1
|
Escobar Arcos JJ, de Oliveira Souza BD, Nakamura CV, Balbinot RB, Couto de Almeida RS, Custódio CC, Nunes TM, Itano EN. In vitro Biofilm Formation and Virulence of Paracoccidioides lutzii (LDR2) in a Galleria mellonella larval model. Microb Pathog 2025:107672. [PMID: 40334723 DOI: 10.1016/j.micpath.2025.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the thermodimorphic fungi Paracoccidioides brasiliensis and the newly identified species P. lutzii. This study investigated in vitro biofilm formation by P. lutzii (LDR2) and assessed its impact on Galleria mellonella larvae. Scanning electron microscopy (SEM) revealed that P. lutzii (LDR2) forms dense biofilms composed of a complex cellular network embedded in an extracellular matrix. Biofilm-associated infection significantly increased fungal virulence, resulting in higher larval mortality, reduced hemocyte density, and enhanced melanization. Moreover, infections with both biofilm and planktonic P. lutzii cells resulted in distinct nodule formations, as demonstrated by histological analysis. This study is also the first to present scanning electron microscopy (SEM) images of nodules induced by both planktonic and biofilm cells, as well as alterations in the fat body tissue of G. mellonella.
Collapse
Affiliation(s)
| | - Bianca Dorana de Oliveira Souza
- Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, UEL, Londrina, PR, Brazil.
| | | | | | | | - Carla Caloni Custódio
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, UEL, Londrina, PR, Brazil.
| | - Tatiany Moniqui Nunes
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, UEL, Londrina, PR, Brazil.
| | - Eiko Nakagawa Itano
- Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, UEL, Londrina, PR, Brazil.
| |
Collapse
|
2
|
Harshitha N, More SS, Mitra SD. Development of a lytic bacteriophage BPK01 impregnated biopolymer (chitosan) hydrogel for combating high-risk strains of carbapenem resistant Klebsiella pneumoniae (CRKP) pathogens- in vitro and in vivo evaluation. Int J Biol Macromol 2025; 304:140887. [PMID: 39947562 DOI: 10.1016/j.ijbiomac.2025.140887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
Alternative strategies are urgently required to combat the rise of high-risk carbapenem-resistant Klebsiella pneumoniae (CRKP), including blaNDM-positive strains that produce carbapenemase enzymes, which deactivate beta-lactam antibiotics and result in poor treatment outcomes. In this study, we isolated a bacteriophage BPK01, targeting a high-risk strain of Klebsiella pneumoniae (carbapenem-resistant, blaNDM-positive, ST147, capsular type K64, biofilm former). BPK01 demonstrated strong lytic activity (84%) against a panel of genetically characterized CRKP strains (n = 59) from clinical specimens, including pus, urine, sputum, blood, and tracheal aspirates. BPK01 was classified as a Caudoviricetes phage, exhibiting a burst size of 220 virions and a short latent period of 10 min. It demonstrated stability across a range of conditions (temperature, pH, and organic solvents) and effectively disrupted biofilms on silicone catheters. In vivo, BPK01 improved survival rates in the Galleria mellonella infection model and reduced bacterial burden in a murine bacteremia model, underscoring its therapeutic potential. Subsequently, we developed a hydrogel by incorporating BPK01 into a chitosan biopolymer, which demonstrated efficient lytic activity (spot assay, scanning electron microscopy, time kill assay) against CRKP pathogens, stability of biological activity for 6 months of storage, and controlled release kinetics, with the mathematical model Korsmeyer - Peppas being the best fit (R2 = 0.9962). The hydrogel expedited the healing of CRKP-infected lesions in a murine model, suggesting its potential as an effective topical treatment. This study highlights BPK01 as a promising biotherapeutic candidate for treating CRKP infection, with the phage hydrogel offering an ecofriendly and sustainable solution for treating infected lesions. Further research could expand its use in phage cocktails and other formulations for broader CRKP infection management.
Collapse
Affiliation(s)
- N Harshitha
- Department of Biotechnology, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore 560068, India
| | - Sunil S More
- Department of Biotechnology, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore 560068, India
| | - Susweta Das Mitra
- Department of Biotechnology, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore 560068, India.
| |
Collapse
|
3
|
Wei K, Arlotto M, Overhulse JM, Dinh T, Zhou Y, Dupper NJ, Yang J, Kashemirov BA, Dawi H, Garnaud C, Bourgine G, Mietton F, Champleboux M, Larabi A, Hayat Y, Indorato R, Noirclerc‐Savoye M, Skoufias D, Cornet M, Rabut G, McKenna CE, Petosa C, Govin J. Humanized Candida and NanoBiT Assays Expedite Discovery of Bdf1 Bromodomain Inhibitors With Antifungal Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404260. [PMID: 39821709 PMCID: PMC11904993 DOI: 10.1002/advs.202404260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/17/2024] [Indexed: 01/19/2025]
Abstract
The fungal Bromodomain and Extra-Terminal (BET) protein Bdf1 is a potential antifungal target against invasive fungal infections. However, the need to selectively inhibit both Bdf1 bromodomains (BDs) over human orthologs and the lack of molecular tools to assess on-target antifungal efficacy hamper efforts to develop Bdf1 BD inhibitors as antifungal therapeutics. This study reports a phenyltriazine compound that inhibits both Bdf1 BDs from the human fungal pathogen Candida glabrata with selectivity over the orthologous BDs from the human BET protein Brd4. On-target antifungal activity is established by devising two yeast-based inhibition assays: a growth assay using humanized Candida strains in which the Bdf1 BDs are replaced by their Brd4 counterparts, and a NanoBiT assay that evaluates the BD-mediated association of Bdf1 with chromatin. These assays additionally enable the discovery that BET inhibitor I-BET726 targets both Bdf1 BDs, inhibits the growth of a broad spectrum of Candida species, including antifungal-resistant clinical isolates, and displays efficacy in an invertebrate animal model of infection. These collective findings highlight the promising potential of Bdf1 BD inhibitors as an innovative class of antifungal therapeutics and the pivotal role of yeast-based assay development toward achieving this end.
Collapse
Affiliation(s)
- Kaiyao Wei
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Marie Arlotto
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Justin M. Overhulse
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Tuan‐Anh Dinh
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Yingsheng Zhou
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Nathan J. Dupper
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Jiayi Yang
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Boris A. Kashemirov
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Hasan Dawi
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Cécile Garnaud
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Gaëlle Bourgine
- Univ. RennesCNRSINSERMInstitut de Génétique et Développement de Rennes (IGDR)UMR 6290, U1305Rennes35000France
| | - Flore Mietton
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Morgane Champleboux
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| | - Amédé Larabi
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Yordan Hayat
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Rose‐Laure Indorato
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | | | - Dimitrios Skoufias
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Muriel Cornet
- Univ. Grenoble AlpesCNRSGrenoble INPCHU Grenoble Alpes, Laboratoire TIMCGrenoble38000France
| | - Gwenaël Rabut
- Univ. RennesCNRSINSERMInstitut de Génétique et Développement de Rennes (IGDR)UMR 6290, U1305Rennes35000France
| | - Charles E. McKenna
- Department of ChemistryDana and David Dornsife College of LettersArts, and SciencesUniversity of Southern CaliforniaUniversity Park CampusLos AngelesCA90089USA
| | - Carlo Petosa
- Univ. Grenoble AlpesCEACNRSInstitut de Biologie Structurale (IBS)Grenoble38000France
| | - Jérôme Govin
- Univ. Grenoble AlpesInsermCNRSInstitute for Advanced Biosciences (IAB)Grenoble38000France
| |
Collapse
|
4
|
Consuegra-Asprilla JM, Taborda F, Pérez V, Torres B, Rodríguez-Echeverri C, Muñoz JE, González Á. Virulence of Candida spp. Isolates From Patients With Recurrent Vulvovaginal Candidosis Is Associated With the Number of Episodes. Mycoses 2025; 68:e70031. [PMID: 39907149 DOI: 10.1111/myc.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Recurrent vulvovaginal candidosis (RVVC) has been associated with increased antifungal resistance. Recently, we reported that Candida isolates from Colombian patients with RVVC did not show an increase in antifungal resistance. OBJECTIVE The aim of this study was to evaluate the virulence of Candida isolates from patients with RVVC. METHODS A total of 40 Candida isolates were evaluated (37 C. albicans and 3 C. lusitaniae ). C. albicans isolates were divided into two groups based on the number of VVC episodes in patients per year: Group 1 (four to seven episodes; n = 26) and Group 2 (≥ eight episodes; n = 11). The XTT assay was used to assess biofilm formation. Galleria mellonella larvae were used for survival analysis and fungal load assessment, and the qPCR technique to determine the expression of the PRA1 gene. RESULTS It was observed that C. lusitaniae and C. albicans isolates from patients with ≥ eight VVC episodes per year exhibited a greater capacity to form biofilms compared to those from patients with four to seven VVC episodes. Moreover, in the G. mellonella model, larvae inoculated with isolates from RVVC patients exhibited approximately 80% mortality. Similarly, larvae infected with C. albicans from patients who experienced ≥ eight VVC episodes showed a significantly higher fungal load compared to the other evaluated groups; likewise, the expression of the PRA1 gene was significantly higher in isolates from patients with ≥ eight VVC episodes. CONCLUSION These results indicate that Candida isolates from patients with RVVC exhibit a high degree of virulence and suggest that virulence may be one of the mechanisms explaining recurrence rather than antifungal resistance itself.
Collapse
Affiliation(s)
| | - Felipe Taborda
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin, Colombia
| | - Verónica Pérez
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin, Colombia
| | - Brajhan Torres
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin, Colombia
| | - Carolina Rodríguez-Echeverri
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin, Colombia
| | - Julián E Muñoz
- Translational Microbiology and Emerging Diseases Research Group (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ángel González
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
5
|
Tava V, Reséndiz-Sharpe A, Vanhoffelen E, Saracchi M, Cortesi P, Lagrou K, Velde GV, Pasquali M. Fusarium musae Infection in Animal and Plant Hosts Confirms Its Cross-Kingdom Pathogenicity. J Fungi (Basel) 2025; 11:90. [PMID: 39997383 PMCID: PMC11856682 DOI: 10.3390/jof11020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Fusarium musae is a pathogen belonging to the Fusarium fujikuroi species complex, isolated from both banana fruits and immunocompromised patients, therefore hypothesized to be a cross-kingdom pathogen. We aimed to characterize F. musae infection in plant and animal hosts to prove its cross-kingdom pathogenicity. Therefore, we developed two infection models, one in banana and one in Galleria mellonella larvae, as a human proxy for the investigation of cross-kingdom pathogenicity of F. musae, along with accurate disease indexes effective to differentiate infection degrees in animal and plant hosts. We tested a worldwide collection of F. musae strains isolated both from banana fruits and human patients, and we provided the first experimental proof of the ability of all strains of F. musae to cause significant disease in banana fruits, as well as in G. mellonella. Thereby, we confirmed that F. musae can be considered a cross-kingdom pathogen. We, thus, provide a solid basis and toolbox for the investigation of the host-pathogen interactions of F. musae with its hosts.
Collapse
Affiliation(s)
- Valeria Tava
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | | | - Eliane Vanhoffelen
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, 3000 Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (A.R.-S.); (E.V.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (V.T.); (M.S.); (P.C.)
| |
Collapse
|
6
|
Bah U, de Llanos Frutos R, Donnellan S, Smith A, Flockhart A, Singleton I, Wheelhouse N. The potential virulence of Listeria monocytogenes strains isolated from fresh produce processing facilities as determined by an invertebrate Galleria mellonella model. PLoS One 2024; 19:e0311839. [PMID: 39666623 PMCID: PMC11637379 DOI: 10.1371/journal.pone.0311839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/13/2024] [Indexed: 12/14/2024] Open
Abstract
Listeria monocytogenes, a bacterium responsible for listeriosis, is an environmental and food-borne pathogen that poses a particular risk to pregnant women and the elderly. While traditionally associated with animal products, ready-to-eat salads are increasingly recognised as a source of Listeria outbreaks. However, little is known about the potential virulence of Listeria isolates from the fresh produce environment. This study assessed the virulence potential of nine L. monocytogenes strains from the fresh produce chain using the Galleria mellonella invertebrate infection model. Larvae were infected with 106 CFU of each strain via their circulatory system and compared to a reference strain L. monocytogenes (EGD-e) and Listeria ivanovii. Virulence was evaluated by measuring mortality rates, health index score of larvae, viable bacterial counts in the larvae, and the larvae's immune. Significant differences in larval mortality were observed among strains. Strains NLmo4 and NLmo5 caused the highest mortality rates (98.8% and 96.7%, respectively at 7 days post-infection), while strain NLmo20 had a significantly lower mortality rate of 65% at the same time point (p<0.05). Six isolates that caused varied mortality rates were then selected and tested for their ability to replicate both in vitro and in vivo and their impact on larval haemocyte density. In vitro growth rates were not significantly different among L. monocytogenes strains or compared to Listeria ivanovii. However, L. monocytogenes strains persisted and replicated in larvae up to 7d days post-infection, whereas Listeria ivanovii was reduced by 5 logs CFU by day 7. The presence of these L. monocytogenes strains caused organ damage in larvae, indicated by increased melanisation and subsequent larval death. Haemocyte density showed insignificant fluctuations following infection. In conclusion, the results of this study suggest L. monocytogenes strains from fresh produce food chain have varying pathogenicity levels and can pose potential risk to human health.
Collapse
Affiliation(s)
- Umaru Bah
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, United Kingdom
| | | | - Samantha Donnellan
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, United Kingdom
| | - Alva Smith
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, United Kingdom
| | - Allen Flockhart
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, United Kingdom
| | - Ian Singleton
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, United Kingdom
| | - Nick Wheelhouse
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
7
|
Bueso-Bordils JI, Antón-Fos GM, Martín-Algarra R, Alemán-López PA. Overview of Computational Toxicology Methods Applied in Drug and Green Chemical Discovery. J Xenobiot 2024; 14:1901-1918. [PMID: 39728409 DOI: 10.3390/jox14040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
In the field of computational chemistry, computer models are quickly and cheaply constructed to predict toxicology hazards and results, with no need for test material or animals as these computational predictions are often based on physicochemical properties of chemical structures. Multiple methodologies are employed to support in silico assessments based on machine learning (ML) and deep learning (DL). This review introduces the development of computational toxicology, focusing on ML and DL and emphasizing their importance in the field of toxicology. A fine balance between target potency, selectivity, absorption, distribution, metabolism, excretion, toxicity (ADMET) and clinical safety properties should be achieved to discover a potential new drug. It is advantageous to perform virtual predictions as early as possible in drug development processes, even before a molecule is synthesized. Currently, there are numerous commercially available and free web-based programs for toxicity prediction, which can be used to construct various predictive models. The key features of the QSAR method are also outlined, and the selection of appropriate physicochemical descriptors is a prerequisite for robust predictions. In addition, examples of open-source tools applied to toxicity prediction are included, as well as examples of the application of different computational methods for the prediction of toxicity in drug design and environmental toxicology.
Collapse
Affiliation(s)
- Jose I Bueso-Bordils
- Pharmacy Department, CEU Cardenal Herrera University, CEU Universities C/Ramón y Cajal s/n, Alfara del Patriarca, 46115 Valencia, Spain
| | - Gerardo M Antón-Fos
- Pharmacy Department, CEU Cardenal Herrera University, CEU Universities C/Ramón y Cajal s/n, Alfara del Patriarca, 46115 Valencia, Spain
| | - Rafael Martín-Algarra
- Pharmacy Department, CEU Cardenal Herrera University, CEU Universities C/Ramón y Cajal s/n, Alfara del Patriarca, 46115 Valencia, Spain
| | - Pedro A Alemán-López
- Pharmacy Department, CEU Cardenal Herrera University, CEU Universities C/Ramón y Cajal s/n, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
8
|
Vanhoffelen E, Vermoesen L, Michiels L, Lagrou K, Reséndiz-Sharpe A, Vande Velde G. Sensitive bioluminescence imaging of cryptococcosis in Galleria mellonella improves antifungal screening under in vivo conditions. Virulence 2024; 15:2327883. [PMID: 38465639 PMCID: PMC10939141 DOI: 10.1080/21505594.2024.2327883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Cryptococcus neoformans is an environmental yeast that primarily affects immunocompromised individuals, causing respiratory infections and life-threatening meningoencephalitis. Treatment is complicated by limited antifungal options, with concerns such as adverse effects, dose-limiting toxicity, blood-brain barrier permeability, and resistance development, emphasizing the critical need to optimize and expand current treatment options against invasive cryptococcosis. Galleria mellonella larvae have been introduced as an ethical intermediate for in vivo testing, bridging the gap between in vitro antifungal screening and mouse studies. However, current infection readouts in G. mellonella are indirect, insensitive, or invasive, which hampers the full potential of the model. To address the absence of a reliable non-invasive method for tracking infection, we longitudinally quantified the cryptococcal burden in G. mellonella using bioluminescence imaging (BLI). After infection with firefly luciferase-expressing C. neoformans, the resulting bioluminescence signal was quantitatively validated using colony-forming unit analysis. Longitudinal comparison of BLI to health and survival analysis revealed increased sensitivity of BLI in discriminating cryptococcal burden during early infection. Furthermore, BLI improved the detection of treatment efficacy using first-line antifungals, thereby benchmarking this model for antifungal testing. In conclusion, we introduced BLI as a real-time, quantitative readout of cryptococcal burden in G. mellonella over time, enabling more sensitive and reliable antifungal screening.
Collapse
Affiliation(s)
- Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| | - Lori Vermoesen
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| | - Lauren Michiels
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KULeuven, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | | | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KULeuven, Leuven, Belgium
| |
Collapse
|
9
|
Eiamthaworn K, Holthaus D, Suriyaprom S, Rickerts V, Tragoolpua Y. Immunomodulation and Protective Effects of Cordyceps militaris Extract Against Candida albicans Infection in Galleria mellonella Larvae. INSECTS 2024; 15:882. [PMID: 39590481 PMCID: PMC11595007 DOI: 10.3390/insects15110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Cordyceps militaris-derived formulations are currently used for multiple purposes because of their medical properties, especially immune system modulation. This study analyzes the inhibitory effects of C. militaris aqueous extract on Candida albicans infections and the immune response in larvae of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae). Larvae exhibited melanization within 1 h of being infected with C. albicans inoculum at a concentration of 106 cells/larvae, and died within 24 h from a lethal dose. Aqueous extract of C. militaris proved to be nontoxic at concentrations of 0.25 and 0.125 mg/larvae, and had the greatest ability to prolong the survival of larvae infected with a sublethal dose of C. albicans at a concentration of 105 cells/larvae. Moreover, the number of hemocytes in the hemolymph of G. mellonella increased after infection with C. albicans and treatment with the aqueous extract of C. militaris at 1, 24, and 48 h by 1.21 × 107, 1.23 × 107, and 1.4 × 107 cells/100 µL, respectively. The highest number of hemocytes was recorded after treatment of infected G. mellonella with the extract for 48 h. Transcriptional upregulation of the immune system was observed in certain antimicrobial peptides (AMPs), showing that the relative expression of galiomicin, gallerimycin, and lysozyme genes were upregulated as early as 1 h after infection. Therefore, we conclude that C. militaris aqueous extract can modulate the immune system of G. mellonella and protect against infection from C. albicans.
Collapse
Affiliation(s)
- Kiratiya Eiamthaworn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
| | - David Holthaus
- Department of Gynecology and Obstetrics, Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany;
- Robert Koch Institute, 13353 Berlin, Germany;
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Xiong EH, Zhang X, Yan H, Ward HN, Lin ZY, Wong CJ, Fu C, Gingras AC, Noble SM, Robbins N, Myers CL, Cowen LE. Functional genomic analysis of genes important for Candida albicans fitness in diverse environmental conditions. Cell Rep 2024; 43:114601. [PMID: 39126650 PMCID: PMC11416860 DOI: 10.1016/j.celrep.2024.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Fungal pathogens such as Candida albicans pose a significant threat to human health with limited treatment options available. One strategy to expand the therapeutic target space is to identify genes important for pathogen growth in host-relevant environments. Here, we leverage a pooled functional genomic screening strategy to identify genes important for fitness of C. albicans in diverse conditions. We identify an essential gene with no known Saccharomyces cerevisiae homolog, C1_09670C, and demonstrate that it encodes subunit 3 of replication factor A (Rfa3). Furthermore, we apply computational analyses to identify functionally coherent gene clusters and predict gene function. Through this approach, we predict the cell-cycle-associated function of C3_06880W, a previously uncharacterized gene required for fitness specifically at elevated temperatures, and follow-up assays confirm that C3_06880W encodes Iml3, a component of the C. albicans kinetochore with roles in virulence in vivo. Overall, this work reveals insights into the vulnerabilities of C. albicans.
Collapse
Affiliation(s)
- Emily H Xiong
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiang Zhang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huijuan Yan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Henry N Ward
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Ci Fu
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Suzanne M Noble
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Ma Q, Pradhan A, Leaves I, Hickey E, Roselletti E, Dambuza I, Larcombe DE, de Assis LJ, Wilson D, Erwig LP, Netea MG, Childers DS, Brown GD, Gow NA, Brown AJ. Impact of secreted glucanases upon the cell surface and fitness of Candida albicans during colonisation and infection. Cell Surf 2024; 11:100128. [PMID: 38938582 PMCID: PMC11208952 DOI: 10.1016/j.tcsw.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Host recognition of the pathogen-associated molecular pattern (PAMP), β-1,3-glucan, plays a major role in antifungal immunity. β-1,3-glucan is an essential component of the inner cell wall of the opportunistic pathogen Candida albicans. Most β-1,3-glucan is shielded by the outer cell wall layer of mannan fibrils, but some can become exposed at the cell surface. In response to host signals such as lactate, C. albicans shaves the exposed β-1,3-glucan from its cell surface, thereby reducing the ability of innate immune cells to recognise and kill the fungus. We have used sets of barcoded xog1 and eng1 mutants to compare the impacts of the secreted β-glucanases Xog1 and Eng1 upon C. albicans in vitro and in vivo. Flow cytometry of Fc-dectin-1-stained strains revealed that Eng1 plays the greater role in lactate-induced β-1,3-glucan masking. Transmission electron microscopy and stress assays showed that neither Eng1 nor Xog1 are essential for cell wall maintenance, but the inactivation of either enzyme compromised fungal adhesion to gut and vaginal epithelial cells. Competitive barcode sequencing suggested that neither Eng1 nor Xog1 strongly influence C. albicans fitness during systemic infection or vaginal colonisation in mice. However, the deletion of XOG1 enhanced C. albicans fitness during gut colonisation. We conclude that both Eng1 and Xog1 exert subtle effects on the C. albicans cell surface that influence fungal adhesion to host cells and that affect fungal colonisation in certain host niches.
Collapse
Affiliation(s)
- Qinxi Ma
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Arnab Pradhan
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Ian Leaves
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Emer Hickey
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Elena Roselletti
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Ivy Dambuza
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Daniel E. Larcombe
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Leandro Jose de Assis
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Duncan Wilson
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Lars P. Erwig
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Delma S. Childers
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gordon D. Brown
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Alistair J.P. Brown
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
12
|
Aor AC, Sangenito LS, Mello TP, Joffe LS, Rizzo J, Veiga VF, da Silva RN, Pereira MD, Fonseca BB, Rozental S, Haido RMT, Rodrigues ML, Branquinha MH, Santos ALS. Extracellular Vesicles from Scedosporium apiospermum Mycelial Cells: Implication for Fungal-Host Interplays. J Fungi (Basel) 2024; 10:277. [PMID: 38667948 PMCID: PMC11051067 DOI: 10.3390/jof10040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The release of extracellular vesicles (EVs) has been implicated as an alternative transport mechanism for the passage of macromolecules through the fungal cell wall, a phenomenon widely reported in yeasts but poorly explored in mycelial cells. In the present work, we have purified and characterized the EVs released by mycelia of the emerging, opportunistic, widespread and multidrug-resistant filamentous fungus Scedosporium apiospermum. Transmission electron microscopy images and light scattering measurements revealed the fungal EVs, which were observed individually or grouped with heterogeneous morphology, size and electron density. The mean diameter of the EVs, evaluated by the light scattering technique, was 179.7 nm. Overall, the structural stability of S. apiospermum EVs was preserved during incubation under various storage conditions. The lipid, carbohydrate and protein contents were quantified, and the EVs' protein profile was evidenced by SDS-PAGE, revealing proteins with molecular masses ranging from 20 to 118 kDa. Through immunoblotting, ELISA and immunocytochemistry assays, antigenic molecules were evidenced in EVs using a polyclonal serum (called anti-secreted molecules) from a rabbit inoculated with conditioned cell-free supernatant obtained from S. apiospermum mycelial cells. By Western blotting, several antigenic proteins were identified. The ELISA assay confirmed that the anti-secreted molecules exhibited a positive reaction up to a serum dilution of 1:3200. Despite transporting immunogenic molecules, S. apiospermum EVs slightly induced an in vitro cytotoxicity effect after 48 h of contact with either macrophages or lung epithelial cells. Interestingly, the pretreatment of both mammalian cells with purified EVs significantly increased the association index with S. apiospermum conidia. Furthermore, EVs were highly toxic to Galleria mellonella, leading to larval death in a typically dose- and time-dependent manner. Collectively, the results represent the first report of detecting EVs in the S. apiospermum filamentous form, highlighting a possible implication in fungal pathogenesis.
Collapse
Affiliation(s)
- Ana Carolina Aor
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Departamento de Microbiologia e Parasitologia (MIP), Instituto Biomédico (CMB), Universidade Federal Fluminense (UFF), Niterói 24210-130, RJ, Brazil
| | - Leandro S. Sangenito
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Campus Nilópolis, Rio de Janeiro 26530-060, RJ, Brazil
| | - Thaís P. Mello
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Luna S. Joffe
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Juliana Rizzo
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Venício F. Veiga
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
| | - Renata N. da Silva
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
| | - Marcos D. Pereira
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Beatriz B. Fonseca
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Sonia Rozental
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, RJ, Brazil (S.R.)
| | - Rosa Maria T. Haido
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, RJ, Brazil;
| | - Marcio L. Rodrigues
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba 81310-020, PR, Brazil
| | - Marta H. Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - André L. S. Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil (L.S.J.); (V.F.V.); (M.L.R.); (M.H.B.)
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, RJ, Brazil; (R.N.d.S.); (M.D.P.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
13
|
Santos AL, Liu D, van Venrooy A, Beckham JL, Oliver A, Tegos GP, Tour JM. Nonlethal Molecular Nanomachines Potentiate Antibiotic Activity Against Gram-Negative Bacteria by Increasing Cell Permeability and Attenuating Efflux. ACS NANO 2024; 18:3023-3042. [PMID: 38241477 DOI: 10.1021/acsnano.3c08041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Antibiotic resistance is a pressing public health threat. Despite rising resistance, antibiotic development, especially for Gram-negative bacteria, has stagnated. As the traditional antibiotic research and development pipeline struggles to address this growing concern, alternative solutions become imperative. Synthetic molecular nanomachines (MNMs) are molecular structures that rotate unidirectionally in a controlled manner in response to a stimulus, such as light, resulting in a mechanical action that can propel molecules to drill into cell membranes, causing rapid cell death. Due to their broad destructive capabilities, clinical translation of MNMs remains challenging. Hence, here, we explore the ability of nonlethal visible-light-activated MNMs to potentiate conventional antibiotics against Gram-negative bacteria. Nonlethal MNMs enhanced the antibacterial activity of various classes of conventional antibiotics against Gram-negative bacteria, including those typically effective only against Gram-positive strains, reducing the antibiotic concentration required for bactericidal action. Our study also revealed that MNMs bind to the negatively charged phospholipids of the bacterial inner membrane, leading to permeabilization of the cell envelope and impairment of efflux pump activity following light activation of MNMs. The combined effects of MNMs on membrane permeability and efflux pumps resulted in increased antibiotic accumulation inside the cell, reversing antibiotic resistance and attenuating its development. These results identify nonlethal MNMs as pleiotropic antibiotic enhancers or adjuvants. The combination of MNMs with traditional antibiotics is a promising strategy against multidrug-resistant Gram-negative infections. This approach can reduce the amount of antibiotics needed and slow down antibiotic resistance development, thereby preserving the effectiveness of our current antibiotics.
Collapse
Affiliation(s)
- Ana L Santos
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, 07120 Palma, Spain
| | - Dongdong Liu
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Alexis van Venrooy
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jacob L Beckham
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Antonio Oliver
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, 07120 Palma, Spain
- Servicio de Microbiologia, Hospital Universitari Son Espases, 07120 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - George P Tegos
- Office of Research, Faxton St. Luke's Healthcare, Mohawk Valley Health System, 1676 Sunset Avenue, Utica, New York 13502, United States
| | - James M Tour
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- NanoCarbon Center and Rice Advanced Materials Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
14
|
Ben-Ami R. Experimental Models to Study the Pathogenesis and Treatment of Mucormycosis. J Fungi (Basel) 2024; 10:85. [PMID: 38276032 PMCID: PMC10820959 DOI: 10.3390/jof10010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Mucormycosis presents a formidable challenge to clinicians and researchers. Animal models are an essential part of the effort to decipher the pathogenesis of mucormycosis and to develop novel pharmacotherapeutics against it. Diverse model systems have been established, using a range of animal hosts, immune and metabolic perturbations, and infection routes. An understanding of the characteristics, strengths, and drawbacks of these models is needed to optimize their use for specific research aims.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Department of Infectious Diseases, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| |
Collapse
|
15
|
Li X, Kong B, Sun Y, Sun F, Yang H, Zheng S. Synergistic potential of teriflunomide with fluconazole against resistant Candida albicans in vitro and in vivo. Front Cell Infect Microbiol 2023; 13:1282320. [PMID: 38169891 PMCID: PMC10758495 DOI: 10.3389/fcimb.2023.1282320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Candida albicans is the primary cause of systemic candidiasis, which is involved in high morbidity and mortality. Drug resistance exacerbates these problems. In addition, there are limited antifungal drugs available. In order to solve these problems, combination therapy has aroused great interest. Teriflunomide is an immunosuppressant. In the present work, we aimed to identify whether teriflunomide can reverse the resistance of Candida albicans in the presence of sub-inhibitory concentrations of fluconazole in vitro and in vivo. Methods Seven Candida albicans isolates were used in this study. Susceptibility of Candida albicans in vitro to the drugs was determined using a checkerboard microdilution assay in accordance with the recommendations of the Clinical and Laboratory Standards Institute. The effects of drugs on biofilm biomass of Candida albicans were determined by crystal violet staining. The development ability of Candida albicans hyphae was performed using a modified broth microdilution method. Galleria mellonella was used for testing the in vivo efficacy of the combination therapies. Results We found that the combination of teriflunomide (64 µg/mL) and fluconazole (0.5-1 µg/mL) has a significant synergistic effect in all resistant Candida albicans isolates (n=4). Also, this drug combination could inhibit the immature biofilm biomass and hyphae formation of resistant Candida albicans. Galleria mellonella was used for testing the in vivo efficacy of this combination therapies. As for the Galleria mellonella larvae infected by resistant Candida albicans, teriflunomide (1.6 µg/larvae) combined with fluconazole (1.6 µg/larvae) significantly increased their survival rates, and reduced the fungal burden, as well as damage of tissue in comparison to that in the control group or drug monotherapy group. Conclusion These results expand our knowledge about the antifungal potential of teriflunomide as an adjuvant of existing antifungal drugs, and also open new perspectives in the treatment of resistant Candida albicans based on repurposing clinically available nonantifungal drugs.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bing Kong
- Department of Critical Care Medicine, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Yaqiong Sun
- Obstetrics Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Fenghua Sun
- Radiology Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Huijun Yang
- Reproductive Medicine Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Shicun Zheng
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| |
Collapse
|
16
|
Martins IM, Seribelli AA, Machado Ribeiro TR, da Silva P, Lustri BC, Hernandes RT, Falcão JP, Moreira CG. Invasive non-typhoidal Salmonella (iNTS) aminoglycoside-resistant ST313 isolates feature unique pathogenic mechanisms to reach the bloodstream. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105519. [PMID: 37890808 DOI: 10.1016/j.meegid.2023.105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Invasive non-typhoidal Salmonella (iNTS) from the clonal type ST313 (S. Typhimurium ST313) is the primary cause of invasive salmonellosis in Africa. Recently, in Brazil, iNTS ST313 strains have been isolated from different sources, but there is a lack of understanding of the mechanisms behind how these gut bacteria can break the gut barrier and reach the patient's bloodstream. Here, we compare 13 strains of S. Typhimurium ST313, previously unreported isolates, from human blood cultures, investigating aspects of virulence and mechanisms of resistance. Initially, RNAseq analyses between ST13-blood isolate and SL1344 (ST19) prototype revealed 15 upregulated genes directly related to cellular invasion and replication, such as sopD2, sifB, and pipB. Limited information is available about S. Typhimurium ST313 pathogenesis and epidemiology, especially related to the global distribution of strains. Herein, the correlation of strains isolated from different sources in Brazil was employed to compare clinical and non-clinical isolates, a total of 22 genomes were studied by single nucleotide polymorphism (SNPs). The epidemiological analysis of 22 genomes of S. Typhimurium ST313 strains grouped them into three distinct clusters (A, B, and C) by SNP analysis, where cluster A comprised five, group B six, and group C 11. The 13 clinical blood isolates were all resistant to streptomycin, 92.3% of strains were resistant to ampicillin and 15.39% were resistant to kanamycin. The resistance genes acrA, acrB, mdtK, emrB, emrR, mdsA, and mdsB related to the production of efflux pumps were detected in all (100%) strains studied, similar to pathogenic traits investigated. In conclusion, we evidenced that S. Typhimurium ST313 strains isolated in Brazil have unique epidemiology. The elevated frequencies of virulence genes such as sseJ, sopD2, and pipB are a major concern in these Brazilian isolates, showing a higher pathogenic potential.
Collapse
Affiliation(s)
- Isabela Mancini Martins
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista- UNESP- Departamento de Ciências Biológicas, Araraquara, SP, Brazil
| | - Amanda Aparecida Seribelli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo- USP, Ribeirão Preto, SP, Brazil
| | - Tamara R Machado Ribeiro
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista- UNESP- Departamento de Ciências Biológicas, Araraquara, SP, Brazil
| | - Patrick da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista- UNESP- Departamento de Ciências Biológicas, Araraquara, SP, Brazil
| | - Bruna Cardinali Lustri
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista- UNESP- Departamento de Ciências Biológicas, Araraquara, SP, Brazil
| | - Rodrigo T Hernandes
- Instituto de Biociências, Universidade Estadual Paulista- UNESP, Botucatu, SP, Brazil
| | - Juliana Pfrimer Falcão
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo- USP, Ribeirão Preto, SP, Brazil.
| | - Cristiano Gallina Moreira
- Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista- UNESP- Departamento de Ciências Biológicas, Araraquara, SP, Brazil; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
17
|
Evans C, Ahmed M, Beirne DF, McCann M, Kavanagh K, Devereux M, Rooney D, Heaney F. Synthesis, characterisation, and solution behaviour of Ag(I) bis(phenanthroline-oxazine) complexes and the evaluation of their biological activity against the pathogenic yeast Candida albicans. Biometals 2023; 36:1241-1256. [PMID: 37378710 PMCID: PMC10684714 DOI: 10.1007/s10534-023-00513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Three Ag(I) bis(phenanthroline-oxazine) complexes with varying lipophilicity were synthesised and characterised. The solution stoichiometry of 1:2 Ag(I):ligand was determined for each complex by the continuous variation Job's plot method using NMR spectroscopy. NMR studies were also carried out to investigate the fluxional behaviour of the Ag(I) complexes in solution. The biological activity of the silver(I) complexes and the corresponding ligands towards a clinical strain of Candida albicans MEN was studied using broth microdilution assays. Testing showed the choice of media and the duration of incubation were key determinants of the inhibitory behaviour towards Candida albicans, however, the difference between freshly prepared and pre-prepared solutions was insignificant in minimal media. The activity of the metal-free ligands correlated with the length of the alkyl chain. In minimal media, the methyl ester phenanthroline-oxazine ligand was effective only at 60 μM, limiting growth to 67% of the control, while a 60 μM dose of the propyl ester analogue limited fungal growth at < 20% of the control. MIC50 and MIC80 values for the propyl and hexyl ester analogues were calculated to be 45 and 59 µM (propyl), and 18 and 45 µM (hexyl). Moreover, in a study of activity as a function of time it was observed that the hexyl ester ligand maintained its activity for longer than the methyl and propyl analogues; after 48 h a 60 μM dose held fungal growth at 24% of that of the control. Complexation to Ag(I) was much more effective in enhancing biological activity of the ligands than was increasing the ester chain length. Significantly no difference in activity between the three silver(I) complexes was observed under the experimental conditions. All three complexes were substantially more active than their parent ligands against Candida albicans and AgClO4 and the three silver(I) bis(phen-oxazine) complexes have MIC80 values of < 15 μM. The ability of the silver(I) complexes to hold fungal growth at about 20% of the control even after 48 h incubation at low dosages (15 μM) showcases their superiority over the simple silver(I) perchlorate salt, which ceased to be effective at dosages below 60 μM at the extended time point.
Collapse
Affiliation(s)
- Clara Evans
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland
| | - Muhib Ahmed
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland
| | - Darren F Beirne
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland
| | - Malachy McCann
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland
| | - Kevin Kavanagh
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland
- Department of Biology, Maynooth University, Co. Kildare, Maynooth, Ireland
| | - Michael Devereux
- The Centre for Biomimetic and Therapeutic Research, Focas Research Institute, Technological University Dublin, Dublin 8, Ireland
| | - Denise Rooney
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland.
| | - Frances Heaney
- Department of Chemistry, Maynooth University, Co. Kildare, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, Ireland
| |
Collapse
|
18
|
Lear L, Padfield D, Hesse E, Kay S, Buckling A, Vos M. Copper reduces the virulence of bacterial communities at environmentally relevant concentrations. ENVIRONMENT INTERNATIONAL 2023; 182:108295. [PMID: 37980880 DOI: 10.1016/j.envint.2023.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
Increasing environmental concentrations of metals as a result of anthropogenic pollution are significantly changing many microbial communities. While there is evidence metal pollution can result in increased antibiotic resistance, the effects of metal pollution on the virulence of bacterial communities remains largely undetermined. Here, we experimentally test whether metal stress alters the virulence of bacterial communities. We do this by incubating three wastewater influent communities under different environmentally relevant copper concentrations for three days. We then quantify the virulence of the community phenotypically using the Galleria mellonella infection model, and test if differences are due to changes in the rate of biomass accumulation (productivity), copper resistance, or community composition (quantified using 16S amplicon sequencing). The virulence of the communities was found to be reduced by the highest copper concentration, but not to be affected by the lower concentration. As well as reduced virulence, communities exposed to the highest copper concentration were less diverse and had lower productivity. This work highlights that metal pollution may decrease virulence in bacterial communities, but at a cost to diversity and productivity.
Collapse
Affiliation(s)
- Luke Lear
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom.
| | - Dan Padfield
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Elze Hesse
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Suzanne Kay
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Michiel Vos
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
19
|
Son SM, Kim J, Ryu S. Development of sensitizer peptide-fused endolysin Lys1S-L9P acting against multidrug-resistant gram-negative bacteria. Front Microbiol 2023; 14:1296796. [PMID: 38075915 PMCID: PMC10701683 DOI: 10.3389/fmicb.2023.1296796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/01/2023] [Indexed: 06/21/2024] Open
Abstract
The advent of multidrug-resistant (MDR) bacteria poses a major threat to public health, garnering attention to novel antibiotic replacements. Endolysin, a bacteriophage-derived cell wall-degrading enzyme, is a promising alternative to conventional antibiotics. However, it is challenging to control Gram-negative bacteria due to the presence of the outer membrane that shields the peptidoglycan layer from enzymatic degradation. To overcome this threshold, we constructed the fusion endolysin Lys1S-L9P by combining endolysin LysSPN1S with KL-L9P, a sensitizer peptide known to extend efficacy of antibiotics by perturbing the outer membrane of Gram-negative bacteria. In addition, we established a new endolysin purification procedure that increases solubility allowing a 4-fold increase in production yield of Lys1S-L9P. The sensitizer peptide-fused endolysin Lys1S-L9P exhibited high bactericidal effects against many MDR Gram-negative pathogens and was more effective in eradicating biofilms compared to LysSPN1S. Moreover, Lys1S-L9P showed potential for clinical use, maintaining stability at various storage temperatures without cytotoxicity against human cells. In the in vivo Galleria mellonella model, Lys1S-L9P demonstrated potent antibacterial activity against MDR Gram-negative bacteria without inducing any toxic activity. This study suggest that Lys1S-L9P could be a potential biocontrol agent to combat MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Su Min Son
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Joonbeom Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Ramage G, Borghi E, Rodrigues CF, Kean R, Williams C, Lopez-Ribot J. Our current clinical understanding of Candida biofilms: where are we two decades on? APMIS 2023; 131:636-653. [PMID: 36932821 DOI: 10.1111/apm.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Clinically we have been aware of the concept of Candida biofilms for many decades, though perhaps without the formal designation. Just over 20 years ago the subject emerged on the back of progress made from the bacterial biofilms, and academic progress pace has continued to mirror the bacterial biofilm community, albeit at a decreased volume. It is apparent that Candida species have a considerable capacity to colonize surfaces and interfaces and form tenacious biofilm structures, either alone or in mixed species communities. From the oral cavity, to the respiratory and genitourinary tracts, wounds, or in and around a plethora of biomedical devices, the scope of these infections is vast. These are highly tolerant to antifungal therapies that has a measurable impact on clinical management. This review aims to provide a comprehensive overight of our current clinical understanding of where these biofilms cause infections, and we discuss existing and emerging antifungal therapies and strategies.
Collapse
Affiliation(s)
- Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
| | - Elisa Borghi
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Milan, Italy
| | - Célia Fortuna Rodrigues
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
| | - Ryan Kean
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Biological Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Craig Williams
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Microbiology Department, Morecambe Bay NHS Trust, Lancaster, UK
| | - Jose Lopez-Ribot
- Department of Biology and the South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
21
|
Fusco-Almeida AM, de Matos Silva S, dos Santos KS, de Lima Gualque MW, Vaso CO, Carvalho AR, Medina-Alarcón KP, Pires ACMDS, Belizario JA, de Souza Fernandes L, Moroz A, Martinez LR, Ruiz OH, González Á, Mendes-Giannini MJS. Alternative Non-Mammalian Animal and Cellular Methods for the Study of Host-Fungal Interactions. J Fungi (Basel) 2023; 9:943. [PMID: 37755051 PMCID: PMC10533014 DOI: 10.3390/jof9090943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
In the study of fungal pathogenesis, alternative methods have gained prominence due to recent global legislation restricting the use of mammalian animals in research. The principle of the 3 Rs (replacement, reduction, and refinement) is integrated into regulations and guidelines governing animal experimentation in nearly all countries. This principle advocates substituting vertebrate animals with other invertebrate organisms, embryos, microorganisms, or cell cultures. This review addresses host-fungus interactions by employing three-dimensional (3D) cultures, which offer more faithful replication of the in vivo environment, and by utilizing alternative animal models to replace traditional mammals. Among these alternative models, species like Caenorhabditis elegans and Danio rerio share approximately 75% of their genes with humans. Furthermore, models such as Galleria mellonella and Tenebrio molitor demonstrate similarities in their innate immune systems as well as anatomical and physiological barriers, resembling those found in mammalian organisms.
Collapse
Affiliation(s)
- Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Samanta de Matos Silva
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Kelvin Sousa dos Santos
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Angélica Romão Carvalho
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Kaila Petrolina Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Ana Carolina Moreira da Silva Pires
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Jenyffie Araújo Belizario
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Lígia de Souza Fernandes
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Andrei Moroz
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Luis R. Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Orville Hernandez Ruiz
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
- Cellular and Molecular Biology Group University of Antioquia, Corporation for Biological Research, Medellin 050010, Colombia
| | - Ángel González
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| |
Collapse
|
22
|
Vanhoffelen E, Michiels L, Brock M, Lagrou K, Reséndiz-Sharpe A, Vande Velde G. Powerful and Real-Time Quantification of Antifungal Efficacy against Triazole-Resistant and -Susceptible Aspergillus fumigatus Infections in Galleria mellonella by Longitudinal Bioluminescence Imaging. Microbiol Spectr 2023; 11:e0082523. [PMID: 37466453 PMCID: PMC10433797 DOI: 10.1128/spectrum.00825-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Aspergillus fumigatus is an environmental mold that causes life-threatening respiratory infections in immunocompromised patients. The plateaued effectiveness of antifungal therapy and the increasing prevalence of triazole-resistant isolates have led to an urgent need to optimize and expand the current treatment options. For the transition of in vitro research to in vivo models in the time- and resource-consuming preclinical drug development pipeline, Galleria mellonella larvae have been introduced as a valuable in vivo screening intermediate. Despite the high potential of this model, the current readouts of fungal infections in G. mellonella are insensitive, irreproducible, or invasive. To optimize this model, we aimed for the longitudinal quantification of the A. fumigatus burden in G. mellonella using noninvasive bioluminescence imaging (BLI). Larvae were infected with A. fumigatus strains expressing a red-shifted firefly luciferase, and the substrate dosage was optimized for the longitudinal visualization of the fungal burden without affecting larval health. The resulting photon flux was successfully validated for fungal quantification against colony forming units (CFU) analyses, which revealed an increased dynamic range from BLI detection. Comparison of BLI to survival rates and health index scores additionally revealed improved sensitivity for the early discrimination of differences in fungal burdens as early as 1 day after infection. This was confirmed by the improved detection of treatment efficacy against triazole-susceptible and -resistant strains. In conclusion, we established a refined G. mellonella aspergillosis model that enables the noninvasive real-time quantification of A. fumigatus by BLI. This model provides a quick and reproducible in vivo system for the evaluation of treatment options and is in line with 3Rs recommendations. IMPORTANCE Triazole-resistant Aspergillus fumigatus strains are rapidly emerging, and resistant infections are difficult to treat, causing mortality rates of up to 88%. The recent WHO priority list underscores A. fumigatus as one of the most critical fungal pathogens for which innovative antifungal treatment should be (urgently) prioritized. Here, we deliver a Galleria mellonella model for triazole-susceptible and -resistant A. fumigatus infections combined with a statistically powerful quantitative, longitudinal readout of the A. fumigatus burden for optimized preclinical antifungal screening. G. mellonella larvae are a convenient invertebrate model for in vivo antifungal screenings, but so far, the model has been limited by variable and insensitive observational readouts. We show that bioluminescence imaging-based fungal burden quantification outperforms these readouts in reliability, sensitivity, and time to the detection of treatment effects in both triazole-susceptible and -resistant infections and can thus lead to better translatability from in vitro antifungal screening results to in vivo confirmation in mouse and human studies.
Collapse
Affiliation(s)
- Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| | - Lauren Michiels
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| | - Matthias Brock
- School of Life Sciences, Fungal Biology Group, University of Nottingham, Nottingham, United Kingdom
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | | | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
de Souza PC, Corrêa AEDN, Gameiro JG, de Oliveira Júnior AG, Panagio LA, Venancio EJ, Almeida RS. Production of IgY against iron permease Ftr1 from Candida albicans and evaluation of its antifungal activity using Galleria mellonella as a model of systemic infection. Microb Pathog 2023:106166. [PMID: 37290729 DOI: 10.1016/j.micpath.2023.106166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Candida albicans is one of the leading pathological agents of mucosal and deep tissue infections. Considering that the variety of antifungals is restricted and that toxicity limits their use, immunotherapies against pathogenic fungi have been viewed as alternatives with reduced adverse effects. In this context, C. albicans has a protein used to capture iron from the environment and the host, known as the high-affinity iron permease Ftr1. This protein may be a new target of action for novel antifungal therapies, as it influences the virulence of this yeast. Thus, the aim of the present study was to produce and conduct the biological characterization of IgY antibodies against C. albicans Ftr1. Immunization of laying hens with an Ftr1-derived peptide resulted in IgY antibodies extracted from egg yolks capable of binding to the antigen with high affinity (avidity index = 66.6 ± 0.3%). These antibodies reduced the growth and even eliminated C. albicans under iron restriction, a favorable condition for the expression of Ftr1. This also occurred with a mutant strain that does not produce Ftr1 in the presence of iron, a circumstance in which the protein analog of iron permease, Ftr2, is expressed. Furthermore, the survival of G. mellonella larvae infected with C. albicans and treated with the antibodies was 90% higher than the control group, which did not receive treatment (p < 0.0001). Therefore, our data suggest that IgY antibodies against Ftr1 from C. albicans can inhibit yeast propagation by blocking iron uptake.
Collapse
Affiliation(s)
- Patricia Canteri de Souza
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Alana Elke do Nascimento Corrêa
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Juliana Gutschow Gameiro
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Admilton Gonçalves de Oliveira Júnior
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Luciano Aparecido Panagio
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Emerson José Venancio
- Department of Pathological Sciences, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil
| | - Ricardo Sergio Almeida
- Department of Microbiology, Center of Biological Science, State University of Londrina, Rodovia Celso Garcia Cid, Pr 445, Km 380, Londrina, 86.057-970, Paraná, Brazil.
| |
Collapse
|
24
|
Bugyna L, Kendra S, Bujdáková H. Galleria mellonella-A Model for the Study of aPDT-Prospects and Drawbacks. Microorganisms 2023; 11:1455. [PMID: 37374956 PMCID: PMC10301295 DOI: 10.3390/microorganisms11061455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Galleria mellonella is a promising in vivo model insect used for microbiological, medical, and pharmacological research. It provides a platform for testing the biocompatibility of various compounds and the kinetics of survival after an infection followed by subsequent treatment, and for the evaluation of various parameters during treatment, including the host-pathogen interaction. There are some similarities in the development of pathologies with mammals. However, a limitation is the lack of adaptive immune response. Antimicrobial photodynamic therapy (aPDT) is an alternative approach for combating microbial infections, including biofilm-associated ones. aPDT is effective against Gram-positive and Gram-negative bacteria, viruses, fungi, and parasites, regardless of whether they are resistant to conventional treatment. The main idea of this comprehensive review was to collect information on the use of G. mellonella in aPDT. It provides a collection of references published in the last 10 years from this area of research, complemented by some practical experiences of the authors of this review. Additionally, the review summarizes in brief information on the G. mellonella model, its advantages and methods used in the processing of material from these larvae, as well as basic knowledge of the principles of aPDT.
Collapse
Affiliation(s)
| | | | - Helena Bujdáková
- Faculty of Natural Sciences, Department of Microbiology and Virology, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovakia; (L.B.); (S.K.)
| |
Collapse
|
25
|
Anderson FM, Visser ND, Amses KR, Hodgins-Davis A, Weber AM, Metzner KM, McFadden MJ, Mills RE, O’Meara MJ, James TY, O’Meara TR. Candida albicans selection for human commensalism results in substantial within-host diversity without decreasing fitness for invasive disease. PLoS Biol 2023; 21:e3001822. [PMID: 37205709 PMCID: PMC10234564 DOI: 10.1371/journal.pbio.3001822] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/01/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Candida albicans is a frequent colonizer of human mucosal surfaces as well as an opportunistic pathogen. C. albicans is remarkably versatile in its ability to colonize diverse host sites with differences in oxygen and nutrient availability, pH, immune responses, and resident microbes, among other cues. It is unclear how the genetic background of a commensal colonizing population can influence the shift to pathogenicity. Therefore, we examined 910 commensal isolates from 35 healthy donors to identify host niche-specific adaptations. We demonstrate that healthy people are reservoirs for genotypically and phenotypically diverse C. albicans strains. Using limited diversity exploitation, we identified a single nucleotide change in the uncharacterized ZMS1 transcription factor that was sufficient to drive hyper invasion into agar. We found that SC5314 was significantly different from the majority of both commensal and bloodstream isolates in its ability to induce host cell death. However, our commensal strains retained the capacity to cause disease in the Galleria model of systemic infection, including outcompeting the SC5314 reference strain during systemic competition assays. This study provides a global view of commensal strain variation and within-host strain diversity of C. albicans and suggests that selection for commensalism in humans does not result in a fitness cost for invasive disease.
Collapse
Affiliation(s)
- Faith M. Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Noelle D. Visser
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kevin R. Amses
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrea Hodgins-Davis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alexandra M. Weber
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katura M. Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Michael J. McFadden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ryan E. Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Timothy Y. James
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
26
|
Santos AL, Beckham JL, Liu D, Li G, van Venrooy A, Oliver A, Tegos GP, Tour JM. Visible-Light-Activated Molecular Machines Kill Fungi by Necrosis Following Mitochondrial Dysfunction and Calcium Overload. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205781. [PMID: 36715588 PMCID: PMC10074111 DOI: 10.1002/advs.202205781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Invasive fungal infections are a growing public health threat. As fungi become increasingly resistant to existing drugs, new antifungals are urgently needed. Here, it is reported that 405-nm-visible-light-activated synthetic molecular machines (MMs) eliminate planktonic and biofilm fungal populations more effectively than conventional antifungals without resistance development. Mechanism-of-action studies show that MMs bind to fungal mitochondrial phospholipids. Upon visible light activation, rapid unidirectional drilling of MMs at ≈3 million cycles per second (MHz) results in mitochondrial dysfunction, calcium overload, and ultimately necrosis. Besides their direct antifungal effect, MMs synergize with conventional antifungals by impairing the activity of energy-dependent efflux pumps. Finally, MMs potentiate standard antifungals both in vivo and in an ex vivo porcine model of onychomycosis, reducing the fungal burden associated with infection.
Collapse
Affiliation(s)
- Ana L. Santos
- Department of ChemistryRice UniversityHoustonTX77005USA
- IdISBA – Fundación de Investigación Sanitaria de las Islas BalearesPalma07120Spain
| | | | - Dongdong Liu
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Gang Li
- Department of ChemistryRice UniversityHoustonTX77005USA
| | | | - Antonio Oliver
- IdISBA – Fundación de Investigación Sanitaria de las Islas BalearesPalma07120Spain
- Servicio de MicrobiologiaHospital Universitari Son EspasesPalma07120Spain
| | - George P. Tegos
- Office of ResearchReading HospitalTower Health, 420 S. Fifth AvenueWest ReadingPA19611USA
| | - James M. Tour
- Department of ChemistryRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
- Department of Materials Science and NanoEngineeringRice UniversityHoustonTX77005USA
- NanoCarbon Center and the Welch Institute for Advanced MaterialsRice UniversityHoustonTX77005USA
| |
Collapse
|
27
|
Malacarne MC, Mastore M, Gariboldi MB, Brivio MF, Caruso E. Preliminary Toxicity Evaluation of a Porphyrin Photosensitizer in an Alternative Preclinical Model. Int J Mol Sci 2023; 24:ijms24043131. [PMID: 36834543 PMCID: PMC9966276 DOI: 10.3390/ijms24043131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
In photodynamic therapy (PDT), a photosensitizer (PS) excited with a specific wavelength, and in the presence of oxygen, gives rise to photochemical reactions that lead to cell damage. Over the past few years, larval stages of the G. mellonella moth have proven to be an excellent alternative animal model for in vivo toxicity testing of novel compounds and virulence testing. In this article, we report a series of preliminary studies on G. mellonella larvae to evaluate the photoinduced stress response by a porphyrin (PS) (TPPOH). The tests performed evaluated PS toxicity on larvae and cytotoxicity on hemocytes, both in dark conditions and following PDT. Cellular uptake was also evaluated by fluorescence and flow cytometry. The results obtained demonstrate how the administration of PS and subsequent irradiation of larvae affects not only larvae survival rate, but also immune system cells. It was also possible to verify PS's uptake and uptake kinetics in hemocytes, observing a maximum peak at 8 h. Given the results obtained in these preliminary tests, G. mellonella appears to be a promising model for preclinical PS tests.
Collapse
Affiliation(s)
- Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Maristella Mastore
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, 21100 Varese, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | | | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
- Correspondence: ; Tel.: +39-0332421541
| |
Collapse
|
28
|
Decker AP, Su Y, Mishra B, Verma A, Lushnikova T, Xie J, Wang G. Peptide Stability Is Important but Not a General Requirement for Antimicrobial and Antibiofilm Activity In Vitro and In Vivo. Mol Pharm 2023; 20:738-749. [PMID: 36485036 DOI: 10.1021/acs.molpharmaceut.2c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide stability to proteases has been a major requirement for developing peptide therapeutics. This study investigates the effects of peptide stability on antimicrobial and antibiofilm activity under various conditions. For this purpose, two human cathelicidin-derived peptides differing in stability to proteases were utilized. While GF-17, a peptide derived from the major antimicrobial region of human LL-37, can be rapidly cleaved by proteases, the engineered peptide 17BIPHE2 is resistant to multiple proteases. In the standard antimicrobial susceptibility, killing kinetics, and membrane permeabilization assays conducted in vitro using planktonic bacteria, these two peptides displayed similar potency. The two peptides were also similarly active against methicillin-resistant Staphylococcus aureus (MRSA) USA300 prior to biofilm formation. However, 17BIPHE2 was superior to GF-17 in disrupting preformed biofilms probably due to both enhanced stability and slightly higher DNA binding capacity. In a wax moth model, 17BIPHE2 better protected insects from MRSA infection-caused death than GF-17, consistent with the slower degradation of 17BIPHE2 than GF-17. Here, peptide antimicrobial activity was found to be critical for in vivo efficacy. When incorporated in the nanofiber/microneedle delivery device, GF-17 and 17BIPHE2 displayed a similar effect in eliminating MRSA in murine chronic wounds, underscoring the advantage of nanofibers in protecting the peptide from degradation. Since nanoformulation can ease the requirement of peptide stability, it opens the door to a direct use of natural peptides or their cocktails for antimicrobial treatment, accelerating the search of effective antibiofilm peptides to treat chronic wounds.
Collapse
Affiliation(s)
- Aaron P Decker
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Biswajit Mishra
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Atul Verma
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| |
Collapse
|
29
|
de Assis LJ, Bain JM, Liddle C, Leaves I, Hacker C, Peres da Silva R, Yuecel R, Bebes A, Stead D, Childers DS, Pradhan A, Mackenzie K, Lagree K, Larcombe DE, Ma Q, Avelar GM, Netea MG, Erwig LP, Mitchell AP, Brown GD, Gow NAR, Brown AJP. Nature of β-1,3-Glucan-Exposing Features on Candida albicans Cell Wall and Their Modulation. mBio 2022; 13:e0260522. [PMID: 36218369 PMCID: PMC9765427 DOI: 10.1128/mbio.02605-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/15/2023] Open
Abstract
Candida albicans exists as a commensal of mucosal surfaces and the gastrointestinal tract without causing pathology. However, this fungus is also a common cause of mucosal and systemic infections when antifungal immune defenses become compromised. The activation of antifungal host defenses depends on the recognition of fungal pathogen-associated molecular patterns (PAMPs), such as β-1,3-glucan. In C. albicans, most β-1,3-glucan is present in the inner cell wall, concealed by the outer mannan layer, but some β-1,3-glucan becomes exposed at the cell surface. In response to host signals, such as lactate, C. albicans induces the Xog1 exoglucanase, which shaves exposed β-1,3-glucan from the cell surface, thereby reducing phagocytic recognition. We show here that β-1,3-glucan is exposed at bud scars and punctate foci on the lateral wall of yeast cells, that this exposed β-1,3-glucan is targeted during phagocytic attack, and that lactate-induced masking reduces β-1,3-glucan exposure at bud scars and at punctate foci. β-1,3-Glucan masking depends upon protein kinase A (PKA) signaling. We reveal that inactivating PKA, or its conserved downstream effectors, Sin3 and Mig1/Mig2, affects the amounts of the Xog1 and Eng1 glucanases in the C. albicans secretome and modulates β-1,3-glucan exposure. Furthermore, perturbing PKA, Sin3, or Mig1/Mig2 attenuates the virulence of lactate-exposed C. albicans cells in Galleria. Taken together, the data are consistent with the idea that β-1,3-glucan masking contributes to Candida pathogenicity. IMPORTANCE Microbes that coexist with humans have evolved ways of avoiding or evading our immunological defenses. These include the masking by these microbes of their "pathogen-associated molecular patterns" (PAMPs), which are recognized as "foreign" and used to activate protective immunity. The commensal fungus Candida albicans masks the proinflammatory PAMP β-1,3-glucan, which is an essential component of its cell wall. Most of this β-1,3-glucan is hidden beneath an outer layer of the cell wall on these microbes, but some can become exposed at the fungal cell surface. Using high-resolution confocal microscopy, we examine the nature of the exposed β-1,3-glucan at C. albicans bud scars and at punctate foci on the lateral cell wall, and we show that these features are targeted by innate immune cells. We also reveal that downstream effectors of protein kinase A (Mig1/Mig2, Sin3) regulate the secretion of major glucanases, modulate the levels of β-1,3-glucan exposure, and influence the virulence of C. albicans in an invertebrate model of systemic infection. Our data support the view that β-1,3-glucan masking contributes to immune evasion and the virulence of a major fungal pathogen of humans.
Collapse
Affiliation(s)
- Leandro José de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Judith M. Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Corin Liddle
- Bioimaging Unit, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | | | - Roberta Peres da Silva
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Raif Yuecel
- Exeter Centre for Cytomics, University of Exeter, Exeter, United Kingdom
| | - Attila Bebes
- Exeter Centre for Cytomics, University of Exeter, Exeter, United Kingdom
| | - David Stead
- Aberdeen Proteomics Facility, Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Delma S. Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Kevin Mackenzie
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Katherine Lagree
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Daniel E. Larcombe
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gabriela Mol Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Lars P. Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, London, United Kingdom
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
30
|
Lear L, Hesse E, Buckling A, Vos M. Copper selects for siderophore-mediated virulence in Pseudomonas aeruginosa. BMC Microbiol 2022; 22:303. [PMID: 36510131 PMCID: PMC9745993 DOI: 10.1186/s12866-022-02720-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Iron is essential for almost all bacterial pathogens and consequently it is actively withheld by their hosts. However, the production of extracellular siderophores enables iron sequestration by pathogens, increasing their virulence. Another function of siderophores is extracellular detoxification of non-ferrous metals. Here, we experimentally link the detoxification and virulence roles of siderophores by testing whether the opportunistic pathogen Pseudomonas aeruginosa displays greater virulence after exposure to copper. To do this, we incubated P. aeruginosa under different environmentally relevant copper regimes for either two or twelve days. Subsequent growth in a copper-free environment removed phenotypic effects, before we quantified pyoverdine production (the primary siderophore produced by P. aeruginosa), and virulence using the Galleria mellonella infection model. RESULTS Copper selected for increased pyoverdine production, which was positively correlated with virulence. This effect increased with time, such that populations incubated with high copper for twelve days were the most virulent. Replication of the experiment with a non-pyoverdine producing strain of P. aeruginosa demonstrated that pyoverdine production was largely responsible for the change in virulence. CONCLUSIONS We here show a direct link between metal stress and bacterial virulence, highlighting another dimension of the detrimental effects of metal pollution on human health.
Collapse
Affiliation(s)
- Luke Lear
- grid.8391.30000 0004 1936 8024European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, Cornwall, TR10 9FE UK
| | - Elze Hesse
- grid.8391.30000 0004 1936 8024College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE UK
| | - Angus Buckling
- grid.8391.30000 0004 1936 8024College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE UK
| | - Michiel Vos
- grid.8391.30000 0004 1936 8024European Centre for Environment and Human Health, University of Exeter Medical School, Penryn, Cornwall, TR10 9FE UK
| |
Collapse
|
31
|
Windfelder AG, Müller FHH, Mc Larney B, Hentschel M, Böhringer AC, von Bredow CR, Leinberger FH, Kampschulte M, Maier L, von Bredow YM, Flocke V, Merzendorfer H, Krombach GA, Vilcinskas A, Grimm J, Trenczek TE, Flögel U. High-throughput screening of caterpillars as a platform to study host-microbe interactions and enteric immunity. Nat Commun 2022; 13:7216. [PMID: 36433960 PMCID: PMC9700799 DOI: 10.1038/s41467-022-34865-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Mammalian models of human disease are expensive and subject to ethical restrictions. Here, we present an independent platform for high-throughput screening, using larvae of the tobacco hornworm Manduca sexta, combining diagnostic imaging modalities for a comprehensive characterization of aberrant phenotypes. For validation, we use bacterial/chemical-induced gut inflammation to generate a colitis-like phenotype and identify significant alterations in morphology, tissue properties, and intermediary metabolism, which aggravate with disease progression and can be rescued by antimicrobial treatment. In independent experiments, activation of the highly conserved NADPH oxidase DUOX, a key mediator of gut inflammation, leads to similar, dose-dependent alterations, which can be attenuated by pharmacological interventions. Furthermore, the developed platform could differentiate pathogens from mutualistic gastrointestinal bacteria broadening the scope of applications also to microbiomics and host-pathogen interactions. Overall, larvae-based screening can complement mammals in preclinical studies to explore innate immunity and host-pathogen interactions, thus representing a substantial contribution to improve mammalian welfare.
Collapse
Affiliation(s)
- Anton G Windfelder
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Frank H H Müller
- Radiology and Nuclear Medicine Ludwigshafen, Ludwigshafen, Germany
| | - Benedict Mc Larney
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Anna Christina Böhringer
- Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Siegen, Germany
| | | | - Florian H Leinberger
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
| | - Marian Kampschulte
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Lorenz Maier
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| | - Yvette M von Bredow
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans Merzendorfer
- Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Siegen, Germany
| | - Gabriele A Krombach
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Institute for Insect Biotechnology, Department of Applied Entomology, Justus Liebig University Giessen, Giessen, Germany
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Department, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA
| | - Tina E Trenczek
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany.
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
32
|
López-Ramírez LA, Martínez-Duncker I, Márquez-Márquez A, Vargas-Macías AP, Mora-Montes HM. Silencing of ROT2, the Encoding Gene of the Endoplasmic Reticulum Glucosidase II, Affects the Cell Wall and the Sporothrix schenckii-Host Interaction. J Fungi (Basel) 2022; 8:1220. [PMID: 36422041 PMCID: PMC9692468 DOI: 10.3390/jof8111220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 08/01/2023] Open
Abstract
Sporothrix schenckii is a member of the Sporothrix pathogenic clade and one of the most common etiological agents of sporotrichosis, a subcutaneous fungal infection that affects both animal and human beings. Like other fungal pathogens, the Sporothrix cell wall is composed of structural polysaccharides and glycoproteins that are covalently modified with both N-linked and O-linked glycans. Thus far, little is known about the N-linked glycosylation pathway in this organism or its contribution to cell wall composition and interaction with the host. Here, we silenced ROT2, which encodes the catalytic subunit of the endoplasmic reticulum α-glucosidase II, a processing enzyme key for the N-linked glycan core processing. Silencing of ROT2 led to the accumulation of the Glc2Man9GlcNAC2 glycan core at the cell wall and a reduction in the total content of N-linked glycans found in the wall. However, the highly silenced mutants showed a compensatory mechanism with increased content of cell wall O-linked glycans. The phenotype of mutants with intermediate levels of ROT2 silencing was more informative, as they showed changes in the cell wall composition and exposure of β-1.3-glucans and chitin at the cell surface. Furthermore, the ability to stimulate cytokine production by human mononuclear cells was affected, along with the phagocytosis by human monocyte-derived macrophages, in a mannose receptor-, complement receptor 3-, and TLR4-dependent stimulation. In an insect model of experimental sporotrichosis, these mutant cells showed virulence attenuation. In conclusion, S. schenckii ROT2 is required for proper N-linked glycosylation, cell wall organization and composition, and interaction with the host.
Collapse
Affiliation(s)
- Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Anayeli Márquez-Márquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Ana P. Vargas-Macías
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato 36050, Mexico
| |
Collapse
|
33
|
Carradori S, Ammazzalorso A, De Filippis B, Şahin AF, Akdemir A, Orekhova A, Bonincontro G, Simonetti G. Azole-Based Compounds That Are Active against Candida Biofilm: In Vitro , In Vivo and In Silico Studies. Antibiotics (Basel) 2022; 11:antibiotics11101375. [PMID: 36290033 PMCID: PMC9598150 DOI: 10.3390/antibiotics11101375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Fungal pathogens, including Candida spp., Aspergillus spp. and dermatophytes, cause more than a billion human infections every year. A large library of imidazole- and triazole-based compounds were in vitro screened for their antifungal activity against C. albicans, C. glabrata, C. krusei, A. fumigatus and dermatophytes, such as Microsporum gypseum, Trichophyton rubrum and Trichophyton mentagrophytes. The imidazole carbamate 12 emerged as the most active compound, showing a valuable antifungal activity against C. glabrata (MIC 1−16 μg/mL) and C. krusei (MIC 4−24 μg/mL). No activity against A. fumigatus or the dermatophytes was observed among all the tested compounds. The compound 12 inhibited the formation of C. albicans, C. glabrata and C. krusei biofilms and reduced the mature Candida biofilm. In the Galleria mellonella larvae, 12 showed a significant reduction in the Candida infection, together with a lack of toxicity at the concentration used to activate its antifungal activity. Moreover, the in silico prediction of the putative targets revealed that the concurrent presence of the imidazole core, the carbamate and the p-chlorophenyl is important for providing a strong affinity for lanosterol 14α-demethylase (CgCYP51a1) and the fungal carbonic anhydrase (CgNce103), the S-enantiomer being more productive in these interactions.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Alessandra Ammazzalorso
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence:
| | - Barbara De Filippis
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Ahmet Fatih Şahin
- Department of Drug Discovery and Development, Institute of Health Sciences, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
- Department of Drug Discovery and Development, Institute of Health Sciences, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Anastasia Orekhova
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Graziana Bonincontro
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Giovanna Simonetti
- Department of Environmental Biology, “Sapienza” University of Rome, 00185 Rome, Italy
| |
Collapse
|
34
|
Lear L, Padfield D, Dowsett T, Jones M, Kay S, Hayward A, Vos M. Bacterial colonisation dynamics of household plastics in a coastal environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156199. [PMID: 35636543 DOI: 10.1016/j.scitotenv.2022.156199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 05/25/2023]
Abstract
Accumulation of plastics in the marine environment has widespread detrimental consequences for ecosystems and wildlife. Marine plastics are rapidly colonised by a wide diversity of bacteria, including human pathogens, posing potential risks to health. Here, we investigate the effect of polymer type, residence time and estuarine location on bacterial colonisation of common household plastics, including pathogenic bacteria. We submerged five main household plastic types: low-density PE (LDPE), high-density PE (HDPE), polypropylene (PP), polyvinyl chloride (PVC) and polyethylene terephthalate (PET) at an estuarine site in Cornwall (U.K.) and tracked bacterial colonisation dynamics. Using both culture-dependent and culture-independent approaches, we found that bacteria rapidly colonised plastics irrespective of polymer type, reaching culturable densities of up to 1000 cells cm3 after 7 weeks. Community composition of the biofilms changed over time, but not among polymer types. The presence of pathogenic bacteria, quantified using the insect model Galleria mellonella, increased dramatically over a five-week period, with Galleria mortality increasing from 4% in week one to 65% in week five. No consistent differences in virulence were observed between polymer types. Pathogens isolated from plastic biofilms using Galleria enrichment included Serratia and Enterococcus species and they harboured a wide range of antimicrobial resistance genes. Our findings show that plastics in coastal waters are rapidly colonised by a wide diversity of bacteria independent of polymer type. Further, our results show that marine plastic biofilms become increasingly associated with virulent bacteria over time.
Collapse
Affiliation(s)
- Luke Lear
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom
| | - Daniel Padfield
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom.
| | - Tirion Dowsett
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom
| | - Maia Jones
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom
| | - Suzanne Kay
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom
| | - Alex Hayward
- Department of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom
| |
Collapse
|
35
|
Drosophila melanogaster as an emerging model host for entomopathogenic fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Galleria mellonella as a Novel In Vivo Model to Screen Natural Product-Derived Modulators of Innate Immunity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136587] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunomodulators are drugs that either stimulate or suppress the immune system in response to an immunopathological disease or cancer. The majority of clinically approved immunomodulators are either chemically synthesised (e.g., dexamethasone) or protein-based (e.g., monoclonal antibodies), whose uses are limited due to toxicity issues, poor bioavailability, or prohibitive cost. Nature is an excellent source of novel compounds, as it is estimated that almost half of all licenced medicines are derived from nature or inspired by natural product (NP) structures. The clinical success of the fungal-derived immunosuppressant cyclosporin A demonstrates the potential of natural products as immunomodulators. Conventionally, the screening of NP molecules for immunomodulation is performed in small animal models; however, there is a growing impetus to replace animal models with more ethical alternatives. One novel approach is the use of Galleria melonella larvae as an in vivo model of immunity. Despite lacking adaptive antigen-specific immunity, this insect possesses an innate immune system comparable to mammals. In this review, we will describe studies that have used this alternative in vivo model to assess the immunomodulating activity of synthetic and NP-derived compounds, outline the array of bioassays employed, and suggest strategies to enhance the use of this model in future research.
Collapse
|
37
|
Recent Advances in the Application of Essential Oils as Potential Therapeutic Candidates for Candida-Related Infections. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Candidiasis (oral, vulvovaginal, or systemic bloodstream infections) are important human fungal infections associated with a high global prevalence in otherwise healthy adults but are also opportunistic infections in immunocompromised patients. With the recent discovery of the multidrug resistant—and often difficult to treat—Candida auris, as well as the rising costs associated with hospitalisations and the treatment of infections caused by Candida species, there is an urgent need to develop effective therapeutics against these pathogenic yeasts. Essential oils have been documented for many years as treatments for different ailments and are widely known and utilised in alternative and complementary therapies, including treating microbial infections. This review highlights knowledge from research on the effects of medicinal plants, and in particular, essential oils, as potential treatments against different Candida species. Studies have been evaluated that describe the experimental approaches used in investigating the anticandidal effects of essential oils (in vivo and in vitro), the established mode of action of the different compounds against different Candida species, the effect of a combination of essential oils with other compounds as potential therapies, and the evidence from clinical trial studies.
Collapse
|
38
|
Stevenson EM, Gaze WH, Gow NAR, Hart A, Schmidt W, Usher J, Warris A, Wilkinson H, Murray AK. Antifungal Exposure and Resistance Development: Defining Minimal Selective Antifungal Concentrations and Testing Methodologies. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:918717. [PMID: 37746188 PMCID: PMC10512330 DOI: 10.3389/ffunb.2022.918717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 09/26/2023]
Abstract
This scoping review aims to summarise the current understanding of selection for antifungal resistance (AFR) and to compare and contrast this with selection for antibacterial resistance, which has received more research attention. AFR is an emerging global threat to human health, associated with high mortality rates, absence of effective surveillance systems and with few alternative treatment options available. Clinical AFR is well documented, with additional settings increasingly being recognised to play a role in the evolution and spread of AFR. The environment, for example, harbours diverse fungal communities that are regularly exposed to antifungal micropollutants, potentially increasing AFR selection risk. The direct application of effect concentrations of azole fungicides to agricultural crops and the incomplete removal of pharmaceutical antifungals in wastewater treatment systems are of particular concern. Currently, environmental risk assessment (ERA) guidelines do not require assessment of antifungal agents in terms of their ability to drive AFR development, and there are no established experimental tools to determine antifungal selective concentrations. Without data to interpret the selective risk of antifungals, our ability to effectively inform safe environmental thresholds is severely limited. In this review, potential methods to generate antifungal selective concentration data are proposed, informed by approaches used to determine antibacterial minimal selective concentrations. Such data can be considered in the development of regulatory guidelines that aim to reduce selection for AFR.
Collapse
Affiliation(s)
- Emily M. Stevenson
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - William H. Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alwyn Hart
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Wiebke Schmidt
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Helen Wilkinson
- Chief Scientist’s Group, Environment Agency, Horizon House, Bristol, England, United Kingdom
| | - Aimee K. Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Cornwall, United Kingdom
- Environment and Sustainability Institute, University of Exeter Medical School, Cornwall, United Kingdom
| |
Collapse
|
39
|
Santos AL, Liu D, Reed AK, Wyderka AM, van Venrooy A, Li JT, Li VD, Misiura M, Samoylova O, Beckham JL, Ayala-Orozco C, Kolomeisky AB, Alemany LB, Oliver A, Tegos GP, Tour JM. Light-activated molecular machines are fast-acting broad-spectrum antibacterials that target the membrane. SCIENCE ADVANCES 2022; 8:eabm2055. [PMID: 35648847 PMCID: PMC9159576 DOI: 10.1126/sciadv.abm2055] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/14/2022] [Indexed: 06/01/2023]
Abstract
The increasing occurrence of antibiotic-resistant bacteria and the dwindling antibiotic research and development pipeline have created a pressing global health crisis. Here, we report the discovery of a distinctive antibacterial therapy that uses visible (405 nanometers) light-activated synthetic molecular machines (MMs) to kill Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, in minutes, vastly outpacing conventional antibiotics. MMs also rapidly eliminate persister cells and established bacterial biofilms. The antibacterial mode of action of MMs involves physical disruption of the membrane. In addition, by permeabilizing the membrane, MMs at sublethal doses potentiate the action of conventional antibiotics. Repeated exposure to antibacterial MMs is not accompanied by resistance development. Finally, therapeutic doses of MMs mitigate mortality associated with bacterial infection in an in vivo model of burn wound infection. Visible light-activated MMs represent an unconventional antibacterial mode of action by mechanical disruption at the molecular scale, not existent in nature and to which resistance development is unlikely.
Collapse
Affiliation(s)
- Ana L. Santos
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- IdISBA–Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain
| | - Dongdong Liu
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Anna K. Reed
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Aaron M. Wyderka
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | | | - John T. Li
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Victor D. Li
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Mikita Misiura
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Olga Samoylova
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Jacob L. Beckham
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | | | | | - Lawrence B. Alemany
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Shared Equipment Authority, Rice University, Houston, TX 77005, USA
| | - Antonio Oliver
- IdISBA–Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain
- Servicio de Microbiologia, Hospital Universitari Son Espases, Palma, Spain
| | - George P. Tegos
- Office of Research, Reading Hospital, Tower Health, 420 S. Fifth Avenue, West Reading, PA 19611, USA
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
- NanoCarbon Center and the Welch Institute for Advanced Materials, Rice University, Houston, TX 77005, USA
| |
Collapse
|
40
|
Davis CM, Ruest MK, Cole JH, Dennis JJ. The Isolation and Characterization of a Broad Host Range Bcep22-like Podovirus JC1. Viruses 2022; 14:938. [PMID: 35632679 PMCID: PMC9144972 DOI: 10.3390/v14050938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteriophage JC1 is a Podoviridae phage with a C1 morphotype, isolated on host strain Burkholderia cenocepacia Van1. Phage JC1 is capable of infecting an expansive range of Burkholderia cepacia complex (Bcc) species. The JC1 genome exhibits significant similarity and synteny to Bcep22-like phages and to many Ralstonia phages. The genome of JC1 was determined to be 61,182 bp in length with a 65.4% G + C content and is predicted to encode 76 proteins and 1 tRNA gene. Unlike the other Lessieviruses, JC1 encodes a putative helicase gene in its replication module, and it is in a unique organization not found in previously analyzed phages. The JC1 genome also harbours 3 interesting moron genes, that encode a carbon storage regulator (CsrA), an N-acetyltransferase, and a phosphoadenosine phosphosulfate (PAPS) reductase. JC1 can stably lysogenize its host Van1 and integrates into the 5' end of the gene rimO. This is the first account of stable integration identified for Bcep22-like phages. JC1 has a higher global virulence index at 37 °C than at 30 °C (0.8 and 0.21, respectively); however, infection efficiency and lysogen stability are not affected by a change in temperature, and no observable temperature-sensitive switch between lytic and lysogenic lifestyle appears to exist. Although JC1 can stably lysogenize its host, it possesses some desirable characteristics for use in phage therapy. Phage JC1 has a broad host range and requires the inner core of the bacterial LPS for infection. Bacteria that mutate to evade infection by JC1 may develop a fitness disadvantage as seen in previously characterized LPS mutants lacking inner core.
Collapse
Affiliation(s)
| | | | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada; (C.M.D.); (M.K.R.); (J.H.C.)
| |
Collapse
|
41
|
Vargas-Macías AP, Gómez-Gaviria M, García-Carnero LC, Mora-Montes HM. Current Models to Study the Sporothrix-Host Interaction. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:833111. [PMID: 37746241 PMCID: PMC10512367 DOI: 10.3389/ffunb.2022.833111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 09/26/2023]
Abstract
Sporotrichosis is a worldwide distributed subcutaneous mycosis that affects mammals, including human beings. The infection is caused by members of the Sporothrix pathogenic clade, which includes Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. The fungus can be acquired through traumatic inoculation of conidia growing in vegetal debris or by zoonotic transmission from sick animals. Although is not considered a life-threatening disease, it is an emergent health problem that affects mostly immunocompromised patients. The sporotrichosis causative agents differ in their virulence, host range, and sensitivity to antifungal drugs; therefore, it is relevant to understand the molecular bases of their pathogenesis, interaction with immune effectors, and mechanisms to acquired resistance to antifungal compounds. Murine models are considered the gold standard to address these questions; however, some alternative hosts offer numerous advantages over mammalian models, such as invertebrates like Galleria mellonella and Tenebrio molitor, or ex vivo models, which are useful tools to approach questions beyond virulence, without the ethical or budgetary features associated with the use of animal models. In this review, we analyze the different models currently used to study the host-Sporothrix interaction.
Collapse
Affiliation(s)
| | | | | | - Héctor M. Mora-Montes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
42
|
O’Shaughnessy M, Piatek M, McCarron P, McCann M, Devereux M, Kavanagh K, Howe O. In Vivo Activity of Metal Complexes Containing 1,10-Phenanthroline and 3,6,9-Trioxaundecanedioate Ligands against Pseudomonas aeruginosa Infection in Galleria mellonella Larvae. Biomedicines 2022; 10:biomedicines10020222. [PMID: 35203432 PMCID: PMC8869450 DOI: 10.3390/biomedicines10020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Drug-resistant Pseudomonas aeruginosa is rapidly developing resulting in a serious global threat. Immunocompromised patients are specifically at risk, especially those with cystic fibrosis (CF). Novel metal complexes incorporating 1,10-phenanthroline (phen) ligands have previously demonstrated antibacterial and anti-biofilm effects against resistant P. aeruginosa from CF patients in vitro. Herein, we present the in vivo efficacy of {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Cu-tdda-phen), {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Mn-tdda-phen) and [Ag2(3,6,9-tdda)(phen)4]·EtOH (Ag-tdda-phen) (tddaH2 = 3,6,9-trioxaundecanedioic acid). Individual treatments of these metal-tdda-phen complexes and in combination with the established antibiotic gentamicin were evaluated in vivo in larvae of Galleria mellonella infected with clinical isolates and laboratory strains of P. aeruginosa. G. mellonella were able to tolerate all test complexes up to 10 µg/larva. In addition, the immune response was affected by stimulation of immune cells (hemocytes) and genes that encode for immune-related peptides, specifically transferrin and inducible metallo-proteinase inhibitor. The amalgamation of metal-tdda-phen complexes and gentamicin further intensified this response at lower concentrations, clearing a P. aeruginosa infection that were previously resistant to gentamicin alone. Therefore this work highlights the anti-pseudomonal capabilities of metal-tdda-phen complexes alone and combined with gentamicin in an in vivo model.
Collapse
Affiliation(s)
- Megan O’Shaughnessy
- School of Biological and Health Sciences, Technological University Dublin-City Campus, D07 ADY7 Dublin, Ireland;
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
| | - Magdalena Piatek
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland;
| | - Pauraic McCarron
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
| | - Malachy McCann
- Chemistry Department, Maynooth University, W23 F2H6 Kildare, Ireland;
| | - Michael Devereux
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
| | - Kevin Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland;
- Correspondence: (K.K.); (O.H.)
| | - Orla Howe
- School of Biological and Health Sciences, Technological University Dublin-City Campus, D07 ADY7 Dublin, Ireland;
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
- Correspondence: (K.K.); (O.H.)
| |
Collapse
|
43
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
44
|
Piatek M, Sheehan G, Kavanagh K. Galleria mellonella: The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions. Antibiotics (Basel) 2021; 10:antibiotics10121545. [PMID: 34943757 PMCID: PMC8698334 DOI: 10.3390/antibiotics10121545] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Larvae of the greater wax moth, Galleria mellonella, are a convenient in vivo model for assessing the activity and toxicity of antimicrobial agents and for studying the immune response to pathogens and provide results similar to those from mammals. G. mellonella larvae are now widely used in academia and industry and their use can assist in the identification and evaluation of novel antimicrobial agents. Galleria larvae are inexpensive to purchase and house, easy to inoculate, generate results within 24–48 h and their use is not restricted by legal or ethical considerations. This review will highlight how Galleria larvae can be used to assess the efficacy of novel antimicrobial therapies (photodynamic therapy, phage therapy, metal-based drugs, triazole-amino acid hybrids) and for determining the in vivo toxicity of compounds (e.g., food preservatives, ionic liquids) and/or solvents (polysorbate 80). In addition, the disease development processes are associated with a variety of pathogens (e.g., Staphylococcus aureus, Listeria monocytogenes, Aspergillus fumigatus, Madurella mycotomatis) in mammals are also present in Galleria larvae thus providing a simple in vivo model for characterising disease progression. The use of Galleria larvae offers many advantages and can lead to an acceleration in the development of novel antimicrobials and may be a prerequisite to mammalian testing.
Collapse
|
45
|
Collins E, Martin C, Blomquist T, Phillips K, Cantlay S, Fisher N, Horzempa J. The utilization of Blaptica dubia cockroaches as an in vivo model to test antibiotic efficacy. Sci Rep 2021; 11:24004. [PMID: 34907348 PMCID: PMC8671488 DOI: 10.1038/s41598-021-03486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/03/2021] [Indexed: 12/03/2022] Open
Abstract
Insects are now well recognized as biologically relevant alternative hosts for dozens of mammalian pathogens and they are routinely used in microbial pathogenesis studies. Unfortunately, these models have yet to be incorporated into the drug development pipeline. The purpose of this work was to begin to evaluate the utility of orange spotted (Blaptica dubia) cockroaches in early antibiotic characterization. To determine whether these model hosts could exhibit mortality when infected with bacteria that are pathogenic to humans, we subjected B. dubia roaches to a range of infectious doses of Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii to identify the medial lethal dose. These results showed that lethal disease did not develop following infection of high doses of S. aureus, and A. baumannii. However, cockroaches infected with E. coli and K. pneumoniae succumbed to infection (LD50s of 5.82 × 106 and 2.58 × 106 respectively) suggesting that this model may have limitations based on pathogen specificity. However, because these cockroaches were susceptible to infection from E. coli and K. pneumoniae, we used these bacterial strains for subsequent antibiotic characterization studies. These studies suggested that β-lactam antibiotic persistence and dose was associated with reduction of hemolymph bacterial burden. Moreover, our data indicated that the reduction of bacterial CFU was directly due to the drug activity. Altogether, this work suggests that the orange-spotted cockroach infection model provides an alternative in vivo setting from which antibiotic efficacy can be evaluated.
Collapse
Affiliation(s)
- Elliot Collins
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA
| | - Caleb Martin
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA
| | - Tyler Blomquist
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA
| | - Katherine Phillips
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA
| | - Stuart Cantlay
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA
| | | | - Joseph Horzempa
- Department of Biological Sciences, West Liberty University, West Liberty, WV, USA.
| |
Collapse
|
46
|
Chen X, Wu J, Sun L, Nie J, Su S, Sun S. Antifungal Effects and Potential Mechanisms of Benserazide Hydrochloride Alone and in Combination with Fluconazole Against Candida albicans. Drug Des Devel Ther 2021; 15:4701-4711. [PMID: 34815665 PMCID: PMC8605804 DOI: 10.2147/dddt.s336667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose The resistance of C. albicans to traditional antifungal drugs brings a great challenge to clinical treatment. To overcome the resistance, developing antifungal agent sensitizers has attracted considerable attention. This study aimed to determine the anti-Candida activity of BEH alone or BEH–FLC combination and to explore the underlying mechanisms. Materials and Methods In vitro antifungal effects were performed by broth microdilution assay and XTT reduction assay. Infected Galleria mellonella larvae model was used to determine the antifungal effects in vivo. Probes Fluo-3/AM, FITC-VAD-FMK and rhodamine 6G were used to study the influence of BEH and FLC on intracellular calcium concentration, metacaspase activity and drug efflux of C. albicans. Results BEH alone exhibited obvious antifungal activities against C. albicans. BEH plus FLC not only showed synergistic effects against planktonic cells and preformed biofilms within 8 h but also enhanced the antifungal activity in infected G. mellonella larvae. Mechanistic studies indicated that antifungal effects of drugs might be associated with the increasement of calcium concentration, activation of metacaspase activity to reduce virulence and anti-biofilms, but were not related to drug efflux. Conclusion BEH alone or combined with FLC displayed potent antifungal activity both in vitro and in vivo, and the underlying mechanisms were related to reduced virulence factors.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China.,Department of Pharmacy, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, People's Republic of China
| | - Lei Sun
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, People's Republic of China
| | - Jing Nie
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, People's Republic of China
| | - Shan Su
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China.,Department of Pharmacy, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, People's Republic of China.,Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, People's Republic of China
| |
Collapse
|
47
|
Thammasit P, Tharinjaroen CS, Tragoolpua Y, Rickerts V, Georgieva R, Bäumler H, Tragoolpua K. Targeted Propolis-Loaded Poly (Butyl) Cyanoacrylate Nanoparticles: An Alternative Drug Delivery Tool for the Treatment of Cryptococcal Meningitis. Front Pharmacol 2021; 12:723727. [PMID: 34489710 PMCID: PMC8417799 DOI: 10.3389/fphar.2021.723727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/10/2021] [Indexed: 01/25/2023] Open
Abstract
In this study, we describe a nano-carrier system for propolis that is able to cross an in vitro model of the blood-brain barrier (BBB) and effectively reduce the virulence of Cryptococcus neoformans in animal models. Antimicrobial properties of propolis have been widely studied. However, propolis applications are limited by its low water solubility and poor bioavailability. Therefore, we recently formulated novel poly (n-butyl cyanoacrylate) nanoparticles (PBCA-NP) containing propolis. PBCA-NP are biocompatible, biodegradable and have been shown to effectively cross the BBB using apolipoprotein E (ApoE) as a ligand. Prepared nanoparticles were characterized for particle size, zeta potential, propolis entrapment efficiency and in vitro release. Additionally, the PBCA-NP were functionalized with polysorbate 80, which then specifically adsorbs ApoE. Using an in vitro BBB model of human brain microvascular endothelial cells hCMEC/D3, it was shown that fluorescence labelled ApoE-functionalized PBCA-NP were internalized by the cells and translocated across the cell monolayer. Propolis-loaded PBCA-NP had in vitro, antifungal activity against C. neoformans, which causes meningitis. To utilize the invertebrate model, Galleria mellonella larvae were infected with C. neoformans and treated with propolis-loaded PBCA-NP. The larvae exhibited normal behavior in toxicity testing, and treatment with propolis-loaded PBCA-NP increased survival in the C. neoformans-infected larvae group. In addition, following cryptococcal infection and then 7 days of treatment, the tissue fungal burden of mice treated with propolis-loaded PBCA-NP was significantly lower than control groups. Therefore, our ApoE-functionalized propolis-loaded PBCA-NP can be deemed as a potential targeted nanoparticle in the therapeutic treatment of cerebral cryptococcosis.
Collapse
Affiliation(s)
- Patcharin Thammasit
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine, Berlin, Germany.,Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chayada Sitthidet Tharinjaroen
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Infectious Disease Research Unit (IDRU), Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Volker Rickerts
- Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Radostina Georgieva
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine, Berlin, Germany.,Department of Medical Physics, Biophysics and Radiology, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - Hans Bäumler
- Charité-Universitätsmedizin Berlin, Institute of Transfusion Medicine, Berlin, Germany
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Infectious Disease Research Unit (IDRU), Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
48
|
Stączek S, Zdybicka-Barabas A, Wiater A, Pleszczyńska M, Cytryńska M. Activation of cellular immune response in insect model host Galleria mellonella by fungal α-1,3-glucan. Pathog Dis 2021; 78:6000214. [PMID: 33232457 PMCID: PMC7726367 DOI: 10.1093/femspd/ftaa062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Alpha-1,3-glucan, in addition to β-1,3-glucan, is an important polysaccharide component of fungal cell walls. It is reported for many fungal species, including human pathogenic genera: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, Histoplasma and Pneumocystis, plant pathogens, e.g. Magnaporthe oryzae and entomopathogens, e.g. Metarhizium acridum. In human and plant pathogenic fungi, α-1,3-glucan is considered as a shield for the β-1,3-glucan layer preventing recognition of the pathogen by the host. However, its role in induction of immune response is not clear. In the present study, the cellular immune response of the greater wax moth Galleria mellonella to Aspergillus niger α-1,3-glucan was investigated for the first time. The changes detected in the total hemocyte count (THC) and differential hemocyte count (DHC), formation of hemocyte aggregates and changes in apolipophorin III localization indicated activation of G. mellonella cellular mechanisms in response to immunization with A. niger α-1,3-glucan. Our results, which have clearly demonstrated the response of the insect immune system to this fungal cell wall component, will help in understanding the α-1,3-glucan role in immune response against fungal pathogens not only in insects but also in mammals, including humans.
Collapse
Affiliation(s)
- Sylwia Stączek
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Adrian Wiater
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Industrial and Environmental Microbiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Pleszczyńska
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Industrial and Environmental Microbiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Cytryńska
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
49
|
Terán LC, Mortera P, Tubio G, Alarcón SH, Blancato VS, Espariz M, Esteban L, Magni C. Genomic analysis revealed conserved acid tolerance mechanisms from native micro-organisms in fermented feed. J Appl Microbiol 2021; 132:1152-1165. [PMID: 34487594 DOI: 10.1111/jam.15292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022]
Abstract
AIMS Fermented feed is an agricultural practice used in many regions of the world to improve the growth performance of farm animals. This study aimed to identify and evaluate the lactic acid bacteria and yeast involved in the production of fermented feed. METHODS AND RESULTS We isolated and described two micro-organisms from autochthonous microbiota origin present in a regional feed product, Lactobacillus paracasei IBR07 (Lacticaseibacillus paracasei) and Kazachstania unispora IBR014 (Saccharomyces unisporum). Genome sequence analyses were performed to characterize both micro-organisms. Potential pathways involved in the acid response, tolerance and persistence were predicted in both genomes. Although L. paracasei and K. unispora are considered safe for animal feed, we analysed the presence of virulence factors, antibiotic resistance and pathogenicity islands. Furthermore, the Galleria mellonella model was used to support the safety of both isolates. CONCLUSIONS We conclude that IBR07 and IBR014 strains are good candidates to be used as starter cultures for feed fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY The data presented here will be helpful to explore other biotechnological aspects and constitute a starting point for further studies to establish the consumption benefit of fermented feed in farm animal production.
Collapse
Affiliation(s)
- Lucrecia C Terán
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina.,Centro de Referencia para Lactobacilos, CERELA-CONICET, San Miguel de Tucuman, Tucumán, Argentina
| | - Pablo Mortera
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina
| | - Gisela Tubio
- Instituto de Procesos Biotecnológicos y Químicos Rosario, IPROByQ (CONICET-UNR), Rosario, Argentina
| | - Sergio H Alarcón
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina.,Instituto de Química de Rosario, IQUIR (CONICET-UNR), Rosario, Argentina
| | - Victor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina.,Área Estadística y Procesamiento de Datos, Departamento de Matemática y Estadística, FBioyF-UNR, Rosario, Argentina
| | - Luis Esteban
- Química Biológica, Facultad de Ciencias Médicas, UNR, Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Rosario, Argentina.,Laboratorio de Biotecnología e Inocuidad de los Alimentos, Área de Biotecnología de los alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Rosario, Argentina
| |
Collapse
|
50
|
Keizer EM, Valdes ID, Forn-Cuni G, Klijn E, Meijer AH, Hillman F, Wösten HAB, de Cock H. Variation of virulence of five Aspergillus fumigatus isolates in four different infection models. PLoS One 2021; 16:e0252948. [PMID: 34242260 PMCID: PMC8270121 DOI: 10.1371/journal.pone.0252948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
Conidia of Aspergillus fumigatus are inhaled by humans on daily basis. As a consequence, these conidia can cause infections that differ in severity ranging from allergic bronchopulmonary aspergillosis to invasive aspergillosis. In this study we compared virulence of five A. fumigatus isolates in four different infection models to address the predictive value of different model systems. Two of the A. fumigatus strains were isolated from dogs with a non-invasive sino-nasal aspergillosis (DTO271-B5 and DTO303-F3), while three strains were isolated from human patients with invasive aspergillosis (Af293, ATCC46645 and CEA10). Infection models used encompassed cultured type II A549 lung epithelial cells, Protostelium aurantium amoeba, Galleria melonella larvae and zebrafish embryos. No major differences in virulence between these five strains were observed in the lung epithelial cell model. In contrast, strain ATCC46645 was most virulent in the amoeba and zebrafish model, whereas it was much less virulent in the Galleria infection model. DTO303-F3 was most virulent in the latter model. In general, reference strain Af293 was less virulent as compared to the other strains. Genome sequence analysis showed that this latter strain differed from the other four strains in 136 SNPs in virulence-related genes. Together, our results show that virulence of individual A. fumigatus strains show significant differences between infection models. We conclude that the predictive value of different model systems varies since the relative virulence across fungal strains does not hold up across different infection model systems.
Collapse
Affiliation(s)
- E. M. Keizer
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
- Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | - I. D. Valdes
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - G. Forn-Cuni
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - E. Klijn
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - A. H. Meijer
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - F. Hillman
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - H. A. B. Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - H. de Cock
- Microbiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
- Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|