1
|
Kaur S, Sharma A, Bala S, Satheesh N, Nile AS, Nile SH. Microalgae in the food-health nexus: Exploring species diversity, high-value bioproducts, health benefits, and sustainable market potential. BIORESOURCE TECHNOLOGY 2025; 427:132424. [PMID: 40122351 DOI: 10.1016/j.biortech.2025.132424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Microalgae are valuable nutraceutical sources because of their nutrient-rich profiles and diverse bioactive compounds. This review provides a comprehensive analysis of marine and freshwater microalgae, emphasizing their species diversity, nutrient composition, and methods used for their extraction and processing. The health benefits of microalgal-based nutraceuticals have been explored, with evidence highlighting their role in managing diabetes, cancer, oxidative stress, inflammation, and obesity. Additionally, the sustainability and environmental benefits of marine and freshwater microalgal cultivation are discussed. The market potential for these nutraceuticals has been explored, underpinned by recent advancements in biotechnology, nanotechnology, and omics approaches. Despite their promising potential, challenges such as extraction efficiency, purification processes, and production scalability currently limit the widespread application of microalgae in nutraceuticals. However, recent advancements in biotechnology and omics approaches are driving innovations, addressing these limitations, and unlocking new possibilities. Furthermore, ongoing research and technological innovations suggest a bright future for the integration of marine microalgae into the nutraceutical industry, promoting both human health and environmental sustainability. This review also evaluates the growing market potential and economic viability of microalgal-based nutraceuticals, highlighting their growing demand and economic viability and providing a comprehensive understanding of the benefits, market potential, and technological advancements of marine and freshwater microalgae, fostering further innovation in this promising field.
Collapse
Affiliation(s)
- Sumandeep Kaur
- National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar- 140306, Punjab, India
| | - Aman Sharma
- National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar- 140306, Punjab, India
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141001 Punjab, India
| | - Neela Satheesh
- Department of Food Science and Technology, School of Health Sciences, Amity University, Sector-82A, Sahibzada Ajit Singh Nagar- 140306, Punjab, India
| | - Arti Shivraj Nile
- Department of Food Science and Technology, School of Health Sciences, Amity University, Sector-82A, Sahibzada Ajit Singh Nagar- 140306, Punjab, India.
| | - Shivraj Hariram Nile
- National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector-81, Sahibzada Ajit Singh Nagar- 140306, Punjab, India.
| |
Collapse
|
2
|
Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol 2025:10.1007/s00204-025-03997-2. [PMID: 40232392 DOI: 10.1007/s00204-025-03997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 04/16/2025]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies have been conducted with evaluating antioxidant activity of various samples of research interest using by different methods in food and human health. These methods were classified methods described and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and, for chain-breaking antioxidants while different specific studies are needed for preventive antioxidants. For this purpose, the most commonly methods used in vitro determination of antioxidant capacity of food and pharmaceutical constituents are examined and also a selection of chemical testing methods is critically reviewed and highlighting. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw plant extracts. The effect and influence of the reaction medium on performance of antioxidants is also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant capacity methods for the food, nutraceuticals, and dietary supplement industries. Also, the most important advantages and shortcomings of each method were detected and highlighted. The underlying chemical principles of these methods have been explained and thoroughly analyzed. The chemical principles of methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, ferric ions (Fe3+) reducing assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), superoxide radical anion (O2·-), hydroxyl radical (OH·) scavenging, peroxyl radical (ROO·) removing, hydrogen peroxide (H2O2) decomposing, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are overviewed and critically discussed. Also, the general antioxidant aspects of the main food and pharmaceutical components were discussed through several methods currently used for detecting antioxidant properties of these components. This review consists of two main sections. The first section is devoted to the main components in food and their pharmaceutical applications. The second general section includes definitions of the main antioxidant methods commonly used for determining the antioxidant activity of components. In addition, some chemical, mechanistic, and kinetic properties, as well as technical details of the above mentioned methods, are provided. The general antioxidant aspects of main food components have been discussed through various methods currently used to detect the antioxidant properties of these components.
Collapse
Affiliation(s)
- İlhami Gulcin
- Faculty of Sciences, Department of Chemistry, Atatürk University, 25240, Erzurum, Türkiye.
| |
Collapse
|
3
|
Bhattacharya M, Majumder S, Nandi S, Ghosh A, Subba P, Acharyya S, Chakraborty S. Comprehensive analysis of water and sediment from holy water body 'Pokhri' reveals presence of biomolecules that may educe skin, gastroenterological and neurological dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177373. [PMID: 39500452 DOI: 10.1016/j.scitotenv.2024.177373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/28/2024] [Accepted: 11/01/2024] [Indexed: 11/11/2024]
Abstract
'Pokhri mai' refers to the natural pond amidst the hilly forest slopes of the Buxa tiger reserve (BTR) nearby Jayanti considered to be sacred by the local ethnic groups serving as the prime source of water for wild animals and occasionally by neighbouring inhabitants. However, the water body is designated to be noxious by a group of native people with no scientific validation. This paper focuses to explore its toxicity status and allied environmental concerns through Pokhri water and sediment sample analysis through physicochemical assessment, in vitro antioxidant assay, microbiological investigation followed by AAS, GC-MS and in silico study. pH of soil and water samples were found to be quite high (>6.8) with organic matter, carbon and available nitrogen content being 1.5308 ± 0.28 %, 0.89 ± 0.17 % and 0.072 ± 0.34 % respectively. Profuse microbial growths were observed in both sediment and water samples with consortia obtained exhibiting tolerance against a range of antifungals and antibiotics. Inhibition zone was absent for sediment consortium whereas consortium of water samples portrayed susceptibility against various heavy metals viz. Cu2+, Pb2+, Zn2+, Fe3+ and Al3+ salts with corresponding AAS quantified values of sediment samples being 133, 223.3, 86.8, 1449 and 481.5 ppm. A summative of 18 metabolites were identified by GC-MS in Pokhri lake sediment among which 13 (occupying 96.35 % peak area) were investigated to be potentially toxic with 2,4-Di-tert-butylphenol (53.38 %) as the major compound. Biomolecular characterization, ADMET test and molecular docking study with dermal, gastrointestinal and neural peptides exhibiting high binding affinity scores (ranging between -2.6 to -8.3 kcal/mol) further affirmed the toxicity attributes of the GC-MS deciphered molecules. The findings clearly justifies the local 'myth' of Pokhri water to be deleterious with prospective dermatotoxic, neurotoxic and being evident of gastrointestinal toxicity emphasizing ecological risk to the environment, wildlife and microflora of the adjoining forests.
Collapse
Affiliation(s)
- Malay Bhattacharya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Soumya Majumder
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Sudeshna Nandi
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Arindam Ghosh
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Preeti Subba
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Sukanya Acharyya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Sourav Chakraborty
- Plant Biochemistry and Molecular Biology Laboratory, Postgraduate Department of Botany, Darjeeling Government College, Darjeeling 734101, West Bengal, India.
| |
Collapse
|
4
|
Peng H, Shahidi F. Metabolic, toxicological, chemical, and commercial perspectives on esterification of dietary polyphenols: a review. Crit Rev Food Sci Nutr 2024; 64:7465-7504. [PMID: 36908213 DOI: 10.1080/10408398.2023.2185589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Molecular modifications have been practiced for more than a century and nowadays they are widely applied in food, pharmaceutical, or other industries to manipulate the physicochemical, bioactivity, metabolic/catabolic, and pharmacokinetic properties. Among various structural modifications, the esterification/O-acylation has been well-established in altering lipophilicity and bioactivity of parent bioactive compounds, especially natural polyphenolics, while maintaining their high biocompatibility. Meanwhile, various classic chemical and enzymatic protocols and other recently emerged cell factory technology are being employed as viable esterification strategies. In this contribution, the main motivations of phenolic esterification, including the tendency to replace synthetic alkyl phenolics with safer alternatives in the food industry to improve the bioavailability of phenolics as dietary supplements/pharmaceuticals, are discussed. In addition, the toxicity, metabolism, and commercial application of synthetic and natural phenolics are briefly introduced. Under these contexts, the mechanisms and reaction features of several most prevalent chemical and enzymatic esterification pathways are demonstrated. In addition, insights into the studies of esterification modification of natural phenolic compounds and specific pros/cons of various reaction systems with regard to their practical application are provided.
Collapse
Affiliation(s)
- Han Peng
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
5
|
Moore CD, Farman DI, Särkinen T, Stevenson PC, Vallejo-Marín M. Floral scent changes in response to pollen removal are rare in buzz-pollinated Solanum. PLANTA 2024; 260:15. [PMID: 38829528 PMCID: PMC11147924 DOI: 10.1007/s00425-024-04403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/30/2024] [Indexed: 06/05/2024]
Abstract
MAIN CONCLUSION One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.
Collapse
Affiliation(s)
- C Douglas Moore
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Dudley I Farman
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Philip C Stevenson
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Mario Vallejo-Marín
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36, Uppsala, Sweden
| |
Collapse
|
6
|
Lou K, Chi J, Wu J, Ma J, Liu S, Cui Y. Research progress on the microbiota in bladder cancer tumors. Front Cell Infect Microbiol 2024; 14:1374944. [PMID: 38650736 PMCID: PMC11033431 DOI: 10.3389/fcimb.2024.1374944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The microbiota, also referred to as the microbial community, is a crucial component of the human microenvironment. It is located predominantly in various organs, including the intestines, skin, oral cavity, respiratory tract, and reproductive tract. The microbiota maintains a symbiotic relationship with the human body, influencing physiological and pathological functions to a significant degree. There is increasing evidence linking the microbial flora to human cancers. In contrast to the traditional belief that the urethra and urine of normal individuals are sterile, recent advancements in high-throughput sequencing technology and bacterial cultivation methods have led to the discovery of specific microbial communities in the urethras of healthy individuals. Given the prevalence of bladder cancer (BCa) as a common malignancy of the urinary system, researchers have shifted their focus to exploring the connection between disease development and the unique microbial community within tumors. This shift has led to a deeper investigation into the role of microbiota in the onset, progression, metastasis, prognosis, and potential for early detection of BCa. This article reviews the existing research on the microbiota within BCa tumors and summarizes the findings regarding the roles of different microbes in various aspects of this disease.
Collapse
Affiliation(s)
- Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shu Liu
- Department of Medical Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
7
|
Bishoyi AK, Mandhata CP, Sahoo CR, Paidesetty SK, Padhy RN. Nanosynthesis, phycochemical constituents, and pharmacological properties of cyanobacterium Oscillatoria sp. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1347-1375. [PMID: 37712972 DOI: 10.1007/s00210-023-02719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The Oscillatoria sp., a blue-green alga or cyanobacterium, consists of about 305 species distributed globally. Cyanobacteria are prokaryotes possessing several secondary metabolites that have industrial and biomedical applications. Particularly, the published reviews on Oscillatoria sp. have not recorded any pharmacology, or possible details, while the detailed chemical structures of the alga are reported in the literature. Hence, this study considers pertinent pharmacological activities of the plethora of bioactive components of Oscillatoria sp. Furthermore, the metallic nanoparticles produced with Oscillatoria sp. were documented for plausible antibacterial, antifungal, antioxidant, anticancer, and cytotoxic effects against several cultured human cell lines. The antimicrobial activities of solvent extracts of Oscillatoria sp. and the biotic activities of its derivatives, pyridine, acridine, fatty acids, and triazine were structurally described in detail. To understand the connotations with research gaps and provide some pertinent prospective suggestions for further research on cyanobacteria as potent sources of pharmaceutical utilities, attempts were documented. The compounds of Oscillatoria sp. are a potent source of secondary metabolites that inhibit the cancer cell lines, in vitro. It could be expected that by holistic exploitation, the natural Oscillatoria products, as the source of chemical varieties and comparatively more potent inhibitors, would be explored against pharmacological activities with the integument of SARs.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
8
|
D'Amico M, Kallenborn R, Scoto F, Gambaro A, Gallet JC, Spolaor A, Vecchiato M. Chemicals of Emerging Arctic Concern in north-western Spitsbergen snow: Distribution and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168401. [PMID: 37939944 DOI: 10.1016/j.scitotenv.2023.168401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Personal care products contain chemicals that are considered of emerging concern in the Arctic. In this study, a selected group of personal care products was investigated in the snowpack on north-western Spitsbergen. We report a preliminary study on the spatial and seasonal distribution of 13 ingredients commonly found in personal care products, including fragrance materials, UV filters, BHT and BPA. Possible sources and deposition processes are discussed. Experimental analyses utilizing GC-MS/MS, were complemented with outputs from the HYSPLIT transport and dispersion model. The results reveal the presence of all selected compounds in the snow, both in proximity to and distant from the research village of Ny-Ålesund. For some of these chemicals this is the first time their presence is reported in snow in Svalbard. These chemicals show different partitioning behaviours between the particulate and dissolved phases, affecting their transport and deposition processes. Additionally, concentrations of certain compounds vary across different altitudes. It is observed the relevance of long-range atmospheric transport during winter at most sites, and, regardless of the proximity to human settlements, snow concentrations can be influenced by long-distance sources. This study highlights the need for detailed information on CEACs' physical-chemical properties, considering their potential impact on fresh and marine waters during the snowmelt under climate change.
Collapse
Affiliation(s)
- Marianna D'Amico
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Department of Arctic Technology (AT), University Centre in Svalbard (UNIS), 9176 Longyearbyen, Svalbard, Norway
| | - Federico Scoto
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Atmospheric Sciences and Climate - National Research Council (ISAC-CNR), Campus Ecotekne, 73100 Lecce, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | | | - Andrea Spolaor
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | - Marco Vecchiato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy.
| |
Collapse
|
9
|
Bawane P, Deshpande S, Yele S. Industrial and Pharmaceutical Applications of Microbial Diversity of Hypersaline Ecology from Lonar Soda Crater. Curr Pharm Biotechnol 2024; 25:1564-1584. [PMID: 38258768 DOI: 10.2174/0113892010265978231109085224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/24/2024]
Abstract
The unidentified geochemical and physiochemical characteristics of Soda Lakes across the globe make it a novel reservoir and bring attention to scientific civic for its conceivable industrial and pharmaceutical applications. In India, in the Maharashtra state, Lonar Lake is a naturally created Soda Lake by a meteorite impact. Phylogenetic data from this lake explored a diverse array of microorganisms like haloalkaliphilic bacteria and Archaea. Previously reported studies postulated the major microbial communities present in this lake ecosystem are Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria. Furthermore, it also contains Bacteroidetes, Nitrospirae, and Verrucomicrobia. This lake is also rich in phytoplankton, with the predominant presence of the Spirulina plantensis. Unique microbial strains from Lonar Lake ecosystems have fascinated consideration as a source of biological molecules with medicinal, industrial, and biotechnological potential. Recent literature revealed the isolation of antibioticproducing bacteria and alkaline proteases-producing alkaliphilic bacterium, as well as novel species of rare methylotrophs, other bacterial strains involved in producing vital enzymes, and unique actinomycetes are also reported. It indicates that the novel bacterial assemblage not reached hitherto may exist in this modified and unique ecology. This comprehensive review provides information about microbial diversity and its industrial and pharmaceutical interests that exist in Lonar Lake, which could be the future source of bioactive enzymes, biosurfactants, and biofuel and also useful in bioremediation. Furthermore, the novel species of microorganisms isolated from Lonar Lake have applications in the biosynthesis of medicines like antibiotics, antivirals, antifungals, anti-inflammatory agents, and precursors for synthesising valuable products. Data consolidated in the present review will cater to the needs of emerging industrial sectors for their commercial and therapeutic applications.
Collapse
Affiliation(s)
- Pradip Bawane
- Department of Pharmacognosy, SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, 400056, India
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Shirish Deshpande
- Department of Pharmaceutical Chemistry, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| |
Collapse
|
10
|
Provencher J, Malaisé F, Mallory ML, Braune BM, Pirie-Dominix L, Lu Z. 44-Year Retrospective Analysis of Ultraviolet Absorbents and Industrial Antioxidants in Seabird Eggs from the Canadian Arctic (1975 to 2019). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14562-14573. [PMID: 36198135 PMCID: PMC9583603 DOI: 10.1021/acs.est.2c05940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Ultraviolet (UV) absorbents and industrial antioxidants are contaminants of emerging concern (CECs), but little is known about their distribution in Arctic wildlife, as well as how these contaminants vary over time, across regions, and between species. We used archived egg samples to examine the temporal patterns of 26 UV absorbents and industrial antioxidants in three seabird species (black-legged kittiwakes Rissa tridactyla, thick-billed murres Uria lomvia, northern fulmars Fulmarus glacialis) sampled in Arctic Canada between 1975 and 2019. Various synthetic phenolic antioxidants, aromatic secondary amines, benzotriazole UV stabilizers, and organic UV filters were detected in the seabird eggs. Overall, kittiwakes had higher levels of several UV absorbents and industrial antioxidants. Most target contaminants reached their peak concentrations at different points during the 44-year study period or did not vary significantly over time. None of these contaminant concentrations have increased in recent years. The antioxidant 2-6-di-tert-butyl-4-methylphenol (BHT) was the most frequently detected contaminant in seabird eggs, and its level significantly declined over the course of the study period in kittiwake eggs but did not change in the eggs of murres and fulmars. Future research should examine the effects of these CECs on the health of avian species, the sources, and exposure pathways of these contaminants.
Collapse
Affiliation(s)
- Jennifer
F. Provencher
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | - Florentine Malaisé
- Institut
des Sciences de la Mer de Rimouski, Université
du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Mark L. Mallory
- Department
of Biology, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Birgit M. Braune
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | - Lisa Pirie-Dominix
- Canadian
Wildlife Service, Environment and Climate
Change Canada, Iqaluit, Nunavut X0A 0H0, Canada
| | - Zhe Lu
- Institut
des Sciences de la Mer de Rimouski, Université
du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| |
Collapse
|
11
|
Singh M, Mal N, Mohapatra R, Bagchi T, Parambath SD, Chavali M, Rao KM, Ramanaiah SV, Kadier A, Kumar G, Chandrasekhar K, Kim SH. Recent biotechnological developments in reshaping the microalgal genome: A signal for green recovery in biorefinery practices. CHEMOSPHERE 2022; 293:133513. [PMID: 34990720 DOI: 10.1016/j.chemosphere.2022.133513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The use of renewable energy sources as a substitute for nonrenewable fossil fuels is urgently required. Algae biorefinery platform provides an excellent alternate to overcome future energy problems. However, to let this viable biomass be competent with existing feedstocks, it is necessary to exploit genetic manipulation and improvement in upstream and downstream platforms for optimal bio-product recovery. Furthermore, the techno-economic strategies further maximize metabolites production for biofuel, biohydrogen, and other industrial applications. The experimental methodologies in algal photobioreactor promote high biomass production, enriched in lipid and starch content in limited environmental conditions. This review presents an optimization framework combining genetic manipulation methods to simulate microalgal growth dynamics, understand the complexity of algal biorefinery to scale up, and identify green strategies for techno-economic feasibility of algae for biomass conversion. Overall, the algal biorefinery opens up new possibilities for the valorization of algae biomass and the synthesis of various novel products.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Navonil Mal
- Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Reecha Mohapatra
- Department of Life Sciences, NIT Rourkela, 769008, Odisha, India
| | - Trisha Bagchi
- Department of Botany, West Bengal State University, Barasat, 700126, West Bengal, India
| | | | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science & Technology, Alliance University (Central Campus), Chandapura-Anekal Main Road, Bengaluru, 562106, Karnataka, India; NTRC-MCETRC and 109 Nano Composite Technologies Pvt. Ltd., Guntur District, 522201, Andhra Pradesh, India
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea; Department of Automotive Lighting Convergence Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material and Opto-electronic Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
Saad MH, El-Fakharany EM, Salem MS, Sidkey NM. The use of cyanobacterial metabolites as natural medical and biotechnological tools: review article. J Biomol Struct Dyn 2022; 40:2828-2850. [PMID: 33164673 DOI: 10.1080/07391102.2020.1838948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are photosynthetic, Gram-negative bacteria that are considered one of the most morphologically diverse groups of prokaryotes with a chief role in the global nutrient cycle as they fixed gaseous carbon dioxide and nitrogen to organic materials. Cyanobacteria have significant adaptability to survive in harsh conditions due to they have different metabolic pathways with unique compounds, effective defensive mechanisms, and wide distribution in different habitats. Besides, they are successfully used to face different challenges in several fields, including industry, aquaculture, agriculture, food, dairy products, pollution control, bioenergy, and pharmaceutics. Analysis of 680 publications revealed that nearly 1630 cyanobacterial molecules belong to different families have a wide range of applications in several fields, including cosmetology, agriculture, pharmacology (immunosuppressant, anticancer, antibacterial, antiprotozoal, antifungal, anti-inflammatory, antimalarial, anticoagulant, anti-tuberculosis, antitumor, and antiviral activities) and food industry. In this review, we nearly mentioned 92 examples of cyanobacterial molecules that are considered the most relevant effects related to anti-inflammatory, antioxidant, antimicrobial, antiviral, and anticancer activities as well as their roles that can be used in various biotechnological fields. These cyanobacterial products might be promising candidates for fighting various diseases and can be used in managing viral and microbial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Applications (SRTA-City), New Borg EL Arab, Alexandria, Egypt
| | - Marwa S Salem
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| |
Collapse
|
13
|
Bellanova P, Feist L, Costa PJM, Orywol S, Reicherter K, Lehmkuhl F, Schwarzbauer J. Contemporary pollution of surface sediments from the Algarve shelf, Portugal. MARINE POLLUTION BULLETIN 2022; 176:113410. [PMID: 35189532 DOI: 10.1016/j.marpolbul.2022.113410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The present-day human footprint is traceable in all environments. Growing urban centers, tourism, agricultural and industrial activities in combination with fishery, aquacultures and intense naval traffic, result in a large output of pollutants onto coastal regions. The Algarve shelf (Portugal) is one exemplary highly affected coastal system. With this study the contemporary pollution was followed in eighteen offshore surface sediment samples. Heavy metals (e.g., Cr, Pb, Cu, Hg) and organic contaminants, such as linear alkylbenzenes, dichlorodiphenyltrichloroethane metabolites, polycyclic aromatic hydrocarbons, and hopanes, have been identified and quantified, that pose hazardous effects on the marine environment and biota. This study correlates spatial distribution patterns with the pollutant composition, potential sources and pathways, each sample's grain size, and local influences, such as discharging river systems and ocean currents. This study presents a blueprint-study that allows the methodological adaption to new shelf systems with regionally different ocean current-driven distribution patterns of anthropogenic pollutants.
Collapse
Affiliation(s)
- Piero Bellanova
- Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Germany; Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Germany.
| | - Lisa Feist
- Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Germany
| | - Pedro J M Costa
- Department of Earth Sciences, Faculty of Sciences and Technologies, University of Coimbra, Portugal; Instituto Dom Luiz, Faculty of Science, University of Lisbon, Portugal
| | - Sarah Orywol
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Germany
| | - Klaus Reicherter
- Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Germany
| | - Frank Lehmkuhl
- Chair for Physical Geography and Geoecology, Department of Geography, RWTH Aachen University, Germany
| | - Jan Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Germany
| |
Collapse
|
14
|
Russell C, Rodriguez C, Yaseen M. High-value biochemical products & applications of freshwater eukaryotic microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151111. [PMID: 34695461 DOI: 10.1016/j.scitotenv.2021.151111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
A shift in public perception of the health and nutritional benefits of organic supplements and skin care products has led to a surge in high-value products being extracted from microalgae. Traditional forms of microalgae products were proteins, lipids and carbohydrates. However, in recent times the extraction of carotenoids (pigments), polyunsaturated acids (PUFAs), vitamins, phytosterols and polyphenols has increased significantly. Despite the diversity of products most research has failed to scale up production to industrial scale due to economic constraints and productivity capacities. It is clear that the main market drivers are the pharmaceutical and nutraceutical industries. This paper reviews the high-value products produced from freshwater eukaryotic microalgae. In addition, the paper also considers the biochemical properties of eukaryotic microalgae to provide a comparative analysis of different strains based on their high-value product content.
Collapse
Affiliation(s)
- Callum Russell
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Cristina Rodriguez
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| |
Collapse
|
15
|
Sharma R, Nath PC, Vanitha K, Tiwari ON, Bandyopadhyay TK, Bhunia B. Effects of different monosaccharides on thermal stability of phycobiliproteins from Oscillatoria sp. (BTA-170): Analysis of kinetics, thermodynamics, colour and antioxidant properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Skjånes K, Aesoy R, Herfindal L, Skomedal H. Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity. PHYSIOLOGIA PLANTARUM 2021; 173:612-623. [PMID: 34085279 DOI: 10.1111/ppl.13472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
In addition to the rapidly expanding field of using microalgae for food and feed, microalgae represent a tremendous potential for new bioactive compounds with health-promoting effects. One field where new therapeutics is needed is cancer therapy. As cancer therapy often cause severe side effects and loose effect due to development of drug resistance, new therapeutic agents are needed. Treating cancer by modulating the immune response using peptides has led to unprecedented responses in patients. In this review, we want to elucidate the potential for microalgae as a source of new peptides for possible use in cancer management. Among the limited studies on anti-cancer effects of peptides, positive results were found in a total of six different forms of cancer. The majority of studies have been performed with different strains of Chlorella, but effects have also been found using peptides from other species. This is also the case for peptides with immunomodulating effects and peptides with other health-promoting effects (e.g., role in cardiovascular diseases). However, the active peptide sequence has been determined in only half of the studies. In many cases, the microalga strain and the cultivation conditions used for producing the algae have not been reported. The low number of species that have been explored, as opposed to the large number of species available, is a clear indication that the potential for new discoveries is large. Additionally, the availability and cost-effectiveness of microalgae make them attractive in the search for bioactive peptides to prevent cancer.
Collapse
Affiliation(s)
- Kari Skjånes
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Reidun Aesoy
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Hanne Skomedal
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
17
|
Constantino N, Oh Y, Şennik E, Andersen B, Warden M, Oralkan Ö, Dean RA. Soybean Cyst Nematodes Influence Aboveground Plant Volatile Signals Prior to Symptom Development. FRONTIERS IN PLANT SCIENCE 2021; 12:749014. [PMID: 34659318 PMCID: PMC8513716 DOI: 10.3389/fpls.2021.749014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Soybean cyst nematode (SCN), Heterodera glycines, is one of the most destructive soybean pests worldwide. Unlike many diseases, SCN doesn't show above ground evidence of disease until several weeks after infestation. Knowledge of Volatile Organic Compounds (VOCs) related to pests and pathogens of foliar tissue is extensive, however, information related to above ground VOCs in response to root damage is lacking. In temporal studies, gas chromatography-mass spectrometry analysis of VOCs from the foliar tissues of SCN infested plants yielded 107 VOCs, referred to as Common Plant Volatiles (CPVs), 33 with confirmed identities. Plants showed no significant stunting until 10 days after infestation. Total CPVs increased over time and were significantly higher from SCN infested plants compared to mock infested plants post 7 days after infestation (DAI). Hierarchical clustering analysis of expression ratios (SCN: Mock) across all time points revealed 5 groups, with the largest group containing VOCs elevated in response to SCN infestation. Linear projection of Principal Component Analysis clearly separated SCN infested from mock infested plants at time points 5, 7, 10 and 14 DAI. Elevated Styrene (CPV11), D-Limonene (CPV32), Tetradecane (CPV65), 2,6-Di-T-butyl-4-methylene-2,5-cyclohexadiene-1-one (CPV74), Butylated Hydroxytoluene (CPV76) and suppressed Ethylhexyl benzoate (CPV87) levels, were associated with SCN infestation prior to stunting. Our findings demonstrate that SCN infestation elevates the release of certain VOCs from foliage and that some are evident prior to symptom development. VOCs associated with SCN infestations prior to symptom development may be valuable for innovative diagnostic approaches.
Collapse
Affiliation(s)
- Nasie Constantino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Yeonyee Oh
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Erdem Şennik
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - Brian Andersen
- Department of Nuclear Engineering, North Carolina State University, Raleigh, NC, United States
| | - Michael Warden
- BASF Plant Science, Research Triangle, NC, United States
| | - Ömer Oralkan
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - Ralph A. Dean
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
18
|
Heath RS, Ruscoe RE, Turner NJ. The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Nat Prod Rep 2021; 39:335-388. [PMID: 34879125 DOI: 10.1039/d1np00027f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2015 up to July 2021The market for cosmetics is consumer driven and the desire for green, sustainable and natural ingredients is increasing. The use of isolated enzymes and whole-cell organisms to synthesise these products is congruent with these values, especially when combined with the use of renewable, recyclable or waste feedstocks. The literature of biocatalysis for the synthesis of ingredients in cosmetics in the past five years is herein reviewed.
Collapse
Affiliation(s)
- Rachel S Heath
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Rebecca E Ruscoe
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
19
|
The Bladder Microbiome Is Associated with Epithelial-Mesenchymal Transition in Muscle Invasive Urothelial Bladder Carcinoma. Cancers (Basel) 2021; 13:cancers13153649. [PMID: 34359550 PMCID: PMC8344975 DOI: 10.3390/cancers13153649] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The abundance of microbial species residing within tumors is correlated to cancer progression across many different cancers, including bladder cancer. However, links between the intratumor microbiome of muscle invasive bladder cancer (MIBC) and specific mechanisms of cancer progression have not been well studied. In this paper, we aim to uncover the relationship between microbial abundance in the MIBC intratumor microbiome and epithelial–mesenchymal transition (EMT), one key feature of cancer progression. By comparing the gene expression of EMT-associated genes to the abundance of intratumor microbes in MIBC patients, we found significant correlations between the abundance of microbes and either the upregulation or downregulation of EMT-associated genes. Our findings call for an investigation of possible mechanisms through which the microbiome may regulate EMT in MIBC patients. With further investigation, our findings can be used to provide a new, microbial approach in the diagnosis and therapy of MIBC. Abstract The intra-tumor microbiome has recently been linked to epithelial–mesenchymal transition (EMT) in a number of cancers. However, the relationship between EMT and microbes in bladder cancer has not been explored. In this study, we profiled the abundance of individual microbe species in the tumor samples of over 400 muscle invasive bladder carcinoma (MIBC) patients. We then correlated microbe abundance to the expression of EMT-associated genes and genes in the extracellular matrix (ECM), which are key players in EMT. We discovered that a variety of microbes, including E. coli, butyrate-producing bacterium SM4/1, and a species of Oscillatoria, were associated with expression of classical EMT-associated genes, including E-cadherin, vimentin, SNAI2, SNAI3, and TWIST1. We also found significant correlations between microbial abundance and the expression of genes in the ECM, specifically collagens and elastin. Lastly, we found that a large number of microbes exhibiting significant correlations to EMT are also associated with clinical prognosis and outcomes. We further determined that the microbes we profiled were likely not environmental contaminants. In conclusion, we discovered that the intra-tumoral microbiome could potentially play a significant role in the regulation of EMT in MIBC.
Collapse
|
20
|
Al-Thani RF, Yasseen BT. Perspectives of future water sources in Qatar by phytoremediation: biodiversity at ponds and modern approach. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:866-889. [PMID: 33403862 DOI: 10.1080/15226514.2020.1859986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anthropogenic and industrial wastewater (IWW) could be an additional future source of water to support the needs of the people of the State of Qatar. New lagoons have been built using modern technologies to optimize water use and waste recycling, as well as increasing the green spaces around the country. To achieve successful development of these new lagoons, lessons should be learned from the old ponds by examining their biodiversity, ecology, and the roles played by aquatic plants and algae to remediate wastewaters at these ponds. The perspectives of using IWW (from oil and gas activities), that is currently pumped deep into the ground are presented. Instead of causing great damage to groundwater, IWW can be stored in artificial ponds prepared for ridding it of all impurities and pollutants of various types, organic and inorganic, thereby making it serviceable for various human uses. Phycoremediation, bioremediation, and phytoremediation methods adopted by algae, bacteria and aquatic native plants are discussed, and special attention should be paid to those that proved successful in removing heavy metals and degrading organic compounds. At least three native plants namely: Amaranthus viridis, Phragmites australis, and Typha domingensis should be paid special attention, since these plants are efficient in remediation of arsenic and mercury; elements found abundantly in wastewater of gas activities. Some promising modern and innovative experiences and biotechnologies to develop efficient transgenic plants and microorganisms in removing and degrading pollutants are discussed, as an important strategy to keep the ecosystem clean and safe. Novelty statementIndustrial wastewater (IWW) could be an alternative source of water at the Arabian Gulf region. Currently, IWW is pumped deep into the ground causing a great damage to groundwater; little information about this issue has been reported. Such IWW can be stored in artificial ponds designed for ridding them of all impurities of various types; various remediation methods can be used. Modern biotechnology to develop transgenic plants and microorganisms to enhance these remediation methods can be adopted.
Collapse
Affiliation(s)
- R F Al-Thani
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - B T Yasseen
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Murawski A, Schmied-Tobies MIH, Rucic E, Schmidtkunz C, Küpper K, Leng G, Eckert E, Kuhlmann L, Göen T, Daniels A, Schwedler G, Kolossa-Gehring M. Metabolites of 4-methylbenzylidene camphor (4-MBC), butylated hydroxytoluene (BHT), and tris(2-ethylhexyl) trimellitate (TOTM) in urine of children and adolescents in Germany - human biomonitoring results of the German Environmental Survey GerES V (2014-2017). ENVIRONMENTAL RESEARCH 2021; 192:110345. [PMID: 33096061 DOI: 10.1016/j.envres.2020.110345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 05/07/2023]
Abstract
The UV filter 4-methylbenzylidene camphor (4-MBC), used in cosmetics, the antioxidant butylated hydroxytoluene (BHT), used inter alia as a food additive and in cosmetics, and the plasticizer tris(2-ethylhexyl) trimellitate (TOTM), used mainly in medical devices as substitute for di-(2-ethylhexyl) phthalate (DEHP), are suspected to have endocrine disrupting effects. Human biomonitoring methods that allow for assessing the internal exposure of the general population to these substances were recently developed in a German cooperation to enhance the use of human biomonitoring. First-morning void urine samples from 3- to 17-year-old children and adolescents living in Germany were analysed for metabolites of 4-MBC (N = 447), BHT (N = 2091), and TOTM (N = 431) in the population-representative German Environmental Survey on Children and Adolescents 2014-2017 (GerES V). 4-MBC metabolites were found in quantifiable amounts only in single cases and exposure levels remained well below health-based guidance values. In contrast, ubiquitous exposure to BHT became evident with a geometric mean (GM) urinary concentration of the metabolite BHT acid of 2.346 μg/L (1.989 μg/gcreatinine) and a maximum concentration of 248 μg/L (269 μg/gcrea). The highest GM concentration was found in young children aged 3-5 years, yet no specific sources of exposure could be identified. Also, TOTM metabolites were found in quantifiable amounts only in very few samples. None of these findings could be related to previous hospital treatment or exposure via house dust. The presented results will be the basis to derive reference values for exposure of children and adolescents in Germany to BHT and will facilitate to identify changing exposure levels in the general population.
Collapse
Affiliation(s)
| | | | - Enrico Rucic
- German Environment Agency (UBA), Berlin, Germany
| | | | - Katja Küpper
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, Leverkusen, Germany
| | - Gabriele Leng
- Currenta GmbH & Co. OHG, Institute of Biomonitoring, Leverkusen, Germany
| | - Elisabeth Eckert
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Kuhlmann
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Daniels
- German Environment Agency (UBA), Berlin, Germany
| | | | | |
Collapse
|
22
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Faingold II, Poletaeva DA, Soldatova YV, Kotelnikova RA, Serkov IV, Ustinov AK, Proshin AN, Radchenko EV, Palyulin VA, Richardson RJ. New Multifunctional Agents Based on Conjugates of 4-Amino-2,3-polymethylenequinoline and Butylated Hydroxytoluene for Alzheimer's Disease Treatment. Molecules 2020; 25:molecules25245891. [PMID: 33322783 PMCID: PMC7763995 DOI: 10.3390/molecules25245891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/18/2023] Open
Abstract
New hybrids of 4-amino-2,3-polymethylenequinoline with different sizes of the aliphatic ring linked to butylated hydroxytoluene (BHT) by enaminoalkyl (7) or aminoalkyl (8) spacers were synthesized as potential multifunctional agents for Alzheimer's disease (AD) treatment. All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. Lead compound 8c, 2,6-di-tert-butyl-4-{[2-(7,8,9,10- tetrahydro-6H-cyclohepta[b]quinolin-11-ylamino)-ethylimino]-methyl}-phenol exhibited an IC50(AChE) = 1.90 ± 0.16 µM, IC50(BChE) = 0.084 ± 0.008 µM, and 13.6 ± 1.2% propidium displacement at 20 μM. Compounds possessed low activity against carboxylesterase, indicating likely absence of clinically unwanted drug-drug interactions. Kinetics were consistent with mixed-type reversible inhibition of both cholinesterases. Docking indicated binding to catalytic and peripheral AChE sites; peripheral site binding along with propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. Compounds demonstrated high antioxidant activity in ABTS and FRAP assays as well as inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Conjugates 8 with amine-containing spacers were better antioxidants than those with enamine spacers 7. Computational ADMET profiles for all compounds predicted good blood-brain barrier distribution (permeability), good intestinal absorption, and medium cardiac toxicity risk. Overall, based on their favorable pharmacological and ADMET profiles, conjugates 8 appear promising as candidates for AD therapeutics.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, 119334 Moscow, Russia
| | - Irina I. Faingold
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Darya A. Poletaeva
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Yuliya V. Soldatova
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Raisa A. Kotelnikova
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Anatoly K. Ustinov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0769
| |
Collapse
|
23
|
Emam S, Nasrollahpour M, Colarusso B, Cai X, Grant S, Kulkarni P, Ekenseair A, Gharagouzloo C, Ferris CF, Sun NX. Detection of presymptomatic Alzheimer's disease through breath biomarkers. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12088. [PMID: 33088894 PMCID: PMC7560498 DOI: 10.1002/dad2.12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
Introduction Novel sensors were developed to detect exhaled volatile organic compounds to aid in the diagnosis of mild cognitive impairment associated with early stage Alzheimer's disease (AD). The sensors were sensitive to a rat model that combined the human apolipoprotein E (APOE)4 gene with aging and the Western diet. Methods Gas sensors fabricated from molecularly imprinted polymer-graphene were engineered to react with alkanes and small fatty acids associated with lipid peroxidation. With a detection sensitivity in parts per trillion the sensors were tested against the breath of wild-type and APOE4 male rats. Resting state BOLD functional connectivity was used to assess hippocampal function. Results Only APOE4 rats, and not wild-type controls, tested positive to several small hydrocarbons and presented with reduced functional coupling in hippocampal circuitry. Discussion These results are proof-of-concept toward the development of sensors that can be used as breath detectors in the diagnosis, prognosis, and treatment of presymptomatic AD.
Collapse
Affiliation(s)
- Shadi Emam
- Department of Electrical and Computer Engineering Advanced Materials and Microsystems Laboratory Northeastern University Boston Massachusetts USA
| | - Mehdi Nasrollahpour
- Department of Electrical and Computer Engineering Advanced Materials and Microsystems Laboratory Northeastern University Boston Massachusetts USA
| | - Bradley Colarusso
- Department of Psychology Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Xuezhu Cai
- Department of Psychology Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Simone Grant
- Department of Chemical Engineering Northeastern University Boston Massachusetts USA
| | - Praveen Kulkarni
- Department of Psychology Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Adam Ekenseair
- Department of Chemical Engineering Northeastern University Boston Massachusetts USA
| | - Codi Gharagouzloo
- Imaginostics Inc. Northeastern University Cambridge Massachusetts USA
| | - Craig F Ferris
- Department of Psychology Center for Translational NeuroImaging Northeastern University Boston Massachusetts USA
| | - Nian-Xiang Sun
- Department of Electrical and Computer Engineering Advanced Materials and Microsystems Laboratory Northeastern University Boston Massachusetts USA
| |
Collapse
|
24
|
Liu R, Mabury SA. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11706-11719. [PMID: 32915564 DOI: 10.1021/acs.est.0c05077] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synthetic phenolic antioxidants (SPAs) are widely used in various industrial and commercial products to retard oxidative reactions and lengthen product shelf life. In recent years, numerous studies have been conducted on the environmental occurrence, human exposure, and toxicity of SPAs. Here, we summarize the current understanding of these issues and provide recommendations for future research directions. SPAs have been detected in various environmental matrices including indoor dust, outdoor air particulates, sea sediment, and river water. Recent studies have also observed the occurrence of SPAs, such as 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,4-di-tert-butyl-phenol (DBP), in humans (fat tissues, serum, urine, breast milk, and fingernails). In addition to these parent compounds, some transformation products have also been detected both in the environment and in humans. Human exposure pathways include food intake, dust ingestion, and use of personal care products. For breastfeeding infants, breast milk may be an important exposure pathway. Toxicity studies suggest some SPAs may cause hepatic toxicity, have endocrine disrupting effects, or even be carcinogenic. The toxicity effects of some transformation products are likely worse than those of the parent compound. For example, 2,6-di-tert-butyl-p-benzoquinone (BHT-Q) can cause DNA damage at low concentrations. Future studies should investigate the contamination and environmental behaviors of novel high molecular weight SPAs, toxicity effects of coexposure to several SPAs, and toxicity effects on infants. Future studies should also develop novel SPAs with low toxicity and low migration ability, decreasing the potential for environmental pollution.
Collapse
Affiliation(s)
- Runzeng Liu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Scott A Mabury
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
25
|
Olasehinde TA, Olaniran AO, Okoh AI. Cholinesterase inhibitory activity, antioxidant properties, and phytochemical composition of Chlorococcum sp. extracts. J Food Biochem 2020; 45:e13395. [PMID: 32720328 DOI: 10.1111/jfbc.13395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022]
Abstract
In this study, Chlorococcum sp. was investigated for its cholinesterase inhibitory potentials and antioxidant activity. The algal sample was cultivated, harvested, and extracted sequentially using n-hexane, dichloromethane, and ethanol. The extracts were characterized using Fourier transmission infra-red (FTIR) and Gas Chromatography-Mass Spectrometry. The metal chelating, radical scavenging activities, as well as anticholinesterase potentials of the algal extract, was also investigated. FTIR characterization of the microalgal biomass revealed the presence of phenolic compounds, alkaloids, polysaccharides, and fatty acids. The extracts showed the presence of phytol, neophytadiene, butylated hydroxyl toluene, and 3-tert-butyl-4-hydroxyanisole. The ethanol extract showed the highest DPPH (IC50 = 147.40 µg/ml) and OH (IC50 = 493.90 µg/ml) radical scavenging and metal chelating (IC50 = 83.25 µg/ml) activities. Similarly, the ethanol extract (IC50 = 13.83 µg/ml) exhibited the highest acetylcholinesterase inhibitory activity, while the dichloromethane extract showed the highest butyrylcholinesterase inhibitory activity. All the extracts exhibited antioxidant properties and inhibitory effects against butyrylcholinesterase and acetylcholinesterase; however, ethanol extracts showed better activity. PRACTICAL APPLICATIONS: Biomass obtained from some microalgal species is commonly used as dietary supplements and nutraceuticals due to the presence of high-valued products. However, the antioxidant and anticholinesterase activities of biomass from Chlorococcum sp. have not been explored. Chlorococcum sp. extracts contain some antioxidants such as 3-tert-Butyl-4-hydroxyanisole, butylated hydroxytoluene, phytol, and neophytadiene. Characterization of the extracts also revealed the presence of phenolic compounds, polysaccharides, and fatty acids. These compounds may contribute to the observed antioxidant and anticholinesterase activities of Chlorococcum sp. The result of this study suggests that Chlorococcum sp. may contain some nutraceuticals which could be used as antioxidants and cholinesterase inhibitors.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.,Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
| |
Collapse
|
26
|
Zhao L, Wang K, Wang K, Zhu J, Hu Z. Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review. Compr Rev Food Sci Food Saf 2020; 19:2139-2163. [PMID: 33337091 DOI: 10.1111/1541-4337.12590] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
Litchi (Litchi chinensis Sonn.) is a tropical to subtropical fruit that is widely cultivated in more than 20 countries worldwide. It is normally consumed as fresh or processed and has become one of the most popular fruits because it has a delicious flavor, attractive color, and high nutritive value. Whole litchi fruits have been used not only as a food source but also for medicinal purposes. As a traditional Chinese medicine, litchi has been used for centuries to treat stomach ulcers, diabetes, cough, diarrhea, and dyspepsia, as well as to kill intestinal worms. Both in vitro and in vivo studies have indicated that whole litchi fruits exhibit antioxidant, hypoglycemic, hepatoprotective, hypolipidemic, and antiobesity activities and show anticancer, antiatherosclerotic, hypotensive, neuroprotective, and immunomodulatory activities. The health benefits of litchi have been attributed to its wide range of nutritional components, among which polysaccharides and polyphenols have been proven to possess various beneficial properties. The diversity and composition of litchi polysaccharides and polyphenols have vital influences on their biological activities. In addition, consuming fresh litchi and its products could lead to some adverse reactions for some people such as pruritus, urticaria, swelling of the lips, swelling of the throat, dyspnea, or diarrhea. These safety problems are probably caused by the soluble protein in litchi that could cause anaphylactic and inflammatory reactions. To achieve reasonable applications of litchi in the food, medical and cosmetics industries, this review focuses on recent findings related to the nutrient components, health benefits, and safety of litchi.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| | - Jie Zhu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, China
| |
Collapse
|
27
|
Wee HN, Neo SY, Singh D, Yew HC, Qiu ZY, Tsai XRC, How SY, Yip KYC, Tan CH, Koh HL. Effects of Vitex trifolia L. leaf extracts and phytoconstituents on cytokine production in human U937 macrophages. BMC Complement Med Ther 2020; 20:91. [PMID: 32188443 PMCID: PMC7081688 DOI: 10.1186/s12906-020-02884-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Dysregulation of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) form the basis of immune-mediated inflammatory diseases. Vitex trifolia L. is a medicinal plant growing in countries such as China, India, Australia and Singapore. Its dried ripe fruits are documented in Traditional Chinese Medicine to treat ailments like rhinitis and dizziness. Its leaves are used traditionally to treat inflammation-related conditions like rheumatic pain. Objective This study aimed to investigate the effects of V. trifolia leaf extracts prepared by different extraction methods (Soxhlet, ultrasonication, and maceration) in various solvents on cytokine production in human U937 macrophages, and identify phytoconstituents from the most active leaf extract. Methods Fresh leaves of V. trifolia were extracted using Soxhlet, ultrasonication, and maceration in hexane, dichloromethane, methanol, ethanol or water. Each extract was evaluated for its effects on TNF-α and IL-1β cytokine production by enzyme-linked immunosorbent assay in lipopolysaccharide-stimulated human U937 macrophages. The most active extract was analyzed and further purified by different chemical and spectroscopic techniques. Results Amongst 14 different leaf extracts investigated, extracts prepared by ultrasonication in dichloromethane and maceration in ethanol were most active in inhibiting TNF-α and IL-1β production in human U937 macrophages. Further purification led to the isolation of artemetin, casticin, vitexilactone and maslinic acid, and their effects on TNF-α and IL-1β production were evaluated. We report for the first time that artemetin suppressed TNF-α and IL-1β production. Gas chromatography-mass spectrometry analyses revealed the presence of eight other compounds. To the best of our knowledge, this is the first report of butylated hydroxytoluene, 2,4-di-tert-butylphenol, campesterol and maslinic acid in V. trifolia leaf extracts. Conclusions In conclusion, leaf extracts of V. trifolia obtained using different solvents and extraction methods were successfully investigated for their effects on cytokine production in human U937 macrophages. The findings provide scientific evidence for the traditional use of V. trifolia leaves (a sustainable resource) and highlight the importance of conservation of medicinal plants as resources for drug discovery. Our results together with others suggest further investigation on V. trifolia and constituents to develop novel treatment strategies in immune-mediated inflammatory conditions is warranted.
Collapse
Affiliation(s)
- Hai-Ning Wee
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Soek-Ying Neo
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
| | - Deepika Singh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Hui-Chuing Yew
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Zhi-Yu Qiu
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Xin-Rong Cheryl Tsai
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Sin-Yi How
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Keng-Yan Caleb Yip
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Chay-Hoon Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, 16 Medical Drive, Block MD3, #04-01S, Singapore, 117600, Singapore
| | - Hwee-Ling Koh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
28
|
Zhao F, Wang P, Lucardi RD, Su Z, Li S. Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs. Toxins (Basel) 2020; 12:E35. [PMID: 31935944 PMCID: PMC7020479 DOI: 10.3390/toxins12010035] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 11/16/2022] Open
Abstract
2,4-Di-tert-butylphenol or 2,4-bis(1,1-dimethylethyl)-phenol (2,4-DTBP) is a common toxic secondary metabolite produced by various groups of organisms. The biosources and bioactivities of 2,4-DTBP have been well investigated, but the phenol has not been systematically reviewed. This article provides a comprehensive review of 2,4-DTBP and its analogs with emphasis on natural sources and bioactivities. 2,4-DTBP has been found in at least 169 species of bacteria (16 species, 10 families), fungi (11 species, eight families), diatom (one species, one family), liverwort (one species, one family), pteridiphyta (two species, two families), gymnosperms (four species, one family), dicots (107 species, 58 families), monocots (22 species, eight families), and animals (five species, five families). 2,4-DTBP is often a major component of violate or essential oils and it exhibits potent toxicity against almost all testing organisms, including the producers; however, it is not clear why organisms produce autotoxic 2,4-DTBP and its analogs. The accumulating evidence indicates that the endocidal regulation seems to be the primary function of the phenols in the producing organisms.
Collapse
Affiliation(s)
- Fuqiang Zhao
- College of Life Science and Bioengineering, Shenyang University, Shenyang 110044, Liaoning, China;
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Ping Wang
- National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA (Z.S.)
| | - Rima D. Lucardi
- Southern Research Station, USDA Forest Service, 320 Green Street, Athens, GA 30602, USA;
| | - Zushang Su
- National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA (Z.S.)
| | - Shiyou Li
- National Center for Pharmaceutical Crops, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA (Z.S.)
| |
Collapse
|
29
|
Dorababu A. Critical evaluation of current Alzheimer's drug discovery (2018-19) & futuristic Alzheimer drug model approach. Bioorg Chem 2019; 93:103299. [PMID: 31586701 DOI: 10.1016/j.bioorg.2019.103299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), a neurodegenerative disease responsible for death of millions of people worldwide is a progressive clinical disorder which causes neurons to degenerate and ultimately die. It is one of the common causes of dementia wherein a person's incapability to independently think, behave and decline in social skills can be quoted as major symptoms. However the early signs include the simple non-clinical symptoms such as forgetting recent events and conversations. Onset of these symptoms leads to worsened conditions wherein the AD patient suffers severe memory impairment and eventually becomes unable to work out everyday tasks. Even though there is no complete cure for AD, rigorous research has been going on to reduce the progress of AD. Currently, a very few clinical drugs are prevailing for AD treatment. So this is the need of hour to design, develop and discovery of novel anti-AD drugs. The main factors for the cause of AD according to scientific research reveals structural changes in brain proteins such as beta amyloid, tau proteins into plaques and tangles respectively. The abnormal proteins distort the neurons. Despite the high potencies of the synthesized molecules; they could not get on the clinical tests up to human usage. In this review article, the recent research carried out with respect to inhibition of AChE, BuChE, NO, BACE1, MAOs, Aβ, H3R, DAPK, CSF1R, 5-HT4R, PDE, σ1R and GSK-3β is compiled and organized. The summary is focused mainly on cholinesterases, Aβ, BACE1 and MAOs classes of potential inhibitors. The review also covers structure activity relationship of most potent compounds of each class of inhibitors alongside redesign and remodeling of the most significant inhibitors in order to expect cutting edge inhibitory properties towards AD. Alongside the molecular docking studies of the some final compounds are discussed.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Studies in Chemistry, SRMPP Govt. First Grade College, Huvinahadagali 583219, Karnataka, India.
| |
Collapse
|
30
|
Zhang X, Machado RA, Doan CV, Arce CC, Hu L, Robert CA. Entomopathogenic nematodes increase predation success by inducing cadaver volatiles that attract healthy herbivores. eLife 2019; 8:46668. [PMID: 31509107 PMCID: PMC6739876 DOI: 10.7554/elife.46668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Herbivore natural enemies protect plants by regulating herbivore populations. Whether they can alter the behavior of their prey to increase predation success is unknown. We investigate if and how infection by the entomopathogenic nematode Heterorhabditis bacteriophora changes the behavior of healthy larvae of the western corn rootworm (Diabrotica virgifera), a major pest of maize. We found that nematode-infected rootworm cadavers are attractive to rootworm larvae, and that this behavior increases nematode reproductive success. Nematode-infected rootworms release distinct volatile bouquets, including the unusual volatile butylated hydroxytoluene (BHT). BHT alone attracts rootworms, and increases nematode reproductive success. A screen of different nematode and herbivore species shows that attraction of healthy hosts to nematode-infected cadavers is widespread and likely involves species-specific volatile cues. This study reveals a new facet of the biology of herbivore natural enemies that boosts their predation success by increasing the probability of host encounters.
Collapse
Affiliation(s)
- Xi Zhang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Cong Van Doan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Carla Cm Arce
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Lingfei Hu
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | |
Collapse
|
31
|
Ecophysiological Analysis of Mangrove Seedlings Kandelia obovata Exposed to Natural Low Temperature at Near 30°N. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7090292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, mangrove seedlings Kandelia obovata were firstly introduced to Zhoushan in Eastern China at 29° 93′ N from Xuwen in South China at 20° 34′ N in April 2016. In order to analyze ecophysiological differences of K. obovata seedlings domesticated in Zhoushan, the growth status and antioxidant system of K. obovata exposed to natural low temperature were studied through situ measurements. The results showed that K. obovata seedlings introduced artificially to Zhoushan grew slowly when subjected to natural cold stress. The chlorophyll contents exhibited a decreased tendency. In addition, 2-butanol and 2,3-butanediol were firstly found in K. obovata after being moved to Zhoushan, which are specific substances produced by K. obovata under low-temperature stress. Moreover, there was a synergistic competition mechanism in the antioxidant enzyme system in K. obovata, in which superoxide dismutase (SOD) would convert oxygen radicals to hydrogen peroxide, and then catalase (CAT) and peroxidase (POD) could work together to remove hydrogen peroxide. This study provides a foundation for better understanding of the response of mangroves to natural low temperature at high latitudes.
Collapse
|
32
|
Bi S, Wang A, Wang Y, Xu X, Luo D, Shen Q, Wu J. Effect of cooking on aroma profiles of Chinese foxtail millet (Setaria italica) and correlation with sensory quality. Food Chem 2019; 289:680-692. [DOI: 10.1016/j.foodchem.2019.03.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
|
33
|
Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci 2019; 26:709-722. [PMID: 31048995 PMCID: PMC6486502 DOI: 10.1016/j.sjbs.2017.11.003] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/04/2017] [Accepted: 11/02/2017] [Indexed: 01/12/2023] Open
Abstract
Microalgae are one of the important components in food chains of aquatic ecosystems and have been used for human consumption as food and as medicines. The wide diversity of compounds synthesized from different metabolic pathways of fresh and marine water algae provide promising sources of fatty acids, steroids, carotenoids, polysaccharides, lectins, mycosporine-like amino acids, halogenated compounds, polyketides, toxins, agar agar, alginic acid and carrageenan. This review discusses microalgae used to produce biological substances and its economic importance in food science, the pharmaceutical industry and public health.
Collapse
Affiliation(s)
- Ramaraj Sathasivam
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Ramalingam Radhakrishnan
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamilnadu, India
| | - Abeer Hashem
- Botany and Microbiology, Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
34
|
Santhakumari S, Jayakumar R, Logalakshmi R, Prabhu NM, Abdul Nazar AK, Karutha Pandian S, Veera Ravi A. In vitro and in vivo effect of 2,6-Di-tert-butyl-4-methylphenol as an antibiofilm agent against quorum sensing mediated biofilm formation of Vibrio spp. Int J Food Microbiol 2018; 281:60-71. [DOI: 10.1016/j.ijfoodmicro.2018.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 11/16/2022]
|
35
|
Cai P, Fang SQ, Yang HL, Yang XL, Liu QH, Kong LY, Wang XB. Donepezil-butylated hydroxytoluene (BHT) hybrids as Anti-Alzheimer's disease agents with cholinergic, antioxidant, and neuroprotective properties. Eur J Med Chem 2018; 157:161-176. [PMID: 30096650 DOI: 10.1016/j.ejmech.2018.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
Abstract
The multifactorial nature of Alzheimer's disease (AD) calls for the development of multitarget agents addressing key pathogenic processes. A novel family of donepezil-butylated hydroxytoluene (BHT) hybrids were designed, synthesized and evaluated as multifunctional ligands against AD. The optimal compound 7d displayed a balanced multifunctional profile covering an intriguing acetylcholinesterase (AChE) inhibition (IC50, 0.075 μM for eeAChE and 0.75 μM for hAChE) and Monoamine oxidase B (MAO-B) inhibition (IC50, 7.4 μM for hMAO-B), excellent antioxidant activity (71.7 μM of IC50 by DPPH method, 0.82 and 1.62 trolox equivalent by ABTS method and ORAC method respectively), and inhibitory effects on self-induced, hAChE-induced Aβ aggregation. Moreover, 7d possessed neuroprotective potency against H2O2-induced oxidative damage on PC12 cells and Lipopolysaccharides (LPS)-stimulated inflammation on BV2 cells. Compound 7d was capable of penetrating BBB and presented good liver microsomal metabolic stability. Importantly, compound 7d could dose-dependently reverse scopolamine-induced memory deficit in mice without acute toxicity. Taken together, those outstanding results highlight the donepezil-BHT hybrid 7d as a promising prototype in the research of innovative compound for AD.
Collapse
Affiliation(s)
- Pei Cai
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Si-Qiang Fang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hua-Li Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xue-Lian Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qiao-Hong Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
36
|
Shu L, Zhang B, Queller DC, Strassmann JE. Burkholderia bacteria use chemotaxis to find social amoeba Dictyostelium discoideum hosts. THE ISME JOURNAL 2018; 12:1977-1993. [PMID: 29795447 PMCID: PMC6052080 DOI: 10.1038/s41396-018-0147-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/05/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
A key question in cooperation is how to find the right partners and maintain cooperative relationships. This is especially challenging for horizontally transferred bacterial symbionts where relationships must be repeatedly established anew. In the social amoeba Dictyostelium discoideum farming symbiosis, two species of inedible Burkholderia bacteria (Burkholderia agricolaris and Burkholderia hayleyella) initiate stable associations with naive D. discoideum hosts and cause carriage of additional bacterial species. However, it is not clear how the association between D. discoideum and its carried Burkholderia is formed and maintained. Here, we look at precisely how Burkholderia finds its hosts. We found that both species of Burkholderia clones isolated from D. discoideum, but not other tested Burkholderia species, are attracted to D. discoideum supernatant, showing that the association is not simply the result of haphazard engulfment by the amoebas. The chemotactic responses are affected by both partners. We find evidence that B. hayleyella prefers D. discoideum clones that currently or previously carried Burkholderia, while B. agricolaris does not show this preference. However, we find no evidence of Burkholderia preference for their own host clone or for other hosts of their own species. We further investigate the chemical differences of D. discoideum supernatants that might explain the patterns shown above using a mass spectrometry based metabolomics approach. These results show that these bacterial symbionts are able to preferentially find and to some extent choose their unicellular partners. In addition, this study also suggests that bacteria can actively search for and target phagocytic cells, which may help us better understand how bacteria interact with immune systems.
Collapse
Affiliation(s)
- Longfei Shu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
37
|
Halladj F, Boukhiar A, Amellal H, Benamara S. Optimization of Traditional Date Vinegar Preparation Using Full Factorial Design. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2016-2188-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Fatima Halladj
- Research Laboratory of Food Technology, Faculty of Engineering Sciences, M'Hamed Bougara University, Boumerdès, 35000, Algeria
| | - Aissa Boukhiar
- Research Laboratory of Food Technology, Faculty of Engineering Sciences, M'Hamed Bougara University, Boumerdès, 35000, Algeria
| | - Hayat Amellal
- Laboratory of Sweets Technology, Valorization, Physical Chemistry of Biological Materials, and Biodiversity, Biology Department, Faculty of Sciences, M'Hamed Bougara University, Boumerdès, 35000, Algeria
| | - Salem Benamara
- Research Laboratory of Food Technology, Faculty of Engineering Sciences, M'Hamed Bougara University, Boumerdès, 35000, Algeria
| |
Collapse
|
38
|
Amal AMAG, Manal EZ. Effect of two different habitats on some primary and secondary phytochemicals of Miswak (Salvadora persica L.). ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2017.15894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
39
|
Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.04.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Deyab M. The inhibition activity of butylated hydroxytoluene towards corrosion of carbon steel in biodiesel blend B20. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.10.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Nieva-Echevarría B, Manzanos MJ, Goicoechea E, Guillén MD. 2,6-Di-Tert-Butyl-Hydroxytoluene and Its Metabolites in Foods. Compr Rev Food Sci Food Saf 2014; 14:67-80. [PMID: 33401811 DOI: 10.1111/1541-4337.12121] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/02/2014] [Indexed: 11/28/2022]
Abstract
2,6-Di-tert-butyl-hydroxytoluene (BHT, E-321) is a synthetic phenolic antioxidant which has been widely used as an additive in the food, cosmetic, and plastic industries for the last 70 y. Although it is considered safe for human health at authorized levels, its ubiquitous presence and the controversial toxicological data reported are of great concern for consumers. In recent years, special attention has been paid to these 14 metabolites or degradation products: BHT-CH2 OH, BHT-CHO, BHT-COOH, BHT-Q, BHT-QM, DBP, BHT-OH, BHT-OOH, TBP, BHQ, BHT-OH(t), BHT-OH(t)QM, 2-BHT, and 2-BHT-QM. These derived compounds could pose a human health risk from a food safety point of view, but they have been little studied. In this context, this review deals with the occurrence, origin, and fate of BHT in foodstuffs, its biotransformation into metabolites, their toxicological implications, their antioxidant and prooxidant properties, the analytical determination of metabolites in foods, and human dietary exposure. Moreover, noncontrolled additional sources of exposure to BHT and its metabolites are highlighted. These include their carryover from feed to fish, poultry and eggs, their presence in smoke flavorings, their migration from plastic pipelines and packaging to water and food, and their presence in natural environments, from which they can reach the food chain.
Collapse
Affiliation(s)
- Bárbara Nieva-Echevarría
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, Univ. of the Basque Country (UPV/EHU), Paseo de la Universidad nº 7, 01006, Vitoria, Spain
| | - María J Manzanos
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, Univ. of the Basque Country (UPV/EHU), Paseo de la Universidad nº 7, 01006, Vitoria, Spain
| | - Encarnación Goicoechea
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, Univ. of the Basque Country (UPV/EHU), Paseo de la Universidad nº 7, 01006, Vitoria, Spain
| | - María D Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, Univ. of the Basque Country (UPV/EHU), Paseo de la Universidad nº 7, 01006, Vitoria, Spain
| |
Collapse
|
42
|
Synergistic Effects of CO2 and LED Lighting on Accumulation of Terpenes in Roots of Gynura bicolor. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60033-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Improvement of the Quality and the Shelf Life of the High Oxygen Modified Atmosphere Packaged Veal by Superficial Spraying with Dihydroquercetin Solution. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2014; 2014:629062. [PMID: 26904641 PMCID: PMC4745516 DOI: 10.1155/2014/629062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/07/2014] [Accepted: 08/20/2014] [Indexed: 11/17/2022]
Abstract
The improvement of quality and the shelf life of veal by combination of 80%O2/20%CO2 modified atmosphere packaging and superficial spraying with 0.02% dihydroquercetin solutions was studied. The control samples C, air packaged only, D, air packaged sprayed by 0.02% dihydroquercetin solution, MAP, modified atmosphere packaging only, BMAP, modified atmosphere packaging sprayed by 0.02% butylated hydroxytoluene solution, and DMAP, modified atmosphere packaging sprayed by 0.02% dihydroquercetin solution, were measured. The best results were obtained in modified atmosphere packaging sprayed by 0.02% dihydroquercetin solution. Comparisons with control samples were expressed as reduction in acid value with 27.72%, peroxide value with 64.74%, 2-thiobarbituric acid reactive substances (TBARS) with 65.71%, and the pH with 6.18%. The acid and peroxide values, TBARS, and pH were decreased linearly in response when applying the combination of 80%O2/20%CO2 modified atmosphere packaging and superficial spraying with 0.02% dihydroquercetin solutions (P < 0.05). The changes of amino nitrogen content of modified atmosphere packaging veal were not influenced statistically significantly by 0.02% dihydroquercetin solution (P > 0.05). According to results obtained it was concluded that 80%O2/20%CO2 modified atmosphere packaged veal stored at 0 ± 0.5°C after 0.02% dihydroquercetin solution treatment can preserve its quality and shelf life to 15 d postmortem.
Collapse
|
44
|
Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 2013; 33:172-215. [PMID: 22765907 PMCID: PMC3665214 DOI: 10.3109/07388551.2012.681625] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 01/25/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022]
Abstract
Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen during general anaerobic conditions, and during sulfur deprivation. Species used today for commercial purposes are also described. This information is analyzed in order to form a basis for selection of wild type species for a future multi-step process, where hydrogen production from solar energy is combined with the production of valuable metabolites and other commercial uses of the algal biomass.
Collapse
Affiliation(s)
- Kari Skjånes
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Fredrik A. Dahls vei 20, Ås, Norway.
| | | | | |
Collapse
|
45
|
Jiang G, Lin S, Wen L, Jiang Y, Zhao M, Chen F, Prasad KN, Duan X, Yang B. Identification of a novel phenolic compound in litchi (Litchi chinensis Sonn.) pericarp and bioactivity evaluation. Food Chem 2012; 136:563-8. [PMID: 23122098 DOI: 10.1016/j.foodchem.2012.08.089] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/19/2012] [Accepted: 08/29/2012] [Indexed: 11/25/2022]
Abstract
Litchi (Litchi chinensis Sonn.) is a delicious fruit widely accepted by consumers all over the world. In this work, phytochemical investigation of litchi pericarp methanol extracts led to the isolation of a novel phenolic, 2-(2-hydroxyl-5-(methoxycarbonyl) phenoxy) benzoic acid, together with kaempferol, isolariciresinol, stigmasterol, butylated hydroxytoluene, 3,4-dihydroxyl benzoate, methyl shikimate and ethyl shikimate. Most were found in litchi pericarp for the first time. Their structures were mainly elucidated by NMR and MS evidences. Antioxidant activities of the eight compounds were determined by a DPPH radical scavenging assay and the results showed that 2-(2-hydroxy-5-(methoxycarbonyl) phenoxy)benzoic acid, kaempferol, isolariciresinol, butylated hydroxytoluene and 3,4-dihydroxy benzoate exhibited good antioxidant activities. An interesting finding was that butylated hydroxytoluene was detected as a natural antioxidant in this work, which was usually taken as a synthesized antioxidant. Furthermore, the novel compound exhibited no inhibitory effects against tyrosinase and α-glucosidase activities.
Collapse
Affiliation(s)
- Guoxiang Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The characterisation of bioactive compounds from an Egyptian Leptolyngbya sp. strain. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0226-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|