of a pentylenetetrazole-induced kindling model. Mol Med Rep 2014; 10:645-51. [PMID: 24859284 PMCID: PMC4094765 DOI: 10.3892/mmr.2014.2256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/25/2014] [Indexed: 11/28/2022] Open
Abstract
Epilepsy is a common and often deleterious neurological condition. Emerging evidence has demonstrated the roles of innate immunity and the associated inflammatory processes in epilepsy. In a previous study, we found that Toll-like receptors (TLRs) are upregulated and promote mossy fiber sprouting (MFS) in an epileptic model. As downstream effectors of TLRs, the activating transcription factor 3 (ATF3) and p53 proteins were shown to be involved in neurite outgrowth. In the present study, we hypothesized that ATF3 and p53 participate in the process of epilepsy and can affect MFS. To investigate this hypothesis, we examined the expression of ATF3 and p53 in hippocampal tissues of rats kindled by pentylenetetrazole (PTZ) using immunofluorescence, immunohistochemistry and western blotting. MFS was evaluated by Timm staining in the hippocampus. Results from these experiments revealed that expression of ATF3 and p53 is significantly higher (p<0.05) in the CA3 area of the hippocampus in the PTZ-treated group compared to the control group. ATF3 expression gradually increased from 3 days to 4 weeks, peaked at 4 weeks and decreased slightly at 6 weeks in the PTZ group, while the expression of p53 was maintained at similar levels at different time-points following PTZ treatment. No obvious difference in the expression of these proteins was observed between the PTZ and the control group in the dentate gyrus (DG) area (p>0.05). The degree of MFS in the PTZ group peaked at 4 weeks and was maintained at a high level until 6 weeks post-PTZ treatment. In conclusion, ATF3 and p53 may be involved in the occurrence of seizure and play critical roles in MFS in the PTZ kindling model.
Collapse
Affiliation(s)
- Dong-Xue Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fa-Fa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jia-Ling Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Kai Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jing-Xuan He
- Science Research Center, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Ming-Yu Song
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Li Li
- Department of Neurology, Wangwang Hospital, Changsha, Hunan 410016, P.R. China
| | - Xia Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
25
|
Vitaliti G, Pavone P, Mahmood F, Nunnari G, Falsaperla R. Targeting inflammation as a therapeutic strategy for drug-resistant epilepsies: an update of new immune-modulating approaches. Hum Vaccin Immunother 2014; 10:868-75. [PMID: 24609096 DOI: 10.4161/hv.28400] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An increasing body of literature data suggests that inflammation, and in particular neuroinflammation, is involved in the pathophysiology of particular forms of epilepsy and convulsive disorders. Animal models have been used to identify inflammatory triggers in epileptogenesis and inflammation has recently been shown to enhance seizures. For example, pharmacological blockade of the IL-1beta/IL-1 receptor type 1 axis during epileptogenesis has been demonstrated to provide neuroprotection in temporal lobe epilepsy. Furthermore, experimental models have suggested that neural damage and the onset of spontaneous recurrent seizures are modulated via complex interactions between innate and adaptive immunity. However, it has also been suggested that inflammation can occur as a result of epilepsy, since animal models have also shown that seizure activity can induce neuroinflammation, and that recurrent seizures maintain chronic inflammation, thereby perpetuating seizures. On the basis of these observations, it has been suggested that immune-mediated therapeutic strategies may be beneficial for treating some drug resistant epilepsies with an underlying demonstrable inflammatory process. Although the potential mechanisms of immunotherapeutic strategies in drug-resistant seizures have been extensively discussed, evidence on the efficacy of such therapy is limited. However, recent research efforts have been directed toward utilizing the potential therapeutic benefits of anti-inflammatory agents in neurological disease and these are now considered prime candidates in the ongoing search for novel anti-epileptic drugs. The objective of our review is to highlight the immunological features of the pathogenesis of seizures and to analyze possible immunotherapeutic approaches for drug resistant epilepsies that can alter the immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- Department of Paediatrics and Pediatric Acute and Emergency Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Piero Pavone
- Department of Paediatrics and Pediatric Acute and Emergency Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| | - Fahad Mahmood
- University London College Medical School; University of London; London, UK
| | - Giuseppe Nunnari
- Department of Infectious Diseases; Garibaldi Nesima Hospital; University of Catania; Catania, Italy
| | - Raffaele Falsaperla
- Department of Paediatrics and Pediatric Acute and Emergency Unit; Policlinico-Vittorio Emanuele University Hospital; University of Catania; Catania, Italy
| |
Collapse
|
26
|
Rosenzweig JM, Lei J, Burd I. Interleukin-1 receptor blockade in perinatal brain injury. Front Pediatr 2014; 2:108. [PMID: 25340046 PMCID: PMC4187538 DOI: 10.3389/fped.2014.00108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/23/2014] [Indexed: 12/13/2022] Open
Abstract
Interleukin-1 (IL-1) is a potent inflammatory cytokine that can be produced by a variety of cell types throughout the body. While IL-1 is a central mediator of inflammation and response to infection, the role of IL-1 signaling in adult and pediatric brain injury is becoming increasingly clear. Although the mechanisms of IL-1 expression are largely understood, the downstream effects and contributions to excitotoxicity and oxidative stress are poorly defined. Here, we present a review of mechanisms of IL-1 signaling with a focus on the role of IL-1 in perinatal brain injury. We highlight research models of perinatal brain injury and the use of interleukin-1 receptor antagonist (IL-1RA) as an agent of therapeutic potential in preventing perinatal brain injury due to exposure to inflammation.
Collapse
Affiliation(s)
- Jason M Rosenzweig
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Jun Lei
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Neuroscience, Kennedy Krieger Institute , Baltimore, MD , USA ; Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
27
|
Balosso S, Ravizza T, Aronica E, Vezzani A. The dual role of TNF-α and its receptors in seizures. Exp Neurol 2013; 247:267-71. [DOI: 10.1016/j.expneurol.2013.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/09/2013] [Accepted: 05/15/2013] [Indexed: 12/29/2022]
|
28
|
Järlestedt K, Naylor AS, Dean J, Hagberg H, Mallard C. Decreased survival of newborn neurons in the dorsal hippocampus after neonatal LPS exposure in mice. Neuroscience 2013; 253:21-8. [PMID: 23994184 PMCID: PMC3824076 DOI: 10.1016/j.neuroscience.2013.08.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/29/2022]
Abstract
Neonatal inflammation reduces the survival of dividing neurons and astrocytes. Neonatal inflammation does not affect the survival of post-mitotic cells. Decrease in cell survival was specific for the granule cells of the dorsal blade of the hippocampus.
Experimental studies show that inflammation reduces the regenerative capacity in the adult brain. Less is known about how early postnatal inflammation affects neurogenesis, stem cell proliferation, cell survival and learning and memory in young adulthood. In this study we examined if an early-life inflammatory challenge alters cell proliferation and survival in distinct anatomical regions of the hippocampus and whether learning and memory were affected. Lipopolysaccharide (LPS, 1 mg/kg) was administered to mice on postnatal day (P) 9 and proliferation and survival of hippocampal cells born either prior to (24 h before LPS), or during the inflammatory insult (48 h after LPS) was evaluated. Long-term cell survival of neurons and astrocytes was determined on P 41 and P 60 in the dorsal and ventral horns of the hippocampus. On day 50 the mice were tested in the trace fear conditioning (TFC) paradigm. There was no effect on the survival of neurons and astrocytes that were born before LPS injection. In contrast, the number of neurons and astrocytes that were born after LPS injection were reduced on P 41. The LPS-induced reduction in cell numbers was specific for the dorsal hippocampus. Neither early (48 h after LPS) or late (33 days after LPS) proliferation of cells was affected by neonatal inflammation and neonatal LPS did not alter the behavior of young adult mice in the TFC test. These data highlight that neonatal inflammation specifically affects survival of dividing neurons and astrocytes, but not post-mitotic cells. The reduction in cell survival could be attributed to less cell survival in the dorsal hippocampus, but had no effect on learning and memory in the young adult.
Collapse
Affiliation(s)
- K Järlestedt
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
29
|
Vezzani A, Friedman A, Dingledine RJ. The role of inflammation in epileptogenesis. Neuropharmacology 2013; 69:16-24. [PMID: 22521336 PMCID: PMC3447120 DOI: 10.1016/j.neuropharm.2012.04.004] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/19/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022]
Abstract
One compelling challenge in the therapy of epilepsy is to develop anti-epileptogenic drugs with an impact on the disease progression. The search for novel targets has focused recently on brain inflammation since this phenomenon appears to be an integral part of the diseased hyperexcitable brain tissue from which spontaneous and recurrent seizures originate. Although the contribution of specific proinflammatory pathways to the mechanism of ictogenesis in epileptic tissue has been demonstrated in experimental models, the role of these pathways in epileptogenesis is still under evaluation. We review the evidence conceptually supporting the involvement of brain inflammation and the associated blood-brain barrier damage in epileptogenesis, and describe the available pharmacological evidence where post-injury intervention with anti-inflammatory drugs has been attempted. Our review will focus on three main inflammatory pathways, namely the IL-1 receptor/Toll-like receptor signaling, COX-2 and the TGF-β signaling. The mechanisms underlying neuronal-glia network dysfunctions induced by brain inflammation are also discussed, highlighting novel neuromodulatory effects of classical inflammatory mediators such as cytokines and prostaglandins. The increase in knowledge about a role of inflammation in disease progression, may prompt the use of specific anti-inflammatory drugs for developing disease-modifying treatments. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Laboratory Experimental Neurology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, 20156 Milano, Italy.
| | | | | |
Collapse
|
30
|
Kwon YS, Pineda E, Auvin S, Shin D, Mazarati A, Sankar R. Neuroprotective and antiepileptogenic effects of combination of anti-inflammatory drugs in the immature brain. J Neuroinflammation 2013; 10:30. [PMID: 23442201 PMCID: PMC3599749 DOI: 10.1186/1742-2094-10-30] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/15/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Inflammatory signaling elicited by prolonged seizures can be contributory to neuronal injury as well as adverse plasticity leading to the development of spontaneous recurrent seizures (epilepsy) and associated co-morbidities. In this study, developing rat pups were subjected to lithium-pilocarpine status epilepticus (SE) at 2 and 3 weeks of age to study the effect of anti-inflammatory drugs (AID) on SE-induced hippocampal injury and the development of spontaneous seizures. FINDINGS We selected AIDs directed against interleukin-1 receptors (IL-1ra), a cyclooxygenase-2 (COX-2) inhibitor (CAY 10404), and an antagonist of microglia activation of caspase-1 (minocycline). Acute injury after SE was studied in the 2-week-old rats 24 h after SE. Development of recurrent spontaneous seizures was studied in 3-week-old rats subjected to SE 4 months after the initial insult.None of those AIDs were effective in attenuating CA1 injury in the 2-week-old pups or in limiting the development of spontaneous seizures in 3-week-old pups when administered individually. When empiric binary combinations of these drugs were tried, the combined targeting of IL-1r and COX-2 resulted in attenuation of acute CA1 injury, as determined 24 h after SE, in those animals. The same combination administered for 10 days following SE in 3-week-old rats, reduced the development of spontaneous recurrent seizures and limited the extent of mossy fiber sprouting. CONCLUSIONS Deployment of an empirically designed 'drug cocktail' targeting multiple inflammatory signaling pathways for a limited duration after an initial insult like SE may provide a practical approach to neuroprotection and anti-epileptogenic therapy.
Collapse
Affiliation(s)
- Young Se Kwon
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
- Department of Pediatrics, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Eduardo Pineda
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
| | - Stéphane Auvin
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
- Department of Pediatric Neurology, Hôpital Robert Debré, INSERM U676, Paris, 75019, France
| | - Don Shin
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
| | - Andrey Mazarati
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
| | - Raman Sankar
- Department of Pediatrics, Division of Neurology, David Geffen School of Medicine at UCLA, 22-474 MDCC in CHS, Los Angeles, CA 90095-1752, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Wasterlain CG, Gloss DS, Niquet J, Wasterlain AS. Epileptogenesis in the developing brain. HANDBOOK OF CLINICAL NEUROLOGY 2013; 111:427-39. [PMID: 23622191 DOI: 10.1016/b978-0-444-52891-9.00046-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The neonatal brain has poorly developed GABAergic circuits, and in many of them GABA is excitatory, favoring ictogenicity. Frequently repeated experimental seizures impair brain development in an age-dependent manner. At critical ages, they delay developmental milestones, permanently lower seizure thresholds, and can cause very specific cognitive and learning deficits, such as the permanent impairment of neuronal spatial maps. Some types of experimental status epilepticus cause neuronal necrosis and apoptosis, and are followed by chronic epilepsy with spontaneous recurrent seizures, others appear relatively benign, so that seizure-induced neuronal injury and epileptogenesis are highly age-, seizure model-, and species-dependent. Experimental febrile seizures can be epileptogenic, and hyperthermia aggravates both neuronal injury and epileptogenicity. Antiepileptic drugs, the mainstay of treatment, have major risks of their own, and can, at therapeutic or near-therapeutic doses, trigger neuronal apoptosis, which is also age-, drug-, cell type-, and species-dependent. The relevance of these experimental results to human disease is still uncertain, but while their brains are quite different, the basic biology of neurons in rodents and humans is strikingly similar. Further research is needed to elucidate the molecular mechanisms of epileptogenesis and of seizure- or drug-induced neuronal injury, in order to prevent their long-term consequences.
Collapse
Affiliation(s)
- Claude G Wasterlain
- Department of Neurology, VA Greater Los Angeles Health Care System, and David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Febrile seizures are a common emergency faced by general pediatricians. They are mostly self-limiting, isolated events with no sequelae in later life. A minority are more complex. In the acute stage, there are a small number of underlying etiologies that are important to recognize in order to determine the prognosis accurately and to optimize management. There has been a long-standing debate about the relationship of early febrile seizures to the later development of epilepsy. It is now clear that this risk differs for simple and complex febrile seizures: complex febrile seizures may herald the presentation of a number of epilepsy syndromes of which febrile and illness-related seizures are part of the phenotype. This review examines the existing knowledge on febrile seizures and the various clinical phenotypes to which they are linked.
Collapse
Affiliation(s)
- J Helen Cross
- UCL-Institute of Child Health, Great Ormond Street Hospital for Children NHS Foundation Trust, London and Young Epilepsy, Lingfield, United Kingdom.
| |
Collapse
|
33
|
Auvin S, Bellavoine V, Merdariu D, Delanoë C, Elmaleh-Bergés M, Gressens P, Boespflug-Tanguy O. Hemiconvulsion-hemiplegia-epilepsy syndrome: current understandings. Eur J Paediatr Neurol 2012; 16:413-21. [PMID: 22341151 DOI: 10.1016/j.ejpn.2012.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/03/2012] [Accepted: 01/07/2012] [Indexed: 11/30/2022]
Abstract
Hemiconvulsion-Hemiplegia (HH) syndrome is an uncommon consequence of prolonged focal febrile convulsive seizures in infancy and early childhood. It is characterized by the occurrence of prolonged clonic seizures with unilateral predominance occurring in a child and followed by the development of hemiplegia. Neuroradiological studies showed unilateral edematous swelling of the epileptic hemisphere at the time of initial status epilepticus (SE). This acute phase is followed by characteristic cerebral hemiatrophy with subsequent appearance of epilepsy, so called Hemiconvulsion-Hemiplegia-Epilepsy (HHE) syndrome. The etiologies and the underlying mechanisms remain to be understood. Using a review of the literature, we summarized the data of the last 20 years. It appears that idiopathic HH/HHE syndrome is the most common reported form. The basic science data suggest that immature brain is relatively resistant to SE-induced cell injury. Several factors might contribute to the pathogenesis of HH/HHE syndrome: 1. prolonged febrile seizure in which inflammation may worsen the level of cell injury; 2. inflammation and prolonged ictal activity that act on blood-brain-barrier permeability; 3. predisposing factors facilitating prolonged seizure such as genetic factors or focal epileptogenic lesion. However, these factors cannot explain the elective involvement of an entire hemisphere. We draw new hypothesis that may explain the involvement of one hemisphere such as maturation of brain structure such as corpus callosum or genetic factors (CACNA1A gene) that are specifically discussed. An early diagnosis and a better understanding of the underlying mechanisms of HHE are needed to improve the outcome of this condition.
Collapse
|
34
|
Inflammation and epilepsy: the foundations for a new therapeutic approach in epilepsy? Epilepsy Curr 2012; 12:8-12. [PMID: 22368518 DOI: 10.5698/1535-7511-12.1.8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emerging data from experimental epilepsy models and resected human brain tissue support the proposed involvement of innate immune system activation and consequent inflammation in epilepsy. Key mediators of this process include interleukin-1β, high-mobility group box protein 1 (HMGB1), and Toll-like receptor (TLR) signaling. These recent findings constitute the basis for a novel avenue of drug development in epilepsy, one that is not only distinct from previous approaches but uniquely based on sound neurobiological evidence.
Collapse
|
35
|
Harvey L, Boksa P. Prenatal and postnatal animal models of immune activation: Relevance to a range of neurodevelopmental disorders. Dev Neurobiol 2012; 72:1335-48. [DOI: 10.1002/dneu.22043] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/11/2022]
|
36
|
Staley K. Neonatal encephalopathy, MRI lesions, and later epilepsy: no harm, no foul? Epilepsy Curr 2012; 12:128-30. [PMID: 22936880 PMCID: PMC3423207 DOI: 10.5698/1535-7511-12.4.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milan, Italy.
| | | | | |
Collapse
|
38
|
Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. Front Neuroendocrinol 2012; 33:116-25. [PMID: 22214786 PMCID: PMC3547977 DOI: 10.1016/j.yfrne.2011.12.002] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/07/2011] [Accepted: 12/15/2011] [Indexed: 01/21/2023]
Abstract
Cytokines are molecules secreted by peripheral immune cells, microglia, astrocytes and neurons in the central nervous system. Peripheral or central inflammation is characterized by an upregulation of cytokines and their receptors in the brain. Emerging evidence indicates that pro-inflammatory cytokines modulate brain excitability. Findings from both the clinical literature and from in vivo and in vitro laboratory studies suggest that cytokines can increase seizure susceptibility and may be involved in epileptogenesis. Cellular mechanisms that underlie these effects include upregulation of excitatory glutamatergic transmission and downregulation of inhibitory GABAergic transmission.
Collapse
Affiliation(s)
- Michael A Galic
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Health Sciences Centre, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
39
|
Pernot F, Heinrich C, Barbier L, Peinnequin A, Carpentier P, Dhote F, Baille V, Beaup C, Depaulis A, Dorandeu F. Inflammatory changes during epileptogenesis and spontaneous seizures in a mouse model of mesiotemporal lobe epilepsy. Epilepsia 2011; 52:2315-25. [DOI: 10.1111/j.1528-1167.2011.03273.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Marchi N, Johnson AJ, Puvenna V, Johnson HL, Tierney W, Ghosh C, Cucullo L, Fabene PF, Janigro D. Modulation of peripheral cytotoxic cells and ictogenesis in a model of seizures. Epilepsia 2011; 52:1627-34. [PMID: 21627645 PMCID: PMC3728674 DOI: 10.1111/j.1528-1167.2011.03080.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE A link between seizure susceptibility, blood-brain barrier (BBB) failure, and the activation of peripheral white blood cells has been recently proposed. However, the molecular players involved in this cascade of events are unknown. We tested the hypothesis that immunosupression by splenectomy or lack of perforin, a downstream factor of natural killer (NK) and cytotoxic T cells, could reduce seizure onset. METHODS Pilocarpine was used to induce seizures in adult rats wild-type and perforin-deficient mice. Splenectomy was performed prior to pilocarpine injection. Seizure onset was evaluated by electroencephalography (EEG) and joint time-frequency analysis. Spleens from control and pilocarpine-treated groups were analyzed for anatomical changes and CD3+ cell content. BBB damage was assessed by measuring albumin parenchymal extravasation. Fluorescence-activated cell sorting (FACS) analysis was performed on spleen and brain tissue of wild-type and perforin-deficient mice treated, or not, with pilocarpine. KEY FINDINGS Splenectomy significantly reduced seizure-associated mortality. Histologic analysis of the spleens exposed to pilocarpine revealed altered white and red pulp anatomy and an increase in CD3+ T cells. Onset of status epilepticus (SE) and mortality were significantly decreased in perforin-deficient mice. Pilocarpine significantly increased spleen NK 1.1 and CD8+ cell percentage; in contrast, the brain inflammatory cell profile remained unchanged at the time of pilocarpine SE. BBB damage was reduced in the perforin-deficient pilocarpine-treated mice. SIGNIFICANCE Immunosuppressant maneuvers such as splenectomy or lack of perforin decrease the onset or the severity of pilocarpine SE. Our results suggest that cytotoxic lymphocytes, and specifically the cytolytic factor perforin, may be key molecular players involved in the axis between peripheral intravascular inflammation and seizures.
Collapse
Affiliation(s)
- Nicola Marchi
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Aaron J. Johnson
- Department Neurology University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Vikram Puvenna
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Holly L. Johnson
- Department Neurology University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - William Tierney
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Chaitali Ghosh
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Luca Cucullo
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Paolo F. Fabene
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy
| | - Damir Janigro
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| |
Collapse
|
41
|
Betti M, Minelli A, Ambrogini P, Ciuffoli S, Viola V, Galli F, Canonico B, Lattanzi D, Colombo E, Sestili P, Cuppini R. Dietary supplementation with α-tocopherol reduces neuroinflammation and neuronal degeneration in the rat brain after kainic acid-induced status epilepticus. Free Radic Res 2011; 45:1136-42. [PMID: 21749318 DOI: 10.3109/10715762.2011.597750] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vitamin E (as α-tocopherol, α-T) is proposed to alleviate glia-mediated inflammation in neurological diseases, but such a role in epilepsy is still elusive. This study investigated the effect of α-T supplementation on glial activation, neuronal cell death and oxidative stress of rat brain exposed to kainate-induced seizures. Animals were fed for 2 weeks with a α-T-enriched diet (estimated intake of 750 mg/kg/day) before undergoing status epilepticus. Compliance to supplementation was demonstrated by the remarkable increase in brain α-T. Four days after seizure, brain α-T returned to baseline and lipid peroxidation markers decreased as compared to non-supplemented rats. Status epilepticus induced a lower up-regulation of astrocytic and microglial antigens (GFAP and MHC II, respectively) and production of pro-inflammatory cytokines (IL-1β and TNF-α) in supplemented than in non-supplemented animals. This anti-inflammatory effect was associated with a lower neuronal cell death. In conclusion, α-T dietary supplementation prevents oxidative stress, neuroglial over-activation and cell death occurring after kainate-induced seizures. This evidence paves the way to an anti-inflammatory and neuroprotective role of α-T interventions in epilepsy.
Collapse
Affiliation(s)
- Michele Betti
- Department of Earth, Life and Environmental Sciences, University of Urbino Carlo Bo, I-61029 Urbino, Italy. CA126659
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Friedman A, Dingledine R. Molecular cascades that mediate the influence of inflammation on epilepsy. Epilepsia 2011; 52 Suppl 3:33-9. [PMID: 21542844 DOI: 10.1111/j.1528-1167.2011.03034.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Experimental evidence strongly indicates a significant role for inflammatory and immune mediators in initiation of seizures and epileptogenesis. Here we will summarize data supporting the involvement of IL-1β, TNF-α and toll-like receptor 4 in seizure generation and the process of epileptogenesis. The physiological homeostasis and control over brain immune response depends on the integrity of the blood-brain barrier, transforming growth factor (TGF)-β signaling and leukocyte migration. To what extent targeting the immune system is successful in preventing epileptogenesis, and which signaling pathway should be beleaguered is still under intensive research.
Collapse
Affiliation(s)
- Alon Friedman
- Department of Physiology and Neurobiology, Faculty of Health Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | |
Collapse
|
43
|
Johnson EA, Dao TL, Guignet MA, Geddes CE, Koemeter-Cox AI, Kan RK. Increased expression of the chemokines CXCL1 and MIP-1α by resident brain cells precedes neutrophil infiltration in the brain following prolonged soman-induced status epilepticus in rats. J Neuroinflammation 2011; 8:41. [PMID: 21535896 PMCID: PMC3104356 DOI: 10.1186/1742-2094-8-41] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 05/02/2011] [Indexed: 11/30/2022] Open
Abstract
Background Exposure to the nerve agent soman (GD) causes neuronal cell death and impaired behavioral function dependent on the induction of status epilepticus (SE). Little is known about the maturation of this pathological process, though neuroinflammation and infiltration of neutrophils are prominent features. The purpose of this study is to quantify the regional and temporal progression of early chemotactic signals, describe the cellular expression of these factors and the relationship between expression and neutrophil infiltration in damaged brain using a rat GD seizure model. Methods Protein levels of 4 chemokines responsible for neutrophil infiltration and activation were quantified up to 72 hours in multiple brain regions (i.e. piriform cortex, hippocampus and thalamus) following SE onset using multiplex bead immunoassays. Chemokines with significantly increased protein levels were localized to resident brain cells (i.e. neurons, astrocytes, microglia and endothelial cells). Lastly, neutrophil infiltration into these brain regions was quantified and correlated to the expression of these chemokines. Results We observed significant concentration increases for CXCL1 and MIP-1α after seizure onset. CXCL1 expression originated from neurons and endothelial cells while MIP-1α was expressed by neurons and microglia. Lastly, the expression of these chemokines directly preceded and positively correlated with significant neutrophil infiltration in the brain. These data suggest that following GD-induced SE, a strong chemotactic response originating from various brain cells, recruits circulating neutrophils to the injured brain. Conclusions A strong induction of neutrophil attractant chemokines occurs following GD-induced SE resulting in neutrophil influx into injured brain tissues. This process may play a key role in the progressive secondary brain pathology observed in this model though further study is warranted.
Collapse
Affiliation(s)
- Erik A Johnson
- Research Division, Pharmacology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Gouveia TLF, Scorza FA, Silva MJV, Bandeira TDA, Perosa SR, Argañaraz GA, Silva MDP, Araujo TR, Frangiotti MIB, Amado D, Cavalheiro EA, Silva JA, Naffah-Mazzacoratti MDG. Lovastatin decreases the synthesis of inflammatory mediators in the hippocampus and blocks the hyperthermia of rats submitted to long-lasting status epilepticus. Epilepsy Behav 2011; 20:1-5. [PMID: 21130693 DOI: 10.1016/j.yebeh.2010.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/21/2010] [Accepted: 10/03/2010] [Indexed: 01/13/2023]
Abstract
Statins may act on inflammatory responses, decreasing oxidative stress and also reducing temperature after a brain ischemic insult. Previous data have indicated that statins protect neurons from death during long-lasting status epilepticus (SE) and attenuate seizure behaviors in animals treated with kainic acid. In this context, the study described here aimed to investigate the effect of lovastatin on body temperature and on mRNA expression levels of hippocampal cytokines such as interleukin-1β, interleukin-6, tumor necrosis factor α, and kinin B1 and B2 receptors of rats submitted to pilocarpine-induced SE. Quantitative real-time polymerase chain reaction showed a significant decrease in mRNA expression of interleukin-1β, interleukin-6, tumor necrosis factor α, and kinin B1 receptor in animals with SE treated with lovastatin, compared with untreated animals with SE (P<0.001). Lovastatin also reduced SE-induced hyperthermia, indicating that mechanisms related to brain protection are triggered by this drug under conditions associated with acute excitotoxicity or long-lasting SE.
Collapse
|
45
|
Auvin S, Mazarati A, Shin D, Sankar R. Inflammation enhances epileptogenesis in the developing rat brain. Neurobiol Dis 2010; 40:303-10. [PMID: 20600912 PMCID: PMC2926147 DOI: 10.1016/j.nbd.2010.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/17/2010] [Accepted: 06/11/2010] [Indexed: 01/20/2023] Open
Abstract
In many experimental systems, proinflammatory stimuli exhibit proconvulsant properties. There are also accumulating data suggesting that inflammation may contribute to epileptogenesis in experimental models as well as in humans. Using two different models (Lithium-pilocarpine induced-status epilepticus (SE) and rapid kindling), we address this issue in the developing brain. Using P14 Wistar rat pups, we showed that inflammation induced by LPS results, after SE, into a more severe disease in adulthood. The main histological feature was an active gliosis that was observed only when inflammation and SE was combined. The use of a kindling model at P14, a model where seizure progress without any neurodegeneration, permits to show that systemic inflammation is responsible of an enhancement of epileptogenesis. The role of inflammation should be further explored in immature brain to identify therapeutic targets that may be relevant to clinical practice where the association of inflammation and epileptic events is common.
Collapse
Affiliation(s)
- Stéphane Auvin
- Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
46
|
Auvin S, Shin D, Mazarati A, Sankar R. Inflammation induced by LPS enhances epileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia 2010; 51 Suppl 3:34-8. [PMID: 20618397 DOI: 10.1111/j.1528-1167.2010.02606.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inflammatory signaling in the central nervous system (CNS) has been shown to exacerbate both seizure activity and seizure-induced neuronal injury. However, it has not been firmly established whether neurodegeneration is a prerequisite of proconvulsant effect of neuroinflammation, or whether the latter may facilitate seizures without involving neuronal injury. We examined effects of inflammation in the rapid kindling model, where seizure progression occurs in the absence of neurodegeneration. P14 male Wistar rats were subjected to a rapid kindling procedure: 60 electrical stimulations of the hippocampus delivered every 5 min at the current that had been established to induce afterdischarge. Lipopolysaccharide (LPS) was injected (50 microg/kg, i.p., 2 h prior to the rapid kindling protocol [RKP]); IL-1Ra was injected (25 mg/kg, i.p., 2 h prior to the RKP). The effects of treatments were examined on baseline hippocampal excitability, on the progression of rapid kindling, and on the retention of rapid kindling. LPS increased baseline hippocampal excitability, evident as the decrease of hippocampal ADT. LPS also increased kindling progression. Twenty-four hours after the completion of kindling procedure, LPS-treated animals exhibited increased excitability as compared with saline-treated kindling controls. The kindling progression was blocked by IL1RA when given in combination with LPS. IL1RA was able to reverse the effect of LPS on afterdischarge duration (ADD) while IL1RA alone decreased ADT. We showed that inflammation provoked by LPS enhanced rapid kindling epileptogenesis in immature rat brains. IL1RA was also able to mitigate this augmentation of epileptogenesis enhanced by LPS.
Collapse
Affiliation(s)
- Stéphane Auvin
- Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
47
|
|
48
|
Bennet L, Cowie RV, Stone PR, Barrett R, Naylor AS, Blood AB, Gunn AJ. The neural and vascular effects of killed Su-Streptococcus pyogenes (OK-432) in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2010; 299:R664-72. [PMID: 20484698 DOI: 10.1152/ajpregu.00116.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fetal exposure to inflammatory mediators is associated with a greater risk of brain injury and may cause endothelial dysfunction; however, nearly all the evidence is derived from gram-negative bacteria. Intrapleural injections of OK-432, a killed Su-strain of Streptococcus pyogenes, has been used to treat fetal chylothorax. In this study, we evaluated the neural and cardiovascular effects of OK-432 in preterm fetal sheep (104 +/- 1 days, term 147 days). OK-432 (0.1 mg, n = 6) or saline vehicle (n = 7) was infused in the fetal pleura, and fetuses were monitored for 7 days. Blood samples were taken routinely for plasma nitrite measurement. Fetal brains were taken for histological assessment at the end of the experiment. Between 3 and 7 h postinjection, OK-432 administration was associated with transient suppression of fetal body and breathing movements and electtroencephalogram activity (P < 0.05), increased carotid and femoral vascular resistance (P < 0.05), but no change in blood pressure. Brain activity and behavior then returned to normal except in one fetus that developed seizures. OK-432 fetuses showed progressive, sustained vasodilatation (P < 0.05), with lower blood pressure after 4 days (P < 0.05), but normal heart rate. There were no changes in plasma nitrite levels. Histological studies showed bilateral infarction in the dorsal limb of the hippocampus of the fetus that developed seizures, but no injury in other fetuses. We conclude that a single low-dose injection of OK-432 can be associated with risk of focal cerebral injury in the preterm fetus and chronic central and peripheral vasodilatation that does not appear to be mediated by nitric oxide.
Collapse
Affiliation(s)
- L Bennet
- Department of Physiology, The University of Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
49
|
Galanopoulou AS. Mutations affecting GABAergic signaling in seizures and epilepsy. Pflugers Arch 2010; 460:505-23. [PMID: 20352446 DOI: 10.1007/s00424-010-0816-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/18/2010] [Accepted: 02/23/2010] [Indexed: 02/02/2023]
Abstract
The causes of epilepsies and epileptic seizures are multifactorial. Genetic predisposition may contribute in certain types of epilepsies and seizures, whether idiopathic or symptomatic of genetic origin. Although these are not very common, they have offered a unique opportunity to investigate the molecular mechanisms underlying epileptogenesis and ictogenesis. Among the implicated gene mutations, a number of GABAA receptor subunit mutations have been recently identified that contribute to several idiopathic epilepsies, febrile seizures, and rarely to certain types of symptomatic epilepsies, like the severe myoclonic epilepsy of infancy. Deletion of GABAA receptor genes has also been linked to Angelman syndrome. Furthermore, mutations of proteins controlling chloride homeostasis, which indirectly defines the functional consequences of GABAA signaling, have been identified. These include the chloride channel 2 (CLCN2) and the potassium chloride cotransporter KCC3. The pathogenic role of CLCN2 mutations has not been clearly demonstrated and may represent either susceptibility genes or, in certain cases, innocuous polymorphisms. KCC3 mutations have been associated with hereditary motor and sensory polyneuropathy with corpus callosum agenesis (Andermann syndrome) that often manifests with epileptic seizures. This review summarizes the recent progress in the genetic linkages of epilepsies and seizures to the above genes and discusses potential pathogenic mechanisms that contribute to the age, sex, and conditional expression of these seizures in carriers of these mutations.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Saul R. Korey Department of Neurology and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Room 306, Bronx, NY 10461, USA.
| |
Collapse
|
50
|
Vezzani A, Balosso S, Aronica E, Ravizza T. Basic mechanisms of status epilepticus due to infection and inflammation. Epilepsia 2010; 50 Suppl 12:56-7. [PMID: 19941527 DOI: 10.1111/j.1528-1167.2009.02370.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Annamaria Vezzani
- Mario Negri Institute for Pharmacological Research, Department of Neuroscience, Milano, Italy.
| | | | | | | |
Collapse
|