1
|
Pires CV, Chawla J, Sollelis L, Oberstaller J, Zhang M, Wang C, Gibbons J, Rayner JC, Otto TD, Marti M, Adams JH. Genetic factors regulating Plasmodium falciparum gametocytogenesis identified by phenotypic screens. Sci Rep 2024; 14:31010. [PMID: 39730700 PMCID: PMC11680961 DOI: 10.1038/s41598-024-82133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Successful transmission of Plasmodium falciparum from one person to another relies on the complete intraerythrocytic development of non-pathogenic sexual gametocytes infectious for anopheline mosquitoes. Understanding the genetic factors that regulate gametocyte development is vital for identifying transmission-blocking targets in the malaria parasite life cycle. Toward this end, we conducted a forward genetic study to characterize the development of gametocytes from sexual commitment to mature stage V. We described a new analysis pipeline for the piggyBac transposon-based mutagenesis phenotypic screen to identify genes that influence both early and late gametocyte stages. We classified individual mutants that increased or decreased parasite abundance as the hypoproducer and hyperproducer phenotypes, respectively, revealing distinctive temporal genetic factors early and late in the sexual development cycle. The study identifies that disruption in factors involved in transcription, protein trafficking and DNA repair are associated with decreasing gametocyte production, while modifications in phosphatase activity are linked to hyperproduction of gametocytes. Our study provides an optimized approach on genotype-phenotype evaluation, offering a new resource for understanding potential targets for therapeutic intervention strategies to disrupt transmission.
Collapse
Affiliation(s)
- Camilla V Pires
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Jyotsna Chawla
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Lauriane Sollelis
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jenna Oberstaller
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Min Zhang
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Chengqi Wang
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Justin Gibbons
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Thomas D Otto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - John H Adams
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA.
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Chawla J, Goldowitz I, Oberstaller J, Zhang M, Pires CV, Navarro F, Sollelis L, Wang CCQ, Seyfang A, Dvorin J, Otto TD, Rayner JC, Marti M, Adams JH. Phenotypic Screens Identify Genetic Factors Associated with Gametocyte Development in the Human Malaria Parasite Plasmodium falciparum. Microbiol Spectr 2023; 11:e0416422. [PMID: 37154686 PMCID: PMC10269797 DOI: 10.1128/spectrum.04164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Transmission of the deadly malaria parasite Plasmodium falciparum from humans to mosquitoes is achieved by specialized intraerythrocytic sexual forms called gametocytes. Though the crucial regulatory mechanisms leading to gametocyte commitment have recently come to light, networks of genes that control sexual development remain to be elucidated. Here, we report a pooled-mutant screen to identify genes associated with gametocyte development in P. falciparum. Our results categorized genes that modulate gametocyte progression as hypoproducers or hyperproducers of gametocytes, and the in-depth analysis of individual clones confirmed phenotypes in sexual commitment rates and putative functions in gametocyte development. We present a new set of genes that have not been implicated in gametocytogenesis before and demonstrate the potential of forward genetic screens in isolating genes impacting parasite sexual biology, an exciting step toward the discovery of new antimalarials for a globally significant pathogen. IMPORTANCE Blocking human-to-vector transmission is an essential step toward malaria elimination. Gametocytes are solely responsible for achieving this transmission and represent an opportunity for therapeutic intervention. While these falciform-shaped parasite stages were first discovered in the 1880s, our understanding of the genetic determinants responsible for their formation and molecular mechanisms that drive their development is limited. In this work, we developed a scalable screening methodology with piggyBac mutants to identify genes that influence the development of gametocytes in the most lethal human malaria parasite, P. falciparum. By doing so, we lay the foundation for large-scale functional genomic studies specifically designed to address remaining questions about sexual commitment, maturation, and mosquito infection in P. falciparum. Such functional genetic screens will serve to expedite the identification of essential pathways and processes for the development of novel transmission-blocking agents.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ilana Goldowitz
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Camilla Valente Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Francesca Navarro
- Boston Children’s Hospital and Harvard Medical School, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauriane Sollelis
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chengqi C. Q. Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Andreas Seyfang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jeffrey Dvorin
- Boston Children’s Hospital and Harvard Medical School, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas D. Otto
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology Zurich, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - John H. Adams
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Donsante S, Siciliano G, Ciardo M, Palmisano B, Messina V, de Turris V, Farinacci G, Serafini M, Silvestrini F, Corsi A, Riminucci M, Alano P. An in vivo humanized model to study homing and sequestration of Plasmodium falciparum transmission stages in the bone marrow. Front Cell Infect Microbiol 2023; 13:1161669. [PMID: 37153157 PMCID: PMC10154621 DOI: 10.3389/fcimb.2023.1161669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Recent evidence suggests that the bone marrow (BM) plays a key role in the diffusion of P. falciparum malaria by providing a "niche" for the maturation of the parasite gametocytes, responsible for human-to-mosquito transmission. Suitable humanized in vivo models to study the mechanisms of the interplay between the parasite and the human BM components are still missing. Methods We report a novel experimental system based on the infusion of immature P. falciparum gametocytes into immunocompromised mice carrying chimeric ectopic ossicles whose stromal and bone compartments derive from human osteoprogenitor cells. Results We demonstrate that immature gametocytes home within minutes to the ossicles and reach the extravascular regions, where they are retained in contact with different human BM stromal cell types. Discussion Our model represents a powerful tool to study BM function and the interplay essential for parasite transmission in P. falciparum malaria and can be extended to study other infections in which the human BM plays a role.
Collapse
Affiliation(s)
- Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Siciliano
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Mariagrazia Ciardo
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Messina
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Valeria de Turris
- Center for Life Nano- and Neuro-Science Istituto Italiano di Tecnologia, Rome, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | | | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Mara Riminucci, ; Pietro Alano,
| | - Pietro Alano
- Dipartimento Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Mara Riminucci, ; Pietro Alano,
| |
Collapse
|
4
|
Stewart LB, Freville A, Voss TS, Baker DA, Awandare GA, Conway DJ. Plasmodium falciparum Sexual Commitment Rate Variation among Clinical Isolates and Diverse Laboratory-Adapted Lines. Microbiol Spectr 2022; 10:e0223422. [PMID: 36409095 PMCID: PMC9769538 DOI: 10.1128/spectrum.02234-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
Asexual blood-stage malaria parasites must produce sexual progeny to infect mosquitoes. It is important to understand the scope and causes of intraspecific variation in sexual commitment rates, particularly for the major human parasite P. falciparum. First, two alternative assay methods of measuring sexual commitment were compared to test a genetically modified P. falciparum line with elevated commitment rates inducible by overexpression of GDV1. The methods yielded correlated measurements with higher sensitivity and precision being achieved by one employing detection of the early gametocyte differentiation marker Pfs16. Thus, this was used to survey a diverse range of parasite lines and test each in multiple biological replicate assays in a serum-free medium supplemented with Albumax. There were differences among six recent clinical isolates from Ghana in their mean rates of sexual commitment per cycle, ranging from 3.3% to 12.2%. Among 13 diverse long-term laboratory-adapted lines, mean sexual commitment rates for most ranged from 4.7% to 13.4%, a few had lower rates with means from 0.3 to 1.6%, and one with a nonfunctional ap2-g gene always showed zero commitment. Among a subset of lines tested for the effects of exogenous choline to suppress commitment, there were significant differences. As expected, there was no effect in a line that had lost the gdv1 gene and that had generally low commitment, whereas the others showed quantitatively variable but significant responses to choline, suggesting potential trait variation. The results indicated the value of performing multiple replicate assays for understanding the variation of this key reproductive trait that likely affects transmission. IMPORTANCE Only sexual-stage malaria parasites are transmitted from human blood to mosquitoes. Thus, it is vital to understand variations in sexual commitment rates because these may be modifiable or susceptible to blocking. Two different methods of commitment rate measurement were first compared, demonstrating higher sensitivity and precision by the detection of an early differentiation marker, which was subsequently used to survey diverse lines. Clinical isolates from Ghana showed significant variation in mean per-cycle commitment rates and variation among biological replicates. Laboratory-adapted lines of diverse origins had a wider range with most being within the range observed for the clinical isolates, while a minority consistently had lower or zero rates. There was quantitative variation in the effects when adding choline to suppress commitment, indicating differing responsiveness of parasites to this environmental modification. Performing multiple assay replicates and comparisons of diverse isolates was important to understand this trait and its potential effects on transmission.
Collapse
Affiliation(s)
- Lindsay B. Stewart
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Aline Freville
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basal, Switzerland
| | - David A. Baker
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - David J. Conway
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
5
|
Paonessa G, Siciliano G, Graziani R, Lalli C, Cecchetti O, Alli C, La Valle R, Petrocchi A, Sferrazza A, Bisbocci M, Falchi M, Toniatti C, Bresciani A, Alano P. Gametocyte-specific and all-blood-stage transmission-blocking chemotypes discovered from high throughput screening on Plasmodium falciparum gametocytes. Commun Biol 2022; 5:547. [PMID: 35668202 PMCID: PMC9170688 DOI: 10.1038/s42003-022-03510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Blocking Plasmodium falciparum human-to-mosquito transmission is essential for malaria elimination, nonetheless drugs killing the pathogenic asexual stages are generally inactive on the parasite transmissible stages, the gametocytes. Due to technical and biological limitations in high throughput screening of non-proliferative stages, the search for gametocyte-killing molecules so far tested one tenth the number of compounds screened on asexual stages. Here we overcome these limitations and rapidly screened around 120,000 compounds, using not purified, bioluminescent mature gametocytes. Orthogonal gametocyte assays, selectivity assays on human cells and asexual parasites, followed by compound clustering, brought to the identification of 84 hits, half of which are gametocyte selective and half with comparable activity against sexual and asexual parasites. We validated seven chemotypes, three of which are, to the best of our knowledge, novel. These molecules are able to inhibit male gametocyte exflagellation and block parasite transmission through the Anopheles mosquito vector in a standard membrane feeding assay. This work shows that interrogating a wide and diverse chemical space, with a streamlined gametocyte HTS and hit validation funnel, holds promise for the identification of dual stage and gametocyte-selective compounds to be developed into new generation of transmission blocking drugs for malaria elimination.
Collapse
Affiliation(s)
- Giacomo Paonessa
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Rita Graziani
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Cristiana Lalli
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Ottavia Cecchetti
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Cristina Alli
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Roberto La Valle
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | | | | | - Monica Bisbocci
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
| | - Mario Falchi
- Centro Nazionale AIDS, Istituto Superiore di Sanità, Roma, Italy
| | - Carlo Toniatti
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy
- Department of Drug Discovery, IRBM S.p.A., Pomezia, Roma, Italy
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Pomezia, Roma, Italy.
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy.
| |
Collapse
|
6
|
Berneburg I, Peddibhotla S, Heimsch KC, Haeussler K, Maloney P, Gosalia P, Preuss J, Rahbari M, Skorokhod O, Valente E, Ulliers D, Simula LF, Buchholz K, Hedrick MP, Hershberger P, Chung TDY, Jackson MR, Schwarzer E, Rahlfs S, Bode L, Becker K, Pinkerton AB. An Optimized Dihydrodibenzothiazepine Lead Compound (SBI-0797750) as a Potent and Selective Inhibitor of Plasmodium falciparum and P. vivax Glucose 6-Phosphate Dehydrogenase 6-Phosphogluconolactonase. Antimicrob Agents Chemother 2022; 66:e0210921. [PMID: 35266827 PMCID: PMC9017341 DOI: 10.1128/aac.02109-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
In Plasmodium, the first two and rate-limiting enzymes of the pentose phosphate pathway, glucose 6-phosphate dehydrogenase (G6PD) and the 6-phosphogluconolactonase, are bifunctionally fused to a unique enzyme named GluPho, differing structurally and mechanistically from the respective human orthologs. Consistent with the enzyme's essentiality for malaria parasite proliferation and propagation, human G6PD deficiency has immense impact on protection against severe malaria, making PfGluPho an attractive antimalarial drug target. Herein we report on the optimized lead compound N-(((2R,4S)-1-cyclobutyl-4-hydroxypyrrolidin-2-yl)methyl)-6-fluoro-4-methyl-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SBI-0797750), a potent and fully selective PfGluPho inhibitor with robust nanomolar activity against recombinant PfGluPho, PvG6PD, and P. falciparum blood-stage parasites. Mode-of-action studies have confirmed that SBI-0797750 disturbs the cytosolic glutathione-dependent redox potential, as well as the cytosolic and mitochondrial H2O2 homeostasis of P. falciparum blood stages, at low nanomolar concentrations. Moreover, SBI-0797750 does not harm red blood cell (RBC) integrity and phagocytosis and thus does not promote anemia. SBI-0797750 is therefore a very promising antimalarial lead compound.
Collapse
Affiliation(s)
- Isabell Berneburg
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kim C. Heimsch
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Kristina Haeussler
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
- University of California, San Diego, La Jolla, California, USA
| | - Patrick Maloney
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Palak Gosalia
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Janina Preuss
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
- University of California, San Diego, La Jolla, California, USA
| | - Mahsa Rahbari
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Elena Valente
- Department of Oncology, University of Torino, Turin, Italy
| | | | | | - Kathrin Buchholz
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Michael P. Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Thomas D. Y. Chung
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Michael R. Jackson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | - Stefan Rahlfs
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Lars Bode
- University of California, San Diego, La Jolla, California, USA
| | - Katja Becker
- Justus Liebig University Giessen, Biochemistry and Molecular Biology, Interdisciplinary Research Center, Giessen, Germany
| | - Anthony B. Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
7
|
Siciliano G, Di Paolo V, Rotili D, Migale R, Pedini F, Casella M, Camerini S, Dalzoppo D, Henderson R, Huijs T, Dechering KJ, Mai A, Caccuri AM, Lalle M, Quintieri L, Alano P. The Nitrobenzoxadiazole Derivative NBDHEX Behaves as Plasmodium falciparum Gametocyte Selective Inhibitor with Malaria Parasite Transmission Blocking Activity. Pharmaceuticals (Basel) 2022; 15:ph15020168. [PMID: 35215282 PMCID: PMC8875241 DOI: 10.3390/ph15020168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
This work describes the activity of 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX) and of its newly identified carboxylic acid metabolite on the human malaria parasite Plasmodium falciparum. NBDHEX has been previously identified as a potent cytotoxic agent against murine and human cancer cells as well as towards the protozoan parasite Giardia duodenalis. We show here that NBDHEX is active in vitro against all blood stages of P. falciparum, with the rare feature of killing the parasite stages transmissible to mosquitoes, the gametocytes, with a 4-fold higher potency than that on the pathogenic asexual stages. This activity importantly translates into blocking parasite transmission through the Anopheles vector in mosquito experimental infections. A mass spectrometry analysis identified covalent NBDHEX modifications in specific cysteine residues of five gametocyte proteins, possibly associated with its antiparasitic effect. The carboxylic acid metabolite of NBDHEX retains the gametocyte preferential inhibitory activity of the parent compound, making this novel P. falciparum transmission-blocking chemotype at least as a new tool to uncover biological processes targetable by gametocyte selective drugs. Both NBDHEX and its carboxylic acid metabolite show very limited in vitro cytotoxicity on VERO cells. This result and previous evidence that NBDHEX shows an excellent in vivo safety profile in mice and is orally active against human cancer xenografts make these molecules potential starting points to develop new P. falciparum transmission-blocking agents, enriching the repertoire of drugs needed to eliminate malaria.
Collapse
Affiliation(s)
- Giulia Siciliano
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.S.); (R.M.)
| | - Veronica Di Paolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (V.D.P.); (D.D.)
| | - Dante Rotili
- Department of Chemistry and Technology of Drugs, “Sapienza” University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Rossella Migale
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.S.); (R.M.)
| | - Francesca Pedini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Marialuisa Casella
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (S.C.)
| | - Serena Camerini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.C.); (S.C.)
| | - Daniele Dalzoppo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (V.D.P.); (D.D.)
| | - Rob Henderson
- TropIQ Health Sciences, 6534 AT Nijmegen, The Netherlands; (R.H.); (T.H.); (K.J.D.)
| | - Tonnie Huijs
- TropIQ Health Sciences, 6534 AT Nijmegen, The Netherlands; (R.H.); (T.H.); (K.J.D.)
| | - Koen J. Dechering
- TropIQ Health Sciences, 6534 AT Nijmegen, The Netherlands; (R.H.); (T.H.); (K.J.D.)
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, “Sapienza” University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Anna Maria Caccuri
- Department of Chemical Sciences and Technologies, University of Tor Vergata, 00133 Rome, Italy;
| | - Marco Lalle
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.S.); (R.M.)
- Correspondence: (M.L.); (L.Q.); (P.A.)
| | - Luigi Quintieri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy; (V.D.P.); (D.D.)
- Correspondence: (M.L.); (L.Q.); (P.A.)
| | - Pietro Alano
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.S.); (R.M.)
- Correspondence: (M.L.); (L.Q.); (P.A.)
| |
Collapse
|
8
|
Gadalla AAH, Siciliano G, Farid R, Alano P, Ranford-Cartwright L, McCarthy JS, Thompson J, Babiker HA. Real-time PCR assays for detection and quantification of early P. falciparum gametocyte stages. Sci Rep 2021; 11:19118. [PMID: 34580326 PMCID: PMC8476600 DOI: 10.1038/s41598-021-97456-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022] Open
Abstract
The use of quantitative qRT-PCR assays for detection and quantification of late gametocyte stages has revealed the high transmission capacity of the human malaria parasite, Plasmodium falciparum. To understand how the parasite adjusts its transmission in response to in-host environmental conditions including antimalarials requires simultaneous quantification of early and late gametocytes. Here, we describe qRT-PCR assays that specifically detect and quantify early-stage P. falciparum gametocytes. The assays are based on expression of known early and late gametocyte genes and were developed using purified stage II and stage V gametocytes and tested in natural and controlled human infections. Genes pfpeg4 and pfg27 are specifically expressed at significant levels in early gametocytes with a limit of quantification of 190 and 390 gametocytes/mL, respectively. In infected volunteers, transcripts of pfpeg4 and pfg27 were detected shortly after the onset of blood stage infection. In natural infections, both early (pfpeg4/pfg27) and late gametocyte transcripts (pfs25) were detected in 71.2% of individuals, only early gametocyte transcripts in 12.6%, and only late gametocyte transcripts in 15.2%. The pfpeg4/pfg27 qRT-PCR assays are sensitive and specific for quantification of circulating sexually committed ring stages/early gametocytes and can be used to increase our understanding of epidemiological processes that modulate P. falciparum transmission.
Collapse
Affiliation(s)
- Amal A H Gadalla
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.,Division of Population Medicine, School of Medicine, College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Ryan Farid
- QIMR Berghofer Medical Research Institute and University of Queensland, Brisbane, Australia
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Lisa Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute and University of Queensland, Brisbane, Australia
| | - Joanne Thompson
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Hamza A Babiker
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.
| |
Collapse
|
9
|
Posayapisit N, Pengon J, Prommana P, Shoram M, Yuthavong Y, Uthaipibull C, Kamchonwongpaisan S, Jupatanakul N. Transgenic pyrimethamine-resistant plasmodium falciparum reveals transmission-blocking potency of P218, a novel antifolate candidate drug. Int J Parasitol 2021; 51:635-642. [PMID: 33713651 DOI: 10.1016/j.ijpara.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Antimalarial drugs capable of targeting multiple parasite stages, particularly the transmissible stages, can be valuable tools for advancing the malaria elimination agenda. Current antifolate drugs such as pyrimethamine can inhibit replicative parasite stages in both humans and mosquitoes, but antifolate resistance remains a challenge. The lack of reliable gametocyte-producing, antifolate-resistant Plasmodium falciparum laboratory strain hinders the study of new antifolate compounds that can overcome antifolate resistance including development stages in the mosquito. We used clustered regularly interspaced short palindromic repeats-Cas9 genome editing to develop a transgenic gametocyte-producing strain of P. falciparum with quadruple mutations (N51I, C59R, S108N, I164L) in the dihydrofolate reductase (dhfr) gene, using NF54 as a parental strain. The transgenic parasites exhibited pyrimethamine resistance while maintaining their gametocyte-producing activity. We then demonstrated that pyrimethamine could no longer inhibit male gametocyte exflagellation in the transgenic parasite. In contrast, P218, the novel antifolate, designed to overcome antifolate resistance, potently inhibited exflagellation. The exflagellation IC50 of P218 was five times lower than the asexual stage half maximal inhibitory concentration (IC50), suggesting a strong barrier for transmission of P218-resistant parasites. The transgenic gametocyte-producing, pyrimethamine-resistant parasite is a robust system for evaluating novel antifolate compounds against non-asexual stage development.
Collapse
Affiliation(s)
- Navaporn Posayapisit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Jutharat Pengon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Molnipha Shoram
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand
| | | | - Natapong Jupatanakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand.
| |
Collapse
|
10
|
Investigation of factors affecting the production of P. falciparum gametocytes in an Indian isolate. 3 Biotech 2021; 11:55. [PMID: 33489674 DOI: 10.1007/s13205-020-02586-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022] Open
Abstract
The fundamental requirement of every gametocytocidal drug screening assay is the sufficient numbers of healthy and viable gametocytes. The number of in vitro gametocytes grossly depends on the genetic capacity of parasites to produce gametocytes and on various environmental factors that are not precisely elucidated. In the present study, we tested multiple environmental factors that are reported, hypothesized, or predicted to influence gametocyte numbers. We observed that hypoxanthine and the use of freshly drawn human blood significantly enhance gametocytemia (p < 0.05) in vitro. However, other tested factors did not significantly affect gametocytemia. The addition of N-acetyl glucosamine to the culture enriched the gametocytes but d-sorbitol (5% v/v) in amounts and duration of incubation tested was unable to do so without negatively affecting the maturity and health of the gametocytes. Although the in vitro gametocyte production depends on the genetic capability of the parasite strain tested, various environmental factors also control the ability of the strain to produce gametocytes up to a certain extent. This is the first study testing the role of various environmental factors that might affect the gametocyte development in a gametocyte producing strain. The results presented herein will help in the optimization of gametocyte production procedures for various gametocytocidal drug screening assays.
Collapse
|
11
|
Novel Method for the Separation of Male and Female Gametocytes of the Malaria Parasite Plasmodium falciparum That Enables Biological and Drug Discovery. mSphere 2020; 5:5/4/e00671-20. [PMID: 32817458 PMCID: PMC7426174 DOI: 10.1128/msphere.00671-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The protozoan Plasmodium falciparum causes the most severe form of human malaria. The development of sexual forms (so-called gametocytes) is crucial for disease transmission. However, knowledge of these forms is severely hampered by the paucity of sex-specific markers and the inability to extract single sex gametocytes in high purity. Moreover, the identification of compounds that specifically affect one sex is difficult due to the female bias of the gametocytes. We have developed a system that allows for the separation of male and female gametocytes from the same population. Applying our system, we show that male and female parasites mature at different rates, which might have implications for transmission. We also identified new sex-specific genes that can be used as sex markers or to unravel sex-specific functions. Our system will not only aid in the discovery of much needed gametocidal compounds, but it also represents a valuable tool for exploring malaria transmission biology. We developed a flow-cytometry-based method to separate and collect cocultured male and female Plasmodium falciparum gametocytes responsible for malaria transmission. The purity of the collected cells was estimated at >97% using flow cytometry, and sorted cells were observed by Giemsa-stained thin-smear and live-cell fluorescence microscopy. The expression of validated sex-specific markers corroborated the sorting strategy. Collected male and female gametocytes were used to confirm three novel sex-specific markers by quantitative real-time PCR that were more enriched in sorted male and female gametocyte populations than existing sex-specific markers. We also applied the method as a proof-of-principle drug screen that allows the identification of drugs that kill gametocytes in a sex-specific manner. Since the developed method allowed for the separation of male and female parasites from the same culture, we observed for the first time a difference in development time between the sexes: females developed faster than males. Hence, the ability to separate male and female gametocytes opens the door to a new field of sex-specific P. falciparum gametocyte biology to further our understanding of malaria transmission. IMPORTANCE The protozoan Plasmodium falciparum causes the most severe form of human malaria. The development of sexual forms (so-called gametocytes) is crucial for disease transmission. However, knowledge of these forms is severely hampered by the paucity of sex-specific markers and the inability to extract single sex gametocytes in high purity. Moreover, the identification of compounds that specifically affect one sex is difficult due to the female bias of the gametocytes. We have developed a system that allows for the separation of male and female gametocytes from the same population. Applying our system, we show that male and female parasites mature at different rates, which might have implications for transmission. We also identified new sex-specific genes that can be used as sex markers or to unravel sex-specific functions. Our system will not only aid in the discovery of much needed gametocidal compounds, but it also represents a valuable tool for exploring malaria transmission biology.
Collapse
|
12
|
Kenthirapalan S, Tran PN, Kooij TWA, Ridgway MC, Rauch M, Brown SHJ, Mitchell TW, Matuschewski K, Maier AG. Distinct adaptations of a gametocyte ABC transporter to murine and human Plasmodium parasites and its incompatibility in cross-species complementation. Int J Parasitol 2020; 50:511-522. [PMID: 32445722 DOI: 10.1016/j.ijpara.2020.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/18/2022]
Abstract
Parasites of the genus Plasmodium infect a wide range of mammalian hosts including humans, primates, bats and arboreal rodents. A hallmark of Plasmodium spp. is the very narrow host range, indicative of matching parasite-host coevolution. Accordingly, their respective genomes harbour many unique genes and gene families that typically encode proteins involved in host cell recognition and remodelling. Whether and to what extent conserved proteins that are shared across Plasmodium spp. also exert distinct species-specific roles remains largely untested. Here, we present detailed functional profiling of the female gametocyte-specific ATP-binding cassette transporter gABCG2 in the murine parasite Plasmodium berghei and compare our findings with data from the orthologous gene in the human parasite Plasmodium falciparum. We show that P. berghei gABCG2 is female-specific and continues to be expressed in zygotes and ookinetes. In contrast to a distinct localization to Iipid-rich gametocyte-specific spots as observed in P. falciparum, the murine malaria parasite homolog is found at the parasite plasma membrane. Plasmodium berghei lacking gABCG2 displays fast asexual blood-stage replication and increased proportions of female gametocytes, consistent with the corresponding P. falciparum knock-out phenotype. Strikingly, cross-species replacement of gABCG2 in either the murine or the human parasite did not restore normal growth rates. The lack of successful complementation despite high conservation across Plasmodium spp. is an indicator of distinct adaptations and tight parasite-host coevolution. Hence, incompatibility of conserved genes in closely related Plasmodium spp. might be more common than previously anticipated.
Collapse
Affiliation(s)
| | - Phuong N Tran
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Melanie C Ridgway
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Manuel Rauch
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Dept. of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany
| | - Simon H J Brown
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Todd W Mitchell
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia; School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Dept. of Molecular Parasitology, Institute of Biology, Humboldt University, 10115 Berlin, Germany.
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| |
Collapse
|
13
|
Bancells C, Llorà-Batlle O, Poran A, Nötzel C, Rovira-Graells N, Elemento O, Kafsack BFC, Cortés A. Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum. Nat Microbiol 2019; 4:144-154. [PMID: 30478286 PMCID: PMC6294672 DOI: 10.1038/s41564-018-0291-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/11/2018] [Indexed: 01/01/2023]
Abstract
Human to vector transmission of malaria requires that some blood-stage parasites abandon asexual growth and convert into non-replicating sexual forms called gametocytes. The initial steps of gametocytogenesis remain largely uncharacterized. Here, we study this part of the malaria life cycle in Plasmodium falciparum using PfAP2-G, the master regulator of sexual conversion, as a marker of commitment. We demonstrate the existence of PfAP2-G-positive sexually committed parasite stages that precede the previously known committed schizont stage. We also found that sexual conversion can occur by two different routes: the previously described route in which PfAP2-G-expressing parasites complete a replicative cycle as committed forms before converting into gametocytes upon re-invasion, or a direct route with conversion within the same cycle as initial PfAP2-G expression. The latter route is linked to early PfAP2-G expression in ring stages. Reanalysis of published single-cell RNA-sequencing (RNA-seq) data confirmed the presence of both routes. Consistent with these results, using plaque assays we observed that, in contrast to the prevailing model, many schizonts produced mixed plaques containing both asexual parasites and gametocytes. Altogether, our results reveal unexpected features of the initial steps of sexual development and extend the current view of this part of the malaria life cycle.
Collapse
Affiliation(s)
- Cristina Bancells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Asaf Poran
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Nötzel
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | | | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Björn F C Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Alfred Cortés
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
14
|
Demanga CG, Eng JWL, Gardiner DL, Roth A, Butterworth A, Adams JH, Trenholme KR, Dalton JP. The development of sexual stage malaria gametocytes in a Wave Bioreactor. Parasit Vectors 2017; 10:216. [PMID: 28464929 PMCID: PMC5414375 DOI: 10.1186/s13071-017-2155-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/25/2017] [Indexed: 11/14/2022] Open
Abstract
Background Blocking malaria gametocyte development in RBCs or their fertilization in the mosquito gut can prevent infection of the mosquito vector and passage of disease to the human host. A ‘transmission blocking’ strategy is a component of future malaria control. However, the lack of robust culture systems for producing large amounts of Plasmodium falciparum gametocytes has limited our understanding of sexual-stage malaria biology and made vaccine or chemotherapeutic discoveries more difficult. Methods The Wave BioreactorTM 20/50 EHT culture system was used to develop a convenient and low-maintenance protocol for inducing commitment of P. falciparum parasites to gametocytogenesis. Culture conditions were optimised to obtain mature stage V gametocytes within 2 weeks in a large-scale culture of up to a 1 l. Results We report a simple method for the induction of gametocytogenesis with N-acetylglucosamine (10 mM) within a Wave Bioreactor. By maintaining the culture for 14–16 days as many as 100 million gametocytes (stage V) were produced in a 1 l culture. Gametocytes isolated using magnetic activated cell sorting (MACS) columns were frozen in aliquots for storage. These were revitalised by thawing and shown to retain their ability to exflagellate and infect mosquitoes (Anopheles stephansi). Conclusions The production of gametocytes in the Wave Bioreactor under GMP-compliant conditions will not only facilitate cellular, developmental and molecular studies of gametocytes, but also the high-throughput screening for new anti-malarial drugs and, possibly, the development of whole-cell gametocyte or sporozoite-based vaccines. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2155-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corine G Demanga
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3 V9, Canada
| | - Jenny W L Eng
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3 V9, Canada
| | - Donald L Gardiner
- Malaria Biology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia, 4072, QLD, Australia
| | - Alison Roth
- Department of Global Health, College of Public Health, University of South Florida, Tampa, 33612, FL, USA
| | - Alice Butterworth
- Malaria Biology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, Australia
| | - John H Adams
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, 4111, QLD, Australia
| | - Katharine R Trenholme
- Malaria Biology Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, Australia.,School of Biomolecular and Physical Sciences, Griffith University, Nathan, 4111, QLD, Australia
| | - John P Dalton
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Québec, H9X 3 V9, Canada. .,School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, 97 Lisburn Road, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
15
|
Dinko B, King E, Targett GAT, Sutherland CJ. Antibody responses to surface antigens of Plasmodium falciparum gametocyte-infected erythrocytes and their relation to gametocytaemia. Parasite Immunol 2017; 38:352-64. [PMID: 27084060 PMCID: PMC5089589 DOI: 10.1111/pim.12323] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 04/06/2016] [Indexed: 01/13/2023]
Abstract
An essential element for continuing transmission of Plasmodium falciparum is the availability of mature gametocytes in human peripheral circulation for uptake by mosquitoes. Natural immune responses to circulating gametocytes may play a role in reducing transmission from humans to mosquitoes. Here, antibody recognition of the surface of mature intra‐erythrocytic gametocytes produced either by a laboratory‐adapted parasite, 3D7, or by a recent clinical isolate of Kenyan origin (HL1204), was evaluated longitudinally in a cohort of Ghanaian school children by flow cytometry. This showed that a proportion of children exhibited antibody responses that recognized gametocyte surface antigens on one or both parasite lines. A subset of the children maintained detectable anti‐gametocyte surface antigen (GSA) antibody levels during the 5 week study period. There was indicative evidence that children with anti‐GSA antibodies present at enrolment were less likely to have patent gametocytaemia at subsequent visits (odds ratio = 0·29, 95% CI 0·06–1·05; P = 0·034). Our data support the existence of antigens on the surface of gametocyte‐infected erythrocytes, but further studies are needed to confirm whether antibodies against them reduce gametocyte carriage. The identification of GSA would allow their evaluation as potential anti‐gametocyte vaccine candidates and/or biomarkers for gametocyte carriage.
Collapse
Affiliation(s)
- B Dinko
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - E King
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - G A T Targett
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - C J Sutherland
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
16
|
Tran PN, Brown SHJ, Mitchell TW, Matuschewski K, McMillan PJ, Kirk K, Dixon MWA, Maier AG. A female gametocyte-specific ABC transporter plays a role in lipid metabolism in the malaria parasite. Nat Commun 2014; 5:4773. [DOI: 10.1038/ncomms5773] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/21/2014] [Indexed: 11/09/2022] Open
|
17
|
Miao J, Wang Z, Liu M, Parker D, Li X, Chen X, Cui L. Plasmodium falciparum: generation of pure gametocyte culture by heparin treatment. Exp Parasitol 2013; 135:541-5. [PMID: 24055216 DOI: 10.1016/j.exppara.2013.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/02/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
Abstract
In vitro culture of Plasmodium falciparum gametocytes is essential for studying sexual development of the parasite. Here we describe a simple method for producing synchronous gametocyte culture without contamination of asexual stages. This method employs heparin's activity in blocking merozoite invasion of erythrocytes to eliminate asexual stage parasites from gametocyte culture. We show that following induction of gametocyte formation, addition of heparin in culture medium for four days effectively eliminates asexual stages and produces pure, synchronous cultures of gametocytes. Compared with the commonly used N-acetylglucosamine treatment method, heparin treatment requires shorter time to eliminate asexual stages and causes significantly less hemolysis in late stage gametocyte cultures.
Collapse
Affiliation(s)
- Jun Miao
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, Bursac D, Angrisano F, Gee M, Hill AF, Baum J, Cowman AF. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 2013; 153:1120-33. [PMID: 23683579 DOI: 10.1016/j.cell.2013.04.029] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/12/2013] [Accepted: 04/16/2013] [Indexed: 12/27/2022]
Abstract
Cell-cell communication is an important mechanism for information exchange promoting cell survival for the control of features such as population density and differentiation. We determined that Plasmodium falciparum-infected red blood cells directly communicate between parasites within a population using exosome-like vesicles that are capable of delivering genes. Importantly, communication via exosome-like vesicles promotes differentiation to sexual forms at a rate that suggests that signaling is involved. Furthermore, we have identified a P. falciparum protein, PfPTP2, that plays a key role in efficient communication. This study reveals a previously unidentified pathway of P. falciparum biology critical for survival in the host and transmission to mosquitoes. This identifies a pathway for the development of agents to block parasite transmission from the human host to the mosquito.
Collapse
Affiliation(s)
- Neta Regev-Rudzki
- Division of Infection and Immunity, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mwakalinga SB, Wang CW, Bengtsson DC, Turner L, Dinko B, Lusingu JP, Arnot DE, Sutherland CJ, Theander TG, Lavstsen T. Expression of a type B RIFIN in Plasmodium falciparum merozoites and gametes. Malar J 2012; 11:429. [PMID: 23259643 PMCID: PMC3544569 DOI: 10.1186/1475-2875-11-429] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ability of Plasmodium falciparum to undergo antigenic variation, by switching expression among protein variants encoded by multigene families, such as var, rif and stevor, is key to the survival of this parasite in the human host. The RIFIN protein family can be divided into A and B types based on the presence or absence of a 25 amino acid motif in the semi-conserved domain. A particular type B RIFIN, PF13_0006, has previously been shown to be strongly transcribed in the asexual and sexual stages of P. falciparum in vitro. METHODS Antibodies to recombinant PF13_0006 RIFIN were used in immunofluorescence and confocal imaging of 3D7 parasites throughout the asexual reproduction and sexual development to examine the expression of PF13_0006. Furthermore, reactivity to recombinant PF13_0006 was measured in plasma samples collected from individuals from both East and West African endemic areas. RESULTS The PF13_0006 RIFIN variant appeared expressed by both released merozoites and gametes after emergence. 7.4% and 12.1% of individuals from East and West African endemic areas, respectively, carry plasma antibodies that recognize recombinant PF13_0006, where the antibody responses were more common among older children. CONCLUSIONS The stage specificity of PF13_0006 suggests that the diversity of RIFIN variants has evolved to provide multiple specialized functions in different stages of the parasite life cycle. These data also suggest that RIFIN variants antigenically similar to PF13_0006 occur in African parasite populations.
Collapse
Affiliation(s)
- Steven B Mwakalinga
- Centre for Medical Parasitology, Department of International Health, Immunology, and Microbiology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Eksi S, Morahan BJ, Haile Y, Furuya T, Jiang H, Ali O, Xu H, Kiattibutr K, Suri A, Czesny B, Adeyemo A, Myers TG, Sattabongkot J, Su XZ, Williamson KC. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLoS Pathog 2012; 8:e1002964. [PMID: 23093935 PMCID: PMC3475683 DOI: 10.1371/journal.ppat.1002964] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
Malaria transmission requires the production of male and female gametocytes in the human host followed by fertilization and sporogonic development in the mosquito midgut. Although essential for the spread of malaria through the population, little is known about the initiation of gametocytogenesis in vitro or in vivo. Using a gametocyte-defective parasite line and genetic complementation, we show that Plasmodium falciparumgametocyte development 1 gene (Pfgdv1), encoding a peri-nuclear protein, is critical for early sexual differentiation. Transcriptional analysis of Pfgdv1 negative and positive parasite lines identified a set of gametocytogenesis early genes (Pfge) that were significantly down-regulated (>10 fold) in the absence of Pfgdv1 and expression was restored after Pfgdv1 complementation. Progressive accumulation of Pfge transcripts during successive rounds of asexual replication in synchronized cultures suggests that gametocytes are induced continuously during asexual growth. Comparison of Pfge gene transcriptional profiles in patient samples divided the genes into two groups differing in their expression in mature circulating gametocytes and providing candidates to evaluate gametocyte induction and maturation separately in vivo. The expression profile of one of the early gametocyte specific genes, Pfge1, correlated significantly with asexual parasitemia, which is consistent with the ongoing induction of gametocytogenesis during asexual growth observed in vitro and reinforces the need for sustained transmission-blocking strategies to eliminate malaria. As malaria control efforts move toward eradication it becomes increasingly important to develop interventions that block transmission. Consequently, advances are needed in our understanding of the production of gametocytes, which are required to transmit the disease. This report provides a first view of the initial stages of gametocytogenesis in vitro and in vivo and demonstrates that during each asexual replication cycle a subpopulation of parasites convert to gametocyte development providing a long transmission window. We also identify a gene that is critical for gametocyte production, P. falciparumgametocyte development 1 (Pfgdv1) and a set of genes specifically expressed during early gametocytogenesis in P. falciparum (Pfge genes). The expression profile and peri-nuclear location of Pfgdv1 in a subpopulation of schizonts is consistent with a role in an early step in gametocytogenesis. The RNA levels of Pfgdv1 and the Pfge genes accumulated gradually over several asexual cycles in vitro suggesting ongoing gametocyte formation during asexual growth. The further evaluation of these genes in a cohort of malaria infected patients indicated they are good candidates for markers to distinguish ring stage parasites committed to gametocyte production from circulating mature gametocytes, allowing direct analysis of the initiation of sexual differentiation in vivo.
Collapse
Affiliation(s)
- Saliha Eksi
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Belinda J. Morahan
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yoseph Haile
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Tetsuya Furuya
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hongying Jiang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Omar Ali
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Huichun Xu
- Center for Research on Genomics and Global Health, Inherited Disease Research Branch, National Human Genomics Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kirakorn Kiattibutr
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Amreena Suri
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Beata Czesny
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, Inherited Disease Research Branch, National Human Genomics Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jetsumon Sattabongkot
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kim C. Williamson
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Lelièvre J, Almela MJ, Lozano S, Miguel C, Franco V, Leroy D, Herreros E. Activity of clinically relevant antimalarial drugs on Plasmodium falciparum mature gametocytes in an ATP bioluminescence "transmission blocking" assay. PLoS One 2012; 7:e35019. [PMID: 22514702 PMCID: PMC3325938 DOI: 10.1371/journal.pone.0035019] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/08/2012] [Indexed: 01/12/2023] Open
Abstract
Background Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes. However, to date, the main limitation for measuring the effect of molecules against mature gametocytes on a large scale is the lack of a standardized and reliable method. Here we provide an efficient method to produce and purify mature gametocytes in vitro. Based on this new procedure, we developed a robust, affordable, and sensitive ATP bioluminescence-based assay. We then assessed the activity of 17 gold-standard anti-malarial drugs on Plasmodium late stage gametocytes. Methods and Findings Difficulties in producing large amounts of gametocytes have limited progress in the development of malaria transmission blocking assays. We improved the method established by Ifediba and Vanderberg to obtain viable, mature gametocytes en masse, whatever the strain used. We designed an assay to determine the activity of antimalarial drugs based on the intracellular ATP content of purified stage IV–V gametocytes after 48 h of drug exposure in 96/384-well microplates. Measurements of drug activity on asexual stages and cytotoxicity on HepG2 cells were also obtained to estimate the specificity of the active drugs. Conclusions The work described here represents another significant step towards determination of the activity of new molecules on mature gametocytes of any strain with an automated assay suitable for medium/high-throughput screening. Considering that the biology of the forms involved in the sexual and asexual stages is very different, a screen of our 2 million-compound library may allow us to discover novel anti-malarial drugs to target gametocyte-specific metabolic pathways.
Collapse
Affiliation(s)
- Joël Lelièvre
- GlaxoSmithKline R&D, Tres Cantos Medicine Development Campus, Malaria Discovery Performance Unit, Madrid, Spain
- * E-mail: (JL); (EH)
| | - Maria Jesus Almela
- GlaxoSmithKline R&D, Tres Cantos Medicine Development Campus, Malaria Discovery Performance Unit, Madrid, Spain
| | - Sonia Lozano
- GlaxoSmithKline R&D, Tres Cantos Medicine Development Campus, Malaria Discovery Performance Unit, Madrid, Spain
| | - Celia Miguel
- GlaxoSmithKline R&D, Tres Cantos Medicine Development Campus, Malaria Discovery Performance Unit, Madrid, Spain
| | - Virginia Franco
- GlaxoSmithKline R&D, Tres Cantos Medicine Development Campus, Malaria Discovery Performance Unit, Madrid, Spain
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Esperanza Herreros
- GlaxoSmithKline R&D, Tres Cantos Medicine Development Campus, Malaria Discovery Performance Unit, Madrid, Spain
- * E-mail: (JL); (EH)
| |
Collapse
|
22
|
Sannella AR, Olivieri A, Bertuccini L, Ferrè F, Severini C, Pace T, Alano P. Specific tagging of the egress-related osmiophilic bodies in the gametocytes of Plasmodium falciparum. Malar J 2012; 11:88. [PMID: 22452991 PMCID: PMC3342164 DOI: 10.1186/1475-2875-11-88] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/27/2012] [Indexed: 11/11/2022] Open
Abstract
Background Gametocytes, the blood stages responsible for Plasmodium falciparum transmission, contain electron dense organelles, traditionally named osmiophilic bodies, that are believed to be involved in gamete egress from the host cell. In order to provide novel tools in the cellular and molecular studies of osmiophilic body biology, a P. falciparum transgenic line in which these organelles are specifically marked by a reporter protein was produced and characterized. Methodology A P. falciparum transgenic line expressing an 80-residue N-terminal fragment of the osmiophilic body protein Pfg377 fused to the reporter protein DsRed, under the control of pfg377 upstream and downstream regulatory regions, was produced. Results The transgenic fusion protein is expressed at the appropriate time and stage of sexual differentiation and is trafficked to osmiophilic bodies as the endogenous Pfg377 protein. These results indicate that a relatively small N-terminal portion of Pfg377 is sufficient to target the DsRed reporter to the gametocyte osmiophilic bodies. Conclusions This is the first identification of a P. falciparum aminoacid sequence able to mediate trafficking to such organelles. To fluorescently tag such poorly characterized organelles opens novel avenues in cellular and imaging studies on their biogenesis and on their role in gamete egress.
Collapse
Affiliation(s)
- Anna Rosa Sannella
- Infectious Diseases Department, Istituto Superiore di Sanità, v.le Regina Elena 299, Rome 00161, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Silvestrini F, Lasonder E, Olivieri A, Camarda G, van Schaijk B, Sanchez M, Younis Younis S, Sauerwein R, Alano P. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 2010; 9:1437-48. [PMID: 20332084 DOI: 10.1074/mcp.m900479-mcp200] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent development of the elongated gametocyte. We developed a protocol to obtain for the first time highly purified preparations of early gametocytes using a transgenic line expressing a green fluorescent protein from the onset of gametocytogenesis. We determined the cellular proteome (1427 proteins) of this parasite stage by high accuracy tandem mass spectrometry and newly determined the proteomes of asexual trophozoites and mature gametocytes, identifying altogether 1090 previously undetected parasite proteins. Quantitative label-free comparative proteomics analysis determined enriched protein clusters for the three parasite developmental stages. Gene set enrichment analysis on the 251 proteins enriched in the early gametocyte proteome revealed that proteins putatively exported and involved in erythrocyte remodeling are the most overrepresented protein set in these stages. One-tenth of the early gametocyte-enriched proteome is constituted of putatively exported proteins, here named PfGEXPs (P. falciparum gametocyte-exported proteins). N-terminal processing and N-acetylation at a conserved leucine residue within the Plasmodium export element pentamotif were detected by mass spectrometry for three such proteins in the early but not in the mature gametocyte sample, further supporting a specific role in protein export in early gametocytogenesis. Previous reports and results of our experiments confirm that the three proteins are indeed exported in the erythrocyte cytoplasm. This work indicates that protein export profoundly marks early sexual differentiation in P. falciparum, probably contributing to host cell remodeling in this phase of the life cycle, and that gametocyte-enriched molecules are recruited to modulate this process in gametocytogenesis.
Collapse
Affiliation(s)
- Francesco Silvestrini
- double daggerDipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Patterns of gene-specific and total transcriptional activity during the Plasmodium falciparum intraerythrocytic developmental cycle. EUKARYOTIC CELL 2009; 8:327-38. [PMID: 19151330 DOI: 10.1128/ec.00340-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The relationships among gene regulatory mechanisms in the malaria parasite Plasmodium falciparum throughout its asexual intraerythrocytic developmental cycle (IDC) remain poorly understood. To investigate the level and nature of transcriptional activity and its role in controlling gene expression during the IDC, we performed nuclear run-on on whole-transcriptome samples from time points throughout the IDC and found a peak in RNA polymerase II-dependent transcriptional activity related to both the number of nuclei per parasite and variable transcriptional activity per nucleus over time. These differential total transcriptional activity levels allowed the calculation of the absolute transcriptional activities of individual genes from gene-specific nuclear run-on hybridization data. For half of the genes analyzed, sense-strand transcriptional activity peaked at the same time point as total activity. The antisense strands of several genes were substantially transcribed. Comparison of the transcriptional activity of the sense strand of each gene to its steady-state RNA abundance across the time points assayed revealed both correlations and discrepancies, implying transcriptional and posttranscriptional regulation, respectively. Our results demonstrate that such comparisons can effectively indicate gene regulatory mechanisms in P. falciparum and suggest that genes with diverse transcriptional activity levels and patterns combine to produce total transcriptional activity levels tied to parasite development during the IDC.
Collapse
|
25
|
Berry A, Deymier C, Sertorio M, Witkowski B, Benoit-Vical F. Pfs 16 pivotal role in Plasmodium falciparum gametocytogenesis: a potential antiplasmodial drug target. Exp Parasitol 2008; 121:189-92. [PMID: 19014941 DOI: 10.1016/j.exppara.2008.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 10/15/2008] [Accepted: 10/24/2008] [Indexed: 11/29/2022]
Abstract
Mature gametocytes, the sexual stage of Plasmodium falciparum, ensure the continued transmission of malaria from the human host to the mosquito vector. Even if gametocytes are not implicated in the malaria physiopathology it is crucial to the spread of malaria. Gametocytes are to be a key target for drugs used against Plasmodium in public health. The expression levels of 4 sexual-stage specific genes, Pfs 16, Pfs 25, Pfg 27 and S 18S rRNA, during gametocytogenesis of various P. falciparum strains were analyzed by a real time PCR assay. The strains showed different capacities to produce mature gametocytes and in parallel different patterns of sexual gene expression. There was a correlation only between Pfs 16 cDNA overexpression in the first 48h of the culture and the production of mature gametocytes. Pfs 16 is an early marker of the development of mature gametocytes in cultures and is therefore a potential target for new antimalarial drugs.
Collapse
Affiliation(s)
- Antoine Berry
- Service de Parasitologie-Mycologie du CHU de Toulouse, Toulouse, France.
| | | | | | | | | |
Collapse
|
26
|
Saeed M, Roeffen W, Alexander N, Drakeley CJ, Targett GAT, Sutherland CJ. Plasmodium falciparum antigens on the surface of the gametocyte-infected erythrocyte. PLoS One 2008; 3:e2280. [PMID: 18509532 PMCID: PMC2386550 DOI: 10.1371/journal.pone.0002280] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 04/07/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The asexual blood stages of the human malaria parasite Plasmodium falciparum produce highly immunogenic polymorphic antigens that are expressed on the surface of the host cell. In contrast, few studies have examined the surface of the gametocyte-infected erythrocyte. METHODOLOGY/PRINCIPAL FINDINGS We used flow cytometry to detect antibodies recognising the surface of live cultured erythrocytes infected with gametocytes of P. falciparum strain 3D7 in the plasma of 200 Gambian children. The majority of children had been identified as carrying gametocytes after treatment for malaria, and each donated blood for mosquito-feeding experiments. None of the plasma recognised the surface of erythrocytes infected with developmental stages of gametocytes (I-IV), but 66 of 194 (34.0%) plasma contained IgG that recognised the surface of erythrocytes infected with mature (stage V) gametocytes. Thirty-four (17.0%) of 200 plasma tested recognised erythrocytes infected with trophozoites and schizonts, but there was no association with recognition of the surface of gametocyte-infected erythrocytes (odds ratio 1.08, 95% C.I. 0.434-2.57; P = 0.851). Plasma antibodies with the ability to recognise gametocyte surface antigens (GSA) were associated with the presence of antibodies that recognise the gamete antigen Pfs 230, but not Pfs48/45. Antibodies recognising GSA were associated with donors having lower gametocyte densities 4 weeks after antimalarial treatment. CONCLUSIONS/SIGNIFICANCE We provide evidence that GSA are distinct from antigens detected on the surface of asexual 3D7 parasites. Our findings suggest a novel strategy for the development of transmission-blocking vaccines.
Collapse
Affiliation(s)
- Maha Saeed
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Will Roeffen
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Neal Alexander
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher J. Drakeley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Geoffrey A. T. Targett
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
27
|
Lanfrancotti A, Bertuccini L, Silvestrini F, Alano P. Plasmodium falciparum: mRNA co-expression and protein co-localisation of two gene products upregulated in early gametocytes. Exp Parasitol 2007; 116:497-503. [PMID: 17367781 DOI: 10.1016/j.exppara.2007.01.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 11/30/2022]
Abstract
Genes encoding Plasmodium falciparum proteins Pfs16 and Pfpeg3/mdv1, specifically appearing in the parasitophorous vacuole of the early gametocytes, are upregulated at the onset of sexual differentiation. Analysis of asexual development in gametocyte producing and non-producing clones of P. falciparum indicated that these genes are also transcribed at a low level in asexual parasites, although their protein products are not detectable in these stages by immunofluorescence. Immunoelectron microscopic analysis of stage II gametocytes indicated that Pfs16 and Pfpeg3/mdv1 proteins co-localise in the parasitophorous vacuole membrane and in all derived membranous structures (such as the multi-laminate membrane whorls of the circular clefts in the infected erythrocyte cytoplasm and the membranes of the gametocyte food vacuoles). In this analysis both proteins were also observed for the first time in the membrane and in the lumen of distinct cleft-like structures in the erythrocyte cytoplasm.
Collapse
Affiliation(s)
- Alessandra Lanfrancotti
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
28
|
Silvestrini F, Bozdech Z, Lanfrancotti A, Di Giulio E, Bultrini E, Picci L, Derisi JL, Pizzi E, Alano P. Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Mol Biochem Parasitol 2005; 143:100-10. [PMID: 16026866 DOI: 10.1016/j.molbiopara.2005.04.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 04/19/2005] [Accepted: 04/21/2005] [Indexed: 11/23/2022]
Abstract
A genome-wide expression analysis was undertaken to identify novel genes specifically activated from early stages of gametocytogenesis in Plasmodium falciparum. A comparative analysis was conducted on sexually induced cultures of reference parasite clone 3D7 and its gametocyteless derivative clone F12. Competitive hybridisations on long-oligomer microarrays representing 4488 P. falciparum genes identified a remarkably small number of transcripts differentially produced in the two clones. Upregulation of the mRNAs for the early gametocyte markers Pfs16 and Pfg27 was however readily detected in 3D7, and such genes were used as reference transcripts in a comparative time course analysis of 3D7 and F12 parasites between 30 and 40 h post-invasion in cultures induced to enter gametocytogenesis. One hundred and seventeen genes had expression profiles which correlated to those of pfs16 and pfg27, and Northern blot analysis and published proteomic data identified those whose expression was gametocyte-specific. Immunofluorescence analysis with antibodies against two of these gene products identified two novel parasite membrane associated, sexual stage-specific proteins. One was produced from stage I gametocytes and the second showed peak production in stage II gametocytes. The two proteins were named Pfpeg-3 and Pfpeg-4, for P. falciparum proteins of early gametocytes.
Collapse
Affiliation(s)
- Francesco Silvestrini
- Dipartimento di Malattie Infettive Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA, Dodemont HJ, Stunnenberg HG, van Gemert GJ, Sauerwein RW, Eling W. A central role for P48/45 in malaria parasite male gamete fertility. Cell 2001; 104:153-64. [PMID: 11163248 DOI: 10.1016/s0092-8674(01)00199-4] [Citation(s) in RCA: 315] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fertilization and zygote development are obligate features of the malaria parasite life cycle and occur during parasite transmission to mosquitoes. The surface protein PFS48/45 is expressed by male and female gametes of Plasmodium falciparum and PFS48/45 antibodies prevent zygote development and transmission. Here, gene disruption was used to show that Pfs48/45 and the ortholog Pbs48/45 from a rodent malaria parasite P. berghei play a conserved and important role in fertilization. p48/45- parasites had a reduced capacity to produce oocysts in mosquitoes due to greatly reduced zygote formation. Unexpectedly, only male gamete fertility of p48/45- parasites was affected, failing to penetrate otherwise fertile female gametes. P48/45 is shown to be a surface protein of malaria parasites with a demonstrable role in fertilization.
Collapse
Affiliation(s)
- M R van Dijk
- Laboratory for Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lensen A, Bril A, van de Vegte M, van Gemert GJ, Eling W, Sauerwein R. Plasmodium falciparum: infectivity of cultured, synchronized gametocytes to mosquitoes. Exp Parasitol 1999; 91:101-3. [PMID: 9920049 DOI: 10.1006/expr.1998.4354] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A Lensen
- Department of Medical Microbiology, University Hospital Nijmegen, University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Dechering KJ, Thompson J, Dodemont HJ, Eling W, Konings RN. Developmentally regulated expression of pfs16, a marker for sexual differentiation of the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 1997; 89:235-44. [PMID: 9364968 DOI: 10.1016/s0166-6851(97)00123-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sexual differentiation is essential for the transmission of Plasmodium to mosquitoes and therefore, for the spread of malaria. The molecular mechanisms underlying sexual differentiation are poorly understood but may be elucidated by a detailed study of the regulation of expression of sexual stage specific genes. In the present work we describe the differential expression of the gene encoding the sexual stage specific protein, Pfs16. We have conducted a comparative analysis of pfs16 promoter activity, RNA levels and the rate of de novo protein synthesis during development of Plasmodium falciparum. Furthermore, we have determined the pattern of expression of pfs16 transcripts at the single cell level by in situ hybridisation. We show that the expression of pfs16 is induced immediately following the invasion of a red blood cell in sexually committed ring stage parasites and continues throughout gametocytogenesis and in macrogametes. The expression of pfs16 is regulated at the level of transcription initiation and modulated by a post-transcriptional process. These results demonstrate that the expression of the pfs16 gene is the earliest event in the sexual differentiation process of P. falciparum described to date.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/biosynthesis
- Antigens, Protozoan/genetics
- Erythrocytes/parasitology
- Gene Expression Regulation, Developmental/genetics
- Genes, Protozoan/genetics
- Humans
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Plasmodium falciparum/genetics
- Plasmodium falciparum/growth & development
- Promoter Regions, Genetic/genetics
- RNA Processing, Post-Transcriptional
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- RNA, Protozoan/analysis
- RNA, Protozoan/metabolism
- Sex Differentiation/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- K J Dechering
- Department of Molecular Biology, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Chapter 2c Glycoproteins of parasites. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-7306(08)60282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Abstract
Three membrane thermotropic transitions at 8, 20, and 40 degrees C have been detected in human red blood cells (RBC) by using spin-labeled stearic acids. Red blood cells infected in vitro by Plasmodium falciparum showed the disappearance of the 8 degrees C transition and a lowering of the 40 degrees C transition to 32 degrees C. The disappearance of the 8 degrees C transition was observed in synchronized cultures of P. falciparum trophozoites as well as in mouse RBC infected in vivo by an asynchronous population of P. berghei. Furthermore, erythrocytes infected by P. falciparum showed an increase in the phosphorylation of protein 4.1. This protein was shown previously to be involved in the 8 degrees C transition, (T. Forte, T. L. Leto, M. Minetti, and V. T. Marchesi, Biochemistry 24, 7876-7880 (1985). Our results suggest that the malaria parasite invasion produces a disorganization of the protein 4.1-membrane interaction.
Collapse
Affiliation(s)
- T Forte
- Istituto Superiore di Sanità, Laboratorio di Biologia Cellulare, Rome, Italy
| | | |
Collapse
|
34
|
|
35
|
Abstract
The invasion of human red blood cells (RBC) by plosmodiol merozoites is a key event during malaria infection, and the inhibition o f invasion is regarded as a crucial goal of malaria vaccine development. For Plasmodium falciparum it has been suggested that the red cell sialoglycoproteins, glycophorins A, B and C, are receptors for invasion and that O-linked or N-linked carbohydrate structures may be involved as receptor sites(1-3). However, recent evidence suggests that the role o f these sialoglycoproteins and carbohydrates may have been overestimated. In this article, Peter Hermentin discusses the contradictory findings and presents a revised model for the invasion process.
Collapse
Affiliation(s)
- P Hermentin
- Behringwerke AG, P.O. Box 1140, D-3550 Marburg/Lahn, FR Germany
| |
Collapse
|
36
|
Hermentin P, Neunziger G, Enders B, Dahr W. Toxic effect of isolated glycophorin A on the in vitro growth of Plasmodium falciparum. BLUT 1987; 54:115-22. [PMID: 3545325 DOI: 10.1007/bf00321041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have examined the inhibitory potencies of glycophorin A, a mixture of glycophorins B and C, chymotryptic fragments of GpA, desialylated GpA, alkaliborohydride treated GpA, and the O-linked tetrasaccharide isolated from GpA on the invasion of human red blood cells by synchronous Plasmodium falciparum (strain FCB). 50% inhibition of invasion, as measured by 3H-hypoxanthine incorporation into parasites, was achieved at 14 and 155 microM for GpA and GpA-CH1, respectively. We have noticed, however, that isolated GpA exhibits a toxic effect on the intraerythrocytic growth of the parasite whereas the chymotryptic fragment (amino acid residues 1-64 of GpA) does not. Thus the inhibitory potency of isolated GpA during erythrocyte invasion by the merozoite should be regarded as the result of both an inhibitory and a toxic effect. The inhibitory effect should be attributed to the carbohydrate-rich outer portion of GpA carrying clusters of neuraminic acid. The toxic effect should be attributed to the hydrophobic region of GpA which might be capable of inserting into the membrane of free merozoites and/or erythrocytes. Our data suggest that results previously obtained with glycoprotein inhibitors carrying hydrophobic portions may have to be questioned.
Collapse
|
37
|
Ponnudurai T, Lensen AH, Meis JF, Meuwissen JH. Synchronization of Plasmodium falciparum gametocytes using an automated suspension culture system. Parasitology 1986; 93 ( Pt 2):263-74. [PMID: 3537921 DOI: 10.1017/s003118200005143x] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An automated suspension culture system for the cultivation of Plasmodium falciparum is described which retains a degree of flexibility which is absent in other automated culture apparatuses. Not only does this system of cultivation promote rapid multiplication of asexual parasites but also permits the development and maturation of gametocytes. Using a combination of gelatin flotation and N-acetyl glucosamine treatment synchronous development of gametocytes was achieved. The total time for gametocyte maturation in vitro under the conditions provided was 7 days. Stages II and V required 48 h for development whilst I, III and IV needed 24 h each. Mature microgametocytes were relatively long lived in comparison with macrogametocytes. Electron microscopic study of the synchronized stages confirmed the observations of Sinden (1982) but, in addition, we noted the presence of Garnham bodies, a cytostome in all stages and dense spherules in stages I-III similar to the fenestrated buttons in sporozoites and exoerythrocytic forms. The relationship between the number of osmiophilic bodies in the mature gametocytes and their ability to escape from the red cell is reaffirmed.
Collapse
|
38
|
Vermeulen AN, van Deursen J, Brakenhoff RH, Lensen TH, Ponnudurai T, Meuwissen JH. Characterization of Plasmodium falciparum sexual stage antigens and their biosynthesis in synchronised gametocyte cultures. Mol Biochem Parasitol 1986; 20:155-63. [PMID: 3528848 DOI: 10.1016/0166-6851(86)90027-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synchronised gametocyte cultures were used to study the biosynthesis of the sexual stage target antigens (Mr 230 000, 48 000 and 25 000) for anti gamete/zygote antibodies. These antigens were shown to be synthesized during gametocyte development from day 2-3 onwards until gametogenesis occurred. After gametogenesis a 25 kDa protein was predominantly synthesized, whereas synthesis of the other target proteins was hardly detectable. The 48, 45, and 25 kDa proteins appeared to be glycosylated, in addition the 25 kDa was also acylated in that it bound [3H]palmitic acid covalently. The iso-electric point (pI) of these proteins was assessed as being 6.0 +/- 0.1 (for both 48 and 45 kDa) and 5.6 +/- 0.1 (for 25 kDa).
Collapse
|
39
|
Affiliation(s)
- B Mons
- Institut voor Tropische Geneeskunde, Postbus 9605, 2300 RC Leiden, The Netherlands
| |
Collapse
|
40
|
Jungery M. Studies on the biochemical basis of the interaction of the merozoites of Plasmodium falciparum and the human red cell. Trans R Soc Trop Med Hyg 1985; 79:591-7. [PMID: 3913066 DOI: 10.1016/0035-9203(85)90164-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The red cell membrane appears to possess receptors for malarial parasites which are species specific. Plasmodium falciparum invades red cells that have the surface sialoglycoproteins, glycophorins A, B and C. Several regions of these molecules are critical to parasite binding. Invasion of red cells by merozoites can be blocked by both antibodies directed to specific sites on glycophorin and tryptic fragments of these molecules. The parasites appear to bind to the red cells in a lectin-like fashion, since three monosaccharides, namely N-acetyl-glucosamine (Glu NAc), N-acetyl-galactosamine (Gal NAc) and N-acetyl-neuraminic acid (Neu NAc), can specifically block parasite invasion in vitro. Neoglycoproteins made by coupling these sugars to BSA are particularly effective. Possible mechanisms of parasite attachment to and invasion of red cells are discussed.
Collapse
|