1
|
Abstract
Ethanol is the most commonly used toxic chemical in human cultures. Ethanol predominantly damages the brain causing various neurological disorders. Astrocytes are important cellular targets of ethanol in the brain and are involved in alcoholic symptoms. Recent studies have revealed the diversity of astrocyte populations in the brain. However, it is unclear how the different astrocyte populations respond to an excess of ethanol. Here we examined the effect of binge ethanol levels on astrocytes in the mouse brainstem and cerebellum. Ethanol administration for four consecutive days increased the glial fibrillary acidic protein (GFAP)-immunoreactive signals in the spinal tract of the trigeminal nerve (stTN) and reticular nucleus (RN). Another astrocyte marker, aquaporin 4 (AQP4), was also increased in the stTN with a pattern similar to that of GFAP. However, in the RN, the immunoreactive signals of AQP4 were different from that of GFAP and were not changed by ethanol administration. In the cerebellum, GFAP-positive signals were found in all four astrocytic populations, and those in the Bergmann glia were selectively eliminated by ethanol administration. We next examined the effect of estradiol on the ethanol-induced changes in astrocytic immunoreactive signals. The administration of estradiol alone increased the AQP4-immunoreactivity in the stTN with a pattern similar to that of ethanol, whereas the co-administration of estradiol and ethanol suppressed the intensity of the AQP4-positive signals. Thus, binge levels of ethanol intake selectively affect astrocyte populations in the brainstem and cerebellum. Sex hormones can affect the ethanol-induced neurotoxicity via modulation of astrocyte reactivity.
Collapse
Affiliation(s)
| | - Mari Kondo
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University
| |
Collapse
|
2
|
Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017; 96:1223-1238. [PMID: 29268093 PMCID: PMC6566861 DOI: 10.1016/j.neuron.2017.10.032] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/30/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
Ethanol is one of the most commonly abused drugs. Although environmental and genetic factors contribute to the etiology of alcohol use disorders, it is ethanol's actions in the brain that explain (1) acute ethanol-related behavioral changes, such as stimulant followed by depressant effects, and (2) chronic changes in behavior, including escalated use, tolerance, compulsive seeking, and dependence. Our knowledge of ethanol use and abuse thus relies on understanding its effects on the brain. Scientists have employed both bottom-up and top-down approaches, building from molecular targets to behavioral analyses and vice versa, respectively. This review highlights current progress in the field, focusing on recent and emerging molecular, cellular, and circuit effects of the drug that impact ethanol-related behaviors. The focus of the field is now on pinpointing which molecular effects in specific neurons within a brain region contribute to behavioral changes across the course of acute and chronic ethanol exposure.
Collapse
Affiliation(s)
- Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Armando G Salinas
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Bader BM, Steder A, Klein AB, Frølund B, Schroeder OHU, Jensen AA. Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings. PLoS One 2017; 12:e0186147. [PMID: 29028808 PMCID: PMC5640229 DOI: 10.1371/journal.pone.0186147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022] Open
Abstract
The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels of various GABAAR subunits were investigated by western blotting and RT-qPCR. In the MEA recordings, the pan-GABAAR agonist muscimol and the GABABR agonist baclofen were observed to mediate phenotypically distinct changes in cortical network activity. Selective augmentation of αβγ GABAAR signaling by diazepam and of δ-containing GABAAR (δ-GABAAR) signaling by DS1 produced pronounced changes in the majority of the activity parameters, both drugs mediating similar patterns of activity changes as muscimol. The apparent importance of δ-GABAAR signaling for network activity was largely corroborated by the effects induced by the functionally selective δ-GABAAR agonists THIP and Thio-THIP, whereas the δ-GABAAR selective potentiator DS2 only mediated modest effects on network activity, even when co-applied with low THIP concentrations. Interestingly, diazepam exhibited dramatically right-shifted concentration-response relationships at many of the activity parameters when co-applied with a trace concentration of DS1 compared to when applied alone. In contrast, the potencies and efficacies displayed by DS1 at the networks were not substantially altered by the concomitant presence of diazepam. In conclusion, the holistic nature of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical network activity and the putative functional interplay between these receptors in these neurons.
Collapse
Affiliation(s)
| | - Anne Steder
- NeuroProof GmbH, Friedrich-Barnewitz-Str. 4, Rostock, Germany
| | - Anders Bue Klein
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | | | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
- * E-mail:
| |
Collapse
|
4
|
Helfer JL, White ER, Christie BR. Prenatal ethanol (EtOH) exposure alters the sensitivity of the adult dentate gyrus to acute EtOH exposure. Alcohol Clin Exp Res 2013; 38:135-43. [PMID: 23915337 DOI: 10.1111/acer.12227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/17/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Prenatal ethanol (EtOH) exposure results in a spectrum of structural, cognitive, and behavioral abnormalities, collectively termed "fetal alcohol spectrum disorders" (FASDs). The hippocampal formation, an area of the brain strongly linked with learning and memory, is particularly vulnerable to the teratogenic effects of EtOH. Prenatal EtOH exposure can lead to long-lasting impairments in the ability to process spatial information, as well as produce long-lasting deficits in the ability of animals to exhibit long-term potentiation (LTP), a biological model of learning and memory processing. These deficits also have the ability to facilitate EtOH and/or other drug abuse later in life. This study sought to determine prenatal EtOH exposure altered the effects of acute EtOH application on synaptic plasticity. METHODS Prenatal EtOH exposure was modeled using a liquid diet where dams were given 1 of 3 diets: (i) a liquid diet containing EtOH (35.5% EtOH-derived calories), (ii) a liquid diet, isocaloric to the EtOH diet, but with maltose-dextrin substituting for the EtOH-derived calories, and (iii) an ad libitum diet of standard rat chow. Extracellular recordings from transverse brain slices (350 μm) prepared from 50- to 70-day-old rats, following prenatal EtOH exposure (gestational day 1 to 21). LTP was examined in the dentate gyrus following acute EtOH exposure (0, 20, or 50 mM) in these slices. RESULTS Prenatal EtOH exposure attenuated LTP in the adult dentate gyrus. In control offspring, acute application of EtOH in adulthood attenuated (20 mM) or blocked (50 mM) LTP. Conversely, the effect of acute EtOH application on LTP was not as pronounced in prenatal EtOH offspring. CONCLUSIONS Prenatal EtOH exposure alters the sensitivity of the adult dentate gyrus to acute EtOH application producing a long-lasting tolerance to the inhibitory effects of EtOH. This decreased sensitivity may provide a mechanism promoting the formation of drug-associated memories and help explain the increased likelihood of developing an alcohol dependency often observed in individuals with FASDs.
Collapse
Affiliation(s)
- Jennifer L Helfer
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | | | | |
Collapse
|
5
|
Abstract
Ethanol's effects on intracellular signaling pathways contribute to acute effects of ethanol as well as to neuroadaptive responses to repeated ethanol exposure. In this chapter we review recent discoveries that demonstrate how ethanol alters signaling pathways involving several receptor tyrosine kinases and intracellular tyrosine and serine-threonine kinases, with consequences for regulation of cell surface receptor function, gene expression, protein translation, neuronal excitability and animal behavior. We also describe recent work that demonstrates a key role for ethanol in regulating the function of scaffolding proteins that organize signaling complexes into functional units. Finally, we review recent exciting studies demonstrating ethanol modulation of DNA and histone modification and the expression of microRNAs, indicating epigenetic mechanisms by which ethanol regulates neuronal gene expression and addictive behaviors.
Collapse
Affiliation(s)
- Dorit Ron
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Robert O. Messing
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| |
Collapse
|
6
|
GABAA-positive modulator selective discriminative stimulus effects of 1,1,1-trichloroethane vapor. Drug Alcohol Depend 2012; 121:103-9. [PMID: 21924562 PMCID: PMC3257377 DOI: 10.1016/j.drugalcdep.2011.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND The abuse-related behavioral effects of inhalant vapors are poorly understood but probably involve multiple neurotransmitter receptor mechanisms. The present study examined the receptor systems responsible for transducing the discriminative stimulus of the abused chlorinated hydrocarbon 1,1,1-trichloroethane (TCE) in mice. METHODS Thirty mice were trained to discriminate 10 min of 12,000 ppm TCE vapor exposure from air using an operant procedure. Substitution tests were then conduced with positive GABA(A) receptor modulators and/or NMDA receptor antagonists. RESULTS The nonselective benzodiazepines midazolam and diazepam produced 62% and 61% and the barbiturate pentobarbital produced 68% TCE-lever selection. Zaleplon, an alpha1 subunit-preferring positive GABA(A) receptor benzodiazepine-site positive modulator resulted in 29% TCE-lever selection. The direct extrasynaptic GABA(A) agonist gaboxodol (THIP) and the GABA reuptake inhibitor tiagabine failed to substitute for TCE. No substitution was elicited by a competitive (CGS-19755), noncompetitive (dizocilpine) or glycine-site (L701,324) NMDA antagonist. The mixed benzodiazepine/noncompetitive NMDA antagonist anesthetic Telazol and the anticonvulsant valproic acid exhibited low levels of partial substitution for TCE (38% and 39%, respectively). Ethanol and nitrous oxide failed to substitute for TCE. CONCLUSIONS The results suggest that the discriminative stimulus effects of TCE are fairly selectively mediated by positive modulation of GABA(A) receptors. The failure of gaboxadol to substitute and the poor substitution by zaleplon suggests that extrasynaptic GABA(A) receptors as well as GABA(A) receptors containing alpha1 subunits and are not involved in transducing the discriminative stimulus of TCE. Studies with additional GABA(A) benzodiazepine-site positive modulators will be necessary to confirm and extend these findings.
Collapse
|
7
|
Ittiwut C, Yang BZ, Kranzler HR, Anton RF, Hirunsatit R, Weiss RD, Covault J, Farrer LA, Gelernter J. GABRG1 and GABRA2 variation associated with alcohol dependence in African Americans. Alcohol Clin Exp Res 2011; 36:588-93. [PMID: 21919924 DOI: 10.1111/j.1530-0277.2011.01637.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND GABRG1 and GABRA2, genes that encode the γ1 and α2 subunits, respectively, of the GABA-A receptor, are located in a cluster on chromosome 4p. Association of alcohol dependence (AD) with markers located at the 3' region of GABRA2 has been replicated in several studies, but recent studies suggested the possibility that the signal may be attributable to the adjacent gene, GABRG1, located 90 kb distant in the 3' direction. Owing to strong linkage disequilibrium (LD) in European Americans (EAs), the origin, or origins, of the association signal is very difficult to discern, but our previous population-based study suggested that decreased LD across the GABRG1-GABRA2 region in African Americans (AAs) may be useful for fine mapping and resolution of the association signal in that population. METHODS To examine these associations in greater detail, we genotyped 13 single nucleotide polymorphisms (SNPs) spanning GABRG1 and GABRA2 in 380 AAs with AD and in 253 AA controls. RESULTS Although there was no association between any individual SNP and AD, a highly significant difference was shown between AD subjects and controls in the frequency of a 3-SNP GABRA2 haplotype (global p = 0.00029). A similar level of significance was obtained in 6-SNP haplotypes that combined tagging SNPs from both genes (global p = 0.00994). High statistical significance was also shown with a 6-SNP haplotype (T-G-C-G-T-A), p = 0.0033. The T-G-C-G-T-A haplotype contains the most significant GABRA2 3-SNP haplotype (p = 0.00019), G-T-A. CONCLUSIONS These findings reflect the interrelationship between these 2 genes and the likelihood that risk loci exist in each of them. Study of an AA population allowed evaluation of these associations at higher genomic resolution than is possible in a EA population, owing to the much lower LD across these loci in AAs.
Collapse
Affiliation(s)
- Chupong Ittiwut
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Weng Y, Yang L, Corringer PJ, Sonner JM. Anesthetic sensitivity of the Gloeobacter violaceus proton-gated ion channel. Anesth Analg 2009; 110:59-63. [PMID: 19933531 DOI: 10.1213/ane.0b013e3181c4bc69] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A prokaryotic member of the gamma-aminobutyric acid type A receptor superfamily (GLIC) was recently cloned from the cyanobacterium Gloeobacter violaceus, its function characterized, and its 3-dimensional x-ray diffraction crystal structure determined. We report its modulation by 9 anesthetics using 2-electrode voltage clamping in Xenopus laevis oocytes. Desflurane, halothane, isoflurane, sevoflurane, and propofol inhibited currents through GLIC at and below concentrations used clinically. Hill numbers averaged 0.3, indicating negative cooperativity or multiple sites or mechanisms of action. A 2-site model fit the data for desflurane and halothane better than a 1-site model. Xenon and etomidate modulated GLIC at or above clinical concentrations, with no cooperativity. Ethanol and nitrous oxide did not modulate GLIC at surgical anesthetic concentrations. These investigations lay the groundwork for further structural and functional studies of anesthetic actions on GLIC.
Collapse
Affiliation(s)
- Yun Weng
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0464, USA
| | | | | | | |
Collapse
|
9
|
Horishita T, Harris RA. n-Alcohols inhibit voltage-gated Na+ channels expressed in Xenopus oocytes. J Pharmacol Exp Ther 2008; 326:270-7. [PMID: 18434586 PMCID: PMC2575017 DOI: 10.1124/jpet.108.138370] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels are essential for the initiation and propagation of action potentials in excitable cells and are known as a target of local anesthetics. In addition, inhibition of sodium channels by volatile anesthetics has been proposed as a mechanism of general anesthesia. The n-alcohols produce anesthesia, and their potency increases with carbon number until a "cut-off" is reached. In this study, we examined effects of a range of n-alcohols on Na(v)1.2 subunits to determine the alcohol cut-off for this channel. We also studied the effect of a short-chain alcohol (ethanol) and a long-chain alcohol (octanol) on Na(v)1.2, Na(v)1.4, Na(v)1.6, and Na(v)1.8 subunits, and we investigated the effects of alcohol on channel kinetics. Ethanol and octanol inhibited sodium currents of all subunits, and the inhibition of the Na(v)1.2 channel by n-alcohols indicated a cut-off at nonanol. Ethanol and octanol produced open-channel block, which was more pronounced for Na(v)1.8 than for the other sodium channels. Inhibition of Na(v)1.2 was due to decreased activation and increased inactivation. These results suggest that sodium channels may have a hydrophobic binding site for n-alcohols and demonstrate the differences in the kinetic mechanisms of inhibition for n-alcohols and inhaled anesthetics.
Collapse
Affiliation(s)
- Takafumi Horishita
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
10
|
Liang J, Suryanarayanan A, Chandra D, Homanics GE, Olsen RW, Spigelman I. Functional Consequences of GABAA Receptor α4 Subunit Deletion on Synaptic and Extrasynaptic Currents in Mouse Dentate Granule Cells. Alcohol Clin Exp Res 2007; 32:19-26. [DOI: 10.1111/j.1530-0277.2007.00564.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Qi ZH, Song M, Wallace MJ, Wang D, Newton PM, McMahon T, Chou WH, Zhang C, Shokat KM, Messing RO. Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits. J Biol Chem 2007; 282:33052-63. [PMID: 17875639 DOI: 10.1074/jbc.m707233200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanol enhances gamma-aminobutyrate (GABA) signaling in the brain, but its actions are inconsistent at GABA(A) receptors, especially at low concentrations achieved during social drinking. We postulated that the epsilon isoform of protein kinase C (PKCepsilon) regulates the ethanol sensitivity of GABA(A) receptors, as mice lacking PKCepsilon show an increased behavioral response to ethanol. Here we developed an ATP analog-sensitive PKCepsilon mutant to selectively inhibit the catalytic activity of PKCepsilon. We used this mutant and PKCepsilon(-/-) mice to determine that PKCepsilon phosphorylates gamma2 subunits at serine 327 and that reduced phosphorylation of this site enhances the actions of ethanol and benzodiazepines at alpha1beta2gamma2 receptors, which is the most abundant GABA(A) receptor subtype in the brain. Our findings indicate that PKCepsilon phosphorylation of gamma2 regulates the response of GABA(A) receptors to specific allosteric modulators, and, in particular, PKCepsilon inhibition renders these receptors sensitive to low intoxicating concentrations of ethanol.
Collapse
Affiliation(s)
- Zhan-Heng Qi
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California-San Francisco, 5858 Horton Street, Emeryville, CA 94608, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jia F, Pignataro L, Harrison NL. GABAA receptors in the thalamus: alpha4 subunit expression and alcohol sensitivity. Alcohol 2007; 41:177-85. [PMID: 17521848 DOI: 10.1016/j.alcohol.2007.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/21/2007] [Accepted: 03/22/2007] [Indexed: 11/25/2022]
Abstract
The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) has long been implicated in the anxiolytic, amnesic, and sedative behavioral effects of alcohol. A large number of studies have investigated the interactions of alcohol with GABA receptors. Many investigators have reported effects of "high concentrations" (50-100 mM) of alcohol on GABA-mediated synaptic inhibition, but effects of the "low concentrations" (1-30 mM) of alcohol normally associated with mild intoxication have been elusive until recently. A novel form of "tonic inhibition" has been described in the central nervous system (CNS) that is generated by the persistent activation of extrasynaptic gamma-aminobutyric acid type A receptors (GABAA-Rs). These receptors are specific GABAA-R subtypes and distinct from the synaptic subtypes. Tonic inhibition regulates the excitability of individual neurons and the activity and rhythmicity of neural networks. Interestingly, several reports show that tonic inhibition is sensitive to low concentrations of alcohol. The thalamus is a structure that is critically important in the control of sleep and wakefulness. GABAergic inhibition in the thalamus plays a crucial role in the generation of sleep waves. Among the various GABAA-R subunits, the alpha1, alpha4, beta2, and delta subunits are heavily expressed in thalamic relay nuclei. Tonic inhibition has been demonstrated in thalamocortical relay neurons, where it is mediated by alpha4beta2delta GABAA-Rs. These extrasynaptic receptors are highly sensitive to gaboxadol, a novel hypnotic, but insensitive to benzodiazepines. Tonic inhibition is absent in thalamic relay neurons from alpha4 knockout mice, as are the sedative and analgesic effects of gaboxadol. The sedative effects of alcohol can promote sleep. However, alcohol also disrupts the normal sleep pattern and reduces sleep quality. As a result, sleep disturbance caused by alcohol can play a role in the progression of alcoholism. As an important regulator of sleep cycles, inhibition in the thalamus may therefore be involved in both the sedative effects of alcohol and the development of alcoholism. Investigating the effects of alcohol on both synaptic and extrasynaptic GABAA-Rs in the thalamus should help us to understand the mechanisms underlying the interaction between alcohol and sleep.
Collapse
Affiliation(s)
- Fan Jia
- Department of Anesthesiology, Weill Medical College, Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
13
|
Borghese CM, Stórustovu SÍ, Ebert B, Herd MB, Belelli D, Lambert JJ, Marshall G, Wafford KA, Harris RA. The delta subunit of gamma-aminobutyric acid type A receptors does not confer sensitivity to low concentrations of ethanol. J Pharmacol Exp Ther 2006; 316:1360-8. [PMID: 16272217 DOI: 10.1124/jpet.105.092452] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA(A) receptors (GABA(A)Rs) are usually formed by alpha, beta, and gamma or delta subunits. Recently, delta-containing GABA(A)Rs expressed in Xenopus oocytes were found to be sensitive to low concentrations of ethanol (1-3 mM). Our objective was to replicate and extend the study of the effect of ethanol on the function of alpha4beta3delta GABA(A)Rs. We independently conducted three studies in two systems: rat and human GABA(A)Rs expressed in Xenopus oocytes, studied through two-electrode voltage clamp; and human GABA(A)Rs stably expressed in the fibroblast L(tk-) cell line, studied through patch-clamp electrophysiology. In all cases, alpha4beta3delta GABA(A)Rs were only sensitive to high concentrations of ethanol (100 mM in oocytes, 300 mM in the cell line). Expression of the delta subunit in oocytes was assessed through the magnitude of the maximal GABA currents and sensitivity to zinc. Of the three rat combinations studied, alpha4beta3 was the most sensitive to ethanol, isoflurane, and 5alpha-pregnan-3alpha,21-diol-20-one (THDOC); alpha4beta3delta and alpha4beta3gamma(2S) were very similar in most aspects, but alpha4beta3delta was more sensitive to GABA, THDOC, and lanthanum than alpha4beta3gamma(2S) GABA(A)Rs. Ethanol at 30 mM did not affect tonic GABA-mediated currents in dentate gyrus reported to be mediated by GABA(A)Rs incorporating alpha4 and delta subunits. We have not been able to replicate the sensitivity of alpha4beta3delta GABA(A)Rs to low concentrations of ethanol in four different laboratories in independent studies. This suggests that as yet unidentified factors may play a critical role in the ethanol effects on delta-containing GABA(A)Rs.
Collapse
Affiliation(s)
- Cecilia M Borghese
- The University of Texas at Austin, Waggoner Center for Alcohol and Addiction Research, 1 University Station A4800, Austin, TX 78712-0159, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Criswell HE, Breese GR. A conceptualization of integrated actions of ethanol contributing to its GABAmimetic profile: a commentary. Neuropsychopharmacology 2005; 30:1407-25. [PMID: 15856077 DOI: 10.1038/sj.npp.1300750] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early behavioral investigations supported the contention that systemic ethanol displays a GABAmimetic profile. Microinjection of GABA agonists into brain and in vivo electrophysiological studies implicated a regionally specific action of ethanol on GABA function. While selectivity of ethanol to enhance the effect of GABA was initially attributed an effect on type-I-benzodiazepine (BZD)-GABA(A) receptors, a lack of ethanol's effect on GABA responsiveness from isolated neurons with this receptor subtype discounted this contention. Nonetheless, subsequent work identified GABA(A) receptor subtypes, with limited distribution in brain, sensitive to enhancement of GABA at relevant ethanol concentrations. In view of these data, it is hypothesized that the GABAmimetic profile for ethanol is due to activation of mechanisms associated with GABA function, distinct from a direct action on the majority of postsynaptic GABA(A) receptors. The primary action proposed to account for ethanol's regional specificity on GABA transmission is its ability to release GABA from some, but not all, presynaptic GABAergic terminals. As systemic administration of ethanol increases neuroactive steroids, which can enhance GABA responsiveness, this elevated level of neurosteroids is proposed to magnify the effect of GABA released by ethanol. Additional factors contributing to the degree to which ethanol interacts with GABA function include an involvement of GABA(B) and other receptors that influence ethanol-induced GABA release, an effect of phosphorylation on GABA responsiveness, and a regional reduction of glutamatergic tone. Thus, an integration of these consequences induced by ethanol is proposed to provide a logical basis for its in vivo GABAmimetic profile.
Collapse
Affiliation(s)
- Hugh E Criswell
- Center For Alcohol Studies, UNC Neuroscience Center, Department of Psychiatry, University of North Carolina, School of Medicine, Chapel Hill, NC 27599-7178, USA.
| | | |
Collapse
|
15
|
Sonner JM, Xing Y, Zhang Y, Maurer A, Fanselow MS, Dutton RC, Eger EI. Administration of epinephrine does not increase learning of fear to tone in rats anesthetized with isoflurane or desflurane. Anesth Analg 2005; 100:1333-1337. [PMID: 15845679 DOI: 10.1213/01.ane.0000148619.77117.c7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous reports suggest that the administration of epinephrine increases learning during deep barbiturate-chloral hydrate anesthesia in rats but not during anesthesia with 0.4% isoflurane in rabbits. We revisited this issue, using fear conditioning to a tone in rats as our experimental model for learning and memory and isoflurane and desflurane as our anesthetics. Expressed as a fraction of the minimum alveolar anesthetic concentration (MAC) preventing movement in 50% of rats, the amnestic 50% effective dose (ED(50)) for fear to tone in control rats inhaling isoflurane and injected with saline intraperitoneally (i.p.) was 0.32 +/- 0.03 MAC (mean +/- se) compared with 0.37 +/- 0.06 MAC in rats injected with 0.01 mg/kg of epinephrine i.p. and 0.38 +/- 0.03 MAC in rats injected with 0.1 mg/kg of epinephrine i.p. For desflurane, the amnestic ED(50) were 0.32 +/- 0.05 MAC in control rats receiving a saline injection i.p. versus 0.36 +/- 0.04 MAC in rats injected with 0.1 mg/kg of epinephrine i.p. We conclude that exogenous epinephrine does not decrease amnesia produced by inhaled isoflurane or desflurane, as assessed by fear conditioning to a tone in rats.
Collapse
Affiliation(s)
- James M Sonner
- *Department of Anesthesia and Perioperative Care, University of California, San Francisco; and †Department of Psychology, University of California, Los Angeles
| | | | | | | | | | | | | |
Collapse
|
16
|
Chandra D, Korpi ER, Miralles CP, De Blas AL, Homanics GE. GABAA receptor gamma 2 subunit knockdown mice have enhanced anxiety-like behavior but unaltered hypnotic response to benzodiazepines. BMC Neurosci 2005; 6:30. [PMID: 15850489 PMCID: PMC1097738 DOI: 10.1186/1471-2202-6-30] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 04/25/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gamma-aminobutyric acid type A receptors (GABAA-Rs) are the major inhibitory receptors in the mammalian brain and are modulated by a number of sedative/hypnotic drugs including benzodiazepines and anesthetics. The significance of specific GABAA-Rs subunits with respect to behavior and in vivo drug responses is incompletely understood. The gamma2 subunit is highly expressed throughout the brain. Global gamma2 knockout mice are insensitive to the hypnotic effects of diazepam and die perinatally. Heterozygous gamma2 global knockout mice are viable and have increased anxiety-like behaviors. To further investigate the role of the gamma2 subunit in behavior and whole animal drug action, we used gene targeting to create a novel mouse line with attenuated gamma2 expression, i.e., gamma2 knockdown mice. RESULTS Knockdown mice were created by inserting a neomycin resistance cassette into intron 8 of the gamma2 gene. Knockdown mice, on average, showed a 65% reduction of gamma2 subunit mRNA compared to controls; however gamma2 gene expression was highly variable in these mice, ranging from 10-95% of normal. Immunohistochemical studies demonstrated that gamma2 protein levels were also variably reduced. Pharmacological studies using autoradiography on frozen brain sections demonstrated that binding of the benzodiazepine site ligand Ro15-4513 was decreased in mutant mice compared to controls. Behaviorally, knockdown mice displayed enhanced anxiety-like behaviors on the elevated plus maze and forced novelty exploration tests. Surprisingly, mutant mice had an unaltered response to hypnotic doses of the benzodiazepine site ligands diazepam, midazolam and zolpidem as well as ethanol and pentobarbital. Lastly, we demonstrated that the gamma2 knockdown mouse line can be used to create gamma2 global knockout mice by crossing to a general deleter cre-expressing mouse line. CONCLUSION We conclude that: 1) insertion of a neomycin resistance gene into intron 8 of the gamma2 gene variably reduced the amount of gamma2, and that 2) attenuated expression of gamma2 increased anxiety-like behaviors but did not lead to differences in the hypnotic response to benzodiazepine site ligands. This suggests that reduced synaptic inhibition can lead to a phenotype of increased anxiety-like behavior. In contrast, normal drug effects can be maintained despite a dramatic reduction in GABAA-R targets.
Collapse
Affiliation(s)
- Dev Chandra
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Esa R Korpi
- Department of Pharmacology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Celia P Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Smith SS, Ruderman Y, Hua Gong Q, Gulinello M. Effects of a low dose of ethanol in an animal model of premenstrual anxiety. ALCOHOL (FAYETTEVILLE, N.Y.) 2005; 33:41-9. [PMID: 15353172 PMCID: PMC4168969 DOI: 10.1016/j.alcohol.2004.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 04/07/2004] [Accepted: 04/20/2004] [Indexed: 10/01/2022]
Abstract
Low (1 mM), but not 10 mM, concentrations of ethanol selectively potentiate current gated by alpha(4)beta(2)delta subunit combinations of the gamma-aminobutyric acid type A (GABA(A)) receptor, a subtype increased in hippocampus after withdrawal from progesterone in a rodent model of premenstrual anxiety. In the current study, we tested the hypothesis that the anxiolytic effect of ethanol would exhibit a similar dose-response effect by using the acoustic startle response (ASR) and elevated plus-maze as behavioral models. To this end, adult, female rats were tested (1) 24 h after removal of a progesterone-filled capsule implanted subcutaneously for 21 days (progesterone withdrawal) or (2) on the day of diestrus, a low hormone state. Low doses of ethanol (0.2-0.4 mg/kg) produced a significant 60%-70% decrease in the ASR only in animals undergoing progesterone withdrawal. However, higher doses of ethanol (0.8-1.2 g/kg) were ineffective in these animals, resulting in an "inverted U" ethanol dose effect similar to that observed at recombinant alpha(4)beta(2)delta subunit combinations of the GABA(A) receptor. Consistent with these findings, significant 70% attenuation of the ASR was also achieved after progesterone withdrawal with 3 mg/kg of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a GABA(A) receptor partial agonist with greater potency at alpha(4)betadelta receptors than at other known isoforms. In contrast, this partial agonist was not anxiolytic in control animals. These results support the suggestion that very low doses of ethanol are anxiolytic in a model of premenstrual anxiety, whereas higher, potentially sedative, doses are without effect. The results may be relevant for altered ethanol sensitivity during premenstrual syndrome, when increased ethanol consumption has been reported.
Collapse
Affiliation(s)
- Sheryl S Smith
- Department of Physiology and Pharmacology, Box 31, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | | | |
Collapse
|
18
|
Hamon A, Morel A, Hue B, Verleye M, Gillardin JM. The modulatory effects of the anxiolytic etifoxine on GABA(A) receptors are mediated by the beta subunit. Neuropharmacology 2003; 45:293-303. [PMID: 12871647 DOI: 10.1016/s0028-3908(03)00187-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anxiolytic compound etifoxine (2-ethylamino-6-chloro-4-methyl-4-phenyl-4H-3,1-benzoxazine hydrochloride) potentiates GABA(A) receptor function in cultured neurons (Neuropharmacology 39 (2000) 1523). However, the molecular mechanisms underlying these effects are not known. In this study, we have determined the influence of GABA(A) receptor subunit composition on the effects of etifoxine, using recombinant murine GABA(A) receptors expressed in Xenopus oocytes. Basal chloride currents mediated by homomeric beta receptors were reduced by micromolar concentrations of etifoxine, showing that beta subunits possess a binding site for this modulator. In oocytes expressing alpha(1)beta(x) GABA(A) receptors (x=1, 2 or 3), etifoxine evoked a chloride current in the absence of GABA and enhanced GABA (EC10)-activated currents, in a dose-dependent manner. Potentiating effects were also observed with alpha(2)beta(x), beta(x)gamma(2s) or alpha(1)beta(x)gamma(2s) combinations. The extent of potentiation was clearly beta-subunit-dependent, being more pronounced at receptors containing a beta(2) or a beta(3) subunit than at receptors incorporating a beta(1) subunit. The mutation of Asn 289 in the channel domain of beta(2) to a serine (the homologous residue in beta(1)) did not significantly depress the effects of etifoxine at alpha(1)beta(2) receptors. This specific pattern of inhibition/potentiation was compared with that of other known modulators of GABA(A) receptor function like benzodiazepines, neurosteroids, barbiturates or loreclezole.
Collapse
Affiliation(s)
- Alain Hamon
- Laboratoire de Neurophysiologie, UPRES EA 2647 (RCIM), Université d'Angers, UFR Sciences, 2 Boulevard Lavoisier, F-49045 01, Angers cedex, France.
| | | | | | | | | |
Collapse
|
19
|
Sebe JY, Eggers ED, Berger AJ. Differential effects of ethanol on GABA(A) and glycine receptor-mediated synaptic currents in brain stem motoneurons. J Neurophysiol 2003; 90:870-5. [PMID: 12702707 DOI: 10.1152/jn.00119.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ethanol potentiates glycinergic synaptic transmission to hypoglossal motoneurons (HMs). This effect on glycinergic transmission changes with postnatal development in that juvenile HMs (P9-13) are more sensitive to ethanol than neonate HMs (P1-3). We have now extended our previous study to investigate ethanol modulation of synaptic GABA(A) receptors (GABA(A)Rs), because both GABA and glycine mediate inhibitory synaptic transmission to brain stem motoneurons. We tested the effects of ethanol on GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs) recorded from neonate and juvenile rat HMs in an in vitro slice preparation. Bath application of 30 mM ethanol had no significant effect on the GABAergic mIPSC amplitude or frequency recorded at either age. At 100 mM, ethanol significantly decreased the GABAergic mIPSC amplitude recorded from neonate (6 +/- 3%, P < 0.05) and juvenile (16 +/- 3%, P < 0.01) HMs. The same concentration of ethanol increased the GABAergic mIPSC frequency recorded from neonate (64 +/- 17%, P < 0.05) and juvenile (40 +/- 15%, n.s.) HMs. In contrast, 100 mM ethanol robustly potentiated glycinergic mIPSC amplitude in neonate (31 +/- 3%, P < 0.0001) and juvenile (41 +/- 7%, P < 0.001) HMs. These results suggest that glycine receptors are more sensitive to modulation by ethanol than GABA(A) receptors and that 100 mM ethanol has the opposite effect on GABA(A)R-mediated currents in juvenile HMs, that is, inhibition rather than enhancement. Further, comparing ethanol's effects on GABAergic mIPSC amplitude and frequency, ethanol modulates GABAergic synaptic transmission to HMs differentially. Presynaptically, ethanol enhances mIPSC frequency while postsynaptically it decreases mIPSC amplitude.
Collapse
Affiliation(s)
- Joy Y Sebe
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Seattle, Washington 98195-7290, USA.
| | | | | |
Collapse
|
20
|
Wang GJ, Volkow ND, Fowler JS, Franceschi D, Wong CT, Pappas NR, Netusil N, Zhu W, Felder C, Ma Y. Alcohol Intoxication Induces Greater Reductions in Brain Metabolism in Male Than in Female Subjects. Alcohol Clin Exp Res 2003. [DOI: 10.1111/j.1530-0277.2003.tb04415.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Affiliation(s)
- Jason A Campagna
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
22
|
Masters JA, Stevenson JS. A theoretical model of the role of brain stem nuclei in alcohol-mediated arrhythmogenesis in older adults. Biol Res Nurs 2003; 4:218-31. [PMID: 12585785 DOI: 10.1177/1099800402239627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uncertainty about the mechanism of alcohol-mediated arrhythmogenesis and the effect of alcohol use on arrhythmic risk among older adults is an increasing concern in light of population aging and recent reports that moderate alcohol consumption may protect older adults against coronary artery disease. In this review, a theoretical model of the role of brain stem nuclei in alcohol-mediated arrhythmogenesis in older adults is developed. The model is based on the hypothesis that the effects of alcohol on central autonomic pathways of cardiac control may alter the threshold for alcohol-mediated arrhythmogenesis among older adults. Findings from multiple lines of research including cellular, electrophysiological, epidemiological, experimental, and clinical studies in human, animal, and in vitro models were synthesized in developing the model. Suggestions for future research on the topic of alcohol-mediated arrhythmogenesis in older adults are offered.
Collapse
|
23
|
Crowder TL, Ariwodola OJ, Weiner JL. Ethanol antagonizes kainate receptor-mediated inhibition of evoked GABA(A) inhibitory postsynaptic currents in the rat hippocampal CA1 region. J Pharmacol Exp Ther 2002; 303:937-44. [PMID: 12438512 DOI: 10.1124/jpet.102.038471] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many studies have demonstrated that ethanol reduces glutamatergic synaptic transmission primarily by inhibiting the N-methyl-D-aspartate subtype of glutamate receptor. In contrast, the other two subtypes of ionotropic glutamate receptor (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate) have generally been shown to be insensitive to intoxicating concentrations of ethanol. However, we have previously identified a population of kainate receptors that mediate slow excitatory postsynaptic currents in the rat hippocampal CA3 pyramidal cell region that is potently inhibited by low concentrations of ethanol. In this study, we examined the effect of ethanol on kainate receptor-mediated inhibition of evoked GABA(A) inhibitory postsynaptic currents (IPSCs) in the rat hippocampal CA1 pyramidal cell region. Under our recording conditions, bath application of 1 microM kainate significantly inhibited GABA(A) IPSCs. This inhibition seemed to be mediated by the activation of somatodendritic kainate receptors on GABAergic interneurons and the subsequent activation of metabotropic GABA(B) receptors, because the kainate inhibition was largely blocked by pretreating slices with a GABA(B) receptor antagonist. Ethanol pretreatment significantly antagonized the inhibitory effect of kainate on GABA(A) IPSCs, at concentrations as low as 20 mM. In contrast, ethanol did not block the direct inhibitory effect of a GABA(B) receptor agonist on GABA(A) IPSCs. The results of this study suggest that modest concentrations of ethanol may antagonize presynaptic, as well as postsynaptic, kainate receptor function in the rat hippocampus.
Collapse
Affiliation(s)
- T L Crowder
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
24
|
Nakanishi N, Yoshida H, Kawashimo H, Suzuki K, Nakamura K, Tatara K. Alcohol consumption and risk for increased aortic pulse wave velocity in middle-aged Japanese men. Angiology 2001; 52:533-42. [PMID: 11512692 DOI: 10.1177/000331970105200805] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A 9-year longitudinal study was performed to prospectively examine the association of alcohol consumption with development of increased aortic pulse wave velocity (PWV) in 1,358 Japanese men aged 35 to 59 years with a PWV less than 8.0 m/sec and without antihypertensive medication. Three hundred fifty-nine men developed increased aortic PWV of 8.0 m/sec or more during 10,598 person-years follow-up. After controlling for potential predictors of aortic PWV, the relative risk for increased aortic PWV compared with that in nondrinkers was 1.05 (95% confidence interval [CI], 0.70 to 1.58) for those who drank 0.1 to 22.9 g/day of ethanol, 1.58 (95% CI, 0.89 to 1.91) for those who drank 23.0 to 45.9 g/day of ethanol, 1.77 (95% CI, 1.24 to 2.53) for those who drank 46.0 to 68.9 g/day of ethanol, and 1.81 (95% CI, 1.23 to 2.66) for those who drank 69.0 or more g/day of ethanol (p for trend <0.001). The relative risk for increased aortic PWV in current drinkers vs nondrinkers was stronger among men with a body mass index (BMI) less than 24.2 kg/m2 and nonsmokers than among men with a BMI 24.2 kg/m2 or more and current smokers, respectively. These results suggest that alcohol consumption is closely associated with risk for increased aortic PWV in middle-aged Japanese men.
Collapse
Affiliation(s)
- N Nakanishi
- Department of Social and Environmental Medicine, Osaka University Graduate School of Medicine, Suita-shi, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Findlay GS, Ueno S, Harrison NL, Harris RA. Allosteric modulation in spontaneously active mutant γ-aminobutyric acidA receptors. Neurosci Lett 2001; 305:77-80. [PMID: 11356312 DOI: 10.1016/s0304-3940(01)01646-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tryptophan substitutions were made in the second transmembrane domain of the gamma-aminobutyric acid(A) (GABAA) receptor alpha and beta subunits and the resulting mutant receptors, containing alpha2(S270W) and/or beta1 (S265W), were expressed in Xenopus oocytes. Mutation of either or both subunits resulted in receptors that exhibited enhanced sensitivity to agonist and were spontaneously active in the absence of GABA. The spontaneous activity was blocked by picrotoxin or bicuculline. The enhancement of GABA-induced currents by pentobarbital, by the neurosteroid 5alpha-pregnan-3alpha-ol-20-one, and by the benzodiazepine flunitrazepam was dramatically reduced in the mutant receptors. These results are consistent with the idea that a mutation that promotes gating behavior in a ligand-gated ion channel will also show reduced effects of all positive allosteric modulators in a generalized manner, even when these modulators act at distinct sites on the receptor.
Collapse
Affiliation(s)
- G S Findlay
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin (A4800), 2500 Speedway MBB1.124, TX, Austin 78712-1095, USA
| | | | | | | |
Collapse
|
26
|
Smith AJ, Alder L, Silk J, Adkins C, Fletcher AE, Scales T, Kerby J, Marshall G, Wafford KA, McKernan RM, Atack JR. Effect of alpha subunit on allosteric modulation of ion channel function in stably expressed human recombinant gamma-aminobutyric acid(A) receptors determined using (36)Cl ion flux. Mol Pharmacol 2001; 59:1108-18. [PMID: 11306694 DOI: 10.1124/mol.59.5.1108] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibitory gamma-aminobutyric acid (GABA)(A) receptors are subject to modulation at a variety of allosteric sites, with pharmacology dependent on receptor subunit combination. The influence of different alpha subunits in combination with beta3gamma2s was examined in stably expressed human recombinant GABA(A) receptors by measuring (36)Cl influx through the ion channel pore. Muscimol and GABA exhibited similar maximal efficacy at each receptor subtype, although muscimol was more potent, with responses blocked by picrotoxin and bicuculline. Receptors containing the alpha3 subunit exhibited slightly lower potency. The comparative pharmacology of a range of benzodiazepine site ligands was examined, revealing a range of intrinsic efficacies at different receptor subtypes. Of the diazepam-sensitive GABA(A) receptors (alpha1, alpha2, alpha3, alpha5), alpha5 showed the most divergence, being discriminated by zolpidem in terms of very low affinity, and CL218,872 and CGS9895 with different efficacies. Benzodiazepine potentiation at alpha3beta3gamma2s with nonselective agonist chlordiazepoxide was greater than at alpha1, alpha2, or alpha5 (P < 0.001). The presence of an alpha4 subunit conferred a unique pharmacological profile. The partial agonist bretazenil was the most efficacious benzodiazepine, despite lower alpha4 affinity, and FG8205 displayed similar efficacy. Most striking were the lack of affinity/efficacy for classical benzodiazepines and the relatively high efficacy of Ro15-1788 (53 +/- 12%), CGS8216 (56 +/- 6%), CGS9895 (65 +/- 6%), and the weak partial inverse agonist Ro15-4513 (87 +/- 5%). Each receptor subtype was modulated by pentobarbital, loreclezole, and 5alpha-pregnan-3alpha-ol-20-one, but the type of alpha subunit influenced the level of potentiation. The maximal pentobarbital response was significantly greater at alpha4beta3gamma2s (226 +/- 10% increase in the EC(20) response to GABA) than any other modulator. The rank order of potentiation for pregnanolone was alpha5 > alpha2 > alpha3 = alpha4 > alpha1, for loreclezole alpha1 = alpha2 = alpha3 > alpha5 > alpha4, and for pentobarbital alpha4 = alpha5 = alpha2 > alpha1 = alpha3.
Collapse
Affiliation(s)
- A J Smith
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang Y, Wu S, Eger EI, Sonner JM. Neither GABA(A) nor strychnine-sensitive glycine receptors are the sole mediators of MAC for isoflurane. Anesth Analg 2001; 92:123-7. [PMID: 11133613 DOI: 10.1097/00000539-200101000-00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Inhaled anesthetics produce immobility (a cardinal aspect of general anesthesia) by an action on the spinal cord, possibly by potentiating the responses of gamma-amino-n-butyric acid (GABA(A)) and glycine receptors to GABA and glycine. In this study, we antagonized GABA(A) and glycine responses by intrathecal administration of picrotoxin (a noncompetitive GABA(A) antagonist), strychnine (a competitive glycine antagonist), or combinations of these drugs. We measured the capacity of antagonist infusion to increase isoflurane MAC (the minimum alveolar concentration of anesthetic that prevents movement in response to noxious stimuli in 50% of subjects). We found that these potent GABA(A) and glycine receptor antagonists had a ceiling effect, either alone or in combination increasing the MAC of isoflurane by at most 47%. IMPLICATIONS gamma-amino-n-butyric acid and glycine receptors may in part be responsible for the immobilizing action of isoflurane. They are not, however, the only receptors that contribute to isoflurane-induced immobility (i.e., that determine the MAC of isoflurane).
Collapse
Affiliation(s)
- Y Zhang
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143-0464, USA
| | | | | | | |
Collapse
|
28
|
Zhuk OV, Zinkovsky VG, Golovenko NY. The pharmacodynamics of anticonvulsant and subconvulsant effects of ethanol in CBA and C57BL/6 mice. Alcohol 2001; 23:23-8. [PMID: 11282448 DOI: 10.1016/s0741-8329(00)00136-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A method of determination of minimal effective doses (MEDs) of bicuculline causing clonic-tonic convulsions (CTC) and tonic extension (TE) was used to investigate ethanol pharmacodynamics in C57BL/6 and CBA mice, differing in levels of alcohol predisposition. It is observed that ethanol produces a powerful anticonvulsant action antagonizing convulsant effects of bicuculline. On a long-term scale, the pharmacological action of alcohol had two phases in both strains of mice: anticonvulsant (in the interval 5 min to 4 h after ethanol administration) and subconvulsant (4-24 h after ethanol administration). C57BL/6 mice were characterized by a more rapid development of the anticonvulsant effect and its faster decay in comparison to CBA strain. A possibility of correct quantitative evaluation of data allows using the method of MED determination as an express model of an acute alcohol abstinence syndrome, as well as for screening of new antialcohol drugs.
Collapse
Affiliation(s)
- O V Zhuk
- Centre of Drug Pharmacokinetics of the Pharmacological Committee of Ukraine, Lustdorfska doroga 86, 65080, Odessa, Ukraine.
| | | | | |
Collapse
|
29
|
Findlay GS, Ueno S, Harrison NL, Harris RA. Allosteric modulation in spontaneously active mutant gamma-aminobutyric acid(A) receptors [corrected]. Neurosci Lett 2000; 293:155-8. [PMID: 11036184 DOI: 10.1016/s0304-3940(00)01503-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tryptophan substitutions were made in the second transmembrane domain of the gamma-aminobutyric acid(A) (GABA(A)) receptor alpha and beta subunits and the resulting mutant receptors, containing alpha(2)(S270W) and/or beta(1)(S265W), were expressed in Xenopus oocytes. Mutation of either or both subunits resulted in receptors that exhibited enhanced sensitivity to agonist and were spontaneously active in the absence of GABA. The spontaneous activity was blocked by picrotoxin or bicuculline. The enhancement of GABA-induced currents by pentobarbital, by the neurosteroid 5alpha-pregnan-3alpha-ol-20-one, and by the benzodiazepine flunitrazepam was dramatically reduced in the mutant receptors. These results are consistent with the idea that a mutation that promotes gating behavior in a ligand-gated ion channel will also show reduced effects of all positive allosteric modulators in a generalized manner, even when these modulators act at distinct sites on the receptor.
Collapse
Affiliation(s)
- G S Findlay
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin (A4800), 2500 Speedway MBB1.124, Austin, TX 78712-1095, USA
| | | | | | | |
Collapse
|
30
|
Reilly MT, Buck KJ. GABA(A) receptor beta(2) subunit mRNA content is differentially regulated in ethanol-dependent DBA/2J and C57BL/6J mice. Neurochem Int 2000; 37:443-52. [PMID: 10871696 DOI: 10.1016/s0197-0186(00)00055-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic ethanol treatment is known to alter gene expression and function of gamma-aminobutyric acid type-A (GABA(A)) receptors. Here we focus on the beta(2) subunit which is widely expressed in the mammalian brain, and plays a key role in the GABA binding site. Previous studies using rodent models of ethanol dependence show either increased or no change of beta(2) subunit mRNA and peptide content following chronic ethanol administration. In humans, polymorphism at the beta(2) subunit is associated with ethanol dependence in some, but not all, populations. In the present study we measured mRNA content in the cerebellum and cerebral cortex using ethanol-naive and ethanol-dependent DBA/2J and C57BL/6J mice. The DBA/2J strain displays severe ethanol withdrawal severity, while the C57BL/6J strain shows milder withdrawal reactions. RNase protection analysis demonstrated that the DBA/2J strain is more sensitive to ethanol-induced increases in beta(2) subunit mRNA content in the cerebellum, showing significant increases at lower blood ethanol concentrations than C57BL/6J mice. The ethanol-induced regulation in C57BL/6J mice appears to be more complex, with decreases in beta(2) subunit mRNA content at low blood ethanol concentrations, and increases at higher concentrations. These data suggest that differences between C57BL/6J and DBA/2J mice in the degree of physical dependence (withdrawal) on ethanol may be related to differential sensitivity to ethanol regulation of beta(2) subunit expression.
Collapse
Affiliation(s)
- M T Reilly
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregan Health Sciences University, Portland, OR, USA.
| | | |
Collapse
|
31
|
Loh EW, Ball D. Role of the GABA(A)beta2, GABA(A)alpha6, GABA(A)alpha1 and GABA(A)gamma2 receptor subunit genes cluster in drug responses and the development of alcohol dependence. Neurochem Int 2000; 37:413-23. [PMID: 10871693 DOI: 10.1016/s0197-0186(00)00054-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system and it acts at the GABA(A) and GABA(B) receptors. A possible role for the GABA(A) receptors in alcohol action has been derived from in vitro cell models, animal studies and human research. GABA(A) subunit mRNA expression in cell models has suggested that the long form of the gamma2 subunit is essential for ethanol enhanced potentiation of GABA(A) receptors, by phosphorylation of a serine contained within the extra eight amino acids. Several animal studies have demonstrated that alterations in drug and alcohol responses may be caused by amino-acid differences at the GABA(A)alpha6 and GABA(A)gamma2 subunits. An Arg(100)/Glu(100) change at the GABA(A)alpha6 subunit conferring altered binding efficacy of the benzodiazepine inverse agonist Ro 15-4513, was found between the AT (alcohol tolerance) and ANT (alcohol non-tolerance) rats. Several loci related to alcohol withdrawal on mouse chromosome 11 which corresponds to the region containing four GABA(A) subunit (beta2, alpha6, alpha1 and gamma2) genes on human chromosome 5q33-34, were also identified. Gene knockout studies of the role of GABA(A)alpha6 and GABA(A)gamma2 subunit genes in mice have demonstrated an essential role in the modulation of other GABA(A) subunit expression and the efficacy of benzodiazepine binding. Absence of the GABA(A)gamma2 subunit gene has more severe effects with many of the mice dying shortly after birth. Disappointingly few studies have examined the effects of response to alcohol in these gene knockout mice. Human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have a role in the development of alcohol dependence, although their contributions may vary between ethnic group and phenotype. In summary, in vitro cell, animal and human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have an important role in alcohol related phenotypes (300 words).
Collapse
Affiliation(s)
- E W Loh
- Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London, UK
| | | |
Collapse
|
32
|
Ueno S, Lin A, Nikolaeva N, Trudell JR, Mihic SJ, Harris RA, Harrison NL. Tryptophan scanning mutagenesis in TM2 of the GABA(A) receptor alpha subunit: effects on channel gating and regulation by ethanol. Br J Pharmacol 2000; 131:296-302. [PMID: 10991923 PMCID: PMC1572307 DOI: 10.1038/sj.bjp.0703504] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Each residue in the second transmembrane segment (TM2) of the human GABA(A) receptor alpha(2) subunit was individually mutated to tryptophan. The wild-type or mutant alpha(2) subunits were expressed with the wild-type human GABA(A) receptor beta(2) subunit in Xenopus oocytes, and the effects of these mutations were investigated using two-electrode voltage-clamp recording. 2. Four mutations (V257W, T262W, T265W and S270W) produced receptors which were active in the absence of agonist, and this spontaneous open channel activity was blocked by both picrotoxin and bicuculline, except in the alpha(2)(V257W)beta(2) mutant receptor, which was not sensitive to picrotoxin. 3. Six mutations (V257W, V260W, T262W, T267W, S270W and A273W) enhanced the agonist sensitivity of the receptor, by 10 - 100 times compared with the wild-type alpha(2)beta(2) receptor. Other mutations (T261W, V263W, L269W, I271W and S272W) had little or no effect on the apparent affinity of the receptor to GABA. Eight of the tryptophan mutations (R255, T256, F258, G259, L264, T265, M266 or T268) resulted in undetectable GABA-induced currents. 4. The S270W mutation eliminated potentiation of GABA by ethanol, whereas T261W markedly increased the action of ethanol. The T262W mutation produced direct activation (10% of maximal GABA response) by ethanol in the absence of GABA, while other mutations did not alter the action of ethanol significantly. 5. These results are consistent with a unique role for S270 in the action of ethanol within the TM2 region, and with models of GABA(A) receptor channel function, in which specific residues within TM2 are critical for the regulation of channel gating (S270, L264), while other residues (L269, I271 and S272) have little effect on these functions and may be non-critical structural residues.
Collapse
Affiliation(s)
- Susumu Ueno
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, MBB 1.124, Austin, Texas, TX 78712, U.S.A
- Department of Pharmacology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu 807-8555, Japan
| | - Audrey Lin
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois, IL 60637, U.S.A
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, CT 06510, U.S.A
| | - Natalia Nikolaeva
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois, IL 60637, U.S.A
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois, IL 60637, U.S.A
| | - James R Trudell
- Department of Anesthesia and Program for Molecular and Genetic Medicine, Stanford University, Stanford, California, CA 94305, U.S.A
| | - S John Mihic
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, MBB 1.124, Austin, Texas, TX 78712, U.S.A
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, NC 27157, U.S.A
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 2500 Speedway, MBB 1.124, Austin, Texas, TX 78712, U.S.A
- Author for correspondence:
| | - Neil L Harrison
- Department of Anesthesiology, A-1050, Weill Medical College of Cornell University, New York, NY 10021, U.S.A
| |
Collapse
|
33
|
Grobin AC, Fritschy JM, Morrow AL. Chronic Ethanol Administration Alters Immunoreactivity for GABAA Receptor Subunits in Rat Cortex in a Region-Specific Manner. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb02076.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Wick MJ, Radcliffe RA, Bowers BJ, Mascia MP, Lüscher B, Harris RA, Wehner JM. Behavioural changes produced by transgenic overexpression of gamma2L and gamma2S subunits of the GABAA receptor. Eur J Neurosci 2000; 12:2634-8. [PMID: 10947837 DOI: 10.1046/j.1460-9568.2000.00160.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transgenic mice overexpressing either the mouse gamma2L or gamma2S subunit of the GABAA receptor were generated in a C57BL/6 J x DBA/2 J mixed background and expanded into transgenic lines. Transgenic mice and littermate controls were analysed with respect to altered behaviour indicative of anxiety, motor activity and acute effects of benzodiazepines and alcohol, as well as with regard to altered responses to alcohol withdrawal and acute functional tolerance to alcohol. Biochemical tests assessed flunitrazepam- and ethanol-enhanced 36Cl- flux stimulated by muscimol in cerebellar and cortical microsacs and [3H]-flunitrazepam binding to cerebellar membranes. There were no significant differences in any of these measures between the transgenic and control mice, except in tests of acute functional tolerance to acute injection of ethanol. Compared to controls, mice carrying either the gamma2L or gamma2S transgene developed significantly less tolerance to the ataxic effects of ethanol. We conclude that acute functional tolerance to ethanol is very sensitive to the amount of GABAA receptor gamma2 subunit available (regardless of whether it is gamma2L or gamma2S) but overexpression of neither subunit isoform alters other behavioural and biochemical phenotypes.
Collapse
Affiliation(s)
- M J Wick
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Mori T, Aistrup GL, Nishikawa K, Marszalec W, Yeh JZ, Narahashi T. Basis of Variable Sensitivities of GABAA Receptors to Ethanol. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb04638.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Faingold C, Li Y, Evans MS. Decreased GABA and increased glutamate receptor-mediated activity on inferior colliculus neurons in vitro are associated with susceptibility to ethanol withdrawal seizures. Brain Res 2000; 868:287-95. [PMID: 10854581 DOI: 10.1016/s0006-8993(00)02342-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cessation of ethanol administration in ethanol-dependent rats results in an ethanol withdrawal (ETX) syndrome, including audiogenic seizures (AGS). The inferior colliculus (IC) is the initiation site for AGS, and membrane properties of IC neurons exhibit hyperexcitability during ETX. Previous studies observed that ETX alters GABA and glutamate neurotransmission in certain brain sites. The present study evaluated synaptic properties and actions of GABA or glutamate antagonists during ETX in IC dorsal cortex (ICd) neurons in brain slices from rats treated with ethanol intragastrically 3 times daily for 4 days. A significant increase of spontaneous action potentials (APs) was observed during ETX. The width, area and rise time of excitatory postsynaptic potentials (EPSPs) evoked by stimulation in the commissure of IC were significantly elevated during ETX. A fast EPSP was sensitive to block by the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and a slow EPSP was sensitive to the NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP5). However, during ETX the concentration of CNQX or AP5 needed to block these EPSPs was elevated significantly. Inhibitory postsynaptic potentials (IPSPs) in ICd neurons evoked in both normal and ETX rats were blocked by the GABA(A) antagonist, bicuculline. However, IPSPs during ETX displayed a significantly greater sensitivity to bicuculline. These data indicate that decreased GABA(A)-mediated inhibition and increased glutamate-mediated excitability in IC may both be critical mechanisms of AGS initiation during ETX, which is similar to observations in a genetic form of AGS. The common changes in IC neurotransmission in these AGS forms may be general mechanisms subserving AGS and other forms of auditory system pathophysiology in which the IC is implicated.
Collapse
Affiliation(s)
- C Faingold
- Departments of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| | | | | |
Collapse
|
37
|
Quinlan JJ, Firestone LL, Homanics GE. Mice lacking the long splice variant of the gamma 2 subunit of the GABA(A) receptor are more sensitive to benzodiazepines. Pharmacol Biochem Behav 2000; 66:371-4. [PMID: 10880692 DOI: 10.1016/s0091-3057(00)00225-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gamma 2 subunit is required for benzodiazepine modulation of the GABA(A) receptor. Alternate splicing of precursor GABA(A) gamma 2 mRNA results in two splice variants, a short (gamma 2S) and a long (gamma 2L) variant. We investigated the roles of these splice variants in benzodiazepine pharmacology using mice lacking genes for the gamma 2L splice variant. Sleep time responses to midazolam and zolpidem were 20 and 18% greater, respectively, in null allele mice compared with wild-type mice, while responses to nonbenzodiazepine agents such as etomidate and pentobarbital were unchanged. Although the GABA(A) receptor number was not altered in null allele mice, there was a corresponding increase in affinity of brain membranes for benzodiazepine agonists (midazolam, diazepam, and zolpidem), while affinity for benzodiazepine inverse agonists (beta CCM and Ro15-4513) was decreased. These changes were not observed in inbred mice of the parental strains (C57BL/6J and 129/SvJ) used to create the genetically altered mice, indicating that differences between gamma 2L null allele and wild-type mice were unlikely to be simply due to cosegregation of linked alleles. Absence of the gamma 2L splice variant increases the affinity of receptors for benzodiazepine agonists, and is associated with a modest increase in behavioral sensitivity to benzodiazepine agonists. Lack of the gamma 2L subunits may shift the GABA(A) receptor from an inverse agonist-preferring toward an agonist-preferring configuration.
Collapse
Affiliation(s)
- J J Quinlan
- Department of Anesthesiology and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
38
|
Abstract
The receptor subtypes involved in the physiological and pharmacological actions of gamma-amino butyric acid (GABA) in peripheral and endocrine tissues are not clear. Information about the molecular characteristics of GABA(A) receptors in peripheral endocrine tissues is only available for the pancreas and the adrenal medulla. Using reverse transcription (RT) polymerase chain reaction (PCR), the widespread expression of GABA(A) receptors subunits in rat peripheral tissues, including adrenal, ovary, testis, placenta, uterus, and small intestine is shown. It is shown that GABA(A) receptor subunits are expressed in multiple endocrine tissues in a tissue specific manner. These results give an insight into the likely pharmacological properties of these GABA(A) receptors in these tissues. The gonadal endocrine tissues such as the placenta, ovary and the testis express greater range of GABA(A) receptor subunits relative to the adrenal gland. The tissues with greater smooth muscle content, the small intestine and the uterus also express a smaller range of subunits subtypes.
Collapse
Affiliation(s)
- M K Akinci
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | |
Collapse
|
39
|
|
40
|
Partridge CR, Sampson HW, Forough R. Long-term alcohol consumption increases matrix metalloproteinase-2 activity in rat aorta. Life Sci 1999; 65:1395-402. [PMID: 10503958 DOI: 10.1016/s0024-3205(99)00381-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Altered degradation of extracellular matrix (ECM) underlies vascular remodeling, a hallmark in the pathogenesis of cardiovascular diseases including hypertension and aneurysmal dilatation. Although alcohol is recognized as a risk factor for certain cardiovascular disease states, its role in vascular remodeling has not been completely explored. We studied the effect of chronic alcohol consumption on upregulation of the enzymatic activity of matrix metalloproteinase-2 (MMP-2) as a possible pathway for large vessel remodeling. For this purpose, female rats were placed on one of three diets: a modified Lieber-DeCarli liquid diet containing 35% ethanol-derived calories, a pair-fed liquid diet with ethanol replaced by isocaloric maltose-dextrin, or a standard rat pellet. Weekly blood alcohol concentration averaged 117+/-7.9 mg/dl for the alcohol-fed rats. At 2, 4, and 72 weeks, aortas were removed and processed for measuring MMPs activity by gelatin zymography. Aortic extracts from rats on long-term (72 weeks), but not the short-term (2 and 4 weeks), alcohol diets showed increased MMP-2 activity. Furthermore, histochemical analysis of the aortas showed distinct disruption of the elastic fibers only in the 72 weeks alcohol-fed rats, compared to the control animals. These observations demonstrate that long-term alcohol consumption up-regulates MMP-2 activity, which is coincident with the alteration of aortic ECM composition through the degradation of vascular elastin components.
Collapse
Affiliation(s)
- C R Partridge
- Department of Medical Physiology, Texas A&M University, College Station 77843, USA
| | | | | |
Collapse
|
41
|
Affiliation(s)
- S J Mihic
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1083, USA.
| |
Collapse
|
42
|
Ueno S, Wick MJ, Ye Q, Harrison NL, Harris RA. Subunit mutations affect ethanol actions on GABA(A) receptors expressed in Xenopus oocytes. Br J Pharmacol 1999; 127:377-82. [PMID: 10385236 PMCID: PMC1566035 DOI: 10.1038/sj.bjp.0702563] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Mutations of specific amino acids were introduced in transmembrane domains (TM) of GABA(A) receptor alpha2, beta1 and gamma2L subunits. The effects of these mutations on the action of ethanol were studied using the Xenopus oocyte expression system and two-electrode voltage-clamp recording techniques. 2. Mutant alpha2 subunits containing S270I (TM2) or A291W (TM3) made the receptor more sensitive to GABA, as compared to wild-type alpha2beta1gamma2L receptor. The mutation S265I (TM2) of beta1 and S280I (TM2) or S30IW (TM3) in gamma2L subunits did not alter apparent affinity of the receptor for GABA. M286W (TM3) in the beta1 subunit resulted in a receptor that was tonically open. 3. Using an EC5 concentration of GABA, the function of the wild-type receptor with alpha2beta1gamma2L subunits was potentiated by ethanol (50-200 mM). The mutations in TM2 or TM3 of the alpha2 subunit diminished the potentiation by ethanol. The action of ethanol was also eliminated with a mutation in the TM2 site of the beta1 subunit. Ethanol produced significant inhibition of GABA responses in receptors containing the combination of alpha2 and beta1 TM2 mutants with a wild-type gamma2L subunit. A small but significant reduction in the potentiation by ethanol was observed with gamma2L TM2 and/or TM3 mutants. 4. From these results, we suggest that in heteromeric GABA(A) receptors composed of the alpha, beta and gamma subunits, ethanol may bind in a cavity formed by TM2 and TM3, and that binding to the alpha or beta subunit may be more critical than the gamma subunit.
Collapse
Affiliation(s)
- S Ueno
- Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712-1095, USA.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Eger EI, Koblin DD, Sonner J, Gong D, Laster MJ, Ionescu P, Halsey MJ, Hudlicky T. Nonimmobilizers and transitional compounds may produce convulsions by two mechanisms. Anesth Analg 1999; 88:884-92. [PMID: 10195542 DOI: 10.1097/00000539-199904000-00037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Some inhaled compounds cause convulsions. To better appreciate the physical basis for this property, we correlated the partial pressures that produced convulsions in rats with the lipophilicity (nonpolarity) and hydrophilicity (polarity) of 45 compounds: 3 n-alkanes, 18 n-haloalkanes, 3 halogenated aromatic compounds, 3 cycloalkanes and 3 halocycloalkanes, 13 halogenated ethers, and 2 noble gases (He and Ne). In most cases, convulsions were quantified by averaging the alveolar partial pressures just below the pressures that caused and slightly higher pressures that did cause clonic convulsions (ED50). The ED50 did not correlate with hydrophilicity (the saline/gas partition coefficient), nor was there an obvious correlation with molecular structure. For 80% of compounds (36 of 45), the ED50 correlated closely (r2 = 0.99) with lipophilicity (the olive oil/gas partition coefficient). Perhaps because they block the effect of GABA on GABA(A) receptors, five compounds were more potent than would be predicted from their lipophilicity. Conversely, four compounds may have been less potent than would be predicted because they (like conventional inhaled anesthetics) enhance the effect of GABA on GABA(A) receptors. IMPLICATIONS Nonimmobilizers and transitional compounds may produce convulsions by two mechanisms. One correlates with lipophilicity (nonpolarity), and the other correlates with an action on GABA(A) receptors.
Collapse
Affiliation(s)
- E I Eger
- Department of Anesthesia, University of California, San Francisco 94143-0464, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Neurosteroids are potent, endogenous modulators of GABAA receptor function in the central nervous system. The endogenous progesterone metabolite allopregnanolone (ALP) and the synthetic steroid compound alphaxalone (AFX) have been shown to both directly activate and potentiate GABAA receptor-activated membrane current (IGABA). The role of different alpha and gamma subunit subtypes in modulation of IGABA by ALP and AFX was investigated using recombinant GABAA receptor isoforms expressed in Xenopus oocytes. Changing or removal of the alpha subunit subtype altered the efficacy of both ALP and AFX (alpha2beta1gamma2L>alpha1beta1gamma2L>>beta1gamma2L) to potentiate IGABA, but did not alter the potency of the neuroactive steroids at these receptor isoforms. The efficacy of ALP to enhance IGABA was also dependent on the gamma subunit subtype (alpha1beta1gamma3>alpha1beta1gamma2L = alpha1beta1gamma1). AFX also had higher efficacy in the alpha1beta1gamma3 receptor isoform compared to alpha1beta1gamma1. In contrast to ALP, the potency of AFX was greater in the alpha1beta1gamma3 and alpha1beta1gamma1 receptor isoforms compared to alpha1beta1gamma2L. This study provides evidence that the alpha subunit subtype determines the efficacy, but not the potency, of these neuroactive steroids to potentiate IGABA. The gamma3 subunit subtype increases the maximal efficacy of neuroactive steroids compared to other gamma subunit subtypes. These results suggest that the heteromeric assembly of different GABAA receptor isoforms containing different subunit subtypes results in multiple steroid recognition sites on GABAA receptors that in turn produce distinctly different modulatory interactions between neuroactive steroids acting at the GABAA receptor.
Collapse
Affiliation(s)
- R Maitra
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
46
|
Homanics GE, Harrison NL, Quinlan JJ, Krasowski MD, Rick CE, de Blas AL, Mehta AK, Kist F, Mihalek RM, Aul JJ, Firestone LL. Normal electrophysiological and behavioral responses to ethanol in mice lacking the long splice variant of the gamma2 subunit of the gamma-aminobutyrate type A receptor. Neuropharmacology 1999; 38:253-65. [PMID: 10218866 PMCID: PMC2859287 DOI: 10.1016/s0028-3908(98)00177-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gamma subunit of the gamma-aminobutyric acid type A receptor (GABA(A)-R) is essential for bestowing both normal single channel conductance and sensitivity to benzodiazepines on native GABA(A)-Rs. The long splice variant of the gamma2 subunit (gamma2L) has been postulated to be essential in mediating the modulatory actions of ethanol at the GABA(A)-R. In order to evaluate this hypothesis, gene targeting was used to delete the 24bp exon which distinguishes gamma2L from the short splice variant (gamma2S). Mice homozygous for this exon deletion (gamma2L-/-) are viable and indistinguishable from wild-type (gamma2L+/+) mice. No gamma2L mRNA was detected in these mice, nor could gamma2L-containing GABA(A)-R protein be detected by specific antibodies. Radioligand binding studies showed the total amount of gamma2 subunit protein to be not significantly changed, suggesting that gamma2S replaces gamma2L in the brains of the knockout animals. Electrophysiological recordings from dorsal root ganglion neurons revealed a normal complement of functional receptors. There was no difference in the potentiation of GABA currents by ethanol (20-200 mM) observed in neurons from gamma2L+/+ or gamma2L-/- mice. Several behavioral effects of ethanol, such as sleep time, anxiolysis, acute functional tolerance, chronic withdrawal hyperexcitability and hyperlocomotor activity were also unaffected by genotype. It is concluded that gamma2L is not required for ethanol's modulatory action at the GABA(A)-R or whole animal behavioral effects.
Collapse
Affiliation(s)
- G E Homanics
- Department of Anesthesiology/Critical Care Medicine, University of Pittsburgh School of Medicine, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wick MJ, Bleck V, Whatley VJ, Brozowski SJ, Nixon K, Cardoso RA, Valenzuela CF. Stable expression of human glycine alpha1 and alpha2 homomeric receptors in mouse L(tk-) cells. J Neurosci Methods 1999; 87:97-103. [PMID: 10065998 DOI: 10.1016/s0165-0270(98)00170-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the development of two mouse fibroblast-like stably-transfected cell lines (alpha1-62-4 and alpha2-B36-1) that express human alpha1 or alpha2 glycine receptor subunits, respectively. Transfected cDNAs were cloned into the pMSGneo expression vector, for which transcription is controlled by the dexamethasone-inducible MMTV promoter. Patch-clamp electrophysiological recordings revealed that the alpha1 or alpha2 glycine receptor subunits expressed in these cells form functional glycine receptors that are inhibited by strychnine and picrotoxin. Glycine activated currents in these cells with EC50s of 101+/-7 or 112+/-23 microM for cells stably expressing alpha1 or alpha2 receptors, respectively. As indicated by assays of glycine-stimulated 36Cl-- uptake, these cells express glycine receptors only after treatment with dexamethasone. In order to measure expression of the glycine alpha1 or alpha2 receptor protein, we produced a new anti-alpha1/alpha2 glycine receptor antibody (anti-alpha GR). Western blot analysis with this antibody showed a band of approximately 48 kDa only in homogenates from cells which had been transfected with the glycine alpha1 or alpha2 receptor cDNAs. Thus, through use of this stable expression system, we successfully produced cell lines expressing strychnine-sensitive glycine receptors that display similar functional characteristics to homomeric glycine receptors expressed in other systems. These stably transfected cells should provide a useful in vitro system for the study of the physiology and pharmacology of strychnine-sensitive glycine receptors.
Collapse
Affiliation(s)
- M J Wick
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Current concepts of the mechanisms underlying many of the pharmacological effects of ethanol on the CNS involve disruption of ion channel function via the interaction of ethanol with specific hydrophobic sites on channel subunit proteins. Of particular clinical importance is the development of tolerance and dependence to ethanol, and it is likely that adaptive changes in synaptic function in response to ethanol's actions on ion channels play a role in this process. In this article, Judson Chandler, Adron Harris and Fulton Crews discuss potential mechanisms of ethanol-induced changes in synaptic function that might provide a cellular basis for ethanol tolerance and dependence. It is proposed that multiple mechanisms are involved that include both transcriptional and post-translational modifications in NMDA and GABAA receptors.
Collapse
Affiliation(s)
- L J Chandler
- Department of Pharmacology and Therapeutics, Louisiana State University Medical Center, Shreveport 71130, USA
| | | | | |
Collapse
|
49
|
Wu JV, Kendig JJ. Differential sensitivities of TTX-resistant and TTX-sensitive sodium channels to anesthetic concentrations of ethanol in rat sensory neurons. J Neurosci Res 1998; 54:433-43. [PMID: 9822154 DOI: 10.1002/(sici)1097-4547(19981115)54:4<433::aid-jnr1>3.0.co;2-a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ethanol at concentration of 200 mM induces anesthesia in experimental animals and depresses neurotransmission in isolated spinal cords. To determine whether actions on primary afferent nerve terminals contribute to ethanol's depressant effects on spinal cord, a study was undertaken to test whether ethanol blocks sodium currents (I(Na)) in dorsal root ganglion neurons (DRGn). Whole-cell patch clamp was used to examine I(Na) in DRGn isolated from 1- to 15-day-old rats. At a holding potential of -80 mV ethanol (200 mM) decreased peak tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) I(Na) by 19.0% +/- 2.7 (mean +/- SEM) and 8.5% +/- 2.2, respectively. Maximal available I(Na) was reduced to 82 +/- 4% (TTX-R) and 93 +/- 1% (TTX-S) of control. Steady-state inactivation curves were shifted in the hyperpolarizing direction by 2.1 +/- 0.2 mV (TTX-R) and 1.1 +/- 0.1 mV (TTX-S). At prepulse potentials of -30 mV (TTX-R) and -70 mV (TTX-S), these shifts contributed an additional 17 +/- 1% (TTX-R) and 7 +/- 1% (TTX-S) reduction in available I(Na). Ethanol thus selectively induced both voltage-independent and voltage-dependent block of TTX-R I(Na) in DRGn. Because DRGn TTX-R sodium channels are associated with small-diameter primary afferent fibers, these results are consistent with a role for ethanol actions on sodium channels in depression of nociceptive-related neurotransmission in spinal cord.
Collapse
Affiliation(s)
- J V Wu
- Department of Anesthesia, Stanford University School of Medicine, California 94305-5117, USA
| | | |
Collapse
|
50
|
Valenzuela CF, Cardoso RA, Lickteig R, Browning MD, Nixon KM. Acute Effects of Ethanol on Recombinant Kainate Receptors: Lack of Role of Protein Phosphorylation. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03911.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|