1
|
Alvarez KG, Goral L, Suwandi A, Lasswitz L, Zapatero-Belinchón FJ, Ehrhardt K, Nagarathinam K, Künnemann K, Krey T, Wiedemann A, Gerold G, Grassl GA. Human tetraspanin CD81 facilitates invasion of Salmonella enterica into human epithelial cells. Virulence 2024; 15:2399792. [PMID: 39239914 PMCID: PMC11423668 DOI: 10.1080/21505594.2024.2399792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Human CD81 and CD9 are members of the tetraspanin family of proteins characterized by a canonical structure of four transmembrane domains and two extracellular loop domains. Tetraspanins are known as molecular facilitators, which assemble and organize cell surface receptors and partner molecules forming clusters known as tetraspanin-enriched microdomains. They have been implicated to play various biological roles including an involvement in infections with microbial pathogens. Here, we demonstrate an important role of CD81 for the invasion of epithelial cells by Salmonella enterica. We show that the overexpression of CD81 in HepG2 cells enhances invasion of various typhoidal and non-typhoidal Salmonella serovars. Deletion of CD81 by CRISPR/Cas9 in intestinal epithelial cells (C2BBe1 and HT29-MTX-E12) reduces S. Typhimurium invasion. In addition, the effect of human CD81 is species-specific as only human but not rat CD81 facilitates Salmonella invasion. Finally, immunofluorescence microscopy and proximity ligation assay revealed that both human tetraspanins CD81 and CD9 are recruited to the entry site of S. Typhimurium during invasion but not during adhesion to the host cell surface. Overall, we demonstrate that the human tetraspanin CD81 facilitates Salmonella invasion into epithelial host cells.
Collapse
Affiliation(s)
- Kris Gerard Alvarez
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
| | - Lisa Goral
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Lisa Lasswitz
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Francisco J. Zapatero-Belinchón
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
| | - Kumar Nagarathinam
- Institute for Biochemistry, Universität zu Lübeck, Lübeck, Germany
- Excellence Cluster 2155 RESIST, Medizinische Hochschule Hannover, Hannover, Germany
| | - Katrin Künnemann
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
| | - Thomas Krey
- Institute for Biochemistry, Universität zu Lübeck, Lübeck, Germany
- Excellence Cluster 2155 RESIST, Medizinische Hochschule Hannover, Hannover, Germany
- Institute of Virology, Medizinische Hochschule Hannover, Hannover, Germany
- German Centre for Infection Research (DZIF), Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Agnes Wiedemann
- IRSD - Institut de Recherche en Santé Digestive, ENVT, INRAE, INSERM, Université́ de Toulouse, UPS, Toulouse, France
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), Tierärztliche Hochschule Hannover, Hannover, Germany
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Sweden
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| |
Collapse
|
2
|
Abed N, Grépinet O, Canepa S, Hurtado-Escobar GA, Guichard N, Wiedemann A, Velge P, Virlogeux-Payant I. Direct regulation of the pefI-srgC operon encoding the Rck invasin by the quorum-sensing regulator SdiA in Salmonella Typhimurium. Mol Microbiol 2014; 94:254-71. [PMID: 25080967 DOI: 10.1111/mmi.12738] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2014] [Indexed: 01/18/2023]
Abstract
One important step for the pathogenesis of Salmonella is its ability to penetrate host cells. Recently, a new entry system involving the outer membrane protein Rck has been characterized. Previous studies have shown that the pefI-srgC locus, which contains rck, was regulated by the temperature and SdiA, the transcriptional regulator of quorum sensing in Salmonella. To decipher the regulation of rck by SdiA, we first confirmed the operon organization of the pefI-srgC locus. Using plasmid-based transcriptional fusions, we showed that only the predicted distal promoter upstream of pefI, PefIP2, displays an SdiA- and acyl-homoserine lactones-dependent activity while the predicted proximal PefIP1 promoter exhibits a very low activity independent on SdiA in our culture conditions. A direct and specific interaction of SdiA with this PefIP2 region was identified using electrophoretic mobility shift assays and surface plasmon resonance studies. We also observed that Rck expression is negatively regulated by the nucleoid-associated H-NS protein at both 25°C and 37°C. This work is the first demonstration of a direct regulation of genes by SdiA in Salmonella and will help further studies designed to identify environmental conditions required for Rck expression and consequently contribute to better characterize the role of this invasin in vivo.
Collapse
Affiliation(s)
- Nadia Abed
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France; INRA, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | | | | | | | | | | | | | | |
Collapse
|
3
|
La Ragione RM, Woodward MJ, Kumar M, Rodenberg J, Fan H, Wales AD, Karaca K. Efficacy of a Live AttenuatedEscherichia coliO78∶K80 Vaccine in Chickens and Turkeys. Avian Dis 2013; 57:273-9. [DOI: 10.1637/10326-081512-reg.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Namdari F, Hurtado-Escobar GA, Abed N, Trotereau J, Fardini Y, Giraud E, Velge P, Virlogeux-Payant I. Deciphering the roles of BamB and its interaction with BamA in outer membrane biogenesis, T3SS expression and virulence in Salmonella. PLoS One 2012; 7:e46050. [PMID: 23144780 PMCID: PMC3489874 DOI: 10.1371/journal.pone.0046050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/27/2012] [Indexed: 11/21/2022] Open
Abstract
The folding and insertion of β-barrel proteins in the outer membrane of Gram-negative bacteria is mediated by the BAM complex, which is composed of the outer membrane protein BamA and four lipoproteins BamB to BamE. In Escherichia coli and/or Salmonella, the BamB lipoprotein is involved in (i) β-barrel protein assembly in the outer membrane, (ii) outer membrane permeability to antibiotics, (iii) the control of the expression of T3SS which are major virulence factors and (iv) the virulence of Salmonella. In E. coli, this protein has been shown to interact directly with BamA. In this study, we investigated the structure-function relationship of BamB in order to assess whether the roles of BamB in these phenotypes were inter-related and whether they require the interaction of BamB with BamA. For this purpose, recombinant plasmids harbouring point mutations in bamB were introduced in a ΔSalmonella bamB mutant. We demonstrated that the residues L173, L175 and R176 are crucial for all the roles of BamB and for the interaction of BamB with BamA. Moreover, the results obtained with a D229A BamB variant, which is unable to immunoprecipitate BamA, suggest that the interaction of BamB with BamA is not absolutely necessary for BamB function in outer-membrane protein assembly, T3SS expression and virulence. Finally, we showed that the virulence defect of the ΔbamB mutant is not related to its increased susceptibility to antimicrobials, as the D227A BamB variant fully restored the virulence of the mutant while having a similar antibiotic susceptibility to the ΔbamB strain. Overall, this study demonstrates that the different roles of BamB are not all inter-related and that L173, L175 and R176 amino-acids are privileged sites for the design of BamB inhibitors that could be used as alternative therapeutics to antibiotics, at least against Salmonella.
Collapse
Affiliation(s)
- Fatémeh Namdari
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Genaro Alejandro Hurtado-Escobar
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Nadia Abed
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Jérôme Trotereau
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Yann Fardini
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Etienne Giraud
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Philippe Velge
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Isabelle Virlogeux-Payant
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- * E-mail: *
| |
Collapse
|
5
|
Guri A, Griffiths M, Khursigara CM, Corredig M. The effect of milk fat globules on adherence and internalization of Salmonella Enteritidis to HT-29 cells. J Dairy Sci 2012; 95:6937-45. [PMID: 23021758 DOI: 10.3168/jds.2012-5734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/19/2012] [Indexed: 12/16/2022]
Abstract
Milk fat globules were extracted from bovine and goat milk and incubated with HT-29 human adenocarcinoma cells to assess the attachment and internalization of Salmonella Enteritidis. Because the expression of bacterial adhesins is highly affected by the presence of antibiotic, the attachment was studied with and without antibiotic in the cell growth medium. Although no inhibitory effect of the fat globules was observed in the presence of the antibiotic, milk fat globules significantly inhibited the binding and internalization of Salmonella in medium free of antibiotic. The fat globules from both bovine and goat milk markedly reduced bacterial binding and invasion compared with controls, and the cells treated with goat milk-derived fat globules demonstrated greater protective properties than those derived from bovine milk. The effect of heat treatment on bovine fat globules was also investigated, and it was shown that the fat globules from heated milk had a higher degree of inhibition than those from unheated milk.
Collapse
Affiliation(s)
- A Guri
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
6
|
Boumart Z, Roche SM, Lalande F, Virlogeux-Payant I, Hennequet-Antier C, Menanteau P, Gabriel I, Weill FX, Velge P, Chemaly M. Heterogeneity of persistence of Salmonella enterica serotype Senftenberg strains could explain the emergence of this serotype in poultry flocks. PLoS One 2012; 7:e35782. [PMID: 22545136 PMCID: PMC3335784 DOI: 10.1371/journal.pone.0035782] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 03/21/2012] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serotype Senftenberg (S. Senftenberg) has recently become more frequent in poultry flocks. Moreover some strains have been implicated in severe clinical cases. To explain the causes of this emergence in farm animals, 134 S. Senftenberg isolates from hatcheries, poultry farms and human clinical cases were analyzed. Persistent and non-persistent strains were identified in chicks. The non-persistent strains disappeared from ceca a few weeks post inoculation. This lack of persistence could be related to the disappearance of this serotype from poultry farms in the past. In contrast, persistent S. Senftenberg strains induced an intestinal asymptomatic carrier state in chicks similar to S. Enteritidis, but a weaker systemic infection than S. Enteritidis in chicks and mice. An in vitro analysis showed that the low infectivity of S. Senftenberg is in part related to its low capacity to invade enterocytes and thus to translocate the intestinal barrier. The higher capacity of persistent than non-persistent strains to colonize and persist in the ceca of chickens could explain the increased persistence of S. Senftenberg in poultry flocks. This trait might thus present a human health risk as these bacteria could be present in animals before slaughter and during food processing.
Collapse
Affiliation(s)
- Zineb Boumart
- INRA, UR1282 Infectiologie Animale et Santé Publique, Nouzilly France
- ANSES, Laboratoire de Ploufragan-Plouzané, Unité Hygiène et Qualité des Produits Avicoles et Porcins, Ploufragan, France
| | - Sylvie M. Roche
- INRA, UR1282 Infectiologie Animale et Santé Publique, Nouzilly France
- IFR136 Agents transmissibles et Infectiologie, Université François Rabelais de Tours, Tours, France
| | - Françoise Lalande
- ANSES, Laboratoire de Ploufragan-Plouzané, Unité Hygiène et Qualité des Produits Avicoles et Porcins, Ploufragan, France
| | - Isabelle Virlogeux-Payant
- INRA, UR1282 Infectiologie Animale et Santé Publique, Nouzilly France
- IFR136 Agents transmissibles et Infectiologie, Université François Rabelais de Tours, Tours, France
| | | | - Pierrette Menanteau
- INRA, UR1282 Infectiologie Animale et Santé Publique, Nouzilly France
- IFR136 Agents transmissibles et Infectiologie, Université François Rabelais de Tours, Tours, France
| | | | - François-Xavier Weill
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Salmonella, Paris, France
| | - Philippe Velge
- INRA, UR1282 Infectiologie Animale et Santé Publique, Nouzilly France
- IFR136 Agents transmissibles et Infectiologie, Université François Rabelais de Tours, Tours, France
- * E-mail:
| | - Marianne Chemaly
- ANSES, Laboratoire de Ploufragan-Plouzané, Unité Hygiène et Qualité des Produits Avicoles et Porcins, Ploufragan, France
| |
Collapse
|
7
|
Expression of Toll-like receptor 4 and downstream effectors in selected cecal cell subpopulations of chicks resistant or susceptible to Salmonella carrier state. Infect Immun 2011; 79:3445-54. [PMID: 21628520 DOI: 10.1128/iai.00025-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptor 4 (TLR4), which recognizes lipopolysaccharide from Gram-negative bacteria, plays a major role in resistance of mice and humans to Salmonella infection. In chickens, Salmonella may establish a carrier state whereby bacteria are able to persist in the host organism without triggering clinical signs. Based on cellular morphological parameters, we developed a method, without using antibodies, to separate three cecal cell subpopulations: lymphocytes, enterocytes, and a population encompassing multiple cell types. We analyzed the mRNA expression of TLR4, interleukin-1β (IL-1β), IL-8, IL-12, and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) in cecal subpopulations of chicks from inbred lines resistant or susceptible to the carrier state infected with Salmonella enterica serovar Enteritidis. The results showed that resistance to the carrier state in chicks is associated with a larger percentage of lymphocytes and with higher levels of expression of TLR4 and IL-8 at homeostasis in the three cell subpopulations, as well as with a higher level of expression of LITAF in lymphocytes during the carrier state. In contrast to the early phase of infection, the carrier state is characterized by no major cell recruitment differences between infected and noninfected animals and no significant modification in terms of TLR4, IL-1β, IL-8, IL-12, and LITAF expression in all cell subpopulations measured. However, TLR4 expression increased in the lymphocytes of chicks from the susceptible line, reaching the same level as that in infected chicks from the resistant line. These observations suggest that the carrier state is characterized by a lack of immune activation and highlight the interest of working at the level of the cell population rather than that of the organ.
Collapse
|
8
|
Fraser-Pitt DJ, Cameron P, McNeilly TN, Boyd A, Manson EDT, Smith DGE. Phosphorylation of the epidermal growth factor receptor (EGFR) is essential for interleukin-8 release from intestinal epithelial cells in response to challenge with Escherichia coli O157 : H7 flagellin. MICROBIOLOGY-SGM 2011; 157:2339-2347. [PMID: 21546588 DOI: 10.1099/mic.0.047670-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enterohaemorrhagic Escherichia coli O157 : H7 is a major foodborne and environmental pathogen responsible for both sporadic cases and outbreaks of food poisoning, which can lead to serious sequelae, such as haemolytic uraemic syndrome. The structural subunit of E. coli O157 : H7 flagella is flagellin, which is both the antigenic determinant of the H7 serotype, an important factor in colonization, and an immunomodulatory protein that has been determined to be a major pro-inflammatory component through the instigation of host cell signalling pathways. Flagellin has highly conserved N- and C-terminal regions that are recognized by the host cell pattern recognition receptor Toll-like receptor (TLR) 5. Activation of this receptor triggers cell signalling cascades, which are known to activate host cell kinases and transcription factors that respond with the production of inflammatory mediators such as the chemokine interleukin-8 (IL-8), although the exact components of this pathway are not yet fully characterized. We demonstrate that E. coli O157 : H7-derived flagellin induces rapid phosphorylation of the epidermal growth factor receptor (EGFR), as an early event in intestinal epithelial cell signalling, and that this is required for the release of the pro-inflammatory cytokine IL-8.
Collapse
Affiliation(s)
- Douglas J Fraser-Pitt
- Biomedical Sciences and Microbiology Group, School of Life, Sport and Social Sciences, Faculty of Health, Life and Social Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| | - Pamela Cameron
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Amanda Boyd
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Erin D T Manson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - David G E Smith
- Institute for Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK.,Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
9
|
Cawthraw S, Pennings JLA, Hodemaekers HM, de Jonge R, Havelaar AH, Hoebee B, Johnson L, Best A, Kennedy E, La Ragione RM, Newell DG, Janssen R. Gene expression profiles induced by Salmonella infection in resistant and susceptible mice. Microbes Infect 2011; 13:383-93. [PMID: 21256241 DOI: 10.1016/j.micinf.2011.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 12/18/2022]
Abstract
Mouse models have been extensively used to investigate the mechanisms of salmonellosis. However, the role of the hosts' local intestinal responses during early stages of infection remain unclear. In this study, transcript array analysis was employed to investigate regulation of gene expression in the murine intestine following oral challenge with Salmonella enterica serovar Enteritidis. Salmonella resistant C3H/HeN mice elicited only weak transcription responses in the ileum even in the presence of bacterial replication and systemic infection. This poor response was surprising given previously published results using in vitro models. Susceptible TLR4-deficient C3H/HeJ mice displayed a stronger response, suggesting a role for TLR4 in dampening the response to Salmonella. Responses of susceptible BALB/c mice were also unremarkable. In contrast, in vitro infection of murine rectal epithelial cells induced a strong transcription response consistent with previous in vitro studies. Although the pattern of genes expressed by the ileal tissue upon in vivo infection were similar in all three mouse lines, the genes up-regulated during in vitro infection were different, indicating that the responses seen in vitro do not mimic those seen in vivo. Taken together these data indicate that in vivo responses to Salmonella, at the level of the intestine, are tightly regulated by the host.
Collapse
Affiliation(s)
- Shaun Cawthraw
- Department of Bacteriology, Veterinary Laboratories Agency (Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rosselin M, Abed N, Virlogeux-Payant I, Bottreau E, Sizaret PY, Velge P, Wiedemann A. Heterogeneity of type III secretion system (T3SS)-1-independent entry mechanisms used by Salmonella Enteritidis to invade different cell types. MICROBIOLOGY-SGM 2010; 157:839-847. [PMID: 21109565 DOI: 10.1099/mic.0.044941-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella causes a wide range of diseases from acute gastroenteritis to systemic typhoid fever, depending on the host. To invade non-phagocytic cells, Salmonella has developed different mechanisms. The main invasion system requires a type III secretion system (T3SS) known as T3SS-1, which promotes a Trigger entry mechanism. However, other invasion factors have recently been described in Salmonella, including Rck and PagN, which were not expressed under our bacterial culture conditions. Based on these observations, we used adhesion and invasion assays to analyse the respective roles of Salmonella Enteritidis T3SS-1-dependent and -independent invasion processes at different times of infection. Diverse cell lines and cell types were tested, including endothelial, epithelial and fibroblast cells. We demonstrated that cell susceptibility to the T3SS-1-independent entry differs by a factor of nine between the most and the least permissive cell lines tested. In addition, using scanning electron and confocal microscopy, we showed that T3SS-1-independent entry into cells was characterized by a Trigger-like alteration, as for the T3SS-1-dependent entry, and also by Zipper-like cellular alteration. Our results demonstrate for what is believed to be the first time that Salmonella can induce Trigger-like entry independently of T3SS-1 and can induce Zipper-like entry independently of Rck. Overall, these data open new avenues for discovering new invasion mechanisms in Salmonella.
Collapse
Affiliation(s)
- Manon Rosselin
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Nadia Abed
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Isabelle Virlogeux-Payant
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Elisabeth Bottreau
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Pierre-Yves Sizaret
- Département des Microscopies Plate-Forme RIO, INSERM ERI19, Université François Rabelais, Tours, France.,IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France
| | - Philippe Velge
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Agnès Wiedemann
- IFR136 Agents Transmissibles et Infectiologie, Université de Tours, France.,INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| |
Collapse
|
11
|
Dibb-Fuller M, Woodward MJ. Contribution of fimbriae and flagella ofSalmonella enteritidisto colonization and invasion of chicks. Avian Pathol 2010; 29:295-304. [DOI: 10.1080/03079450050118412] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Rosselin M, Virlogeux-Payant I, Roy C, Bottreau E, Sizaret PY, Mijouin L, Germon P, Caron E, Velge P, Wiedemann A. Rck of Salmonella enterica, subspecies enterica serovar Enteritidis, mediates Zipper-like internalization. Cell Res 2010; 20:647-64. [DOI: 10.1038/cr.2010.45] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
13
|
Betancor L, Yim L, Fookes M, Martinez A, Thomson NR, Ivens A, Peters S, Bryant C, Algorta G, Kariuki S, Schelotto F, Maskell D, Dougan G, Chabalgoity JA. Genomic and phenotypic variation in epidemic-spanning Salmonella enterica serovar Enteritidis isolates. BMC Microbiol 2009; 9:237. [PMID: 19922635 PMCID: PMC2784474 DOI: 10.1186/1471-2180-9-237] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 11/18/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (S. Enteritidis) has caused major epidemics of gastrointestinal infection in many different countries. In this study we investigate genome divergence and pathogenic potential in S. Enteritidis isolated before, during and after an epidemic in Uruguay. RESULTS 266 S. Enteritidis isolates were genotyped using RAPD-PCR and a selection were subjected to PFGE analysis. From these, 29 isolates spanning different periods, genetic profiles and sources of isolation were assayed for their ability to infect human epithelial cells and subjected to comparative genomic hybridization using a Salmonella pan-array and the sequenced strain S. Enteritidis PT4 P125109 as reference. Six other isolates from distant countries were included as external comparators.Two hundred and thirty three chromosomal genes as well as the virulence plasmid were found as variable among S. Enteritidis isolates. Ten out of the 16 chromosomal regions that varied between different isolates correspond to phage-like regions. The 2 oldest pre-epidemic isolates lack phage SE20 and harbour other phage encoded genes that are absent in the sequenced strain. Besides variation in prophage, we found variation in genes involved in metabolism and bacterial fitness. Five epidemic strains lack the complete Salmonella virulence plasmid. Significantly, strains with indistinguishable genetic patterns still showed major differences in their ability to infect epithelial cells, indicating that the approach used was insufficient to detect the genetic basis of this differential behaviour. CONCLUSION The recent epidemic of S. Enteritidis infection in Uruguay has been driven by the introduction of closely related strains of phage type 4 lineage. Our results confirm previous reports demonstrating a high degree of genetic homogeneity among S. Enteritidis isolates. However, 10 of the regions of variability described here are for the first time reported as being variable in S. Enteritidis. In particular, the oldest pre-epidemic isolates carry phage-associated genetic regions not previously reported in S. Enteritidis. Overall, our results support the view that phages play a crucial role in the generation of genetic diversity in S. Enteritidis and that phage SE20 may be a key marker for the emergence of particular isolates capable of causing epidemics.
Collapse
Affiliation(s)
- Laura Betancor
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Lucia Yim
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Maria Fookes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Araci Martinez
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Nicholas R Thomson
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Alasdair Ivens
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sarah Peters
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Gabriela Algorta
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Reserch Institute, Nairobi, Kenya
| | - Felipe Schelotto
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Duncan Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jose A Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| |
Collapse
|
14
|
Primary structure and antibacterial activity of chicken bone marrow-derived beta-defensins. Antimicrob Agents Chemother 2009; 53:4647-55. [PMID: 19738012 DOI: 10.1128/aac.00301-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Three biologically active beta-defensins were purified by chromatography from chicken bone marrow extract: avian beta-defensin 1 (AvBD1), AvBD2, and the newly isolated beta-defensin AvBD7. Mass spectrometry analyses showed that bone marrow-derived AvBD1, -2, and -7 peptides were present as mature peptides and revealed posttranslational modifications for AvBD1 and AvBD7 in comparison to their in silico-predicted amino acid sequences. Tandem mass spectrometry analysis using the nanoelectrospray-quadrupole time of flight method showed N-terminal glutaminyl cyclization of mature AvBD7 and C-terminal amidation of mature AvBD1 peptide, while posttranslational modifications were absent in bone marrow-derived mature AvBD2 peptide. Furthermore, mass spectrometry analysis performed on intact cells confirmed the presence of these three peptides in mature heterophils. In addition, the antibacterial activities of the three beta-defensins against a large panel of gram-positive and -negative bacteria were assessed. While the three defensins displayed similar antibacterial spectra of activity against gram-positive strains, AvBD1 and AvBD7 exhibited the strongest activity against gram-negative strains in comparison to AvBD2.
Collapse
|
15
|
Derache C, Esnault E, Bonsergent C, Le Vern Y, Quéré P, Lalmanach AC. Differential modulation of beta-defensin gene expression by Salmonella Enteritidis in intestinal epithelial cells from resistant and susceptible chicken inbred lines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:959-966. [PMID: 19539093 DOI: 10.1016/j.dci.2009.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/17/2009] [Accepted: 03/21/2009] [Indexed: 05/27/2023]
Abstract
beta-Defensins are important components of innate immunity in mucosal tissue, a major entry site for several pathogens. These small cationic peptides possess antimicrobial activity against various microorganisms including Salmonella. Two chicken inbred lines, 6 and 15I, diverge phenotypically with respect to levels of Salmonella Enteritidis intestinal carriage and to level of gene expression of two beta-defensins, AvBD1 and AvBD2. The cellular source of these two defensins in the intestinal tissue has not previously been explored. Therefore embryonic intestinal cells were isolated from both chicken lines. Primary intestinal cell cultures expressed epithelial specific markers (villin and E-cadherin) and differentially expressed two beta-defensin genes AvBD1 and AvBD2 according to chicken line. Furthermore, S. Enteritidis interfered with AvBD2 expression only in the cells from the susceptible line 15I. Our embryonic cell culture model demonstrated that intestinal epithelium express beta-defensin antimicrobial peptides that may play a role in immunoprotection against Salmonella Enteritidis.
Collapse
|
16
|
Pan Z, Carter B, Núñez-García J, AbuOun M, Fookes M, Ivens A, Woodward MJ, Anjum MF. Identification of genetic and phenotypic differences associated with prevalent and non-prevalent Salmonella Enteritidis phage types: analysis of variation in amino acid transport. MICROBIOLOGY-SGM 2009; 155:3200-3213. [PMID: 19574306 DOI: 10.1099/mic.0.029405-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, differences at the genetic level of 37 Salmonella Enteritidis strains from five phage types (PTs) were compared using comparative genomic hybridization (CGH) to assess differences between PTs. There were approximately 400 genes that differentiated prevalent (4, 6, 8 and 13a) and sporadic (11) PTs, of which 35 were unique to prevalent PTs, including six plasmid-borne genes, pefA, B, C, D, srgC and rck, and four chromosomal genes encoding putative amino acid transporters. Phenotype array studies also demonstrated that strains from prevalent PTs were less susceptible to urea stress and utilized l-histidine, l-glutamine, l-proline, l-aspartic acid, gly-asn and gly-gln more efficiently than PT11 strains. Complementation of a PT11 strain with the transporter genes from PT4 resulted in a significant increase in utilization of the amino acids and reduced susceptibility to urea stress. In epithelial cell association assays, PT11 strains were less invasive than other prevalent PTs. Most strains from prevalent PTs were better biofilm formers at 37 degrees C than at 28 degrees C, whilst the converse was true for PT11 strains. Collectively, the results indicate that genetic and corresponding phenotypic differences exist between strains of the prevalent PTs 4, 6, 8 and 13a and non-prevalent PT11 strains that are likely to provide a selective advantage for strains from the former PTs and could help them to enter the food chain and cause salmonellosis.
Collapse
Affiliation(s)
- Zhensheng Pan
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.,Department of Food and Environmental Safety, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Ben Carter
- Department of Food and Environmental Safety, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Javier Núñez-García
- Department of Food and Environmental Safety, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Manal AbuOun
- Department of Food and Environmental Safety, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - María Fookes
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Al Ivens
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Martin J Woodward
- Department of Food and Environmental Safety, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Muna F Anjum
- Department of Food and Environmental Safety, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
17
|
Fardini Y, Trotereau J, Bottreau E, Souchard C, Velge P, Virlogeux-Payant I. Investigation of the role of the BAM complex and SurA chaperone in outer-membrane protein biogenesis and type III secretion system expression in Salmonella. Microbiology (Reading) 2009; 155:1613-1622. [DOI: 10.1099/mic.0.025155-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli, the assembly of outer-membrane proteins (OMP) requires the BAM complex and periplasmic chaperones, such as SurA or DegP. Previous work has suggested a potential link between OMP assembly and expression of the genes encoding type-III secretion systems. In order to test this hypothesis, we studied the role of the different lipoproteins of the BAM complex (i.e. BamB, BamC, BamD and BamE), and the periplasmic chaperones SurA and DegP, in these two phenotypes in Salmonella. Analysis of the corresponding deletion mutants showed that, as previously described with the ΔbamB mutant, BamD, SurA and, to a lesser extent, BamE play a role in outer-membrane biogenesis in Salmonella Enteritidis, while the membrane was not notably disturbed in ΔbamC and ΔdegP mutants. Interestingly, we found that BamD is not essential in Salmonella, unlike its homologues in Escherichia coli and Neisseria gonorrhoeae. In contrast, BamD was the only protein required for full expression of T3SS-1 and flagella, as demonstrated by transcriptional analysis of the genes involved in the biosynthesis of these T3SSs. In line with this finding, bamD mutants showed a reduced secretion of effector proteins by these T3SSs, and a reduced ability to invade HT-29 cells. As ΔsurA and ΔbamE mutants had lower levels of OMPs in their outer membrane, but showed no alteration in T3SS-1 and flagella expression, these results demonstrate the absence of a systematic link between an OMP assembly defect and the downregulation of T3SSs in Salmonella; therefore, this link appears to be related to a more specific mechanism that involves at least BamB and BamD.
Collapse
Affiliation(s)
- Yann Fardini
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Jérôme Trotereau
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Elisabeth Bottreau
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Charlène Souchard
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | - Philippe Velge
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | | |
Collapse
|
18
|
Fardini Y, Chettab K, Grépinet O, Rochereau S, Trotereau J, Harvey P, Amy M, Bottreau E, Bumstead N, Barrow PA, Virlogeux-Payant I. The YfgL lipoprotein is essential for type III secretion system expression and virulence of Salmonella enterica Serovar Enteritidis. Infect Immun 2006; 75:358-70. [PMID: 17060472 PMCID: PMC1828421 DOI: 10.1128/iai.00716-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica, like many gram-negative pathogens, uses type three secretion systems (TTSS) to infect its hosts. The three TTSS of Salmonella, namely, TTSS-1, TTSS-2, and flagella, play a major role in the virulence of this bacterium, allowing it to cross the intestinal barrier and to disseminate systemically. Previous data from our laboratory have demonstrated the involvement of the chromosomal region harboring the yfgL, engA, and yfgJ open reading frames in S. enterica serovar Enteritidis virulence. Using microarray analysis and real-time reverse transcription-PCR after growth of bacterial cultures favorable for either TTSS-1 or TTSS-2 expression, we show in this study that the deletion in S. enterica serovar Enteritidis of yfgL, encoding an outer membrane lipoprotein, led to the transcriptional down-regulation of most Salmonella pathogenicity island 1 (SPI-1), SPI-2, and flagellar genes encoding the TTSS structural proteins and effector proteins secreted by these TTSS. In line with these results, the virulence of the DeltayfgL mutant was greatly attenuated in mice. Moreover, even if YfgL is involved in the assembly of outer membrane proteins, the regulation of TTSS expression observed was not due to an inability of the Delta yfgL mutant to assemble TTSS in its membrane. Indeed, when we forced the transcription of SPI-1 genes by constitutively expressing HilA, the secretion of the TTSS-1 effector protein SipA was restored in the culture supernatant of the mutant. These results highlight the crucial role of the outer membrane lipoprotein YfgL in the expression of all Salmonella TTSS and, thus, in the virulence of Salmonella. Therefore, this outer membrane protein seems to be a privileged target for fighting Salmonella.
Collapse
Affiliation(s)
- Yann Fardini
- Institut National de la Recherche Agronomique, Centre de Tours-Nouzilly, Laboratoire Infectiologie Animale et Santé Publique, Bâtiment 311, 37380 Nouzilly, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vlisidou I, Dziva F, La Ragione RM, Best A, Garmendia J, Hawes P, Monaghan P, Cawthraw SA, Frankel G, Woodward MJ, Stevens MP. Role of intimin-tir interactions and the tir-cytoskeleton coupling protein in the colonization of calves and lambs by Escherichia coli O157:H7. Infect Immun 2006; 74:758-64. [PMID: 16369035 PMCID: PMC1346653 DOI: 10.1128/iai.74.1.758-764.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intimin facilitates intestinal colonization by enterohemorrhagic Escherichia coli O157:H7; however, the importance of intimin binding to its translocated receptor (Tir) as opposed to cellular coreceptors is unknown. The intimin-Tir interaction is needed for optimal actin assembly under adherent bacteria in vitro, a process which requires the Tir-cytoskeleton coupling protein (TccP/EspF(U)) in E. coli O157:H7. Here we report that E. coli O157:H7 tir mutants are at least as attenuated as isogenic eae mutants in calves and lambs, implying that the role of intimin in the colonization of reservoir hosts can be explained largely by its binding to Tir. Mutation of tccP uncoupled actin assembly from the intimin-Tir-mediated adherence of E. coli O157:H7 in vitro but did not impair intestinal colonization in calves and lambs, implying that pedestal formation may not be necessary for persistence. However, an E. coli O157:H7 tccP mutant induced typical attaching and effacing lesions in a bovine ligated ileal loop model of infection, suggesting that TccP-independent mechanisms of actin assembly may operate in vivo.
Collapse
Affiliation(s)
- Isabella Vlisidou
- Institute for Animal Health, High Street, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
de Rezende CE, Anriany Y, Carr LE, Joseph SW, Weiner RM. Capsular polysaccharide surrounds smooth and rugose types of Salmonella enterica serovar Typhimurium DT104. Appl Environ Microbiol 2005; 71:7345-51. [PMID: 16269777 PMCID: PMC1287654 DOI: 10.1128/aem.71.11.7345-7351.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biofilms and rugose colony morphology of Salmonella enterica serovar Typhimurium strains are usually associated with at least two different exopolymeric substances (EPS), curli and cellulose. In this study, another EPS, a capsular polysaccharide (CP) synthesized constitutively in S. enterica serovar Typhimurium strain DT104 at 25 and 37 degrees C, has been recognized as a biofilm matrix component as well. Fluorophore-assisted carbohydrate electrophoresis (FACE) analysis indicated that the CP is comprised principally of glucose and mannose, with galactose as a minor constituent. The composition differs from that of known colanic acid-containing CP that is isolated from cells of Escherichia coli and other enteric bacteria grown at 37 degrees C. The reactivity of carbohydrate-specific lectins conjugated to fluorescein isothiocyanate or gold particles with cellular carbohydrates demonstrated the cell surface localization of CP. Further, lectin binding also correlated with the FACE analysis of CP. Immunoelectron microscopy, using specific antibodies against CP, confirmed that CP surrounds the cells. Confocal microscopy of antibody-labeled cells showed greater biofilm formation at 25 degrees C than at 37 degrees C. Since the CP was shown to be produced at both 37 degrees C and 25 degrees C, it does not appear to be significantly involved in attachment during the early formation of the biofilm matrix. Although the attachment of S. enterica serovar Typhimurium DT104 does not appear to be mediated by its CP, the capsule does contribute to the biofilm matrix and may have a role in other features of this organism, such as virulence, as has been shown previously for the capsules of other gram-negative and gram-positive bacteria.
Collapse
Affiliation(s)
- C Eriksson de Rezende
- Department of Cell Biology and Molecular Genetics, Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
21
|
Vianney A, Jubelin G, Renault S, Dorel C, Lejeune P, Lazzaroni JC. Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis. Microbiology (Reading) 2005; 151:2487-2497. [PMID: 16000739 DOI: 10.1099/mic.0.27913-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Curli are necessary for the adherence of Escherichia coli to surfaces, and to each other, during biofilm formation, and the csgBA and csgDEFG operons are both required for their synthesis. A recent survey of gene expression in Pseudomonas aeruginosa biofilms has identified tolA as a gene activated in biofilms. The tol genes play a fundamental role in maintaining the outer-membrane integrity of Gram-negative bacteria. RcsC, the sensor of the RcsBCD phosphorelay, is involved, together with RcsA, in colanic acid capsule synthesis, and also modulates the expression of tolQRA and csgDEFG. In addition, the RcsBCD phosphorelay is activated in tol mutants or when Tol proteins are overexpressed. These results led the authors to investigate the role of the tol genes in biofilm formation in laboratory and clinical isolates of E. coli. It was shown that the adherence of cells was lowered in the tol mutants. This could be the result of a drastic decrease in the expression of the csgBA operon, even though the expression of csgDEFG was slightly increased under such conditions. It was also shown that the Rcs system negatively controls the expression of the two csg operons in an RcsA-dependent manner. In the tol mutants, activation of csgDEFG occurred via OmpR and was dominant upon repression by RcsB and RcsA, while these two regulatory proteins repressed csgBA through a dominant effect on the activator protein CsgD, thus affecting curli synthesis. The results demonstrate that the Rcs system, previously known to control the synthesis of the capsule and the flagella, is an additional component involved in the regulation of curli. Furthermore, it is shown that the defect in cell motility observed in the tol mutants depends on RcsB and RcsA.
Collapse
Affiliation(s)
- Anne Vianney
- Unité de Microbiologie et Génétique, UMR5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon1, bât A. Lwoff, 10, rue Dubois, 69622 Villeurbanne cedex, France
| | - Grégory Jubelin
- Unité de Microbiologie et Génétique, UMR5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon1, bât A. Lwoff, 10, rue Dubois, 69622 Villeurbanne cedex, France
| | - Sophie Renault
- Unité de Microbiologie et Génétique, UMR5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon1, bât A. Lwoff, 10, rue Dubois, 69622 Villeurbanne cedex, France
| | - Corine Dorel
- Unité de Microbiologie et Génétique, UMR5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon1, bât A. Lwoff, 10, rue Dubois, 69622 Villeurbanne cedex, France
| | - Philippe Lejeune
- Unité de Microbiologie et Génétique, UMR5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon1, bât A. Lwoff, 10, rue Dubois, 69622 Villeurbanne cedex, France
| | - Jean Claude Lazzaroni
- Unité de Microbiologie et Génétique, UMR5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon1, bât A. Lwoff, 10, rue Dubois, 69622 Villeurbanne cedex, France
| |
Collapse
|
22
|
Best A, La Ragione RM, Sayers AR, Woodward MJ. Role for flagella but not intimin in the persistent infection of the gastrointestinal tissues of specific-pathogen-free chicks by shiga toxin-negative Escherichia coli O157:H7. Infect Immun 2005; 73:1836-46. [PMID: 15731085 PMCID: PMC1064906 DOI: 10.1128/iai.73.3.1836-1846.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin (Stx)-positive Escherichia coli O157:H7 readily colonize and persist in specific-pathogen-free (SPF) chicks, and we have shown that an Stx-negative E. coli O157:H7 isolate (NCTC12900) readily colonizes SPF chicks for up to 169 days after oral inoculation at 1 day of age. However, the role of intimin in the persistent colonization of poultry remains unclear. Thus, to investigate the role of intimin and flagella, which is a known factor in the persistence of non-O157 E. coli in poultry, isogenic single- and double-intimin and aflagellar mutants were constructed in E. coli O157:H7 isolate NCTC12900. These mutants were used to inoculate (10(5) CFU) 1-day-old SPF chicks. In general, significant attenuation of the aflagellate and intimin-aflagellate mutants, but not the intimin mutant, was noted at similar time points between 22 and 92 days after inoculation. The intimin-deficient mutant was still being shed at the end of the experiment, which was 211 days after inoculation, 84 days more than the wild type. Shedding of the aflagellar and intimin-aflagellar mutants ceased 99 and 113 days after inoculation, respectively. Histological analysis of gastrointestinal tissues from inoculated birds gave no evidence for true microcolony formation by NCTC12900 or intimin and aflagellar mutants to epithelial cells. However, NCTC12900 mutant derivatives associated with the mucosa were observed as individual cells and/or as large aggregates. Association with luminal contents was also noted. These data suggest that O157 organisms do not require intimin for the persistent colonization of chickens, whereas flagella do play a role in this process.
Collapse
Affiliation(s)
- Angus Best
- Department of Food and Environmental Safety, VLA (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | | | | | | |
Collapse
|
23
|
Vasudevan P, Marek P, Nair M, Annamalai T, Darre M, Khan M, Venkitanarayanan K. In Vitro Inactivation of Salmonella Enteritidis in Autoclaved Chicken Cecal Contents by Caprylic Acid. J APPL POULTRY RES 2005. [DOI: 10.1093/japr/14.1.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
D'Argenio DA, Miller SI. Cyclic di-GMP as a bacterial second messenger. MICROBIOLOGY-SGM 2004; 150:2497-2502. [PMID: 15289546 DOI: 10.1099/mic.0.27099-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Environmental signals trigger changes in the bacterial cell surface, including changes in exopolysaccharides and proteinaceous appendages that ultimately favour bacterial persistence and proliferation. Such adaptations are regulated in diverse bacteria by proteins with GGDEF and EAL domains. These proteins are predicted to regulate cell surface adhesiveness by controlling the level of a second messenger, the cyclic dinucleotide c-di-GMP. Genetic evidence suggests that the GGDEF domain acts as a nucleotide cyclase for c-di-GMP synthesis while the EAL domain is a good candidate for the opposing activity, a phosphodiesterase for c-di-GMP degradation.
Collapse
Affiliation(s)
- David A D'Argenio
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Samuel I Miller
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Cookson AL, Woodward MJ. The role of intimin in the adherence of enterohaemorrhagic Escherichia coli (EHEC) O157: H7 to HEp-2 tissue culture cells and to bovine gut explant tissues. Int J Med Microbiol 2003; 292:547-53. [PMID: 12635938 DOI: 10.1078/1438-4221-00235] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intimin, an outer membrane protein encoded by eaeA, is a key determinant for the formation of attaching and effacing (AE) lesions by enterohaemorrhagic Escherichia coli (EHEC). To investigate the role of intimin in adherence, the eaeA gene was insertionally inactivated in three EHEC O157:H7 strains of diverse origin. The absence or presence of intimin did not correlate with the extent of adhesion of mutant or wild-type O157:H7 in tissue culture and neonatal calf gut tissue explant adherence assays. Adherence of the eaeA mutants to HEp-2 cells was diffuse with no evidence of intimate attachment whereas wild-type bacteria formed microcolonies and AE lesions. Intimin-independent adherence to neonatal calf gut explants was demonstrated by eaeA mutants and wild-type strains which adhered in the greatest numbers to colon but least well to rumen tissue. These results confirm that intimin is necessary for intimate attachment and that additional adherence factors are involved in intimin-independent adherence.
Collapse
Affiliation(s)
- Adrian L Cookson
- Department of Bacterial Diseases, Veterinary Laboratories Agency (Weybridge), Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | | |
Collapse
|
26
|
Mattick KL, Phillips LE, Jørgensen F, Lappin-Scott HM, Humphrey TJ. Filament formation by Salmonella spp. inoculated into liquid food matrices at refrigeration temperatures, and growth patterns when warmed. J Food Prot 2003; 66:215-9. [PMID: 12597479 DOI: 10.4315/0362-028x-66.2.215] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, the formation of multicellular filamentous Salmonella cells in response to low temperatures was investigated by using isolates of Salmonella enterica serovar Enteritidis PT4 and S. enterica serovar Typhimurium DT104 as the inocula. The formation of filamentous cells in two liquid food matrices at the recommended maximum temperature for refrigeration (8 degrees C) was monitored and compared with that in tryptone soya broth. Giemsa staining was performed to locate nuclear material within the filaments. Single filaments were warmed on agar at 37 degrees C, and the subsequent rate of septation was quantified. For all strains tested, > 70% of the Salmonella cells inoculated had become filamentous after 4 days in media at 8 degrees C, indicating that filamentation could occur during the shelf life of most refrigerated foods. Strains with impaired RpoS expression were able to form filaments at 8 degrees C, although these filaments tended to be shorter and less numerous. All strains also formed filamentous cells at 8 degrees C in retail milk or chicken meat extract. Filaments often exceeded 100 microm in length and appeared straight-sided under the microscope in media and in foods, and Giemsa staining demonstrated that regularly spaced nucleoids were present. This phenotype indicates that an early block in cell septation is probably responsible for filamentation. When filaments were warmed on agar at 37 degrees C, there was a rapid completion of septation, and for one filament, a >200-fold increase in cell number was observed within 4 h. There are clear public health implications associated with the filamentation of Salmonella in contaminated foods at refrigeration temperatures, especially when the possibility of rapid septation of filamentous cells upon warming is considered.
Collapse
Affiliation(s)
- Karen L Mattick
- PHLS Food Microbiology Collaborating Laboratory, Division of Food Animal Science, University of Bristol, and House, Lower Langford Bristol BS40 5DU, UK
| | | | | | | | | |
Collapse
|
27
|
La Ragione RM, McLaren IM, Foster G, Cooley WA, Woodward MJ. Phenotypic and genotypic characterization of avian Escherichia coli O86:K61 isolates possessing a gamma-like intimin. Appl Environ Microbiol 2002; 68:4932-42. [PMID: 12324341 PMCID: PMC126447 DOI: 10.1128/aem.68.10.4932-4942.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Escherichia coli O86:K61 has long been associated with outbreaks of infantile diarrhea in humans and with diarrheal disease in many animal species. Studies in the late 1990s identified E. coli O86:K61 as the cause of mortality in a variety of wild birds, and in this study, 34 E. coli O86:K61 isolates were examined. All of the isolates were nonmotile, but most elaborated at least two morphologically distinct surface appendages that were confirmed to be type 1 and curli fimbriae. Thirty-three isolates were positive for the eaeA gene encoding a gamma type of intimin. No phenotypic or genotypic evidence was obtained for elaboration of Shiga-like toxins, but most isolates possessed the gene coding for the cytolethal distending toxin. Five isolates were selected for adherence assays performed with tissue explants and HEp-2 cells, and four of these strains produced attaching and effacing lesions on HEp-2 cells and invaded the cells, as determined by transmission electron microscopy. Two of the five isolates were inoculated orally into 1-day-old specific-pathogen-free chicks, and both of these isolates colonized, invaded, and persisted well in this model. Neither isolate produced attaching and effacing lesions in chicks, although some pathology was evident in the alimentary tract. No deaths were recorded in inoculated chicks. These findings are discussed in light of the possibility that wild birds are potential zoonotic reservoirs of attaching and effacing E. coli.
Collapse
Affiliation(s)
- R M La Ragione
- Department of Bacterial Diseases, VLA (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Cookson AL, Cooley WA, Woodward MJ. The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 2002; 292:195-205. [PMID: 12398210 DOI: 10.1078/1438-4221-00203] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biofilm formation on abiotic surfaces may provide a source of microbial contamination and may also enhance microbial environmental survival. The role of fimbrial expression by Shiga toxin-producing Escherichia coli (STEC) in biofilm formation is poorly understood. This study aimed to investigate the role of STEC type 1 and curli fimbriae in adhesion to and biofilm formation on abiotic surfaces. None of 13 O157:H7 isolates expressed either fimbrial type whereas 11 of 13 and 5 of 13 non-O157 STEC elaborated type 1 fimbriae and curli fimbriae, respectively. Mutants made by allelic exchange of a diarrhoeal non-O157 STEC isolate, O128:H2 (E41509), unable to elaborate type 1 and curli fimbriae were made for adherence and biofilm assays. Elaboration of type 1 fimbriae was necessary for the adhesion to abiotic surfaces whereas curliation was associated with both adherence and subsequent biofilm formation. STEC O157:H7 adhered to thermanox and glass but poorly to polystyrene. Additionally, STEC O157:H7 failed to form biofilms. These data indicate that certain STEC isolates are able to form biofilms and that the elaboration of curli fimbriae may enhance biofilm formation leading to possible long-term survival and a potential source of human infection.
Collapse
Affiliation(s)
- Adrian L Cookson
- Department of Bacterial Diseases, Veterinary Laboratories Agency Weybridge, Addlestone, Surrey, UK
| | | | | |
Collapse
|
29
|
Brown PK, Dozois CM, Nickerson CA, Zuppardo A, Terlonge J, Curtiss R. MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Mol Microbiol 2001; 41:349-63. [PMID: 11489123 DOI: 10.1046/j.1365-2958.2001.02529.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Production of curli (AgF) adhesins by Escherichia coli and Salmonella enterica serovar Typhimurium (S. typhimurium) is associated with extracellular matrix production and is optimal at low temperature during stationary phase. Curli and extracellular matrix synthesis involves a complex regulatory network that is dependent on the CsgD (AgfD) regulator. We have identified a novel regulator, termed MlrA, that is required for curli production and extracellular matrix formation. Two cosmids from a genomic library of avian pathogenic E. coli chi7122 conferred mannose-resistant haemagglutination (HA) and curli production to E. coli HB101, which is unable to produce curli owing to a defective regulatory pathway. The rpoS gene, encoding a known positive regulator of curli synthesis, and the E. coli open reading frame (ORF) of unknown function, yehV, identified on each of these cosmids, respectively, conferred curli production and HA to E. coli HB101. We have designated yehV as the mlrA gene for MerR-like regulator A because its product shares similarities with regulatory proteins of the MerR family. HA and curli production by strain chi7122 were abolished by disruption of rpoS, mlrA or csgA, the curli subunit gene. Both csgD and csgBA transcription, required for expression of curli, were inactive in an mlrA mutant grown under conditions that promote curli production. An mlrA homologue was identified in S. typhimurium. Analysis of mlrA-lac operon fusions demonstrated that mlrA was positively regulated by rpoS. mlrA mutants of wild-type S. typhimurium SL1344 or SR-11 no longer produced curli or rugose colony morphology, and exhibited enhanced aggregation and extracellular matrix formation when complemented with the mlrA gene from either S. typhimurium or E. coli present on a low-copy-number plasmid. However, inactivation of mlrA did not affect curli production and aggregative morphology in an upregulated curli producing S. typhimurium derivative containing a temperature- and RpoS-independent agfD promoter region. These results indicate that MlrA is a newly defined transcriptional regulator of csgD/agfD that acts as a positive regulator of RpoS-dependent curli and extracellular matrix production by E. coli and S. typhimurium.
Collapse
MESH Headings
- Adhesins, Bacterial/biosynthesis
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Amino Acid Sequence
- Animals
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Chickens
- Cloning, Molecular
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Extracellular Matrix/metabolism
- Fimbriae, Bacterial/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Genes, Regulator/genetics
- Genes, Reporter/genetics
- Genetic Complementation Test
- Hemagglutination/genetics
- Molecular Sequence Data
- Open Reading Frames/genetics
- Salmonella typhimurium/genetics
- Salmonella typhimurium/growth & development
- Salmonella typhimurium/metabolism
- Salmonella typhimurium/ultrastructure
- Sigma Factor/metabolism
Collapse
Affiliation(s)
- P K Brown
- Department of Biology, Washington University, Saint Louis, MO 63130-2525, USA
| | | | | | | | | | | |
Collapse
|
30
|
La Ragione RM, Coles KE, Jørgensen F, Humphrey TJ, Woodward MJ. Virulence in the chick model and stress tolerance of Salmonella enterica serovar Orion var. 15+. Int J Med Microbiol 2001; 290:707-18. [PMID: 11310449 DOI: 10.1016/s1438-4221(01)80011-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Three Salmonella enterica serovar Orion var. 15+ isolates of distinct provenance were tested for survival in various stress assays. All were less able to survive desiccation than a virulent S. Enteritidis strain, with levels of survival similar to a rpoS mutant of the S. Enteritidis strain, whereas one isolate (F3720) was significantly more acid tolerant. The S. Orion var. 15+ isolates were motile by flagellae and elaborated type-1 and curli-like fimbriae; surface organelles that are considered virulence determinants in Salmonella pathogenesis. Each adhered and invaded HEp-2 tissue culture cells with similar proficiency to the S. Enteritidis control but were significantly less virulent than S. Enteritidis in the one-day-old and seven-day-old chick model. Given an oral dose of 1 x 10(3) cfu to one-day-old chicken, S. Orion var. 15+ isolates colonised 25% of liver and spleens examined at 24 h whereas S. Enteritidis colonised 100% of organs by the same with the same dose. Given an oral dose of 1 x 10(7) cfu at seven-day old, S. Orion var. 15+ failed to colonise livers and spleens in any bird examined at 24 h whereas S. Enteritidis colonised 50% of organs by the same with the same dose. Based on the number of internal organs colonised, one of the three S. Orion var. 15+ isolates tested (strain F3720) was significantly more invasive than the other two (B1 and B7). Also, strain F3720 was shed less than either B1 or B7 supporting the concept that there may be an inverse relationship between the ability to colonise deep tissues and to persist in the gut. These data are discussed in the light that S. Orion var. 15+ is associated with sporadic outbreaks of human infection rather than epidemics.
Collapse
Affiliation(s)
- R M La Ragione
- Department of Bacterial Diseases, Addlestone, Surrey, UK
| | | | | | | | | |
Collapse
|
31
|
Mattick KL, Jorgensen F, Legan JD, Lappin-Scott HM, Humphrey TJ. Habituation of Salmonella spp. at reduced water activity and its effect on heat tolerance. Appl Environ Microbiol 2000; 66:4921-5. [PMID: 11055944 PMCID: PMC92400 DOI: 10.1128/aem.66.11.4921-4925.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2000] [Accepted: 08/14/2000] [Indexed: 11/20/2022] Open
Abstract
The effect of habituation at reduced water activity (a(w)) on heat tolerance of Salmonella spp. was investigated. Stationary-phase cells were exposed to a(w) 0.95 in broths containing glucose-fructose, sodium chloride, or glycerol at 21 degrees C for up to a week prior to heat challenge at 54 degrees C. In addition, the effects of different a(w)s and heat challenge temperatures were investigated. Habituation at a(w) 0.95 resulted in increased heat tolerance at 54 degrees C with all solutes tested. The extent of the increase and the optimal habituation time depended on the solute used. Exposure to broths containing glucose-fructose (a(w) 0.95) for 12 h resulted in maximal heat tolerance, with more than a fourfold increase in D(54) values. Cells held for more than 72 h in these conditions, however, became as heat sensitive as nonhabituated populations. Habituation in the presence of sodium chloride or glycerol gave rise to less pronounced but still significant increases in heat tolerance at 54 degrees C, and a shorter incubation time was required to maximize tolerance. The increase in heat tolerance following habituation in broths containing glucose-fructose (a(w) 0.95) was RpoS independent. The presence of chloramphenicol or rifampin during habituation and inactivation did not affect the extent of heat tolerance achieved, suggesting that de novo protein synthesis was probably not necessary. These data highlight the importance of cell prehistory prior to heat inactivation and may have implications for food manufacturers using low-a(w) ingredients.
Collapse
Affiliation(s)
- K L Mattick
- Public Health Laboratory Service, Food Microbiology Research Unit, Heavitree, Exeter EX2 5AD, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Mattick KL, Jørgensen F, Legan JD, Cole MB, Porter J, Lappin-Scott HM, Humphrey TJ. Survival and filamentation of Salmonella enterica serovar enteritidis PT4 and Salmonella enterica serovar typhimurium DT104 at low water activity. Appl Environ Microbiol 2000; 66:1274-9. [PMID: 10742199 PMCID: PMC91980 DOI: 10.1128/aem.66.4.1274-1279.2000] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/1999] [Accepted: 01/03/2000] [Indexed: 11/20/2022] Open
Abstract
In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (a(w)). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low a(w) for long periods, but minimum humectant concentrations of 8% NaCl (a(w), 0. 95), 96% sucrose (a(w), 0.94), and 32% glycerol (a(w), 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal a(w), incubation at 37 degrees C resulted in more rapid loss of viability than incubation at 21 degrees C. At a(w) values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 microm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-a(w) conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low a(w) highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low a(w) (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-a(w) storage. If Salmonella strains form filaments in food products that have low a(w) values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring.
Collapse
Affiliation(s)
- K L Mattick
- PHLS Food Microbiology Research Unit, Heavitree, Exeter EX2 5AD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
33
|
Römling U, Rohde M. Flagella modulate the multicellular behavior of Salmonella typhimurium on the community level. FEMS Microbiol Lett 1999; 180:91-102. [PMID: 10547449 DOI: 10.1111/j.1574-6968.1999.tb08782.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Salmonella typhimurium strains MAE52 and MAE32 display a constitutive multicellular morphotype mediated by the expression of the agfD operon. In those strains, the role of flagella in the formation of various modes of multicellular behavior was investigated. Flagella were not required for the formation of the multicellular morphotype (rdar) on plates. However, visual examination showed that the global behavior of the bacterial community on air-liquid, surface-liquid or cell-cell-liquid interfaces changed in the absence of flagella. No differences in the local cell-cell interactions were observed at the microscopic level. Using Western blot analysis, no co-regulation of flagella and thin aggregative fimbriae, an extracellular component of the multicellular morphotype, was observed either on plates or in standing culture. In a mutant lacking flagella and thin aggregative fimbriae, the contribution of the latter to the multicellular morphotype was dominant. We concluded that independently regulated genes can act in an additive fashion to confer a pronounced multicellular behavior.
Collapse
Affiliation(s)
- U Römling
- Division of Cell Biology and Immunology, GBF, Mascheroder Weg 1, D-38124, Braunschweig, Germany.
| | | |
Collapse
|
34
|
La Ragione RM, Collighan RJ, Woodward MJ. Non-curliation of Escherichia coli O78:K80 isolates associated with IS1 insertion in csgB and reduced persistence in poultry infection. FEMS Microbiol Lett 1999; 175:247-53. [PMID: 10386375 DOI: 10.1111/j.1574-6968.1999.tb13627.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The elaboration of curli fimbriae by Escherichia coli is associated with the development of a lacy colony morphology when grown on colonisation factor antigen agar at 25 degrees C. Avian colisepticaemia E. coli isolates screened for curliation by this culture technique showed lacy and smooth colonial morphologies and the genetic basis of the non-curliated smooth colonial phenotype was analysed. Two smooth E. coli O78:K80 isolates possessed about 40 copies of the IS1 element within their respective genomes of which one copy insertionally inactivated the csgB gene, the nucleator gene for curli fibril formation. One of these two isolates also possessed a defective rpoS gene which is a known regulator of curli expression. In the day-old chick model, both smooth isolates were as invasive as a known virulent O78:K80 isolate as determined by extent of liver and spleen colonisation post oral inoculation but were less persistent in terms of caecal colonisation.
Collapse
Affiliation(s)
- R M La Ragione
- Bacteriology Department, Veterinary Laboratories Agency, Addlestone, Surrey, UK
| | | | | |
Collapse
|
35
|
White AP, Collinson SK, Burian J, Clouthier SC, Banser PA, Kay WW. High efficiency gene replacement in Salmonella enteritidis: chimeric fimbrins containing a T-cell epitope from Leishmania major. Vaccine 1999; 17:2150-61. [PMID: 10367948 DOI: 10.1016/s0264-410x(98)00491-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A simple, high frequency chromosomal gene replacement method of general utility was developed for Salmonella enteritidis. This system uses an unstable, imperfectly segregating, temperature-sensitive replicon, pHSG415, as a carrier of the recombinant gene of interest. It also allows for site-specific replacement of chromosomal genes without the need for antibiotic resistance markers in the recombinant genes or the use of specific bacterial strains. This strategy was used to replace the chromosomal sefA and agfA fimbrin genes of S. enteritidis 3b with recombinant genes containing a 48 bp DNA fragment encoding PT3, an immunoprotective T-cell epitope from GP63 of Leishmania major. The fidelity of chimeric fimbrial replacements were confirmed by DNA sequence analysis. Nearly 30% of the S. enteritidis clones selected in the final stage of sefA mutagenesis contained the sefA::PT3 recombinant gene, whereas for agfA the efficiency was as high as 10%. To our knowledge, this is the first report of fimbrial epitope replacement in the Salmonellae and the first chimeric fimbrin genes that have been reconstituted into a wild-type genetic background for any organism. As such, this model represents a promising 'organelle' expression system for epitope display in vaccinology.
Collapse
Affiliation(s)
- A P White
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Allen-Vercoe E, Collighan R, Woodward MJ. The variant rpoS allele of S. enteritidis strain 27655R does not affect virulence in a chick model nor constitutive curliation but does generate a cold-sensitive phenotype. FEMS Microbiol Lett 1998; 167:245-53. [PMID: 9809425 DOI: 10.1111/j.1574-6968.1998.tb13235.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::strr null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::strr. Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits.
Collapse
Affiliation(s)
- E Allen-Vercoe
- Department of Bacteriology, Central Veterinary Laboratory, Addlestone, Surrey, UK
| | | | | |
Collapse
|
37
|
Dibb-Fuller M, Allen-Vercoe E, Woodward MJ, Thorns CJ. Expression of SEF17 fimbriae by Salmonella enteritidis. Lett Appl Microbiol 1997; 25:447-52. [PMID: 9449861 DOI: 10.1111/j.1472-765x.1997.tb00015.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Specific immunological reagents were used to investigate the expression of SEF17 fimbriae by cultured strains of Salmonella enteritidis. Most strains of Salm. enteritidis tested expressed SEF17 when cultured at temperatures of 18-30 degrees C. However, two wild-type strains produced SEF17 when also grown at 37 degrees C and 42 degrees C. Colonization factor antigen agar was the optimum medium for SEF17 expression, whereas Drigalski and Sensitest agars poorly supported SEF17 production. Very fine fimbriae produced by a strain of Salm. typhimurium were specifically and strongly labelled by SEF17 monoclonal and polyclonal antibodies, indicating considerable antigenic conservation between the two. Curli fimbriae from Escherichia coli were similarly labelled. The production of these fimbriae correlated with the binding of fibronectin by the organism. Congo red binding by cultured bacteria was not a reliable criterion for the expression of SEF17 fimbriae.
Collapse
Affiliation(s)
- M Dibb-Fuller
- Bacteriology Department, Central Veterinary Laboratory, Addlestone, Surrey, UK
| | | | | | | |
Collapse
|