1
|
Luse MA, Schug WJ, Dunaway LS, Nyshadham S, Loeb SA, Carvalho A, Tessema R, Pavelic C, Keller TCS, Shu X, Ruddiman CA, Kosmach A, Sveeggen TM, Mitchell R, Bagher P, Minshal RD, Leitnger N, Columbus L, Levental KR, Levental I, Cortese-Krott M, Isakson BE. Nitrosation of CD36 Regulates Endothelial Function and Serum Lipids. Arterioscler Thromb Vasc Biol 2025. [PMID: 40242868 DOI: 10.1161/atvbaha.124.321964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND During obesity, endothelial cells (ECs) become lipid laden, leading to endothelial dysfunction. We tested posttranslational modification on CD36 that may regulate EC lipid accumulation. METHODS We used an EC-specific Cav1 (caveolin-1) knockout mouse, nitrosation and palmitoylation assays, and whole animal Nγ-nitro-l-arginine methyl ester administration to examine blood lipids. RESULTS EC-specific Cav1 knockout male mice are hyperlipidemic regardless of diet but retain endothelial cell function. We found these mice have significantly increased NO in response to the lack of Cav1, and the presence or absence of NO toggled inversely EC lipid content and plasma lipid in mice. The NO nitrosated the fatty acid translocase CD36 at the same cysteines that are palmitoylated on CD36. The nitrosation of CD36 prevented its trafficking to the plasma membrane and decreased lipid accumulation. The physiological effect of this mechanism was a reliance on NO for endothelial function and not dilation. CONCLUSIONS This work suggests that CD36 nitrosation occurs as a protective mechanism to prevent EC lipotoxicity.
Collapse
Affiliation(s)
- Melissa A Luse
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Wyatt J Schug
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Shruthi Nyshadham
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Alicia Carvalho
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Rachel Tessema
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
| | - Caitlin Pavelic
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville (C.P., C.A.R., N.L.)
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, China (X.S.)
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville (C.P., C.A.R., N.L.)
| | - Anna Kosmach
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | - Timothy M Sveeggen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | - Ray Mitchell
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | - Pooneh Bagher
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha (A.K., T.M.S., R.M., P.B.)
| | | | - Norbert Leitnger
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville (C.P., C.A.R., N.L.)
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville (L.C.)
| | - Kandice R Levental
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | - Ilya Levental
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| | | | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center (M.A.L., W.J.S., L.S.D., S.N., S.A.L., A.C., R.T., C.P., T.C.S.K., C.A.R., N.L., B.E.I.)
- Department of Molecular Physiology and Biophysics (M.A.L., W.J.S., S.A.L., T.C.S.K., K.R.L., I.L., B.E.I.)
| |
Collapse
|
2
|
Shah SA, Reagan CE, Bresticker JE, Wolpe AG, Good ME, Macal EH, Billcheck HO, Bradley LA, French BA, Isakson BE, Wolf MJ, Epstein FH. Obesity-Induced Coronary Microvascular Disease Is Prevented by iNOS Deletion and Reversed by iNOS Inhibition. JACC Basic Transl Sci 2023; 8:501-514. [PMID: 37325396 PMCID: PMC10264569 DOI: 10.1016/j.jacbts.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 02/04/2023]
Abstract
Coronary microvascular disease (CMD) caused by obesity and diabetes is major contributor to heart failure with preserved ejection fraction; however, the mechanisms underlying CMD are not well understood. Using cardiac magnetic resonance applied to mice fed a high-fat, high-sucrose diet as a model of CMD, we elucidated the role of inducible nitric oxide synthase (iNOS) and 1400W, an iNOS antagonist, in CMD. Global iNOS deletion prevented CMD along with the associated oxidative stress and diastolic and subclinical systolic dysfunction. The 1400W treatment reversed established CMD and oxidative stress and preserved systolic/diastolic function in mice fed a high-fat, high-sucrose diet. Thus, iNOS may represent a therapeutic target for CMD.
Collapse
Affiliation(s)
- Soham A. Shah
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Claire E. Reagan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Julia E. Bresticker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Abigail G. Wolpe
- The Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Miranda E. Good
- The Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Edgar H. Macal
- The Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Helen O. Billcheck
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Leigh A. Bradley
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Brent A. French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Brant E. Isakson
- The Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Matthew J. Wolf
- The Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- The Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Chu PL, Gigliotti JC, Cechova S, Bodonyi-Kovacs G, Wang YT, Chen L, Wassertheil-Smoller S, Cai J, Isakson BE, Franceschini N, Le TH. Collectrin ( Tmem27) deficiency in proximal tubules causes hypertension in mice and a TMEM27 variant associates with blood pressure in males in a Latino cohort. Am J Physiol Renal Physiol 2023; 324:F30-F42. [PMID: 36264884 PMCID: PMC9762972 DOI: 10.1152/ajprenal.00176.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 02/04/2023] Open
Abstract
Collectrin (Tmem27), an angiotensin-converting enzyme 2 homologue, is a chaperone of amino acid transporters in the kidney and endothelium. Global collectrin knockout (KO) mice have hypertension, endothelial dysfunction, exaggerated salt sensitivity, and diminished renal blood flow. This phenotype is associated with altered nitric oxide and superoxide balance and increased proximal tubule (PT) Na+/H+ exchanger isoform 3 (NHE3) expression. Collectrin is located on the X chromosome where genome-wide association population studies have largely been excluded. In the present study, we generated PT-specific collectrin KO (PT KO) mice to determine the precise contribution of PT collectrin in blood pressure homeostasis. We also examined the association of human TMEM27 single-nucleotide polymorphisms with blood pressure traits in 11,926 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) Hispanic/Latino participants. PT KO mice exhibited hypertension, and this was associated with increased baseline NHE3 expression and diminished lithium excretion. However, PT KO mice did not display exaggerated salt sensitivity or a reduction in renal blood flow compared with control mice. Furthermore, PT KO mice exhibited enhanced endothelium-mediated dilation, suggesting a compensatory response to systemic hypertension induced by deficiency of collectrin in the PT. In HCHS/SOL participants, we observed sex-specific single-nucleotide polymorphism associations with diastolic blood pressure. In conclusion, loss of collectrin in the PT is sufficient to induce hypertension, at least in part, through activation of NHE3. Importantly, our model supports the notion that altered renal blood flow may be a determining factor for salt sensitivity. Further studies are needed to investigate the role of the TMEM27 locus on blood pressure and salt sensitivity in humans.NEW & NOTEWORTHY The findings of our study are significant in several ways: 1) loss of an amino acid chaperone in the proximal tubule is sufficient to cause hypertension, 2) the results in global and proximal tubule-specific collectrin knockout mice support the notion that vascular dysfunction is required for salt sensitivity or that impaired renal tubule function causes hypertension but is not sufficient to cause salt sensitivity, and 3) our study is the first to implicate a role of collectrin in human hypertension.
Collapse
Affiliation(s)
- Pei-Lun Chu
- Division of Nephrology, Fu Jen Catholic University Hospital, and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Joseph C Gigliotti
- Department of Integrated Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia
| | - Sylvia Cechova
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Gabor Bodonyi-Kovacs
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Yves T Wang
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| | - Luojing Chen
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biophysics, University of Virginia Health System, Charlottesville, Virginia
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| |
Collapse
|
4
|
Mutchler SM, Kleyman TR. Effects of amiloride on acetylcholine-dependent arterial vasodilation evolve over time in mice on a high salt diet. Physiol Rep 2022; 10:e15255. [PMID: 35384364 PMCID: PMC8984245 DOI: 10.14814/phy2.15255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of endothelial health is required for normal vascular function and blood pressure regulation. The epithelial Na+ channel (ENaC) in endothelial cells has emerged as a new molecular player in the regulation of endothelial nitric oxide production and vascular stiffness. While ENaC expression in the kidney is negatively regulated by high [Na+ ], ENaC expression in isolated endothelial cells has been shown to increase in response to a high extracellular [Na+ ]. In culture, this increased expression leads to cellular stiffening and decreased nitric oxide release. In vivo, the effects of high salt diet on endothelial ENaC expression and activity have varied depending on the animal model utilized. Our aim in the present study was to examine the role of endothelial ENaC in mediating vasorelaxation in the C57Bl/6 mouse strain. We utilized pressure myography to test the responsiveness of thoracodorsal arteries to acetylcholine in mice with increased sodium consumption both in the presence and absence of increased aldosterone. ENaC's contribution was assessed with the use of the specific inhibitor amiloride. We found that while aldosterone had very little effect on ENaC's contribution to acetylcholine sensitivity, a high salt diet led to an amiloride-dependent shift in the acetylcholine response of vessels. However, the direction of this shift was dependent on the length of high salt diet administration. Overall, our studies reveal that ENaC's role in the endothelium may be more complicated than previously thought. The channel does not simply inhibit nitric oxide generation, but instead helps preserve a homeostatic response.
Collapse
Affiliation(s)
| | - Thomas R. Kleyman
- Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Departments of Cell Biology and of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Filiberto AC, Spinosa MD, Elder CT, Su G, Leroy V, Ladd Z, Lu G, Mehaffey JH, Salmon MD, Hawkins RB, Ravichandran KS, Isakson BE, Upchurch GR, Sharma AK. Endothelial pannexin-1 channels modulate macrophage and smooth muscle cell activation in abdominal aortic aneurysm formation. Nat Commun 2022; 13:1521. [PMID: 35315432 PMCID: PMC8938517 DOI: 10.1038/s41467-022-29233-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
Abstract
Pannexin-1 (Panx1) channels have been shown to regulate leukocyte trafficking and tissue inflammation but the mechanism of Panx1 in chronic vascular diseases like abdominal aortic aneurysms (AAA) is unknown. Here we demonstrate that Panx1 on endothelial cells, but not smooth muscle cells, orchestrate a cascade of signaling events to mediate vascular inflammation and remodeling. Mechanistically, Panx1 on endothelial cells acts as a conduit for ATP release that stimulates macrophage activation via P2X7 receptors and mitochondrial DNA release to increase IL-1β and HMGB1 secretion. Secondly, Panx1 signaling regulates smooth muscle cell-dependent intracellular Ca2+ release and vascular remodeling via P2Y2 receptors. Panx1 blockade using probenecid markedly inhibits leukocyte transmigration, aortic inflammation and remodeling to mitigate AAA formation. Panx1 expression is upregulated in human AAAs and retrospective clinical data demonstrated reduced mortality in aortic aneurysm patients treated with Panx1 inhibitors. Collectively, these data identify Panx1 signaling as a contributory mechanism of AAA formation. Pannexin-1 ion channels on endothelial cells regulate vascular inflammation and remodeling to mediate aortic aneurysm formation. Pharmacological blockade of Pannexin-1 channels may offer translational therapeutic mitigation of aneurysmal pathology.
Collapse
|
6
|
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol 2021; 321:H77-H111. [PMID: 33989082 PMCID: PMC8321813 DOI: 10.1152/ajpheart.01021.2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By using this document, vascular physiologists will have consistency among methodological approaches, producing more reliable and reproducible results.
Collapse
Grants
- R01HL139585 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P20 GM130459 NIGMS NIH HHS
- R01HL121871 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK115255 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R61 NS115132 NINDS NIH HHS
- K99HL151889 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL151413 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00HL116769 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL091905 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL088554 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL139585 NHLBI NIH HHS
- P20GM130459 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL135901 NHLBI NIH HHS
- RF1 NS110044 NINDS NIH HHS
- R01ES014639 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U24 DK076169 NIDDK NIH HHS
- S10OD023438 HHS | NIH | NIH Office of the Director (OD)
- R01HL137112 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL135901 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL146914 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL116769 NHLBI NIH HHS
- K99 HL151889 NHLBI NIH HHS
- U24 DK115255 NIDDK NIH HHS
- R21 EB026518 NIBIB NIH HHS
- R01 HL149762 NHLBI NIH HHS
- DK076169 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- R01NS082521 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01 HL146054 NHLBI NIH HHS
- R21EB026518 HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- R01 HL123301 NHLBI NIH HHS
- P01 HL134604 NHLBI NIH HHS
- R00GM118885 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL091905 NHLBI NIH HHS
- RF1NS110044 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL142808 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R61NS115132 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- R01HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL088105 NHLBI NIH HHS
- SB1 HL121871 NHLBI NIH HHS
- R01 HD037831 NICHD NIH HHS
- R01 HL137852 NHLBI NIH HHS
- R35 HL155008 NHLBI NIH HHS
- R01 HL137112 NHLBI NIH HHS
- R01HL149762 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL123301 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146914 NHLBI NIH HHS
- R01 HL142808 NHLBI NIH HHS
- R01 HL088554 NHLBI NIH HHS
- R01HD037831 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- R01HL146054 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL146562 NHLBI NIH HHS
- R44 HL121871 NHLBI NIH HHS
- R01HL088105 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 ES014639 NIEHS NIH HHS
- P01HL134604 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL137852 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- S10 OD023438 NIH HHS
- R01 HL151413 NHLBI NIH HHS
- R41 HL121871 NHLBI NIH HHS
- R00 GM118885 NIGMS NIH HHS
Collapse
Affiliation(s)
- Camilla F Wenceslau
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin Cardiovascular Center, Milwaukee, Wisconsin
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
7
|
DeLalio LJ, Masati E, Mendu S, Ruddiman CA, Yang Y, Johnstone SR, Milstein JA, Keller TCS, Weaver RB, Guagliardo NA, Best AK, Ravichandran KS, Bayliss DA, Sequeira-Lopez MLS, Sonkusare SN, Shu XH, Desai B, Barrett PQ, Le TH, Gomez RA, Isakson BE. Pannexin 1 channels in renin-expressing cells influence renin secretion and blood pressure homeostasis. Kidney Int 2020; 98:630-644. [PMID: 32446934 PMCID: PMC7483468 DOI: 10.1016/j.kint.2020.04.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Kidney function and blood pressure homeostasis are regulated by purinergic signaling mechanisms. These autocrine/paracrine signaling pathways are initiated by the release of cellular ATP, which influences kidney hemodynamics and steady-state renin secretion from juxtaglomerular cells. However, the mechanism responsible for ATP release that supports tonic inputs to juxtaglomerular cells and regulates renin secretion remains unclear. Pannexin 1 (Panx1) channels localize to both afferent arterioles and juxtaglomerular cells and provide a transmembrane conduit for ATP release and ion permeability in the kidney and the vasculature. We hypothesized that Panx1 channels in renin-expressing cells regulate renin secretion in vivo. Using a renin cell-specific Panx1 knockout model, we found that male Panx1 deficient mice exhibiting a heightened activation of the renin-angiotensin-aldosterone system have markedly increased plasma renin and aldosterone concentrations, and elevated mean arterial pressure with altered peripheral hemodynamics. Following ovariectomy, female mice mirrored the male phenotype. Furthermore, constitutive Panx1 channel activity was observed in As4.1 renin-secreting cells, whereby Panx1 knockdown reduced extracellular ATP accumulation, lowered basal intracellular calcium concentrations and recapitulated a hyper-secretory renin phenotype. Moreover, in response to stress stimuli that lower blood pressure, Panx1-deficient mice exhibited aberrant "renin recruitment" as evidenced by reactivation of renin expression in pre-glomerular arteriolar smooth muscle cells. Thus, renin-cell Panx1 channels suppress renin secretion and influence adaptive renin responses when blood pressure homeostasis is threatened.
Collapse
Affiliation(s)
- Leon J DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ester Masati
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Suresh Mendu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Yang Yang
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Scott R Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jenna A Milstein
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Rachel B Weaver
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Angela K Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Maria Luisa S Sequeira-Lopez
- Pediatric Center of Excellence in Nephrology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Swapnil N Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiaohong H Shu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Bimal Desai
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thu H Le
- Department of Medicine, Division of Nephrology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - R Ariel Gomez
- Pediatric Center of Excellence in Nephrology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
8
|
Shu X, Ruddiman CA, Keller TCS, Keller AS, Yang Y, Good ME, Best AK, Columbus L, Isakson BE. Heterocellular Contact Can Dictate Arterial Function. Circ Res 2020; 124:1473-1481. [PMID: 30900949 DOI: 10.1161/circresaha.118.313926] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Resistance arteries and conduit arteries rely on different relative contributions of endothelial-derived hyperpolarization versus nitric oxide to achieve dilatory heterocellular signaling. Anatomically, resistance arteries use myoendothelial junctions (MEJs), endothelial cell projections that make contact with smooth muscle cells. Conduit arteries have very few to no MEJs. OBJECTIVE Determine if the presence of MEJs in conduit arteries can alter heterocellular signaling. METHODS AND RESULTS We previously demonstrated that PAI-1 (plasminogen activator inhibitor-1) can regulate formation of MEJs. Thus, we applied pluronic gel containing PAI-1 directly to conduit arteries (carotid arteries) to determine if this could induce formation of MEJs. We found a significant increase in endothelial cell projections resembling MEJs that correlated with increased biocytin dye transfer from endothelial cells to smooth muscle cells. Next, we used pressure myography to investigate whether these structural changes were accompanied by a functional change in vasodilatory signaling. Interestingly, PAI-1-treated carotids underwent a switch from a conduit to resistance artery vasodilatory profile via diminished nitric oxide signaling and increased endothelial-derived hyperpolarization signaling in response to the endothelium-dependent agonists acetylcholine and NS309. After PAI-1 application, we also found a significant increase in carotid expression of endothelial alpha globin, a protein predominantly expressed in resistance arteries. Carotids from mice with PAI-1, but lacking alpha globin (Hba1-/-), demonstrated that l-nitro-arginine methyl ester, an inhibitor of nitric oxide signaling, was able to prevent arterial relaxation. CONCLUSIONS The presence or absence of MEJs is an important determinant for influencing heterocellular communication in the arterial wall. In particular, alpha globin expression, induced within newly formed endothelial cell projections, may influence the balance between endothelial-derived hyperpolarization and nitric oxide-mediated vasodilation.
Collapse
Affiliation(s)
- Xiaohong Shu
- From the Robert M. Berne Cardiovascular Research Center (X.S., C.A.R., T.C.S.K., A.S.K., Y.Y., M.E.G., A.K.B., B.E.I.), University of Virginia School of Medicine, Charlottesville.,College of Pharmacy, Dalian Medical University, China (X.S., Y.Y.)
| | - Claire A Ruddiman
- From the Robert M. Berne Cardiovascular Research Center (X.S., C.A.R., T.C.S.K., A.S.K., Y.Y., M.E.G., A.K.B., B.E.I.), University of Virginia School of Medicine, Charlottesville.,Department of Pharmacology (C.A.R., A.S.K.), University of Virginia School of Medicine, Charlottesville
| | - T C Stevenson Keller
- From the Robert M. Berne Cardiovascular Research Center (X.S., C.A.R., T.C.S.K., A.S.K., Y.Y., M.E.G., A.K.B., B.E.I.), University of Virginia School of Medicine, Charlottesville.,Department of Molecular Physiology and Biophysics (T.C.S.K., B.E.I.), University of Virginia School of Medicine, Charlottesville
| | - Alexander S Keller
- From the Robert M. Berne Cardiovascular Research Center (X.S., C.A.R., T.C.S.K., A.S.K., Y.Y., M.E.G., A.K.B., B.E.I.), University of Virginia School of Medicine, Charlottesville.,Department of Pharmacology (C.A.R., A.S.K.), University of Virginia School of Medicine, Charlottesville
| | - Yang Yang
- From the Robert M. Berne Cardiovascular Research Center (X.S., C.A.R., T.C.S.K., A.S.K., Y.Y., M.E.G., A.K.B., B.E.I.), University of Virginia School of Medicine, Charlottesville.,College of Pharmacy, Dalian Medical University, China (X.S., Y.Y.)
| | - Miranda E Good
- From the Robert M. Berne Cardiovascular Research Center (X.S., C.A.R., T.C.S.K., A.S.K., Y.Y., M.E.G., A.K.B., B.E.I.), University of Virginia School of Medicine, Charlottesville
| | - Angela K Best
- From the Robert M. Berne Cardiovascular Research Center (X.S., C.A.R., T.C.S.K., A.S.K., Y.Y., M.E.G., A.K.B., B.E.I.), University of Virginia School of Medicine, Charlottesville
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville (L.C.)
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (X.S., C.A.R., T.C.S.K., A.S.K., Y.Y., M.E.G., A.K.B., B.E.I.), University of Virginia School of Medicine, Charlottesville.,Department of Molecular Physiology and Biophysics (T.C.S.K., B.E.I.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
9
|
Martin-Aragon Baudel M, Espinosa-Tanguma R, Nieves-Cintron M, Navedo MF. Purinergic Signaling During Hyperglycemia in Vascular Smooth Muscle Cells. Front Endocrinol (Lausanne) 2020; 11:329. [PMID: 32528416 PMCID: PMC7256624 DOI: 10.3389/fendo.2020.00329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
The activation of purinergic receptors by nucleotides and/or nucleosides plays an important role in the control of vascular function, including modulation of vascular smooth muscle excitability, and vascular reactivity. Accordingly, purinergic receptor actions, acting as either ion channels (P2X) or G protein-coupled receptors (GCPRs) (P1, P2Y), target diverse downstream effectors, and substrates to regulate vascular smooth muscle function and vascular reactivity. Both vasorelaxant and vasoconstrictive effects have been shown to be mediated by different purinergic receptors in a vascular bed- and species-specific manner. Purinergic signaling has been shown to play a key role in altering vascular smooth muscle excitability and vascular reactivity following acute and short-term elevations in extracellular glucose (e.g., hyperglycemia). Moreover, there is evidence that vascular smooth muscle excitability and vascular reactivity is severely impaired during diabetes and that this is mediated, at least in part, by activation of purinergic receptors. Thus, purinergic receptors present themselves as important candidates mediating vascular reactivity in hyperglycemia, with potentially important clinical and therapeutic potential. In this review, we provide a narrative summarizing our current understanding of the expression, function, and signaling of purinergic receptors specifically in vascular smooth muscle cells and discuss their role in vascular complications following hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Miguel Martin-Aragon Baudel
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- *Correspondence: Miguel Martin-Aragon Baudel
| | - Ricardo Espinosa-Tanguma
- Departamento de Fisiologia y Biofisca, Universidad Autónoma San Luis Potosí, San Luis Potosí, Mexico
| | | | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- Manuel F. Navedo
| |
Collapse
|
10
|
Krüger N, Biwer LA, Good ME, Ruddiman CA, Wolpe AG, DeLalio LJ, Murphy S, Macal EH, Ragolia L, Serbulea V, Best AK, Leitinger N, Harris TE, Sonkusare SK, Gödecke A, Isakson BE. Loss of Endothelial FTO Antagonizes Obesity-Induced Metabolic and Vascular Dysfunction. Circ Res 2019; 126:232-242. [PMID: 31801409 PMCID: PMC7007767 DOI: 10.1161/circresaha.119.315531] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Increasing prevalence of obesity and its associated risk with cardiovascular diseases demands a better understanding of the contribution of different cell types within this complex disease for developing new treatment options. Previous studies could prove a fundamental role of FTO (fat mass and obesity-associated protein) within obesity; however, its functional role within different cell types is less understood. OBJECTIVES We identify endothelial FTO as a previously unknown central regulator of both obesity-induced metabolic and vascular alterations. METHODS AND RESULTS We generated endothelial Fto-deficient mice and analyzed the impact of obesity on those mice. While the loss of endothelial FTO did not influence the development of obesity and dyslipidemia, it protected mice from high-fat diet-induced glucose intolerance and insulin resistance by increasing AKT (protein kinase B) phosphorylation in endothelial cells and skeletal muscle. Furthermore, loss of endothelial FTO prevented the development of obesity-induced hypertension by preserving myogenic tone in resistance arteries. In Fto-deficient arteries, microarray analysis identified upregulation of L-Pgds with significant increases in prostaglandin D2 levels. Blockade of prostaglandin D2 synthesis inhibited the myogenic tone protection in resistance arteries of endothelial Fto-deficient mice on high-fat diet; conversely, direct addition of prostaglandin D2 rescued myogenic tone in high-fat diet-fed control mice. Myogenic tone was increased in obese human arteries with FTO inhibitors or prostaglandin D2 application. CONCLUSIONS These data identify endothelial FTO as a previously unknown regulator in the development of obesity-induced metabolic and vascular changes, which is independent of its known function in regulation of obesity.
Collapse
Affiliation(s)
- Nenja Krüger
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Institute of Animal Developmental and Molecular Biology, Heinrich Heine University Düsseldorf, Germany
| | - Lauren A Biwer
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908 USA
| | - Miranda E Good
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Claire A. Ruddiman
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Pharmacology, University of Virginia School of Medicine
| | - Abigail G. Wolpe
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Cell Biology, University of Virginia School of Medicine
| | - Leon J DeLalio
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Pharmacology, University of Virginia School of Medicine
| | - Sara Murphy
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Edgar H. Macal
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Louis Ragolia
- Department of Biomedical Research, NYU Winthrop University Hospital, NYU Long Island School of Medicine
| | - Vlad Serbulea
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908 USA
| | - Angela K Best
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Norbert Leitinger
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Pharmacology, University of Virginia School of Medicine
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia School of Medicine
| | - Swapnil K Sonkusare
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908 USA
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf, Germany
| | - Brant E Isakson
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908 USA
| |
Collapse
|
11
|
Looft-Wilson RC, Billig JE, Sessa WC. Shear Stress Attenuates Inward Remodeling in Cultured Mouse Thoracodorsal Arteries in an eNOS-Dependent, but Not Hemodynamic Manner, and Increases Cx37 Expression. J Vasc Res 2019; 56:284-295. [PMID: 31574503 PMCID: PMC6908748 DOI: 10.1159/000502690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Arteries chronically constricted in culture remodel to smaller diameters. Conversely, elevated luminal shear stress (SS) promotes outward remodeling of arteries in vivo and prevents inward remodeling in culture in a nitric oxide synthase (NOS)-dependent manner. OBJECTIVES To determine whether SS-induced prevention of inward remodeling in cultured arteries is specifically eNOS-dependent and requires dilation, and whether SS alters the expression of eNOS and other genes potentially involved in remodeling. METHODS Female mouse thoracodorsal arteries were cannulated, pressurized to 80 mm Hg, and cultured for 2 days with low SS (<7 dyn/cm2), high SS (≥15 dyn/cm2), high SS + L-NAME (NOS inhibitor, 10-4 M), or high SS in arteries from eNOS-/- mice. In separate arteries cultured 1 day with low or high SS, eNOS and connexin (Cx) 37, Cx40, and Cx43 mRNA were assessed with real-time PCR. RESULTS High SS caused little change in passive diameters after culture (-4.7 ± 2.0%), which was less than low SS (-18.9 ± 1.4%; p < 0.0001), high SS eNOS-/- (-18.0 ± 1.5; p < 0.001), or high SS + L-NAME (-12.0 ± 0.6%; nonsignificant) despite similar constriction during culture. Cx37 mRNA expression was increased (p < 0.05) with high SS, but other gene levels were not different. CONCLUSIONS eNOS is involved in SS-induced prevention of inward remodeling in cultured small arteries. This effect does not require NO-mediated dilation. SS increased Cx37.
Collapse
Affiliation(s)
- Robin C Looft-Wilson
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA,
- Department of Cardiology, Yale University School of Medicine, New Haven, Connecticut, USA,
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA,
- Department of Kinesiology and Health Sciences, College of William and Mary, Williamsburg, Virginia, USA,
| | - Janelle E Billig
- Department of Kinesiology and Health Sciences, College of William and Mary, Williamsburg, Virginia, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Cardiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Li J, Cechova S, Wang L, Isakson BE, Le TH, Shi W. Loss of reticulocalbin 2 lowers blood pressure and restrains ANG II-induced hypertension in vivo. Am J Physiol Renal Physiol 2019; 316:F1141-F1150. [PMID: 30943068 PMCID: PMC6620588 DOI: 10.1152/ajprenal.00567.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Hypertension affects over 1 billion people worldwide and increases the risk for heart failure, stroke, and chronic kidney disease. Despite high prevalence and devastating impact, its etiology still remains poorly understood for most hypertensive cases. Rcn2, which encodes reticulocalbin 2, is a candidate gene for atherosclerosis that we have previously reported in mice. Here, we identified Rcn2 as a novel regulator of blood pressure in mice. Rcn2 was abundantly expressed in the endothelium and adventitia of normal arteries and was dramatically upregulated in the medial layer of the artery undergoing structural remodeling. Deletion of Rcn2 lowered basal blood pressure and attenuated ANG II-induced hypertension in C57BL/6 mice. siRNA knockdown of Rcn2 dramatically increased production of the nitric oxide (NO) breakdown products nitrite and nitrate by endothelial cells but not by smooth muscle cells. Isolated carotid arteries from Rcn2-/- mice showed an increased sensitivity to the ACh-induced NO-mediated relaxant response compared with arteries of Rcn2+/+ mice. Analysis of a recent meta-data set showed associations of genetic variants near RCN2 with blood pressure in humans. These data suggest that Rcn2 regulates blood pressure and contributes to hypertension through actions on endothelial NO synthase.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| | - Sylvia Cechova
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Lina Wang
- Department of Medicine, University of Virginia , Charlottesville, Virginia
- Department of Pulmonary Medicine, Qingdao University Hospital , Qingdao , China
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Thu H Le
- Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
13
|
Frederick NE, Mitchell R, Hein TW, Bagher P. Morphological and pharmacological characterization of the porcine popliteal artery: A novel model for study of lower limb arterial disease. Microcirculation 2019; 26:e12527. [PMID: 30597676 DOI: 10.1111/micc.12527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 12/26/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study was undertaken to characterize structural and pharmacological properties of the pig popliteal artery in order to develop a novel system for the examination of lower limb blood flow regulation in a variety of cardiovascular pathologies, such as diabetes-induced peripheral artery disease. METHODS Popliteal arteries were isolated from streptozocin-induced diabetic pigs or age-matched saline-injected control pigs for morphological study using transmission electron microscopy and for examination of vasoreactivity to pharmacological agents using wire myography. RESULTS Transmission electron microscopy of the porcine popliteal artery wall revealed the presence of endothelial cell-smooth muscle cell interactions (myoendothelial junctions) and smooth muscle cell-smooth muscle cell interactions, for which we have coined the term "myo-myo junctions." These myo-myo junctions were shown to feature plaques indicative of connexin expression. Further, the pig popliteal artery was highly responsive to a variety of vasoconstrictors including norepinephrine, phenylephrine, and U46619, and vasodilators including acetylcholine, adenosine 5'-[β-thio] diphosphate, and bradykinin. Finally, 2 weeks after streptozocin-induced diabetes, the normalized vasoconstriction of the pig popliteal artery to norepinephrine was unaltered compared to control. CONCLUSIONS The pig popliteal artery displays structural and pharmacological properties that might prove useful in future studies of diabetes-associated peripheral artery disease and other lower limb cardiovascular diseases.
Collapse
Affiliation(s)
- Norman E Frederick
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| | - Ray Mitchell
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| | - Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| | - Pooneh Bagher
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, Texas
| |
Collapse
|
14
|
DeLalio LJ, Billaud M, Ruddiman CA, Johnstone SR, Butcher JT, Wolpe AG, Jin X, Keller TCS, Keller AS, Rivière T, Good ME, Best AK, Lohman AW, Swayne LA, Penuela S, Thompson RJ, Lampe PD, Yeager M, Isakson BE. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J Biol Chem 2019; 294:6940-6956. [PMID: 30814251 DOI: 10.1074/jbc.ra118.006982] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/15/2019] [Indexed: 11/06/2022] Open
Abstract
Pannexin 1 (PANX1)-mediated ATP release in vascular smooth muscle coordinates α1-adrenergic receptor (α1-AR) vasoconstriction and blood pressure homeostasis. We recently identified amino acids 198-200 (YLK) on the PANX1 intracellular loop that are critical for α1-AR-mediated vasoconstriction and PANX1 channel function. We report herein that the YLK motif is contained within an SRC homology 2 domain and is directly phosphorylated by SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) at Tyr198 We demonstrate that PANX1-mediated ATP release occurs independently of intracellular calcium but is sensitive to SRC family kinase (SFK) inhibition, suggestive of channel regulation by tyrosine phosphorylation. Using a PANX1 Tyr198-specific antibody, SFK inhibitors, SRC knockdown, temperature-dependent SRC cells, and kinase assays, we found that PANX1-mediated ATP release and vasoconstriction involves constitutive phosphorylation of PANX1 Tyr198 by SRC. We specifically detected SRC-mediated Tyr198 phosphorylation at the plasma membrane and observed that it is not enhanced or induced by α1-AR activation. Last, we show that PANX1 immunostaining is enriched in the smooth muscle layer of arteries from hypertensive humans and that Tyr198 phosphorylation is detectable in these samples, indicative of a role for membrane-associated PANX1 in small arteries of hypertensive humans. Our discovery adds insight into the regulation of PANX1 by post-translational modifications and connects a significant purinergic vasoconstriction pathway with a previously identified, yet unexplored, tyrosine kinase-based α1-AR constriction mechanism. This work implicates SRC-mediated PANX1 function in normal vascular hemodynamics and suggests that Tyr198-phosphorylated PANX1 is involved in hypertensive vascular pathology.
Collapse
Affiliation(s)
- Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | - Marie Billaud
- the Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Claire A Ruddiman
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | | | - Joshua T Butcher
- the Department of Physiology, Augusta University, Augusta, Georgia 30912
| | - Abigail G Wolpe
- From the Robert M. Berne Cardiovascular Research Center.,Department of Cell Biology, and
| | - Xueyao Jin
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - T C Stevenson Keller
- From the Robert M. Berne Cardiovascular Research Center.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Alexander S Keller
- From the Robert M. Berne Cardiovascular Research Center.,Department of Pharmacology
| | - Thibaud Rivière
- the Department of Life and Health Sciences, University of Bordeaux, 33000 Bordeaux, France
| | | | - Angela K Best
- From the Robert M. Berne Cardiovascular Research Center
| | - Alexander W Lohman
- the Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Leigh Anne Swayne
- the Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Silvia Penuela
- the Departments of Anatomy and Cell Biology and Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 3K7, Canada, and
| | - Roger J Thompson
- the Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul D Lampe
- the Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Mark Yeager
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
15
|
Lechauve C, Butcher JT, Freiwan A, Biwer LA, Keith JM, Good ME, Ackerman H, Tillman HS, Kiger L, Isakson BE, Weiss MJ. Endothelial cell α-globin and its molecular chaperone α-hemoglobin-stabilizing protein regulate arteriolar contractility. J Clin Invest 2018; 128:5073-5082. [PMID: 30295646 DOI: 10.1172/jci99933] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
Arteriolar endothelial cell-expressed (EC-expressed) α-globin binds endothelial NOS (eNOS) and degrades its enzymatic product, NO, via dioxygenation, thereby lessening the vasodilatory effects of NO on nearby vascular smooth muscle. Although this reaction potentially affects vascular physiology, the mechanisms that regulate α-globin expression and dioxygenase activity in ECs are unknown. Without β-globin, α-globin is unstable and cytotoxic, particularly in its oxidized form, which is generated by dioxygenation and recycled via endogenous reductases. We show that the molecular chaperone α-hemoglobin-stabilizing protein (AHSP) promotes arteriolar α-globin expression in vivo and facilitates its reduction by eNOS. In Ahsp-/- mice, EC α-globin was decreased by 70%. Ahsp-/- and Hba1-/- mice exhibited similar evidence of increased vascular NO signaling, including arteriolar dilation, blunted α1-adrenergic vasoconstriction, and reduced blood pressure. Purified α-globin bound eNOS or AHSP, but not both together. In ECs in culture, eNOS or AHSP enhanced α-globin expression posttranscriptionally. However, only AHSP prevented oxidized α-globin precipitation in solution. Finally, eNOS reduced AHSP-bound α-globin approximately 6-fold faster than did the major erythrocyte hemoglobin reductases (cytochrome B5 reductase plus cytochrome B5). Our data support a model whereby redox-sensitive shuttling of EC α-globin between AHSP and eNOS regulates EC NO degradation and vascular tone.
Collapse
Affiliation(s)
- Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Abdullah Freiwan
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lauren A Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Julia M Keith
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Heather S Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
16
|
DeLalio LJ, Keller AS, Chen J, Boyce AK, Artamonov M, Askew-Page HR, Keller TS, Johnstone SR, Weaver RB, Good ME, Murphy S, Best AK, Mintz EL, Penuela S, Greenwood I, Machado RF, Somlyo AV, Swayne LA, Minshall R, Isakson BE. Interaction Between Pannexin 1 and Caveolin-1 in Smooth Muscle Can Regulate Blood Pressure. Arterioscler Thromb Vasc Biol 2018; 38:2065-2078. [PMID: 30026274 PMCID: PMC6202122 DOI: 10.1161/atvbaha.118.311290] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
Abstract
Objective- Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release in resistance arteries, also requires localization to membrane caveolae. Here, we test whether localization of Panx1 to Cav1 (caveolin-1) promotes channel function (stimulus-dependent ATP release and adrenergic vasoconstriction) and is important for blood pressure homeostasis. Approach and Results- We use in vitro VSMC culture models, ex vivo resistance arteries, and a novel inducible VSMC-specific Cav1 knockout mouse to probe interactions between Panx1 and Cav1. We report that Panx1 and Cav1 colocalized on the VSMC plasma membrane of resistance arteries near sympathetic nerves in an adrenergic stimulus-dependent manner. Genetic deletion of Cav1 significantly blunts adrenergic-stimulated ATP release and vasoconstriction, with no direct influence on endothelium-dependent vasodilation or cardiac function. A significant reduction in mean arterial pressure (total=4 mm Hg; night=7 mm Hg) occurred in mice deficient for VSMC Cav1. These animals were resistant to further blood pressure lowering using a Panx1 peptide inhibitor Px1IL2P, which targets an intracellular loop region necessary for channel function. Conclusions- Translocalization of Panx1 to Cav1-enriched caveolae in VSMCs augments the release of purinergic stimuli necessary for proper adrenergic-mediated vasoconstriction and blood pressure homeostasis.
Collapse
Affiliation(s)
- Leon J. DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Alexander S. Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Jiwang Chen
- Department of Medicine, The University of Illinois at Chicago, Chicago, IL
| | - Andrew K.J. Boyce
- Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, BC Canada
| | - Mykhaylo Artamonov
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Henry R. Askew-Page
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - T.C. Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Scott R. Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Rachel B. Weaver
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Miranda E. Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Sara Murphy
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Angela K. Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Ellen L. Mintz
- Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich Scholl of Medicine and Dentistry, University of Western Ontario, London ON, Canada
| | - Iain Greenwood
- Molecular and Clinical Sciences Research Institute, St. George’s University London UK
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep, & Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Avril V. Somlyo
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Leigh Anne Swayne
- Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, BC Canada
| | - Richard Minshall
- Department of Pharmacology and Department of Anesthesiology, The University of Illinois at Chicago, Chicago, IL
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| |
Collapse
|
17
|
Basu S, Barbur I, Calderon A, Banerjee S, Proweller A. Notch signaling regulates arterial vasoreactivity through opposing functions of Jagged1 and Dll4 in the vessel wall. Am J Physiol Heart Circ Physiol 2018; 315:H1835-H1850. [PMID: 30168730 DOI: 10.1152/ajpheart.00293.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Functional interactions between endothelial cells (ECs) and smooth muscle cells (SMCs) in the arterial wall are necessary for controlling vasoreactivity that underlies vascular resistance and tone. Key signaling pathways converge on the phosphorylation of myosin light chain (p-MLC), the molecular signature of force production in SMCs, through coordinating the relative activities of myosin light chain kinase (MLCK) and myosin phosphatase (MP). Notch signaling in the vessel wall serves critical roles in arterial formation and maturation and has been implicated in arterial vasoregulation. In this report, we hypothesized that Notch signaling through ligands Jagged1 (in SMCs) and delta-like protein-4 (Dll4; in ECs) regulates vasoreactivity via homotypic (SMC-SMC) and heterotypic (EC-SMC) cell interactions. Using ligand induction assays, we demonstrated that Jagged1 selectively induced smooth muscle MLCK gene expression and p-MLC content while inhibiting MP function (i.e., increased Ca2+ sensitization) in a Rho kinase II-dependent manner. Likewise, selective deficiency of smooth muscle Jagged1 in mice resulted in MLCK and p-MLC loss, reduced Ca2+ sensitization, and impaired arterial force generation measured by myography. In contrast, smooth muscle Notch signaling triggered by Dll4 increased expression of MP-targeting subunit 1 (MYPT1; the MP regulatory subunit), whereas arteries from endothelial Dll4-deficient mice featured reduced MYPT1 levels, enhanced force production, and impaired relaxation independent of endothelium-derived nitric oxide signaling. Taken together, this study identifies novel opposing vasoregulatory functions for ligand-specific Notch signaling in the vessel wall, underscoring instructional signaling between ECs and SMCs and suggesting that Notch signals might behave as a "rheostat" in arterial tone control. NEW & NOTEWORTHY The present study unveils novel roles for ligand-specific Notch signaling in arterial function. Smooth muscle Jagged1 and endothelial cell delta-like protein-4 ligands exhibit selective regulation of myosin light chain kinase and myosin phosphatase-targeting subunit 1/myosin phosphatase, respectively, providing a mechanistic link through which Notch signals modulate contractile activities in vascular smooth muscle. These findings may inform vascular derangements observed in human syndromes of Notch signaling deficiency while offering fundamental molecular insights into arterial physiological function.
Collapse
Affiliation(s)
- Sanchita Basu
- Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University , Cleveland, Ohio
| | - Iulia Barbur
- Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University , Cleveland, Ohio
| | - Alexander Calderon
- Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University , Cleveland, Ohio
| | - Suhanti Banerjee
- Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University , Cleveland, Ohio
| | - Aaron Proweller
- Department of Medicine, Case Cardiovascular Research Institute and University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
18
|
Sharma AK, Charles EJ, Zhao Y, Narahari AK, Baderdinni PK, Good ME, Lorenz UM, Kron IL, Bayliss DA, Ravichandran KS, Isakson BE, Laubach VE. Pannexin-1 channels on endothelial cells mediate vascular inflammation during lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2018; 315:L301-L312. [PMID: 29745255 PMCID: PMC6139659 DOI: 10.1152/ajplung.00004.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury (IRI), which involves inflammation, vascular permeability, and edema, remains a major challenge after lung transplantation. Pannexin-1 (Panx1) channels modulate cellular ATP release during inflammation. This study tests the hypothesis that endothelial Panx1 is a key mediator of vascular inflammation and edema after I/R and that IRI can be blocked by Panx1 antagonism. A murine hilar ligation model of IRI was used whereby left lungs underwent 1 h of ischemia and 2 h of reperfusion. Treatment of wild-type mice with Panx1 inhibitors (carbenoxolone or probenecid) significantly attenuated I/R-induced pulmonary dysfunction, edema, cytokine production, and neutrophil infiltration versus vehicle-treated mice. In addition, VE-Cad-CreERT2+/Panx1fl/fl mice (tamoxifen-inducible deletion of Panx1 in vascular endothelium) treated with tamoxifen were significantly protected from IRI (reduced dysfunction, endothelial permeability, edema, proinflammatory cytokines, and neutrophil infiltration) versus vehicle-treated mice. Furthermore, extracellular ATP levels in bronchoalveolar lavage fluid is Panx1-mediated after I/R as it was markedly attenuated by Panx1 antagonism in wild-type mice and by endothelial-specific Panx1 deficiency. Panx1 gene expression in lungs after I/R was also significantly elevated compared with sham. In vitro experiments demonstrated that TNF-α and/or hypoxia-reoxygenation induced ATP release from lung microvascular endothelial cells, which was attenuated by Panx1 inhibitors. This study is the first, to our knowledge, to demonstrate that endothelial Panx1 plays a key role in mediating vascular permeability, inflammation, edema, leukocyte infiltration, and lung dysfunction after I/R. Pharmacological antagonism of Panx1 activity may be a novel therapeutic strategy to prevent IRI and primary graft dysfunction after lung transplantation.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Eric J Charles
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Yunge Zhao
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Adishesh K Narahari
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Pranav K Baderdinni
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Ulrike M Lorenz
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| |
Collapse
|
19
|
Haskins RM, Nguyen AT, Alencar GF, Billaud M, Kelly-Goss MR, Good ME, Bottermann K, Klibanov AL, French BA, Harris TE, Peirce SM, Isakson BE, Owens GK. Klf4 has an unexpected protective role in perivascular cells within the microvasculature. Am J Physiol Heart Circ Physiol 2018; 315:H402-H414. [PMID: 29631369 PMCID: PMC6139624 DOI: 10.1152/ajpheart.00084.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 11/22/2022]
Abstract
Recent smooth muscle cell (SMC) lineage-tracing studies have revealed that SMCs undergo remarkable changes in phenotype during development of atherosclerosis. Of major interest, we demonstrated that Kruppel-like factor 4 (KLF4) in SMCs is detrimental for overall lesion pathogenesis, in that SMC-specific conditional knockout of the KLF4 gene ( Klf4) resulted in smaller, more-stable lesions that exhibited marked reductions in the numbers of SMC-derived macrophage- and mesenchymal stem cell-like cells. However, since the clinical consequences of atherosclerosis typically occur well after our reproductive years, we sought to identify beneficial KLF4-dependent SMC functions that were likely to be evolutionarily conserved. We tested the hypothesis that KLF4-dependent SMC transitions play an important role in the tissue injury-repair process. Using SMC-specific lineage-tracing mice positive and negative for simultaneous SMC-specific conditional knockout of Klf4, we demonstrate that SMCs in the remodeling heart after ischemia-reperfusion injury (IRI) express KLF4 and transition to a KLF4-dependent macrophage-like state and a KLF4-independent myofibroblast-like state. Moreover, heart failure after IRI was exacerbated in SMC Klf4 knockout mice. Surprisingly, we observed a significant cardiac dilation in SMC Klf4 knockout mice before IRI as well as a reduction in peripheral resistance. KLF4 chromatin immunoprecipitation-sequencing analysis on mesenteric vascular beds identified potential baseline SMC KLF4 target genes in numerous pathways, including PDGF and FGF. Moreover, microvascular tissue beds in SMC Klf4 knockout mice had gaps in lineage-traced SMC coverage along the resistance arteries and exhibited increased permeability. Together, these results provide novel evidence that Klf4 has a critical maintenance role within microvascular SMCs: it is required for normal SMC function and coverage of resistance arteries. NEW & NOTEWORTHY We report novel evidence that the Kruppel-like factor 4 gene ( Klf4) has a critical maintenance role within microvascular smooth muscle cells (SMCs). SMC-specific Klf4 knockout at baseline resulted in a loss of lineage-traced SMC coverage of resistance arteries, dilation of resistance arteries, increased blood flow, and cardiac dilation.
Collapse
Affiliation(s)
- Ryan M Haskins
- Department of Pathology, University of Virginia , Charlottesville, Virginia
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Anh T Nguyen
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Biochemistry and Molecular Genetics, University of Virginia , Charlottesville, Virginia
| | - Marie Billaud
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Molly R Kelly-Goss
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | | | - Alexander L Klibanov
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Brent A French
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia , Charlottesville, Virginia
| | - Shayn M Peirce
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia , Charlottesville, Virginia
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Molecular Physiology and Biological Physics, University of Virginia , Charlottesville, Virginia
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
- Department of Molecular Physiology and Biological Physics, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
20
|
Good ME, Eucker SA, Li J, Bacon HM, Lang SM, Butcher JT, Johnson TJ, Gaykema RP, Patel MK, Zuo Z, Isakson BE. Endothelial cell Pannexin1 modulates severity of ischemic stroke by regulating cerebral inflammation and myogenic tone. JCI Insight 2018; 3:96272. [PMID: 29563335 PMCID: PMC5926909 DOI: 10.1172/jci.insight.96272] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/16/2018] [Indexed: 12/24/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality in the US; however, there currently exists only one effective acute pharmacological therapeutic intervention. Purinergic signaling has been shown to regulate vascular function and pathological processes, including inflammation and arterial myogenic reactivity, and plays a role in ischemic stroke outcome. Purinergic signaling requires extracellular purines; however, the mechanism of purine release from cells is unclear. Pannexin1 (Panx1) channels are potentially novel purine release channels expressed throughout the vascular tree that couples regulated purine release with purinergic signaling. Therefore, we examined the role of smooth muscle and endothelial cell Panx1, using conditional cell type-specific transgenic mice, in cerebral ischemia/reperfusion injury outcomes. Deletion of endothelial cell Panx1, but not smooth muscle cell Panx1, significantly reduced cerebral infarct volume after ischemia/reperfusion. Infiltration of leukocytes into brain tissue and development of cerebral myogenic tone were both significantly reduced when mice lacked endothelial Panx1. Panx1 regulation of myogenic tone was unique to the cerebral circulation, as mesenteric myogenic reactivity and blood pressure were independent of endothelial Panx1. Overall, deletion of endothelial Panx1 mitigated cerebral ischemic injury by reducing inflammation and myogenic tone development, indicating that endothelial Panx1 is a possible novel target for therapeutic intervention of ischemic stroke.
Collapse
Affiliation(s)
- Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stephanie A. Eucker
- Division of Emergency Medicine, Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Jun Li
- Department of Anesthesiology and
| | - Hannah M. Bacon
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Susan M. Lang
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Joshua T. Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tyler J. Johnson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
21
|
Good ME, Chiu YH, Poon IKH, Medina CB, Butcher JT, Mendu SK, DeLalio LJ, Lohman AW, Leitinger N, Barrett E, Lorenz UM, Desai BN, Jaffe IZ, Bayliss DA, Isakson BE, Ravichandran KS. Pannexin 1 Channels as an Unexpected New Target of the Anti-Hypertensive Drug Spironolactone. Circ Res 2017; 122:606-615. [PMID: 29237722 DOI: 10.1161/circresaha.117.312380] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Resistant hypertension is a major health concern with unknown cause. Spironolactone is an effective antihypertensive drug, especially for patients with resistant hypertension, and is considered by the World Health Organization as an essential medication. Although spironolactone can act at the mineralocorticoid receptor (MR; NR3C2), there is increasing evidence of MR-independent effects of spironolactone. OBJECTIVE Here, we detail the unexpected discovery that Panx1 (pannexin 1) channels could be a relevant in vivo target of spironolactone. METHODS AND RESULTS First, we identified spironolactone as a potent inhibitor of Panx1 in an unbiased small molecule screen, which was confirmed by electrophysiological analysis. Next, spironolactone inhibited α-adrenergic vasoconstriction in arterioles from mice and hypertensive humans, an effect dependent on smooth muscle Panx1, but independent of the MR NR3C2. Last, spironolactone acutely lowered blood pressure, which was dependent on smooth muscle cell expression of Panx1 and independent of NR3C2. This effect, however, was restricted to steroidal MR antagonists as a nonsteroidal MR antagonist failed to reduced blood pressure. CONCLUSIONS These data suggest new therapeutic modalities for resistant hypertension based on Panx1 inhibition.
Collapse
Affiliation(s)
- Miranda E Good
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Yu-Hsin Chiu
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Ivan K H Poon
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Christopher B Medina
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Joshua T Butcher
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Suresh K Mendu
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Leon J DeLalio
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Alexander W Lohman
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Norbert Leitinger
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Eugene Barrett
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Ulrike M Lorenz
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Bimal N Desai
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Iris Z Jaffe
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Douglas A Bayliss
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| | - Brant E Isakson
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.).
| | - Kodi S Ravichandran
- From the Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center (M.E.G., J.T.B., L.J.D., A.W.L., B.E.I.), Department of Pharmacology (Y.-H.C., S.K.M., N.L., B.N.D., D.A.B.), Department of Microbiology, Immunology and Cancer Biology, the Center for Cell Clearance, and the Beirne B. Carter Center for Immunology Research (C.B.M., U.M.L., K.S.R.), and Division of Endocrinology (E.B.), University of Virginia School of Medicine, Charlottesville; Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia (I.K.H.P.); and Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (I.Z.J.)
| |
Collapse
|
22
|
Durgin BG, Cherepanova OA, Gomez D, Karaoli T, Alencar GF, Butcher JT, Zhou YQ, Bendeck MP, Isakson BE, Owens GK, Connelly JJ. Smooth muscle cell-specific deletion of Col15a1 unexpectedly leads to impaired development of advanced atherosclerotic lesions. Am J Physiol Heart Circ Physiol 2017; 312:H943-H958. [PMID: 28283548 PMCID: PMC5451587 DOI: 10.1152/ajpheart.00029.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/28/2022]
Abstract
Atherosclerotic plaque rupture with subsequent embolic events is a major cause of sudden death from myocardial infarction or stroke. Although smooth muscle cells (SMCs) produce and respond to collagens in vitro, there is no direct evidence in vivo that SMCs are a crucial source of collagens and that this impacts lesion development or fibrous cap formation. We sought to determine how conditional SMC-specific knockout of collagen type XV (COL15A1) in SMC lineage tracing mice affects advanced lesion formation given that 1) we have previously identified a Col15a1 sequence variant associated with age-related atherosclerosis, 2) COL15A1 is a matrix organizer enhancing tissue structural integrity, and 3) small interfering RNA-mediated Col15a1 knockdown increased migration and decreased proliferation of cultured human SMCs. We hypothesized that SMC-derived COL15A1 is critical in advanced lesions, specifically in fibrous cap formation. Surprisingly, we demonstrated that SMC-specific Col15a1 knockout mice fed a Western diet for 18 wk failed to form advanced lesions. SMC-specific Col15a1 knockout resulted in lesions reduced in size by 78%, with marked reductions in numbers and proliferating SMCs, and lacked a SMC and extracellular matrix-rich lesion or fibrous cap. In vivo RNA-seq analyses on SMC Col15a1 knockout and wild-type lesions suggested that a mechanism for these effects is through global repression of multiple proatherogenic inflammatory pathways involved in lesion development. These results provide the first direct evidence that a SMC-derived collagen, COL15A1, is critical during lesion pathogenesis, but, contrary to expectations, its loss resulted in marked attenuation rather than exacerbation of lesion pathogenesis.NEW & NOTEWORTHY We report the first direct in vivo evidence that a smooth muscle cell (SMC)-produced collagen, collagen type XV (COL15A1), is critical for atherosclerotic lesion development. SMC Col15a1 knockout markedly attenuated advanced lesion formation, likely through reducing SMC proliferation and impairing multiple proatherogenic inflammatory processes.
Collapse
Affiliation(s)
- Brittany G Durgin
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Olga A Cherepanova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Delphine Gomez
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Themistoclis Karaoli
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Yu-Qing Zhou
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP, University of Toronto, Toronto, Ontario, Canada; and
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP, University of Toronto, Toronto, Ontario, Canada; and
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Jessica J Connelly
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; .,Department of Psychology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
23
|
Naresh NK, Butcher JT, Lye RJ, Chen X, Isakson BE, Gan LM, Kramer CM, Annex BH, Epstein FH. Cardiovascular magnetic resonance detects the progression of impaired myocardial perfusion reserve and increased left-ventricular mass in mice fed a high-fat diet. J Cardiovasc Magn Reson 2016; 18:53. [PMID: 27609091 PMCID: PMC5016874 DOI: 10.1186/s12968-016-0273-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/11/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Impaired myocardial perfusion reserve (MPR) is prevalent in obesity and diabetes, even in the absence of obstructive coronary artery disease (CAD), and is prognostic of adverse events. We sought to establish the time course of reduced MPR and to investigate associated vascular and tissue properties in mice fed a high-fat diet (HFD), as they are an emerging model of human obesity, diabetes, and reduced MPR without obstructive CAD. METHODS C57Bl/6 mice fed a HFD or a low-fat diet (control) were imaged at 6, 12, 18 and 24 weeks post-diet. The cardiovascular magnetic resonance (CMR) protocol included multi-slice cine imaging to assess ejection fraction (EF), left-ventricular (LV) mass, LV wall thickness (LVWT), and LV volumes, and first-pass perfusion CMR to quantify MPR. Coronary vascular reactivity, aortic atherosclerosis, myocardial capillary density and tissue fibrosis were also assessed. RESULTS Body weight was increased in HFD mice at 6-24 weeks post-diet (p < 0.05 vs. control). MPR in HFD mice was reduced and LV mass and LVWT were increased in HFD mice at 18 and 24 weeks post-diet (p < 0.05 vs. control). Coronary arteriolar vascular reactivity to adenosine and acetylcholine were reduced in HFD mice (p < 0.05 vs. control). There were no significant differences in cardiac volumes, EF, or capillary density measurements between the two groups. Histology showed interstitial fibrosis in HFD and no aortic atherosclerosis in either group. CONCLUSIONS C57Bl/6 mice fed a HFD for 18-24 weeks have progressively increased LV mass and impaired MPR with fibrosis, normal capillary density and no aortic plaque. These results establish C57Bl/6 mice fed a HFD for 18-24 weeks as a model of impaired MPR without obstructive CAD due to obesity and diabetes.
Collapse
Affiliation(s)
- Nivedita K. Naresh
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Joshua T. Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA USA
| | - Robert J. Lye
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA USA
| | - Xiao Chen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA USA
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, AstraZeneca R&D, Mölndal, Sweden
- Institute of Medicine, Sahlgrenska Academy, CVMD Early Clinical Development, AstraZeneca R&D, Mölndal, Sweden
| | - Christopher M. Kramer
- Cardiovascular Medicine, University of Virginia, Charlottesville, VA USA
- Department of Radiology, University of Virginia, Charlottesville, VA USA
| | - Brian H. Annex
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA USA
- Cardiovascular Medicine, University of Virginia, Charlottesville, VA USA
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA USA
- Department of Radiology, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
24
|
Good ME, Begandt D, DeLalio LJ, Johnstone SR, Isakson BE. Small Interfering RNA-Mediated Connexin Gene Knockdown in Vascular Endothelial and Smooth Muscle Cells. Methods Mol Biol 2016; 1437:71-82. [PMID: 27207287 DOI: 10.1007/978-1-4939-3664-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Global knockout of vascular connexins can result in premature/neonatal death, severe developmental complications, or compensatory up-regulation of different connexin isoforms. Thus, specific connexin gene knockdown using RNAi-mediated technologies is a technique that allows investigators to efficiently monitor silencing effects of single or multiple connexin gene products. The present chapter describes the transient knockdown of connexins in vitro and ex vivo for cells of the blood vessel wall. In detail, different transfection methods for primary endothelial cells and ex vivo thoracodorsal arteries are described. Essential controls for validating transfection efficiency as well as targeted gene knockdown are explained. These protocols provide researchers with the ability to modify connexin gene expression levels in a multitude of experimental setups.
Collapse
Affiliation(s)
- Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Daniela Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Leon J DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Scott R Johnstone
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
25
|
Shu X, Keller TCS, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci 2015; 72:4561-75. [PMID: 26390975 PMCID: PMC4628887 DOI: 10.1007/s00018-015-2021-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/21/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.
Collapse
Affiliation(s)
- Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Daniela Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
| | - Lauren Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VA, 22908, USA.
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, USA.
| |
Collapse
|
26
|
Angus JA, Wright CE. ATP is not involved in α1-adrenoceptor-mediated vasoconstriction in resistance arteries. Eur J Pharmacol 2015; 769:162-6. [PMID: 26593428 DOI: 10.1016/j.ejphar.2015.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/12/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022]
Abstract
Recent publications suggest that α1-adrenoceptor stimulation by exogenous agonists such as phenylephrine in resistance arteries cause contraction through the release of ATP from within the vascular smooth muscle cells. This ATP exits the cell through pannexin-1 channels to act back "autocrine-like" on P2 receptors on the smooth muscle that cause the contraction. In this work we directly test this hypothesis by using a selective P2X1 purinoceptor antagonist NF449 (1-10µM) against phenylephrine and ATP concentration-response curves in small mesenteric arteries of the rat and thoracodorsal arteries of the mouse. We show that NF449 is a simple competitive antagonist of ATP with a pKB of 6.43 and 6.41 in rat and mouse arteries, respectively, but did not antagonise phenylephrine concentration-response curves. This work cautions against the growing overstated role of the reputed pannexin-1/ATP release axis following α1-adrenoceptor activation in small resistance arteries.
Collapse
Affiliation(s)
- James A Angus
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| | - Christine E Wright
- Cardiovascular Therapeutics Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
27
|
Angus JA, Betrie AH, Wright CE. Pannexin-1 channels do not regulate α1-adrenoceptor-mediated vasoconstriction in resistance arteries. Eur J Pharmacol 2015; 750:43-51. [DOI: 10.1016/j.ejphar.2015.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/21/2023]
|
28
|
Billaud M, Chiu YH, Lohman AW, Parpaite T, Butcher JT, Mutchler SM, DeLalio LJ, Artamonov MV, Sandilos JK, Best AK, Somlyo AV, Thompson RJ, Le TH, Ravichandran KS, Bayliss DA, Isakson BE. A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells. Sci Signal 2015; 8:ra17. [PMID: 25690012 DOI: 10.1126/scisignal.2005824] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both purinergic signaling through nucleotides such as ATP (adenosine 5'-triphosphate) and noradrenergic signaling through molecules such as norepinephrine regulate vascular tone and blood pressure. Pannexin1 (Panx1), which forms large-pore, ATP-releasing channels, is present in vascular smooth muscle cells in peripheral blood vessels and participates in noradrenergic responses. Using pharmacological approaches and mice conditionally lacking Panx1 in smooth muscle cells, we found that Panx1 contributed to vasoconstriction mediated by the α1 adrenoreceptor (α1AR), whereas vasoconstriction in response to serotonin or endothelin-1 was independent of Panx1. Analysis of the Panx1-deficient mice showed that Panx1 contributed to blood pressure regulation especially during the night cycle when sympathetic nervous activity is highest. Using mimetic peptides and site-directed mutagenesis, we identified a specific amino acid sequence in the Panx1 intracellular loop that is essential for activation by α1AR signaling. Collectively, these data describe a specific link between noradrenergic and purinergic signaling in blood pressure homeostasis.
Collapse
Affiliation(s)
- Marie Billaud
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yu-Hsin Chiu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Alexander W Lohman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thibaud Parpaite
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Stephanie M Mutchler
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Leon J DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mykhaylo V Artamonov
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Joanna K Sandilos
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Angela K Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Avril V Somlyo
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Thu H Le
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kodi S Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA. Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA. Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
29
|
Butcher JT, Johnson T, Beers J, Columbus L, Isakson BE. Hemoglobin α in the blood vessel wall. Free Radic Biol Med 2014; 73:136-42. [PMID: 24832680 PMCID: PMC4135531 DOI: 10.1016/j.freeradbiomed.2014.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/18/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022]
Abstract
Hemoglobin has been studied and well characterized in red blood cells for over 100 years. However, new work has indicated that the hemoglobin α subunit (Hbα) is also found within the blood vessel wall, where it appears to localize at the myoendothelial junction (MEJ) and plays a role in regulating nitric oxide (NO) signaling between endothelium and smooth muscle. This discovery has created a new paradigm for the control of endothelial nitric oxide synthase activity, nitric oxide diffusion, and, ultimately, vascular tone and blood pressure. This review discusses the current knowledge of hemoglobin׳s properties as a gas exchange molecule in the bloodstream and extrapolates the properties of Hbα biology to the MEJ signaling domain. Specifically, we propose that Hbα is present at the MEJ to regulate NO release and diffusion in a restricted physical space, which would have powerful implications for the regulation of blood flow in peripheral resistance arteries.
Collapse
Affiliation(s)
- Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Tyler Johnson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Jody Beers
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA; Department of Molecular Physiology and Biophysics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
30
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 PMCID: PMC3973613 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
31
|
Adhikari N, Billaud M, Carlson M, Lake SP, Montaniel KRC, Staggs R, Guan W, Walek D, Desir S, Isakson BE, Barocas VH, Hall JL. Vascular biomechanical properties in mice with smooth muscle specific deletion of Ndst1. Mol Cell Biochem 2014; 385:225-38. [PMID: 24101444 PMCID: PMC4853023 DOI: 10.1007/s11010-013-1831-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/26/2013] [Indexed: 12/19/2022]
Abstract
Heparan sulfate proteoglycans act as co-receptors for many chemokines and growth factors. The sulfation pattern of the heparan sulfate chains is a critical regulatory step affecting the binding of chemokines and growth factors. N-deacetylase-N-sulfotransferase1 (Ndst1) is one of the first enzymes to catalyze sulfation. Previously published work has shown that HSPGs alter tangent moduli and stiffness of tissues and cells. We hypothesized that loss of Ndst1 in smooth muscle would lead to significant changes in heparan sulfate modification and the elastic properties of arteries. In line with this hypothesis, the axial tangent modulus was significantly decreased in aorta from mice lacking Ndst1 in smooth muscle (SM22αcre(+)Ndst1(-/-), p < 0.05, n = 5). The decrease in axial tangent modulus was associated with a significant switch in myosin and actin types and isoforms expressed in aorta and isolated aortic vascular smooth muscle cells. In contrast, no changes were found in the compliance of smaller thoracodorsal arteries of SM22αcre(+)Ndst1(-/-) mice. In summary, the major findings of this study were that targeted ablation of Ndst1 in smooth muscle cells results in altered biomechanical properties of aorta and differential expression of myosin and actin types and isoforms.
Collapse
Affiliation(s)
- Neeta Adhikari
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Marie Billaud
- Robert M Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Marjorie Carlson
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Spencer P. Lake
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, MN 55455
| | - Kim Ramil C. Montaniel
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Rod Staggs
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, MN 55455
| | - Dinesha Walek
- Biomedical Genomics Center, University of Minnesota, Minneapolis, MN 55455
| | - Snider Desir
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Brant E. Isakson
- Robert M Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, MN 55455
| | - Jennifer L. Hall
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
32
|
Lohman AW, Billaud M, Isakson BE. Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res 2012; 95:269-80. [PMID: 22678409 DOI: 10.1093/cvr/cvs187] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nucleotide adenosine 5'-triphosphate (ATP) has classically been considered the cell's primary energy currency. Importantly, a novel role for ATP as an extracellular autocrine and/or paracrine signalling molecule has evolved over the past century and extensive work has been conducted to characterize the ATP-sensitive purinergic receptors expressed on almost all cell types in the body. Extracellular ATP elicits potent effects on vascular cells to regulate blood vessel tone but can also be involved in vascular pathologies such as atherosclerosis. While the effects of purinergic signalling in the vasculature have been well documented, the mechanism(s) mediating the regulated release of ATP from cells in the blood vessel wall and circulation are now a key target of investigation. The aim of this review is to examine the current proposed mechanisms of ATP release from vascular cells, with a special emphasis on the transporters and channels involved in ATP release from vascular smooth muscle cells, endothelial cells, circulating red blood cells, and perivascular sympathetic nerves, including vesicular exocytosis, plasma membrane F(1)/F(0)-ATP synthase, ATP-binding cassette (ABC) transporters, connexin hemichannels, and pannexin channels.
Collapse
Affiliation(s)
- Alexander W Lohman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|