1
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
2
|
Choi EL, Taheri N, Tan E, Matsumoto K, Hayashi Y. The Crucial Role of the Interstitial Cells of Cajal in Neurointestinal Diseases. Biomolecules 2023; 13:1358. [PMID: 37759758 PMCID: PMC10526372 DOI: 10.3390/biom13091358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neurointestinal diseases result from dysregulated interactions between the nervous system and the gastrointestinal (GI) tract, leading to conditions such as Hirschsprung's disease and irritable bowel syndrome. These disorders affect many people, significantly diminishing their quality of life and overall health. Central to GI motility are the interstitial cells of Cajal (ICC), which play a key role in muscle contractions and neuromuscular transmission. This review highlights the role of ICC in neurointestinal diseases, revealing their association with various GI ailments. Understanding the functions of the ICC could lead to innovative perspectives on the modulation of GI motility and introduce new therapeutic paradigms. These insights have the potential to enhance efforts to combat neurointestinal diseases and may lead to interventions that could alleviate or even reverse these conditions.
Collapse
Affiliation(s)
- Egan L. Choi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Elijah Tan
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Kenjiro Matsumoto
- Laboratory of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyoto 610-0395, Japan;
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Szałwińska P, Włodarczyk J, Spinelli A, Fichna J, Włodarczyk M. IBS-Symptoms in IBD Patients-Manifestation of Concomitant or Different Entities. J Clin Med 2020; 10:jcm10010031. [PMID: 33374388 PMCID: PMC7794700 DOI: 10.3390/jcm10010031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional heterogenous disease with a multifactorial pathogenesis. It is characterized by abdominal pain, discomfort, and alteration in gut motility. The occurrence of similar symptoms was observed in patients in clinical remission of inflammatory bowel diseases (IBD) that is Crohn's disease (CD) and ulcerative colitis (UC), which pathogenesis is also not fully understood. Hence, arose the question if these symptoms are "true IBS" imposed on IBD, or is it a subclinical form of IBD or even pre-IBD? In this article, based on a narrative overview of the literature, we try to find an answer to this query by discussing the pathogenesis and overlaps between these conditions.
Collapse
Affiliation(s)
- Patrycja Szałwińska
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (J.W.); (J.F.)
| | - Jakub Włodarczyk
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (J.W.); (J.F.)
- Department of General and Colorectal Surgery, Medical University of Lodz, Haller Square 1, 90-624 Lodz, Poland
| | - Antonino Spinelli
- Colon and Rectal Surgery Division, Humanitas Clinical and Research Center IRCCS, Rozzano, 20089 Milano, Italy;
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milano, Italy
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (P.S.); (J.W.); (J.F.)
| | - Marcin Włodarczyk
- Department of General and Colorectal Surgery, Medical University of Lodz, Haller Square 1, 90-624 Lodz, Poland
- Correspondence:
| |
Collapse
|
4
|
Kim JH, Nam SJ, Park SC, Lee SH, Kim TS, Lee M, Park JM, Choi DH, Kang CD, Lee SJ, Ryu YJ, Lee K, Park SY. Association between interstitial cells of Cajal and anti-vinculin antibody in human stomach. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:185-191. [PMID: 32140042 PMCID: PMC7043993 DOI: 10.4196/kjpp.2020.24.2.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Interstitial cells of Cajal (ICC) are known as the pacemaker cells of gastrointestinal tract, and it has been reported that acute gastroenteritis induces intestinal dysmotility through antibody to vinculin, a cytoskeletal protein in gut, resulting in small intestinal bacterial overgrowth, so that anti-vinculin antibody can be used as a biomarker for irritable bowel syndrome. This study aimed to determine correlation between serum anti-vinculin antibody and ICC density in human stomach. Gastric specimens from 45 patients with gastric cancer who received gastric surgery at Kangwon National University Hospital from 2013 to 2017 were used. ICC in inner circular muscle, and myenteric plexus were counted. Corresponding patient's blood samples were used to determine the amount of anti-vinculin antibody by enzyme-linked immunosorbent assay. Analysis was done to determine correlation between anti-vinculin antibody and ICC numbers. Patients with elevated anti-vinculin antibody titer (above median value) had significantly lower number of ICC in inner circular muscle (71.0 vs. 240.5, p = 0.047), and myenteric plexus (12.0 vs. 68.5, p < 0.01) compared to patients with lower anti-vinculin antibody titer. Level of serum anti-vinculin antibody correlated significantly with density of ICC in myenteric plexus (r = −0.379, p = 0.01; Spearman correlation). Increased level of circulating anti-vinculin antibody was significantly correlated with decreased density of ICC in myenteric plexus of human stomach.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Seung-Joo Nam
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Sung Chul Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Tae Suk Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Minjong Lee
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Jin Myung Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Dae Hee Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Chang Don Kang
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Sung Joon Lee
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Young Joon Ryu
- Department of Pathology, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - Kyungyul Lee
- Department of Pathology, Kangwon National University School of Medicine, Chuncheon 24289, Korea
| | - So Young Park
- Kangwon National University Institute of Medical Science, Chuncheon 24289, Korea
| |
Collapse
|
5
|
Veress B, Ohlsson B. Spatial relationship between telocytes, interstitial cells of Cajal and the enteric nervous system in the human ileum and colon. J Cell Mol Med 2020; 24:3399-3406. [PMID: 31983076 PMCID: PMC7131924 DOI: 10.1111/jcmm.15013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Telocytes (TCs) are recently described interstitial cells, present in almost all human organs. Among many other functions, TCs regulate gastrointestinal motility together with the interstitial cells of Cajal (ICCs). TCs and ICCs have close localization in the human myenteric plexus; however, the exact spatial relationship cannot be clearly examined by previously applied double immunofluorescence/confocal microscopy. Data on TCs and submucosal ganglia and their relationship to intestinal nerves are scarce. The aim of the study was to analyse the spatial relationship among these components in the normal human ileum and colon with double CD34/CD117 and CD34/S100 immunohistochemistry and high‐resolution light microscopy. TCs were found to almost completely encompass both myenteric and submucosal ganglia in ileum and colon. An incomplete monolayer of ICCs was localized between the TCs and the longitudinal muscle cells in ileum, whereas only scattered ICCs were present on both surfaces of the colonic myenteric ganglia. TC‐telopodes were observed within colonic myenteric ganglia. TCs, but no ICCs, were present within and around the interganglionic nerve fascicles, submucosal nerves and mesenterial nerves, but were only observed along small nerves intramuscularly. These anatomic differences probably reflect the various roles of TCs and ICCs in the bowel function.
Collapse
Affiliation(s)
- Béla Veress
- Department of Pathology, Skåne University Hospital, Malmö, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Skane University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
6
|
Fintl C, Lindberg R, McL Press C. Myenteric networks of interstitial cells of Cajal are reduced in horses with inflammatory bowel disease. Equine Vet J 2019; 52:298-304. [PMID: 31397916 DOI: 10.1111/evj.13160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/27/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a well-recognised but poorly understood disease complex in the horse. Clinical signs may vary but often include weight loss, diarrhoea and colic. The effect this disease process may have on the gastrointestinal pacemaker cells (the interstitial cells of Cajal), enteric neurons and glial cells has not been previously evaluated in the horse. OBJECTIVES To compare the density of the interstitial cells of Cajal (ICC), enteric neurons and glial cells in horses with IBD to those of normal horses using immunohistochemical markers. STUDY DESIGN Retrospective, quantitative immunohistochemical study. METHODS Ileal samples were collected during post-mortem examinations from 14 horses with a clinical and histopathological diagnosis of IBD and from eight normal controls. All horses were Standardbreds 1-15 years of age. Six of the IBD cases had eosinophilic gastroenteritis (EG) while the remaining eight had granulomatous enteritis (GE). Tissue sections were labelled with anti-CD117 (c-Kit), anti-TMEM16 (TMEM16), anti-protein gene product (PGP9.5) and anti-glial fibrillary acidic protein (GFAP) using standard immunohistochemical labelling techniques. Image analysis was performed to quantify the presence of ICC (CD117, TMEM16) as well as neuronal (PGP9.5) and enteroglial (GFAP) networks. RESULTS Interstitial cells of Cajal networks were significantly reduced in the myenteric plexus (MP) region in IBD horses compared with the controls for both markers (P<0.05). There was no significant difference in the density of the neuronal or glial cell markers between the two groups (P>0.05). MAIN LIMITATIONS The number of horses included in the study. CONCLUSIONS Disruption to ICC networks may contribute to the clinical signs of colic in some horses with IBD. Further studies are needed to establish the pathophysiological mechanisms involved and the functional effects of the reduced ICC networks.
Collapse
Affiliation(s)
- C Fintl
- Norwegian University of Life Sciences, Oslo, Norway
| | - R Lindberg
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - C McL Press
- Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
7
|
Yadak R, Breur M, Bugiani M. Gastrointestinal Dysmotility in MNGIE: from thymidine phosphorylase enzyme deficiency to altered interstitial cells of Cajal. Orphanet J Rare Dis 2019; 14:33. [PMID: 30736844 PMCID: PMC6368792 DOI: 10.1186/s13023-019-1016-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background MNGIE is a rare and fatal disease in which absence of the enzyme thymidine phosphorylase induces systemic accumulation of thymidine and deoxyuridine and secondary mitochondrial DNA alterations. Gastrointestinal (GI) symptoms are frequently reported in MNGIE patients, however, they are not resolved with the current treatment interventions. Recently, our understanding of the GI pathology has increased, which rationalizes the pursuit of more targeted therapeutic strategies. In particular, interstitial cells of Cajal (ICC) play key roles in GI physiology and are involved in the pathogenesis of the GI dysmotility. However, understanding of the triggers of ICC deficits in MNGIE is lacking. Herein, we review the current knowledge about the pathology of GI dysmotility in MNGIE, discuss potential mechanisms in relation to ICC loss/dysfunction, remark on the limited contribution of the current treatments, and propose intervention strategies to overcome ICC deficits. Finally, we address the advances and new research avenues offered by organoids and tissue engineering technologies, and propose schemes to implement to further our understanding of the GI pathology and utility in regenerative and personalized medicine in MNGIE. Conclusion Interstitial cells of Cajal play key roles in the physiology of the gastrointestinal motility. Evaluation of their status in the GI dysmotility related to MNGIE would be valuable for diagnosis of MNGIE. Understanding the underlying pathological and molecular mechanisms affecting ICC is an asset for the development of targeted prevention and treatment strategies for the GI dysmotility related to MNGIE.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Marjolein Breur
- Department of Child Neurology, VU University Medical center, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
The ecto-enzymes CD73 and adenosine deaminase modulate 5'-AMP-derived adenosine in myofibroblasts of the rat small intestine. Purinergic Signal 2018; 14:409-421. [PMID: 30269308 DOI: 10.1007/s11302-018-9623-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
Adenosine is a versatile signaling molecule recognized to physiologically influence gut motor functions. Both the duration and magnitude of adenosine signaling in enteric neuromuscular function depend on its availability, which is regulated by the ecto-enzymes ecto-5'-nucleotidase (CD73), alkaline phosphatase (AP), and ecto-adenosine deaminase (ADA) and by dipyridamole-sensitive equilibrative transporters (ENTs). Our purpose was to assess the involvement of CD73, APs, ecto-ADA in the formation of AMP-derived adenosine in primary cultures of ileal myofibroblasts (IMFs). IMFs were isolated from rat ileum longitudinal muscle segments by means of primary explant technique and identified by immunofluorescence staining for vimentin and α-smooth muscle actin. IMFs confluent monolayers were exposed to exogenous 5'-AMP in the presence or absence of CD73, APs, ecto-ADA, or ENTs inhibitors. The formation of adenosine and its metabolites in the IMFs medium was monitored by high-performance liquid chromatography. The distribution of CD73 and ADA in IMFs was detected by confocal immunocytochemistry and qRT-PCR. Exogenous 5'-AMP was rapidly cleared being almost undetectable after 60-min incubation, while adenosine levels significantly increased. Treatment of IMFs with CD73 inhibitors markedly reduced 5'-AMP clearance whereas ADA blockade or inhibition of both ADA and ENTs prevented adenosine catabolism. By contrast, inhibition of APs did not affect 5'-AMP metabolism. Immunofluorescence staining and qRT-PCR analysis confirmed the expression of CD73 and ADA in IMFs. Overall, our data show that in IMFs an extracellular AMP-adenosine pathway is functionally active and among the different enzymatic pathways regulating extracellular adenosine levels, CD73 and ecto-ADA represent the critical catabolic pathway.
Collapse
|
9
|
Kaji N, Nakayama S, Horiguchi K, Iino S, Ozaki H, Hori M. Disruption of the pacemaker activity of interstitial cells of Cajal via nitric oxide contributes to postoperative ileus. Neurogastroenterol Motil 2018; 30. [PMID: 29542843 DOI: 10.1111/nmo.13334] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/11/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Interstitial cells of Cajal (ICC) serve as intestinal pacemakers. Postoperative ileus (POI) is a gastrointestinal motility disorder that occurs following abdominal surgery, which is caused by inflammation-induced dysfunction of smooth muscles and enteric neurons. However, the participation of ICC in POI is not well understood. In this study, we investigated the functional changes of ICC in a mouse model of POI. METHODS Intestinal manipulation (IM) was performed to induce POI. At 24 h or 48 h after IM, the field potential of the intestinal tunica muscularis was investigated. Tissues were also examined by immunohistochemistry and electron microscopic analysis. KEY RESULTS Gastrointestinal transit was significantly decreased with intestinal tunica muscularis inflammation at 24 h after IM, which was ameliorated at 48 h after IM. The generation and propagation of pacemaker potentials were disrupted at 24 h after IM and recovered to the control level at 48 h after IM. ICC networks, detected by c-Kit immunoreactivity, were remarkably disrupted at 24 h after IM. Electron microscopic analysis revealed abnormal vacuoles in the ICC cytoplasm. Interestingly, the ICC networks recovered at 48 h after IM. Administration of aminoguanidine, an inducible nitric oxide synthase inhibitor, suppressed the disruption of ICC networks. Ileal smooth muscle tissue cultured in the presence of nitric oxide donor, showed disrupted ICC networks. CONCLUSIONS AND INFERENCES The generation and propagation of pacemaker potentials by ICC are disrupted via nitric oxide after IM, and this disruption may contribute to POI. When inflammation is ameliorated, ICC can recover their pacemaker function.
Collapse
Affiliation(s)
- N Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - S Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Horiguchi
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - S Iino
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - H Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - M Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Spontaneous body contractions are modulated by the microbiome of Hydra. Sci Rep 2017; 7:15937. [PMID: 29162937 PMCID: PMC5698334 DOI: 10.1038/s41598-017-16191-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/08/2017] [Indexed: 02/08/2023] Open
Abstract
Spontaneous contractile activity, such as gut peristalsis, is ubiquitous in animals and is driven by pacemaker cells. In humans, disruption of the contraction pattern leads to gastrointestinal conditions, which are also associated with gut microbiota dysbiosis. Spontaneous contractile activity is also present in animals lacking gastrointestinal tract. Here we show that spontaneous body contractions in Hydra are modulated by symbiotic bacteria. Germ-free animals display strongly reduced and less regular contraction frequencies. These effects are partially restored by reconstituting the natural microbiota. Moreover, soluble molecule(s) produced by symbiotic bacteria may be involved in contraction frequency modulation. As the absence of bacteria does not impair the contractile ability itself, a microbial effect on the pacemakers seems plausible. Our findings indicate that the influence of bacteria on spontaneous contractile activity is present in the early-branching cnidarian hydra as well as in Bilateria, and thus suggest an evolutionary ancient origin of interaction between bacteria and metazoans, opening a window into investigating the roots of human motility disorders.
Collapse
|
11
|
Vieira C, Ferreirinha F, Magalhães-Cardoso MT, Silva I, Marques P, Correia-de-Sá P. Post-inflammatory Ileitis Induces Non-neuronal Purinergic Signaling Adjustments of Cholinergic Neurotransmission in the Myenteric Plexus. Front Pharmacol 2017; 8:811. [PMID: 29167643 PMCID: PMC5682326 DOI: 10.3389/fphar.2017.00811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Uncoupling between ATP overflow and extracellular adenosine formation changes purinergic signaling in post-inflammatory ileitis. Adenosine neuromodulation deficits were ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular adenine nucleotides in the inflamed ileum. Here, we hypothesized that inflammation-induced changes in cellular density may also account to unbalance the release of purines and their influence on [3H]acetylcholine release from longitudinal muscle-myenteric plexus preparations of the ileum of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-treated rats. The population of S100β-positive glial cells increase, whereas Ano-1-positive interstitial cells of Cajal (ICCs) diminished, in the ileum 7-days after the inflammatory insult. In the absence of changes in the density of VAChT-positive cholinergic nerves detected by immunofluorescence confocal microscopy, the inflamed myenteric plexus released smaller amounts of [3H]acetylcholine which also became less sensitive to neuronal blockade by tetrodotoxin (1 μM). Instead, [3H]acetylcholine release was attenuated by sodium fluoroacetate (5 mM), carbenoxolone (10 μM) and A438079 (3 μM), which prevent activation of glial cells, pannexin-1 hemichannels and P2X7 receptors, respectively. Sodium fluoroacetate also decreased ATP overflow without significantly affecting the extracellular adenosine levels, thus indicating that surplus ATP release parallels reactive gliosis in post-inflammatory ileitis. Conversely, loss of ICCs may explain the lower amounts of adenosine detected in TNBS-treated preparations, since blockade of Cav3 (T-type) channels existing in ICCs with mibefradil (3 μM) or inhibition of the equilibrative nucleoside transporter 1 with dipyridamole (0.5 μM), both decreased extracellular adenosine. Data indicate that post-inflammatory ileitis operates a shift on purinergic neuromodulation reflecting the upregulation of ATP-releasing enteric glial cells and the depletion of ICCs accounting for decreased adenosine overflow via equilibrative nucleoside transporters.
Collapse
Affiliation(s)
- Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria T Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Patrícia Marques
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Zhou J, O'Connor MD, Ho V. The Potential for Gut Organoid Derived Interstitial Cells of Cajal in Replacement Therapy. Int J Mol Sci 2017; 18:ijms18102059. [PMID: 28954442 PMCID: PMC5666741 DOI: 10.3390/ijms18102059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/15/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022] Open
Abstract
Effective digestion requires propagation of food along the entire length of the gastrointestinal tract. This process involves coordinated waves of peristalsis produced by enteric neural cell types, including different categories of interstitial cells of Cajal (ICC). Impaired food transport along the gastrointestinal tract, either too fast or too slow, causes a range of gut motility disorders that affect millions of people worldwide. Notably, loss of ICC has been shown to affect gut motility. Patients that suffer from gut motility disorders regularly experience diarrhoea and/or constipation, insomnia, anxiety, attention lapses, irritability, dizziness, and headaches that greatly affect both physical and mental health. Limited treatment options are available for these patients, due to the scarcity of human gut tissue for research and transplantation. Recent advances in stem cell technology suggest that large amounts of rudimentary, yet functional, human gut tissue can be generated in vitro for research applications. Intriguingly, these stem cell-derived gut organoids appear to contain functional ICC, although their frequency and functional properties are yet to be fully characterised. By reviewing methods of gut organoid generation, together with what is known of the molecular and functional characteristics of ICC, this article highlights short- and long-term goals that need to be overcome in order to develop ICC-based therapies for gut motility disorders.
Collapse
Affiliation(s)
- Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
- Medical Sciences Research Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Michael D O'Connor
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
- Medical Sciences Research Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
| | - Vincent Ho
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
- Medical Sciences Research Group, Western Sydney University, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
13
|
Ibba-Manneschi L, Rosa I, Manetti M. Telocytes in Chronic Inflammatory and Fibrotic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 913:51-76. [PMID: 27796880 DOI: 10.1007/978-981-10-1061-3_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Telocytes are a peculiar stromal (interstitial) cell type implicated in tissue homeostasis and development, as well as in the pathophysiology of several disorders. Severe damage and reduction of telocytes have been reported during fibrotic remodeling of multiple organs in various diseases, including scleroderma, Crohn's disease, ulcerative colitis, and liver fibrosis, as well as in chronic inflammatory lesions like those of primary Sjögren's syndrome and psoriasis. Owing to their close relationship with stem cells, telocytes are also supposed to contribute to tissue repair/regeneration. Indeed, telocytes are universally considered as "connecting cells" mostly oriented to intercellular signaling. On the basis of recent promising experimental findings, in the near future, telocyte transplantation might represent a novel therapeutic opportunity to control the evolution of chronic inflammatory and fibrotic diseases. Notably, there is evidence to support that telocytes could help in preventing abnormal activation of immune cells and fibroblasts, as well as in attenuating the altered matrix organization during the fibrotic process. By targeting telocytes alone or in tandem with stem cells, we might be able to promote regeneration and prevent the evolution to irreversible tissue injury. Besides exogenous transplantation, exploring pharmacological or non-pharmacological methods to enhance the growth and/or survival of telocytes could be an additional therapeutic strategy for many disorders.
Collapse
Affiliation(s)
- Lidia Ibba-Manneschi
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134, Italy
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134, Italy.
| |
Collapse
|
14
|
Abdalla SM, Kalra G, Moshiree B. Motility Evaluation in the Patient with Inflammatory Bowel Disease. Gastrointest Endosc Clin N Am 2016; 26:719-38. [PMID: 27633599 DOI: 10.1016/j.giec.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with inflammatory bowel disease (IBD) suffer frequently from functional bowel diseases (FBD) and motility disorders. Management of FBD and motility disorders in IBD combined with continued treatment of a patient's IBD symptoms will likely lead to better clinical outcomes and improve the patient's quality of life. The goals of this review were to summarize the most recent literature on motility disturbances in patients with IBD and to give a brief overview of the ranges of motility disturbances, from reflux disease to anorectal disorders, and discuss their diagnosis and specific management.
Collapse
Affiliation(s)
- Sherine M Abdalla
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, 1611 NW 12th Avenue, Central Building, 600D, Miami, FL 33136, USA
| | - Gorav Kalra
- Department of Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, CRB, 11th Floor, Miami, FL 33136, USA
| | - Baha Moshiree
- Department of Medicine, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, CRB Suite 971, Miami, FL 33136, USA.
| |
Collapse
|
15
|
Kaji N, Horiguchi K, Iino S, Nakayama S, Ohwada T, Otani Y, Firman, Murata T, Sanders KM, Ozaki H, Hori M. Nitric oxide-induced oxidative stress impairs pacemaker function of murine interstitial cells of Cajal during inflammation. Pharmacol Res 2016; 111:838-848. [PMID: 27468647 DOI: 10.1016/j.phrs.2016.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/24/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
Abstract
The pacemaker function of interstitial cells of Cajal (ICC) is impaired during intestinal inflammation. The aim of this study is to clarify the pathophysiological mechanisms of ICC dysfunction during inflammatory condition by using intestinal cell clusters. Cell clusters were prepared from smooth muscle layer of murine jejunum and treated with interferon-gamma and lipopolysaccharide (IFN-γ+LPS) for 24h to induce inflammation. Pacemaker function of ICC was monitored by measuring cytosolic Ca(2+) oscillation in the presence of nifedipine. Treatment with IFN-γ+LPS impaired the pacemaker activity of ICC with increasing mRNA level of interleukin-1 beta, tumor necrosis factor-alpha and interleukin-6 in cell clusters; however, treatment with these cytokines individually had little effect on pacemaker activity of ICC. Treatment with IFN-γ+LPS also induced the expression of inducible nitric oxide synthase (iNOS) in smooth muscle cells and resident macrophages, but not in ICC. Pretreatment with NOS inhibitor, L-NAME or iNOS inhibitor, 1400W ameliorated IFN-γ+LPS-induced pacemaker dysfunction of ICC. Pretreatment with guanylate cyclase inhibitor, ODQ did not, but antioxidant, apocynin, to suppress NO-induced oxidative stress, significantly suppressed the impairment of ICC function induced by IFN-γ+LPS. Treatment with IFN-γ+LPS also decreased c-Kit-positive ICC, which was prevented by pretreatment with L-NAME. However, apoptotic ICC were not detected in IFN-γ+LPS-treated clusters, suggesting IFN-γ+LPS stimulation just changed the phenotype of ICC but not induced cell death. Moreover, ultrastructure of ICC was not disturbed by IFN-γ+LPS. In conclusion, ICC dysfunction during inflammation is induced by NO-induced oxidative stress rather than NO/cGMP signaling. NO-induced oxidative stress might be the main factor to induce phenotypic changes of ICC.
Collapse
Affiliation(s)
- Noriyuki Kaji
- Department of Veterinary Pharmacology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuhide Horiguchi
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Satoshi Iino
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomohiko Ohwada
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuko Otani
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Firman
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, Reno, NV 89557-0357, USA
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
16
|
Kondo J, Powell AE, Wang Y, Musser MA, Southard-Smith EM, Franklin JL, Coffey RJ. LRIG1 Regulates Ontogeny of Smooth Muscle-Derived Subsets of Interstitial Cells of Cajal in Mice. Gastroenterology 2015; 149:407-19.e8. [PMID: 25921371 PMCID: PMC4527342 DOI: 10.1053/j.gastro.2015.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/06/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Interstitial cells of Cajal (ICC) control intestinal smooth muscle contraction to regulate gut motility. ICC within the plane of the myenteric plexus (ICC-MY) arise from KIT-positive progenitor cells during mouse embryogenesis. However, little is known about the ontogeny of ICC associated with the deep muscular plexus (ICC-DMP) in the small intestine and ICC associated with the submucosal plexus (ICC-SMP) in the colon. Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) marks intestinal epithelial stem cells, but the role of LRIG1 in nonepithelial intestinal cells has not been identified. We sought to determine the ontogeny of ICC-DMP and ICC-SMP, and whether LRIG1 has a role in their development. METHODS Lrig1-null mice (homozygous Lrig1-CreERT2) and wild-type mice were analyzed by immunofluorescence and transit assays. Transit was evaluated by passage of orally administered rhodamine B-conjugated dextran. Lrig1-CreERT2 mice or mice with CreERT2 under control of an inducible smooth muscle promoter (Myh11-CreERT2) were crossed with Rosa26-LSL-YFP mice for lineage tracing analysis. RESULTS In immunofluorescence assays, ICC-DMP and ICC-SMP were found to express LRIG1. Based on lineage tracing, ICC-DMP and ICC-SMP each arose from LRIG1-positive smooth muscle progenitors. In Lrig1-null mice, there was loss of staining for KIT in DMP and SMP regions, as well as for 2 additional ICC markers (anoctamin-1 and neurokinin 1 receptor). Lrig1-null mice had significant delays in small intestinal transit compared with control mice. CONCLUSIONS LRIG1 regulates the postnatal development of ICC-DMP and ICC-SMP from smooth muscle progenitors in mice. Slowed small intestinal transit observed in Lrig1-null mice may be due, at least in part, to loss of the ICC-DMP population.
Collapse
Affiliation(s)
- Jumpei Kondo
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anne E. Powell
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yang Wang
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melissa A. Musser
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - E. Michelle Southard-Smith
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L. Franklin
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J. Coffey
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Veterans Affairs Medical Center, Nashville,
TN 37232, USA,Correspondence: Robert J. Coffey, MD
Epithelial Biology Center 10415 MRB IV Vanderbilt University Medical Center
Nashville, TN 37232-0441 Phone: 615-343-6228; Fax: 615-343-1591
| |
Collapse
|
17
|
The Effects of Lactobacillus acidophilus on the Intestinal Smooth Muscle Contraction through PKC/MLCK/MLC Signaling Pathway in TBI Mouse Model. PLoS One 2015; 10:e0128214. [PMID: 26030918 PMCID: PMC4451510 DOI: 10.1371/journal.pone.0128214] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/23/2015] [Indexed: 12/30/2022] Open
Abstract
Clinical studies have shown that probiotics influence gastrointestinal motility. However, the molecular mechanisms by which probiotic Lactobacillus modulates intestinal motility in traumatic brain injury (TBI) mouse model have not been explored. In the present study, we provided evidence showing that treatment of TBI mice with Lactobacillus acidophilus significantly improved the terminal ileum villus morphology, restored the impaired interstitial cells of Cajal (ICC) and the disrupted ICC networks after TBI, and prevented TBI-mediated inhibition of contractile activity in intestinal smooth muscle. Mechanistically, the decreased concentration of MLCK, phospho-MLC20 and phospho-MYPT1 and increased concentration of MLCP and PKC were observed after TBI, and these events mediated by TBI were efficiently prevented by Lactobacillus acidophilus application. These findings may provide a novel mechanistic basis for the application of Lactobacillus acidophilus in the treatment of TBI.
Collapse
|
18
|
Ueshima S, Nishida T, Koike M, Matsuda H, Sawa Y, Uchiyama Y. Nitric oxide-mediated injury of interstitial cells of Cajal and intestinal dysmotility under endotoxemia of mice. Biomed Res 2015; 35:251-62. [PMID: 25152034 DOI: 10.2220/biomedres.35.251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gastrointestinal dysmotility is frequently observed under septic conditions, yet its precise mechanisms remain to be elucidated. In this study, we have investigated the mechanisms of intestinal dysmotility by lipopolysaccharides (LPS) and the role of the interstitial cells of Cajal (ICCs) in motility disorders using a mouse endotoxin model. The injection of LPS caused time- and dose-dependent decreases in the intestinal contractility, which was associated with similar time- and dose-dependent decreases in the number of KIT-positive fibroblast-like cells located in the intermuscular layer. iNOS inhibitors, L-NAME and aminoguanidine (AG), but not 7-nitroindazole (7NI), a specific nNOS inhibitor, inhibited the LPS-induced decreases in both the contractility and the number of KIT-positive cells. A spontaneous NO releaser, FK409, not only diminished spontaneous electrical potential and phasic contractions, but also decreased the number of KIT-positive cells. Pretreatment with gadolinium inhibited the activation of macrophages and the induction of iNOS in intestinal resident macrophages, and restored the number of KIT-positive cells and intestinal contractions. These results suggested that NO produced from intestinal macrophages via iNOS induced by LPS, may be involved in the ICCs injury and intestinal dysmotility under septic conditions.
Collapse
|
19
|
Srinath A, Young E, Szigethy E. Pain management in patients with inflammatory bowel disease: translational approaches from bench to bedside. Inflamm Bowel Dis 2014; 20:2433-49. [PMID: 25208108 DOI: 10.1097/mib.0000000000000170] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abdominal pain is a common symptom in patients with inflammatory bowel disease (IBD) that negatively affects quality of life and can lead to increased health-seeking behavior. Although abdominal pain has been traditionally attributed to inflammation, there is growing literature demonstrating the existence of functional abdominal pain in patients with IBD, of which there are a variety of potential causes. Thus, when approaching a patient with IBD who has abdominal pain, in addition to IBD-related complications (e.g., inflammation/stricture), it is important to screen for related contributors, including peripheral factors (visceral hypersensitivity, bacterial overgrowth, and bowel dysmotility) and centrally mediated neurobiological and psychosocial underpinnings. These central factors include psychological symptoms/diagnoses, sleep disturbance, and stress. Opioid-induced hyperalgesia (e.g., narcotic bowel syndrome) is also growing in recognition as a potential central source of abdominal pain. This review draws from clinical studies and animal models of colitis and abdominal pain to consider how knowledge of these potential etiologies can be used to individualize treatment of abdominal pain in patients with IBD, including consideration of potential novel treatment modalities for the future. Accurate assessment of the source(s) of pain in patients with IBD can help guide appropriate diagnostic workup and use of disease-modifying therapy.
Collapse
Affiliation(s)
- Arvind Srinath
- *Department of Pediatric Gastroenterology, Children's Hospital of UPMC, Pittsburgh, Pennsylvania; †Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania; and ‡Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
20
|
McCann CJ, Hwang SJ, Hennig GW, Ward SM, Sanders KM. Bone Marrow Derived Kit-positive Cells Colonize the Gut but Fail to Restore Pacemaker Function in Intestines Lacking Interstitial Cells of Cajal. J Neurogastroenterol Motil 2014; 20:326-37. [PMID: 24847840 PMCID: PMC4102151 DOI: 10.5056/jnm14026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/01/2014] [Accepted: 04/09/2014] [Indexed: 12/28/2022] Open
Abstract
Background/Aims Several motility disorders are associated with disruption of interstitial cells of Cajal (ICC), which provide important functions, such as pacemaker activity, mediation of neural inputs and responses to stretch in the gastrointestinal (GI) tract. Restoration of ICC networks may be therapeutic for GI motor disorders. Recent reports have suggested that Kit+ cells can be restored to the GI tract via bone marrow (BM) transplantation. We tested whether BM derived cells can lead to generation of functional activity in intestines naturally lacking ICC. Methods BM cells from Kit+/copGFP mice, in which ICC are labeled with a green fluorescent protein, were transplanted into W/WV intestines, lacking ICC. After 12 weeks the presence of ICC was analyzed by immunohistochemistry and functional analysis of electrical behavior and contractile properties. Results After 12 weeks copGFP+ BM derived cells were found within the myenteric region of intestines from W/WV mice, typically populated by ICC. Kit+ cells failed to develop interconnections typical of ICC in the myenteric plexus. The presence of Kit+ cells was verified with Western analysis. BM cells failed to populate the region of the deep muscular plexus where normal ICC density, associated with the deep muscular plexus, is found in W/WV mice. Engraftment of Kit+-BM cells resulted in the development of unitary potentials in transplanted muscles, but slow wave activity failed to develop. Motility analysis showed that intestinal movements in transplanted animals were abnormal and similar to untransplanted W/WV intestines. Conclusions BM derived Kit+ cells colonized the gut after BM transplantation, however these cells failed to develop the morphology and function of mature ICC.
Collapse
Affiliation(s)
- Conor J McCann
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA; University College London Institute of Child Health, Birth Defects Research Center, Neural Development Unit, London, UK
| | - Sung-Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
21
|
Gong Y, Huang L, Cheng W, Li X, Lu J, Lin L, Si X. Roles of interleukin-9 in the growth and cholecystokinin-induced intracellular calcium signaling of cultured interstitial cells of Cajal. PLoS One 2014; 9:e95898. [PMID: 24755995 PMCID: PMC3995924 DOI: 10.1371/journal.pone.0095898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/31/2014] [Indexed: 01/08/2023] Open
Abstract
Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract and loss of ICC is associated with many GI motility disorders. Previous studies have shown that ICC have the capacity to regenerate or restore, and several growth factors are critical to their growth, maintenance or regeneration. The present study aimed to investigate the roles of interleukin-9 (IL-9) in the growth, maintenance and pacemaker functions of cultured ICC. Here, we report that IL-9 promotes proliferation of ICC, and culturing ICC with IL-9 enhances cholecystokinin-8-induced Ca2+ transients, which is probably caused by facilitating maintenance of ICC functions under culture condition. We also show co-localizations of cholecystokinin-1 receptor and IL-9 receptor with c-kit by double-immunohistochemical labeling. In conclusion, IL-9 can promote ICC growth and help maintain ICC functions; IL-9 probably performs its functions via IL-9 receptors on ICC.
Collapse
Affiliation(s)
- Yaoyao Gong
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Huang
- Department of Pediatric Surgery, Nanjing Children’s Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Wenfang Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueliang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (LL); (XS)
| | - Xinmin Si
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (LL); (XS)
| |
Collapse
|
22
|
Wei J, Li N, Xia X, Chen X, Peng F, Besner GE, Feng J. Effects of lipopolysaccharide-induced inflammation on the interstitial cells of Cajal. Cell Tissue Res 2014; 356:29-37. [PMID: 24435644 DOI: 10.1007/s00441-013-1775-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 11/18/2013] [Indexed: 12/11/2022]
Abstract
Interstitial cells of Cajal (ICC) have recently been found to display phenotypic changes. The present study is designed to determine whether phenotypic changes occur in ICC associated with an inflammatory microenvironment and whether the ICC phenotype could be recovered after the discontinuation of inflammatory stimuli. Immunohistochemistry studies revealed that the functional ICC marker, c-kit, was markedly reduced in patients with Hirschsprung's disease (n = 34) compared with controls (n = 12), whereas another marker of ICC, CD34, was not altered significantly. Compared with the vehicle group (n = 6), intraperitoneal injection of lipopolysaccharide (LPS; 1.5 mg/kg) in mice (n = 6) significantly induced plasma tumor necrosis factor-alpha (TNF-α) levels as determined by enzyme-linked immunosorbent assay. Western blot and real-time polymerase chain reaction assessment further showed that LPS injection markedly suppressed intestinal c-kit protein and mRNA expression, which could be blocked by Toll-like receptor 4 (TLR4) deficiency (n = 6) rather than TLR2 deficiency (n = 6) and had no effects on CD34. Compared with the vehicle group (n = 6), intraperitoneal TNF-α (30 μg/kg) administration (n = 6) also significantly reduced intestinal c-kit protein and mRNA levels but not CD34 levels. However, the reduction of c-kit induced by TNF-α injection was not suppressed by TLR4 deficiency (n = 6). Intestinal c-kit protein and mRNA levels were markedly restored after the discontinuation of TNF-α administration for 7 days. Moreover, immunofluorescence analysis of primary ICC further confirmed that exposure to TNF-α for 24 h suppressed c-kit expression, which could be restored after discontinuation of TNF-α exposure. CD34 expression was not altered upon exposure to TNF-α. Thus, phenotypic changes in ICC occur in an inflammatory microenvironment in the gut and LPS, TLR4 and TNFα are crucial to this process.
Collapse
Affiliation(s)
- Jia Wei
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The colon serves as the habitat for trillions of microbes, which it must maintain, regulate, and sequester. This is managed by what is termed the mucosal barrier. The mucosal barrier separates the gut flora from the host tissues; regulates the absorption of water, electrolytes, minerals, and vitamins; and facilitates host-flora interactions. Colonic homeostasis depends on a complex interaction between the microflora and the mucosal epithelium, immune system, vasculature, stroma, and nervous system. Disruptions in the colonic microenvironment such as changes in microbial composition, epithelial cell function/proliferation/differentiation, mucus production/makeup, immune function, diet, motility, or blood flow may have substantial local and systemic consequences. Understanding the complex activities of the colon in health and disease is important in drug development, as xenobiotics can impact all segments of the colon. Direct and indirect effects of pharmaceuticals on intestinal function can produce adverse findings in laboratory animals and humans and can negatively impact drug development. This review will discuss normal colon homeostasis with examples, where applicable, of xenobiotics that disrupt normal function.
Collapse
Affiliation(s)
- Rani S Sellers
- 1Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
24
|
Milia AF, Ruffo M, Manetti M, Rosa I, Conte D, Fazi M, Messerini L, Ibba-Manneschi L. Telocytes in Crohn's disease. J Cell Mol Med 2013; 17:1525-36. [PMID: 24251911 PMCID: PMC3914651 DOI: 10.1111/jcmm.12177] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/02/2013] [Indexed: 12/19/2022] Open
Abstract
Crohn’s disease (CD) is a relapsing chronic inflammatory disorder that may involve all the gastrointestinal tract with a prevalence of terminal ileum. Intestinal lesions have a characteristic discontinuous and segmental distribution and may affect all layers of the gut wall. Telocytes (TC), a peculiar type of stromal cells, have been recently identified in a variety of tissues and organs, including gastrointestinal tract of humans and mammals. Several roles have been proposed for TC, including mechanical support, spatial relationships with different cell types, intercellular signalling and modulation of intestinal motility. The aim of our study was to investigate the presence and distribution of TC in disease-affected and -unaffected ileal specimens from CD patients compared with controls. TC were identified by CD34/PDGFRα immunohistochemistry. In affected CD specimens TC disappeared, particularly where fibrosis and architectural derangement of the intestinal wall were observed. In the thickened muscularis mucosae and submucosa, few TC entrapped in the fibrotic extracellular matrix were found. A discontinuous network of TC was present around smooth muscle bundles, ganglia and enteric strands in the altered muscularis propria. At the myenteric plexus, the loss of TC network was paralleled by the loss of interstitial cells of Cajal network. In the unaffected CD specimens, TC were preserved in their distribution. Our results suggest that in CD the loss of TC might have important pathophysiological implications contributing to the architectural derangement of the intestinal wall and gut dysmotility. Further functional studies are necessary to better clarify the role of TC loss in CD pathophysiology.
Collapse
Affiliation(s)
- Anna Franca Milia
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
McCann CJ, Hwang SJ, Bayguinov Y, Colletti EJ, Sanders KM, Ward SM. Establishment of pacemaker activity in tissues allotransplanted with interstitial cells of Cajal. Neurogastroenterol Motil 2013; 25:e418-28. [PMID: 23638836 PMCID: PMC3704156 DOI: 10.1111/nmo.12140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/25/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Loss or disruption of Kit(+) -interstitial cells of Cajal (ICC) capable of generating pacemaker activity has been implicated in the development of numerous gastrointestinal motility disorders. We sought to develop a model where ICC could be allotransplanted into intestines naturally devoid of these cells. METHODS Enzymatically dispersed cells from the intestinal tunica muscularis of Kit(+/copGFP) and Kit(V558Δ) /+ gain-of-function mice were allotransplanted into myenteric plexus regions of W/W(V) mutant intestines that lack ICC at the level of the myenteric plexus (ICC-MY) and pacemaker activity. Immunohistochemical analysis fate mapped the development of ICC-MY networks and intracellular microelectrode recordings provided evidence for the development of functional pacemaker activity. KEY RESULTS Kit(+) -ICC developed into distinct networks at the level of the myenteric plexus in organotypic cultures over 28 days and displayed robust rhythmic pacemaker activity. CONCLUSIONS & INFERENCES This study demonstrates the feasibility of allotransplantation of ICC into the myenteric region of the small intestine and the establishment of functional pacemaker activity into tissues normally devoid of ICC-MY and slow waves, thus providing a possible basis for the therapeutic treatment of patients where ICC networks have been disrupted due to a variety of pathophysiological conditions.
Collapse
Affiliation(s)
- C. J. McCann
- Department of Physiology and Cell Biology; University of Nevada School of Medicine; Reno; NV; USA
| | - S. J. Hwang
- Department of Physiology and Cell Biology; University of Nevada School of Medicine; Reno; NV; USA
| | - Y. Bayguinov
- Department of Physiology and Cell Biology; University of Nevada School of Medicine; Reno; NV; USA
| | - E. J. Colletti
- Department of Physiology and Cell Biology; University of Nevada School of Medicine; Reno; NV; USA
| | - K. M. Sanders
- Department of Physiology and Cell Biology; University of Nevada School of Medicine; Reno; NV; USA
| | - S. M. Ward
- Department of Physiology and Cell Biology; University of Nevada School of Medicine; Reno; NV; USA
| |
Collapse
|
26
|
Cheon GJ, Cui Y, Yeon DS, Kwon SC, Park BG. Mechanisms of motility change on trinitrobenzenesulfonic Acid-induced colonic inflammation in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:437-46. [PMID: 23269907 PMCID: PMC3526749 DOI: 10.4196/kjpp.2012.16.6.437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/17/2012] [Accepted: 10/31/2012] [Indexed: 01/02/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease (IBD) characterized by recurrent episodes of colonic inflammation and tissue degeneration in human or animal models. The contractile force generated by the smooth muscle is significantly attenuated, resulting in altered motility leading to diarrhea or constipation in IBD. The aim of this study is to clarify the altered contractility of circular and longitudinal smooth muscle layers in proximal colon of trinitrobenzen sulfonic acid (TNBS)-induced colitis mouse. Colitis was induced by direct injection of TNBS (120 mg/kg, 50% ethanol) in proximal colon of ICR mouse using a 30 G needle anesthetized with ketamin (50 mg/kg), whereas animals in the control group were injected of 50% ethanol alone. In TNBS-induced colitis, the wall of the proximal colon is diffusely thickened with loss of haustration, and showed mucosal and mucular edema with inflammatory infiltration. The colonic inflammation is significantly induced the reduction of colonic contractile activity including spontaneous contractile activity, depolarization-induced contractility, and muscarinic acetylcholine receptor-mediated contractile response in circular muscle layer compared to the longitudinal muscle layer. The inward rectification of currents, especially, important to Ca(2+) and Na(+) influx-induced depolarization and contraction, was markedly reduced in the TNBS-induced colitis compared to the control. The muscarinic acetylcholine-mediated contractile responses were significantly attenuated in the circular and longitudinal smooth muscle strips induced by the reduction of membrane expression of canonical transient receptor potential (TRPC) channel isoforms from the proximal colon of the TNBS-induced colitis mouse than the control.
Collapse
Affiliation(s)
- Gab Jin Cheon
- Department of Gastroenterology, Gangneung Asan Medical Center, Gangneung 210-701, Korea
| | | | | | | | | |
Collapse
|
27
|
Bettolli M, De Carli C, Cornejo-Palma D, Jolin-Dahel K, Wang XY, Huizinga J, Krantis A, Rubin S, Staines WA. Interstitial cell of Cajal loss correlates with the degree of inflammation in the human appendix and reverses after inflammation. J Pediatr Surg 2012; 47:1891-9. [PMID: 23084203 DOI: 10.1016/j.jpedsurg.2012.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 05/02/2012] [Accepted: 05/06/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND Normal gut motility relies on the complex interaction between the interstitial cell of Cajal (ICC) and the enteric nerve networks. Inflammation of the gastrointestinal tract adversely affects both ICC and enteric nerves. We aimed to determine the distribution of ICC and nerve networks in patients with appendicitis. METHODS Specimens from controls and patients with appendicitis were examined with immunohistochemistry (c-Kit for ICC, beta III tubulin [Tuj-1] and neuronal nitric oxide synthase [histochemical diaphorase] for nitrergic neurons) and electron microscopy (EM). Data were quantified using image analysis. RESULTS We found a profound decrease in c-Kit immunoreactivity (c-Kit IR) in the advanced inflammatory stages of appendicitis, which correlated with the severity of inflammation. Electron microscopy confirmed ultrastructural injury in both ICC and nerve fiber networks during acute inflammation. After the inflammation resolved, interval appendices displayed a recovery in ICC c-Kit IR to control levels and normal ultrastructure. The neuronal network also displayed ultrastructural recovery; however, neuronal nitric oxide synthase activity did not recover. CONCLUSIONS Severe inflammation results in significant ultrastructural damage of nerves and ICC networks in appendicitis. The loss of c-Kit IR is likely due to impaired ICC cytophysiology because ICC was still present under EM. After resolution of acute inflammation, ICC recovers their normal ultrastructure and c-Kit IR.
Collapse
Affiliation(s)
- Marcos Bettolli
- Department of General Surgery, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dai YC, Tang ZP, Wang ZN, Zhang YL, He XY. Influence of Shenqing Recipe on morphology and quantity of colonic interstitial cells of Cajal in trinitrobenzene sulfonic acid induced rat colitis. ACTA ACUST UNITED AC 2011; 26:43-8. [PMID: 21496422 DOI: 10.1016/s1001-9294(11)60018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To observe the influence of Shenqing Recipe (SQR), a kind of Traditional Chinese Medicine, on the morphology and quantity of colonic interstitial cells of Cajal (ICC) in trinitrobenzene sulfonic acid (TNBS)-induced rat colitis, and to investigate the possible mechanism of SQR in regulating intestinal dynamics. METHODS Sixty rats were randomly divided into normal control, model 1, model 2, mesalazine, and high-dose, and low-dose SQR groups with 10 rats in each group. TNBS (10 mg) dissolved in 50% ethanol was instilled into the lumen of the rat colon of the latter five groups to induce colitis. On the 4th day after administration of TNBS, each treatment group was administered one of the following formulations by enteroclysis gavage once a day for 7 days: 600 mg•kg⁻¹•d⁻¹ mesalazine, 2.4 g•kg⁻¹•d⁻¹ SQR, and 1.2 g•kg⁻¹•d⁻¹ SQR. Model 2 rats received normal saline solution. After 7 days colonic samples were collected. While the colonic samples of model 1 group were collected on the 3rd day after TNBS administered. Ultrastructure of ICC in the damaged colonic tissues was observed with transmission electron microscope. Expression of c-kit protein in colonic tissue was determined by immunohistochemical staining and Western blot. RESULTS The ultrastructure of colonic ICC in the rat model of TNBS-induced colitis showed a severe injury, and administration of SQR or mesalazine reduced the severity of injury. Similarly, the expression of c-kit protein of TNBS-induced colitis rat model was significantly decreased compared with the normal control group (P < 0.05). Treatment with SQR or mesalazine significantly increased the expression of c-kit protein compared with the administration of control formulations (P < 0.05), especially the high-dose SQR group. CONCLUSION SQR could alleviate and repair the injured ICC, and improve its quantity, which might be involved in regulating intestinal motility.
Collapse
Affiliation(s)
- Yan-cheng Dai
- Department of Gastroenterology, Longhua Hospital, Shanghai, China
| | | | | | | | | |
Collapse
|
29
|
Rumessen JJ, Vanderwinden JM, Horn T. Crohn's disease: ultrastructure of interstitial cells in colonic myenteric plexus. Cell Tissue Res 2011; 344:471-9. [PMID: 21562942 DOI: 10.1007/s00441-011-1175-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/13/2011] [Indexed: 12/12/2022]
Abstract
The role of the interstitial cells of Cajal (ICC) in chronic inflammatory bowel disease, i.e., ulcerative colitis (UC) and Crohn's disease (CD), remains unclear. Ultrastructural alterations in ICC in the colonic myenteric plexus (ICC-MP) have been reported previously in UC, but descriptions of ICC-MP and other interstitial cells in the myenteric region of the colon are lacking for CD. In the present study, we characterized the ultrastructure of interstitial cells, nerves, and glial cells in the myenteric region in Crohn's colitis (CC). In comparison with controls, varicosities of the myenteric bundles were dilated and appeared to be empty. Lipid droplets and lipofuscin-bodies were prominent in glial cells and neurons. ICC-MP were scanty but, as in controls, had caveolae, prominent intermediate filaments, cytoplasmic dense bodies, and membrane-associated dense bands with a patchy basal lamina. ICC-MP were similar in the various colonic regions. ICC-MP in CC showed no signs of degeneration or cytological changes. As in controls, fibroblast-like cells had abundant coated vesicles but lacked prominent intermediate filaments and caveolae. Macrophages also appeared as in controls. In comparison with ICC-MP in UC, the cytology of ICC-MP in CC were thus undisturbed. The ultrastructural differences between UC and CC might reflect pathophysiological differences of importance for understanding pathogenetic differences between CD and UC.
Collapse
Affiliation(s)
- Jüri J Rumessen
- Department of Gastroenterology F, Gentofte Hospital, University of Copenhagen, Niels Andersensvej 65, 2900, Hellerup, Denmark.
| | | | | |
Collapse
|
30
|
Enteric nervous system in the small intestine: pathophysiology and clinical implications. Curr Gastroenterol Rep 2011; 12:358-65. [PMID: 20725870 DOI: 10.1007/s11894-010-0129-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The digestive system is endowed with its own, local nervous system, referred to as the enteric nervous system (ENS). Given the varied functions of small intestine, its ENS has developed individualized characteristics relating to motility, secretion, digestion, and inflammation. The ENS regulates the major enteric processes such as immune response, detecting nutrients, motility, microvascular circulation, intestinal barrier function, and epithelial secretion of fluids, ions, and bioactive peptides. Remarkable progress has been made in understanding the signaling pathways in this complex system and how they work. In this article, we focus on recent advances that have led to new insights into small intestinal ENS function and the development of new therapies.
Collapse
|
31
|
Rumessen JJ, Vanderwinden JM, Horn T. Crohn's disease of the colon: ultrastructural changes in submuscular interstitial cells of Cajal. Cell Tissue Res 2010; 343:421-8. [PMID: 21120534 DOI: 10.1007/s00441-010-1087-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/03/2010] [Indexed: 01/29/2023]
Abstract
Interstitial cells of Cajal (ICC) at the submuscular border of the human colon (ICC-SMP) are the proposed pacemaker cells of the musculature. In patients with Crohn's disease (CD) of the colon, ICC-SMP showed characteristic cytological changes from controls. The changes comprised secondary lysosomes in connection with lipid droplets and cytoplasmic vacuoles or multiple empty, confluent and often outbulging vacuoles merging with cisterns of granular endoplasmic reticulum and clusters of glycogen granules. These changes were most pronounced in patients with macroscopical mucosal inflammation but were also demonstrable in uninvolved colonic segments. Relationships of ICC to other cells were undisturbed. The changes were selective to ICC-SMP, as glial cells, muscle cells and fibroblast-like cells at the submuscular border showed no cytological alterations compared with controls. Varicosities of the submuscular plexus were often empty and dilated. Fibroblast-like cells selectively encased macrophages and mast cells. The cytological changes in ICC-SMP in CD are thus similar to changes seen in ulcerative colitis and may be of pathophysiological significance with regard to the motility and sensory disturbances seen in patients with CD.
Collapse
Affiliation(s)
- Jüri J Rumessen
- Department of Gastroenterology F, Gentofte Hospital, University of Copenhagen, Niels Andersensvej 65, 2900, Hellerup, Denmark.
| | | | | |
Collapse
|
32
|
Li F, Zhang L, Li C, Ni B, Wu Y, Huang Y, Zhang G, Wang L, Zhang A, He Y, Fu T, Tong W, Liu B. Adenovirus-mediated stem cell leukemia gene transfer induces rescue of interstitial cells of Cajal in ICC-loss mice. Int J Colorectal Dis 2010; 25:557-566. [PMID: 20165856 DOI: 10.1007/s00384-010-0883-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2010] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Interaction of c-Kit and its ligand stem cell factor (SCF) is necessary for appropriate development and survival of interstitial cells of Cajal (ICC) in the intestine. Blockade of c-Kit will cause ICC loss in vivo. Stem cell leukemia (SCL) gene acts as a positive regulator of upstream transcription of c-Kit expression. This study aimed to explore whether the restoration of c-Kit expression promoted by SCL gene transfer could rescue ICC in vivo. MATERIALS AND METHODS A modified ICC-loss mouse model was created by continual administration of anti-c-Kit antibody (ACK2) to obtain a steady status of ICC loss, and a recombinant adenovirus vector containing SCL gene (Ad-SCL) was designed to rescue ICC in these mice. Western blot analysis and immunofluorescence labeling assays were performed to analyze the SCL and c-Kit expression in vitro and in vivo. The distribution and configuration of ICC were observed with immunohistochemistry and electromicroscope. RESULTS Western blot analysis and immunofluorescence labeling assays showed that SCL gene was successfully delivered to cultured HeLa and ICC cells in vitro. Moreover, significantly increased c-Kit expression could be detected in the colon of Ad-SCL-infected ICC-loss mice. Furthermore, rescue of the ICC network and ICC with typical ultrastructural features could be detected in Ad-SCL-infected ICC-loss mice at day 37. CONCLUSIONS Ad-SCL was able to enhance c-Kit expression, reactivate the c-Kit/SCF pathway, and rescue ICC in ICC-loss mice. Since loss and defects of ICC are associated with many human gut motility disorders, Ad-SCL may be of potential use in gene therapy of these patients.
Collapse
Affiliation(s)
- Fan Li
- Department of General Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang D, Xia ZW, Han YJ. Long-term chronic water immersion-restraint stress alters the number of interstitial cells of Cajal in the gastric antrum of rats. Shijie Huaren Xiaohua Zazhi 2010; 18:920-925. [DOI: 10.11569/wcjd.v18.i9.920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the impact of long-term chronic water immersion-restraint stress on the number of interstitial cells of Cajal (ICC) in the gastric antrum of rats and to explore the relationship between ICC and gastric motility changes caused by chronic stress.
METHODS: Forty-eight male Sprague-Dawley rats were randomly and equally divided into six groups: three experiment groups and three matched control groups. The three experimental groups underwent water immersion-restraint stress for one hour daily for 3, 7 and 14 d, respectively, while the three control groups were allowed free access to food and water. On days 4, 8 and 29, the rats in both groups were sacrificed. Gastric tissue samples were collected from areas at the lesser curvature of the membranous stomach and the lesser curvature of the glandular stomach as well as areas near the upper one third of the great curvature of the glandular stomach and the pylorus of the glandular stomach. Paraffin-embedded sections were then made. The number of ICC was counted after immunohistochemical staining for c-Kit.
RESULTS: Intermuscular (ICC-MY) and intramuscular ICC (ICC-IM) were predominant types of ICC in normal rats, whereas submucosal ICC (ICC-SM) and ICC in the deep muscular plexus (ICC-DMP) were minor ones. The number of ICC were statistically different between the experiment and control groups on days 7 and 28 after stress: the number of ICC increased on day 7 but decreased on day 28 in the experiment groups. After stress, significant changes were found in the number of ICC-MY and ICC-IM, but not in that of ICC-SM and ICC-DMP.
CONCLUSION: Long-term chronic water immersion-restraint stress alters the number of ICC in the gastric antrum of rats.
Collapse
|
34
|
Ro S, Park C, Jin J, Zheng H, Blair PJ, Redelman D, Ward SM, Yan W, Sanders KM. A model to study the phenotypic changes of interstitial cells of Cajal in gastrointestinal diseases. Gastroenterology 2010; 138:1068-78.e782. [PMID: 19917283 PMCID: PMC4793910 DOI: 10.1053/j.gastro.2009.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/27/2009] [Accepted: 11/05/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Interstitial cells of Cajal (ICC) express the receptor tyrosine kinase, KIT, the receptor for stem cell factor. In the gastrointestinal (GI) tract, ICC are pacemaker cells that generate spontaneous electrical slow waves, and mediate inputs from motor neurons. Absence or loss of ICC are associated with GI motility disorders, including those consequent of diabetes. Studies of ICC have been hampered by the low density of these cells and difficulties in recognizing these cells in cell dispersions. METHODS Kit(+/copGFP) mice harboring a copepod super green fluorescent protein (copGFP) complementary DNA, inserted at the Kit locus, were generated. copGFP(+) ICC from GI muscles were analyzed using confocal microscopy and flow cytometry. copGFP(+) ICC from the jejunum were purified by a fluorescence-activated cell sorter and validated by cell-specific markers. Kit(+/copGFP) mice were crossbred with diabetic Lep(+/ob) mice to generate compound Kit(+/copGFP);Lep(ob/ob) mutant mice. copGFP(+) ICC from compound transgenic mice were analyzed by confocal microscopy. RESULTS copGFP in Kit(+/copGFP) mice colocalized with KIT immunofluorescence and thus was predominantly found in ICC. In other smooth muscles, mast cells were also labeled, but these cells were relatively rare in the murine GI tract. copGFP(+) cells from jejunal muscles were Kit(+) and free of contaminating cell-specific markers. Kit(+/copGFP);Lep(ob/ob) mice displayed ICC networks that were dramatically disrupted during the development of diabetes. CONCLUSIONS Kit(+/copGFP) mice offer a powerful new model to study the function and genetic regulation of ICC phenotypes. Isolation of ICC from animal models will help determine the causes and responses of ICC to therapeutic agents.
Collapse
Affiliation(s)
- Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Chanjae Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Jingling Jin
- Huffington Center on Aging and Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Peter J. Blair
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Doug Redelman
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
35
|
Mikkelsen HB. Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions. J Cell Mol Med 2010; 14:818-32. [PMID: 20132411 PMCID: PMC3823114 DOI: 10.1111/j.1582-4934.2010.01025.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interstitial cells of Cajal (ICC) are recognized as pacemaker cells for gastrointestinal movement and are suggested to be mediators of neuromuscular transmission. Intestinal motility disturbances are often associated with a reduced number of ICC and/or ultrastructural damage, sometimes associated with immune cells. Macrophages and mast cells in the intestinal muscularis externa of rodents can be found in close spatial contact with ICC. Macrophages are a constant and regularly distributed cell population in the serosa and at the level of Auerbach's plexus (AP). In human colon, ICC are in close contact with macrophages at the level of AP, suggesting functional interaction. It has therefore been proposed that ICC and macrophages interact. Macrophages and mast cells are considered to play important roles in the innate immune defence by producing pro-inflammatory mediators during classical activation, which may in itself result in damage to the tissue. They also take part in alternative activation which is associated with anti-inflammatory mediators, tissue remodelling and homeostasis, cancer, helminth infections and immunophenotype switch. ICC become damaged under various circumstances - surgical resection, possibly post-operative ileus in rodents - where innate activation takes place, and in helminth infections - where alternative activation takes place. During alternative activation the muscularis macrophage can switch phenotype resulting in up-regulation of F4/80 and the mannose receptor. In more chronic conditions such as Crohn's disease and achalasia, ICC and mast cells develop close spatial contacts and piecemeal degranulation is possibly triggered.
Collapse
Affiliation(s)
- Hanne B Mikkelsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
36
|
Yang X, Zhang Y, Hu J. The expression of Cajal cells at the obstruction site of congenital pelviureteric junction obstruction and quantitative image analysis. J Pediatr Surg 2009; 44:2339-42. [PMID: 20006022 DOI: 10.1016/j.jpedsurg.2009.07.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 07/31/2009] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The study aimed to analyze the expression and significance of interstitial cells of Cajal (ICC) at the obstruction site of congenital pelviureteric junction obstruction (PUJO). METHODS Specimens of the strictured segment of the PUJ were obtained from 24 patients who were diagnosed to have PUJO (without aberrant vessels and adhesive band compression of ureteral junction) intraoperatively. In the control group, PUJ specimens were taken from 21 patients who had Wilms' tumor. Pelviureteric junction tissues were confirmed to be free of tumor invasion by histology. Immunohistochemistry with c-kit antibody was performed to detect the expression of ICC in specimens of the 2 groups. Quantitative analysis was made using image analysis technique and statistical analysis was carried out. RESULTS Immunoreactivity to ICC was predominantly detected in the muscle layers of PUJ. The mean area of ICC expression in the PUJO group was 14.86 +/- 1.37 x 10(4)microm(2) , which was lower than that in the control group (16.80 +/- 1.68) x 10(4)microm(2) (P < .01). The mean density of ICC expression in the PUJO was 0.207 +/- 0.020, which was also lower than that in the control group (0.262 +/- 0.026) (P < .05). CONCLUSIONS A reduction of the number of ICC may play an important role in the etiology and pathogenesis of PUJO.
Collapse
Affiliation(s)
- Xinghai Yang
- Department of Pediatric Surgery, Hubei Women and Children's Hospital, Wuhan 430070, People's Republic of China.
| | | | | |
Collapse
|
37
|
Keller J, Beglinger C, Holst JJ, Andresen V, Layer P. Mechanisms of gastric emptying disturbances in chronic and acute inflammation of the distal gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2009; 297:G861-8. [PMID: 20501434 DOI: 10.1152/ajpgi.00145.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is unclear why patients with inflammation of the distal bowel complain of symptoms referable to the upper gastrointestinal tract, specifically to gastric emptying (GE) disturbances. Thus we aimed to determine occurrence and putative pathomechanisms of gastric motor disorders in such patients. Thirteen healthy subjects (CON), 13 patients with Crohn's disease (CD), 10 with ulcerative colitis (UC), and 7 with diverticulitis (DIV) underwent a standardized (13)C-octanoic acid gastric emptying breath test. Plasma glucose, CCK, peptide YY, and glucagon-like peptide-1 (GLP-1) were measured periodically and correlated with GE parameters. Results were given in means +/- SD. Compared with CON, GE half time (T) was prolonged by 50% in CD (115 +/- 55 vs. 182 +/- 95 min, P = 0.037). Six CD, 2 DIV, and 2 UC patients had pathological T (>200 min). Postprandial plasma glucose was increased in all patients but was highest in DIV and correlated with T (r = 0.90, P = 0.006). In CD, mean postprandial CCK levels were increased threefold compared with CON (6.5 +/- 6.7 vs. 2.1 +/- 0.6 pmol/l, P = 0.027) and were correlated with T (r = 0.60, P = 0.041). Compared with CON, GLP-1 levels were increased in UC (25.1 +/- 5.2 vs. 33.5 +/- 13.0 pmol/l, P = 0.046) but markedly decreased in DIV (9.6 +/- 5.2 pmol/l, P < 0.0001). We concluded that a subset of patients with CD, UC, or DIV has delayed GE. GE disturbances are most pronounced in CD and might partly be caused by excessive CCK release. In DIV there might be a pathophysiological link between decreased GLP-1 release, postprandial hyperglycemia, and delayed GE. These explorative data encourage further studies in larger patient groups.
Collapse
|
38
|
Mei F, Han J, Huang Y, Jiang ZY, Xiong CJ, Zhou DS. Plasticity of interstitial cells of cajal: a study in the small intestine of adult Guinea pigs. Anat Rec (Hoboken) 2009; 292:985-93. [PMID: 19548308 DOI: 10.1002/ar.20928] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although it is well known that the reduction of interstitial cells of Cajal (ICCs) is associated with several gastrointestinal motility disorders in clinic, it is unknown whether the mature ICCs still have an active plasticity in adult mammals. This study focused on the issues of the reduction of ICCs during Imatinib administration and the recovery of ICCs following drug withdrawal in the small intestine of adult guinea pigs. ICCs were revealed by immunofluorescence on whole mount preparations with anti-Kit, alpha-smooth muscle actin, (alpha-SMA), and 5-bromo-2'-deoxyuridine (BrdU) antibodies. Moreover, the occurrence of apoptosis was also assayed. Imatinib treatment led to a gradual reduction of ICCs in number around the myenteric plexus and deep muscular plexus, which was dependent on the time but no apoptosis of ICCs was detected with the TUNEL method. During Imatinib treatment, some ICC-like cells were double labeled for Kit and alpha-SMA and a few ICC-like cells were only stained with alpha-SMA. When Imatinib was discontinued, the number of ICCs recovered to normal within 32 days. During this time, some proliferating ICCs were demonstrated by double labeling with Kit and BrdU antibodies. Our results indicated that Kit signaling was essential for the maintenance of survival and proliferation of the mature ICCs in the small intestine of adult guinea pigs. Moreover, ICCs might transdifferentiate to a type of alpha-SMA(+) cells, perhaps a phenotype of smooth muscle cells, when there is a loss-of-function of Kit.
Collapse
Affiliation(s)
- Feng Mei
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
39
|
Veress B, Nyberg B, Törnblom H, Lindberg G. Intestinal lymphocytic epithelioganglionitis: a unique combination of inflammation in bowel dysmotility: a histopathological and immunohistochemical analysis of 28 cases. Histopathology 2009; 54:539-49. [PMID: 19413636 DOI: 10.1111/j.1365-2559.2009.03265.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Visceral inflammatory neuropathies are enteric disorders underlying various forms of bowel dysmotility. The aim was to analyse the microscopic characteristics of a unique combination of intraepithelial lymphocytosis and myenteric ganglioneuritis. METHODS AND RESULTS Paraffin sections of full-thickness proximal jejunal biopsy specimens from 28 patients, with proven disorders of gastrointestinal motility, were analysed following conventional and immunohistochemical staining. Serial transversal and tangential sectioning visualized large myenteric plexus areas. Between 1993 and 2005, 28 patients with inflammatory neuropathy (25 female and three male) showed this combination of lymphocytic infiltration. Two of the patients also had coeliac disease. The mean number of intraepithelial CD3+ lymphocytes was 36 per 100 epithelial cells (range 27-68; upper normal limit 25 lymphocytes). There was myenteric ganglionitis of variable severity (mean 4.6 myenteric lymphocytes per ganglion; upper normal limit two lymphocytes) with cytotoxic T-cell predominance. Myenteric neurons showed signs of degeneration and an abnormal immunohistological pattern. Hyperplasia and hypertrophy of Cajal cells were observed. The longitudinal muscle layer was thickened in many cases. CONCLUSIONS A subset of patients with gastrointestinal motility disorders exhibit the combination of intraepithelial lymphocytosis and myenteric ganglionitis in full thickness biopsy specimens of the small bowel. We suggest calling this entity 'intestinal lymphocytic epithelioganglionitis'.
Collapse
Affiliation(s)
- Béla Veress
- Department of Clinical Pathology and Cytology, University Hospital MAS, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
40
|
Garcia-Lopez P, Garcia-Marin V, Martínez-Murillo R, Freire M. Updating old ideas and recent advances regarding the Interstitial Cells of Cajal. ACTA ACUST UNITED AC 2009; 61:154-69. [PMID: 19520112 DOI: 10.1016/j.brainresrev.2009.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/30/2009] [Accepted: 06/01/2009] [Indexed: 12/11/2022]
Abstract
Since their discovery by Cajal in 1889, the Interstitial Cells of Cajal (ICC) have generated much controversy in the scientific community. Indeed, the nervous, muscle or fibroblastic nature of the ICC has remained under debate for more than a century, as has their possible physiological function. Cajal and his colleagues considered them to be neurons, while contemporary histologists like Kölliker and Dogiel categorized these cells as fibroblasts. More recently, the role of ICC in the origin of slow-wave peristaltism has been elucidated, and several studies have shown that they participate in neurotransmission (intercalation theory). The fact that ICC assemble in the circular muscular layer and that they originate from cells which emerge from the ventral neural tube (VENT cells), a source of neurons, glia and ICC precursors other than the neural crest, suggests a neural origin for this particular subset of ICC. The discovery that ICC express the Kit protein, a type III tyrosine kinase receptor encoded by the proto-oncogene c-kit, has helped better understand their physiological role and implication in pathological conditions. Gleevec, a novel molecule designed to inhibit the mutant activated version of c-Kit receptors, is the drug of choice to treat the so-called gastrointestinal stromal tumours (GIST), the most common non-epithelial neoplasm of the gastrointestinal tract. Here we review Cajal's original contributions with the aid of unique images taken from Cajal's histological slides (preserved at the Cajal Museum, Cajal Institute, CSIC). In addition, we present a historical review of the concepts associated with this particular cell type, emphasizing current data that has advanced our understanding of the role these intriguing cells fulfil.
Collapse
Affiliation(s)
- P Garcia-Lopez
- Cajal Institute, CSIC, Avda Doctor Arce 37, 28002 - Madrid, Spain
| | | | | | | |
Collapse
|
41
|
De Schepper HU, De Man JG, Moreels TG, Pelckmans PA, De Winter BY. Review article: gastrointestinal sensory and motor disturbances in inflammatory bowel disease - clinical relevance and pathophysiological mechanisms. Aliment Pharmacol Ther 2008; 27:621-637. [PMID: 18221407 DOI: 10.1111/j.1365-2036.2008.03624.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well known that inflammation has a profound impact on the neuromuscular apparatus of the gastrointestinal tract during the inflammatory insult and in periods of remission, at the site of inflammation and at distance from this site. The importance of this interaction is illustrated by the higher prevalence of functional gut disorders in patients with inflammatory bowel disease. AIMS To document the epidemiological and clinical significance of functional alterations of gut motility and sensitivity in patients with inflammatory bowel disease and to formulate potential pathophysiological mechanisms. RESULTS AND CONCLUSIONS Functional gut disorders occur frequently in patients with inflammatory bowel disease, both during inflammatory episodes and in periods of remission, and have a major impact on their quality of life. The clinical manifestations of these motility and sensitivity disorders vary and are often difficult to treat, mainly because therapeutic guidelines and specific diagnostic tests to distinguish inflammatory bowel disease from functional gut disorders are lacking. Chronic bowel inflammation results in a complicated interaction between neuroendocrine serotonin-predominant cells of the mucosa, inflammatory cells (particularly mast cells) in the submucosa, the intrinsic and extrinsic innervation and the muscular apparatus including the interstitial cells of Cajal. The outcome of this interaction is a perturbation of gastrointestinal motor function, both locally and at distance from the site of inflammation and during both acute inflammation and remission.
Collapse
Affiliation(s)
- H U De Schepper
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
42
|
Guarino MPL, Carotti S, Cogliandro R, Stanghellini V, De Giorgio R, Barbara G, Alloni R, Altomare A, Tarquini E, Coppola R, Corinaldesi R, Cicala M. Impaired contractility of colonic muscle cells in a patient with chronic intestinal pseudo-obstruction. Dig Liver Dis 2008; 40:225-229. [PMID: 17433796 DOI: 10.1016/j.dld.2007.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 01/12/2007] [Accepted: 02/12/2007] [Indexed: 12/11/2022]
Abstract
Chronic intestinal pseudo-obstruction represents a cause of persistent functional intestinal failure either "secondary" to specific conditions or "chronic intestinal idiopathic pseudo-obstruction" in origin. The diagnosis is mainly clinical, supported by radiological and/or endoscopic findings excluding any mechanical cause of intestinal obstruction. We reported a case of a 39-year-old woman with chronic intestinal idiopathic pseudo-obstruction, who underwent colectomy with ileorectal anastomosis; histological examination of the surgical specimen did not reveal myogenic or neurogenic defects or other pathological abnormalities indicative of an underlying neuromuscular impairment. Because of the apparent integrity of the gut neuromuscular layer, we tested whether a functional impairment affected colonic single smooth muscle cells. Muscle cells were isolated from the right colon and their contractile response to a receptor-dependent agonist evaluated in comparison to that obtained from controls. The cell contraction induced by acetylcholine in a dose response manner was markedly decreased in the patient affected by chronic intestinal idiopathic pseudo-obstruction compared with cells from controls (percentage of cell shortening with maximal dose of acetylcholine [10(-6)M]: 10.7+/-3% versus 34.2+/-4%, respectively). The present findings indicate a specific defect of colonic smooth muscle cells likely related to an ineffective response to acetylcholine.
Collapse
Affiliation(s)
- M P L Guarino
- Digestive Disease Department, Campus Bio Medico University, Via Longoni 83, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The proposed functions of the interstitial cells of Cajal (ICC) are to 1) pace the slow waves and regulate their propagation, 2) mediate enteric neuronal signals to smooth muscle cells, and 3) act as mechanosensors. In addition, impairments of ICC have been implicated in diverse motility disorders. This review critically examines the available evidence for these roles and offers alternate explanations. This review suggests the following: 1) The ICC may not pace the slow waves or help in their propagation. Instead, they may help in maintaining the gradient of resting membrane potential (RMP) through the thickness of the circular muscle layer, which stabilizes the slow waves and enhances their propagation. The impairment of ICC destabilizes the slow waves, resulting in attenuation of their amplitude and impaired propagation. 2) The one-way communication between the enteric neuronal varicosities and the smooth muscle cells occurs by volume transmission, rather than by wired transmission via the ICC. 3) There are fundamental limitations for the ICC to act as mechanosensors. 4) The ICC impair in numerous motility disorders. However, a cause-and-effect relationship between ICC impairment and motility dysfunction is not established. The ICC impair readily and transform to other cell types in response to alterations in their microenvironment, which have limited effects on motility function. Concurrent investigations of the alterations in slow-wave characteristics, excitation-contraction and excitation-inhibition couplings in smooth muscle cells, neurotransmitter synthesis and release in enteric neurons, and the impairment of the ICC are required to understand the etiologies of clinical motility disorders.
Collapse
Affiliation(s)
- Sushil K Sarna
- Enteric Neuromuscular Disorders and Visceral Pain Center, Division of Gastroenterology, Department of Internal Medicine, Neuroscience, and Cell Biology, The University of Texas Medical Branch at Gavelston, Galveston, TX 77555-1064, USA.
| |
Collapse
|
44
|
Streutker CJ, Huizinga JD, Driman DK, Riddell RH. Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology 2007; 50:176-89. [PMID: 17222246 DOI: 10.1111/j.1365-2559.2006.02493.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ramon y Cajal (1852-1934) is considered to be one of the founders of the field of neuroscience. In 1911, he described interstitial neurons in the gut, noting that they were primitive accessory components that perhaps modify smooth muscle contraction, themselves subject to regulation from principle neurons. The accuracy of his description of their appearance and activities has led to these cells now being called the interstitial cells of Cajal (ICC). Thuneberg and Faussone-Pellegrini were instrumental in bringing these cells to the attention of gastroenterologists and pathologists in the early 1980s. Subsequently, the development of antibodies to c-kit has allowed routine identification of the ICC in pathology specimens. c-Kit is a transmembrane protein kinase which has as ligand stem cell factor and is involved in cell development in a variety of cell lineages. In the gut musculature, ICC and mast cells are the only cells that have prominent c-kit expression. The ICC are now known to play an important role in gut motility and absent or disordered ICC networks have been identified in a variety of motility disorders.
Collapse
Affiliation(s)
- C J Streutker
- Division of Pathology, St Michael's Hospital and University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
45
|
Ohlsson B, Sundkvist G, Lindgren S. Subclinical sympathetic neuropathy appears early in the course of Crohn's disease. BMC Gastroenterol 2007; 7:33. [PMID: 17697346 PMCID: PMC1978494 DOI: 10.1186/1471-230x-7-33] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 08/14/2007] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND We have previously demonstrated that patients with Crohn's disease (CD) of long duration have signs of autonomic neuropathy. The aim of this study was to examine whether autonomic neuropathy is an early manifestation of CD, or a sign appearing late in the course. METHODS Twenty patients, median age 40 years, with a short duration of CD were included. Examination of autonomic reflexes included heart rate reaction to tilt (acceleration index - AI, brake index - BI) and heart rate variation to deep-breathing (expiration/inspiration index-E/I). Seven years later the same examinations were repeated, and in addition we examined the vasoconstriction response to indirect cooling by laser Doppler (vasoconstriction-index - VAC-index). The results were compared with healthy individuals. RESULTS There was no difference in the blood pressure between controls and the patients with CD at rest, but eight minutes after tilt, the systolic blood pressure was lowered in patients compared to controls, both at the first assessment (p = 0.016) and after seven years (p = 0.042). The change in systolic blood pressure between rest and eight minutes after tilt was not significant at the first assessment, while a significant change compared to controls was observed seven years later (p = 0.028). This indicates a progressive dysfunction. There were no differences in E/I, AI, BI or VAC indexes between patients and controls. CONCLUSION Patients with CD suffer from autonomic neuropathy early in their disease, suggesting involvement of many different organ systems in this entity.
Collapse
Affiliation(s)
- Bodil Ohlsson
- Department of Clinical Sciences, Gastroenterology Division, Entrance 35, 205 02 Malmö, Lund University, Sweden
| | - Göran Sundkvist
- Department of Clinical Sciences, Diabetes Epidemiology and Neuropathy Division, Entrance 51, 205 02 Malmö, Lund University, Sweden
- deceased
| | - Stefan Lindgren
- Department of Clinical Sciences, Gastroenterology Division, Entrance 35, 205 02 Malmö, Lund University, Sweden
| |
Collapse
|
46
|
De Ceulaer KMG, Van Ginneken CJD, Philips WA, Weyns A. Interstitial Cells of Cajal and their Role in Veterinary Gastrointestinal Pathologies. Anat Histol Embryol 2007; 36:300-10. [PMID: 17617109 DOI: 10.1111/j.1439-0264.2007.00766.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study highlights the importance of interstitial cells of Cajal (ICs) in gastrointestinal disease. Human research is already considering IC pathologies but in veterinary research IC pathologies are rarely studied. Nevertheless, recent studies of ICs show a growing interest in the pathophysiology of gastrointestinal diseases and emphasize the consideration of this cell type in the pathophysiology of veterinary gastrointestinal malfunctions.
Collapse
Affiliation(s)
- K M G De Ceulaer
- Laboratory of Veterinary Anatomy and Embryology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Antwerp University, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | |
Collapse
|
47
|
Ohlsson B, Veress B, Lindgren S, Sundkvist G. Enteric ganglioneuritis and abnormal interstitial cells of Cajal: features of inflammatory bowel disease. Inflamm Bowel Dis 2007; 13:721-6. [PMID: 17230538 DOI: 10.1002/ibd.20095] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND An increased prevalence of irritable bowel syndrome (IBS) and disturbances in cardiac and blood pressure reflexes have been described in patients with Crohn's disease (CD) and ulcerative colitis (UC). These features could be due to abnormalities in the gastrointestinal neurotransmission. The aims of this study were to examine whether histopathologic changes in the enteric nervous system correlate with disturbances in cardiac and blood pressure reflexes and the occurrence of IBS- and dyspepsia-like symptoms in these patients. METHODS Thirty patients with CD and UC with bowel resection were examined by deep-breathing and orthostatic tests. The resection specimens were evaluated histologically regarding visceral neuro- or myopathy. All medical records were studied for treatment and clinical course. RESULTS Ganglioneuritis was observed in 11 of 19 patients with CD and in 5 of 11 with UC. Only patients with CD had ganglioneuritis in the small intestine. Moreover, in CD the interstitial cells of Cajal (ICCs) in the small bowel showed atrophy and vacuolar degeneration, along with a reduced number of cells (P = 0.005). In UC the colonic ICCs were hyperplastic (P = 0.05) without signs of degeneration. The indices of deep-breathing and orthostatic tests were impaired, except in CD with ganglioneuritis, who showed normal test values. There were no correlations between histopathologic alterations versus IBS and dyspepsia. CONCLUSIONS Visceral ganglioneuritis and pathologic ICCs were observed in patients with CD and UC. However, these histopathologic abnormalities could not be related to the clinical or autonomic features of the disease.
Collapse
Affiliation(s)
- Bodil Ohlsson
- Department of Clinical Sciences, Gastroenterology Division, Lund University, Malmö, Sweden.
| | | | | | | |
Collapse
|
48
|
Hinescu ME, Ardeleanu C, Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells in human gallbladder. J Mol Histol 2007; 38:275-84. [PMID: 17541711 DOI: 10.1007/s10735-007-9099-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 05/09/2007] [Indexed: 12/11/2022]
Abstract
We describe here an interstitial Cajal-like cell type (ICLC) in human gallbladder, resembling the archetypal enteric interstitial cells of Cajal. Gallbladder ICLC were demonstrated in fresh preparations (tissue cryosections) using methylene-blue, and fixed specimens in Epon semi-thin sections stained with toluidine blue or transmission electron microscopy (TEM). The positive diagnosis of gallbladder ICLC was further verified by immunohistochemistry: CD117/c-kit, CD34, and another 16 antigens: vimentin, desmin, nestin, alpha-smooth muscle actin, NK-1, S-100, PGP-9.5, tau protein, chromogranin A, NSE, GFAP, CD1a, CD62-P, CD68, estrogen and progesterone receptors. Double immunostaining was performed for CD117, CD34 and CD117 and nestin, respectively. In fresh specimens, the spatial density of gallbladder ICLC was 100-110 cells/mm(2). ICLC mainly appeared beneath the epithelium and in muscularis (about 7%, and approximately 5%, respectively). In toto, ICLC represent in gallbladder approximately 5.5% of subepithelial cells. TEM showed that diagnostic criteria were fulfilled by ICLC. Moreover, TEM indicated that the main ultrastructural distinctive feature for ICLC, the cell processes, develop into the characteristic shape at a relatively early stage of development. It remains to be established if, in humans, ICLC are involved in gallbladder (dis)functions (e.g. pace-making, secretion (auto-, juxta- and/or paracrine), intercellular signaling, or stone formation).
Collapse
Affiliation(s)
- Mihail E Hinescu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, PO Box 35-29 Bucharest 35, Romania
| | | | | | | |
Collapse
|
49
|
Wang XY, Zarate N, Soderholm JD, Bourgeois JM, Liu LWC, Huizinga JD. Ultrastructural injury to interstitial cells of Cajal and communication with mast cells in Crohn's disease. Neurogastroenterol Motil 2007; 19:349-64. [PMID: 17509017 DOI: 10.1111/j.1365-2982.2006.00894.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Crohn's disease associated dysmotility has been attributed to fibrosis and damage to enteric nerves but injury to interstitial cells of Cajal (ICC) could also be involved. We assessed ICC in specimens obtained from patients with Crohn's disease and determined the relation between ICC and the inflammatory infiltrate, particularly mast cells (MC) using quantitative immunohistochemistry and electron microscopy. Ultrastructural injury to ICC was patchy in all ICC subtypes but ICC-Auerbach's plexus (AP) showed damage more frequently, i.e. swelling of mitochondria, decreased electron density, autophagosomes and partial depletion of the cytoplasm. Light microscopy confirmed a significant decrease in c-kit immunoreactivity for ICC-AP and an increased number of MC in the muscularis externa. Electron microscopy showed MC exhibiting piecemeal degranulation and making frequent and selective membrane-to-membrane contact with all types of injured ICC which suggests chronic release of granule content to affect ICC. Extent of ICC injury was not associated with duration of the disease. In conclusion, ultrastructural injury and loss of ICC-AP is evident in Crohn's disease. Epidemiological and morphological data suggest that ICC have the capacity to regenerate in spite of the chronic insult. The muscularis hosts a marked number of MC that exhibit piecemeal degranulation associated with ICC and may facilitate ICC maintenance.
Collapse
Affiliation(s)
- X-Y Wang
- Intestinal Disease Research Program, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Matsuura T, Masumoto K, Ieiri S, Nakatsuji T, Akiyoshi J, Nishimoto Y, Takahashi Y, Hayashida M, Taguchi T. Morphological and physiological changes of interstitial cells of Cajal after small bowel transplantation in rats. Transpl Int 2007; 20:616-24. [PMID: 17433092 DOI: 10.1111/j.1432-2277.2007.00475.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intestinal dysmotility has been reported to be associated with a decreased number of interstitial cells of Cajal (ICCs). However, the chronological changes in ICCs after small bowel transplantation (SBT) have not yet been elucidated. In this study, we aimed to evaluate the chronological change of ICCs after SBT. Orthotopic syngeneic SBT was performed in rats. Graft specimens were obtained at postreperfusion, and on 1, 3, 7, 14, and 30 postoperative day (POD). Thereafter, immunohistochemical staining was performed and the spontaneous contractions measured. During the initial period after SBT, the temporal impairment of ICCs was found. In an immunohistochemical study, c-Kit-positive cells appeared to decrease on POD 0, 1, and 3. Thereafter, the number of cells increased gradually up to POD 7. In contrast, the recovery of the spontaneous contractile amplitude took more time. The frequency of the electrical signal was preserved at almost exactly the same levels throughout this experimental period. Although the network of ICCs was found to be temporarily impaired after SBT in an immunohistochemical examination, this change was reversible. Moreover, the recovery of the function of the intestinal motility associated with ICCs was delayed after the early postoperative period.
Collapse
Affiliation(s)
- Toshiharu Matsuura
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|