1
|
Dróżdż A, Kubera D, Olender A, Dabrowski W, Szukala M, Wosko S, Chwiej J, Rugiel M, Kawoń K, Gagoś M. ATR-FTIR spectroscopic markers indicating drug resistance in selected Candida strains. Sci Rep 2025; 15:18130. [PMID: 40413239 PMCID: PMC12103571 DOI: 10.1038/s41598-025-01428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 05/06/2025] [Indexed: 05/27/2025] Open
Abstract
The rising incidence of fungal infections and the increasing prevalence of antifungal resistance highlight the need for rapid and reliable diagnostic methods. This study investigates the potential of ATR-FTIR spectroscopy to identify spectroscopic markers of drug resistance in selected Candida strains. In this pilot study, ATR-FTIR spectroscopy was employed to analyse the biochemical composition of Candida albicans, Candida glabrata and Candida dubliniensis isolates. The minimum inhibitory concentrations (MIC) of antifungals were determined using antifungals concentration gradient strips, and the spectral data were processed to identify differences between resistant and sensitive isolates. Based on the results for Candida albicans, Candida glabrata and Candida dubliniensis, specific ATR-FITR spectroscopic markers of drug resistance were identified, which highlighted the necessity for these markers to be antifungal-specific. Despite the limitations of the study, the findings underscore the potential of ATR-FTIR spectroscopy in identifying spectroscopic markers of antifungal resistance. These preliminary results provide a foundation for further research, which could lead to the development of rapid diagnostic tools for detecting drug-resistant Candida strains, thereby improving the management and treatment of fungal infections.
Collapse
Affiliation(s)
- Agnieszka Dróżdż
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Krakow, Poland.
| | - Dominika Kubera
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Alina Olender
- Department of Medical Microbiology, Medical University of Lublin, Chodźki 1 Street, 20-093, Lublin, Poland
| | - Wojciech Dabrowski
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Jaczewskiego street 8, 20-090, Lublin, Poland
| | - Magdalena Szukala
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Jaczewskiego street 8, 20-090, Lublin, Poland
| | - Sylwia Wosko
- Laboratory of Preclinical Testing, Department of Applied and Social Pharmacy, Faculty of Pharmacy, Medical University of Lublin, 20-293, Lublin, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Marzena Rugiel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Kamil Kawoń
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
2
|
Sushytskyi L, Synytsya A, Lukáč P, Rajsiglová L, Capek P, Pohl R, Bleha R, Vannucci LE, Smrz D, Čopíková J, Kaštánek P. Immunologically active cell wall polysaccharides of green microalga Dictyosphaerium chlorelloides (Chlorellacea). Carbohydr Polym 2025; 353:123242. [PMID: 39914971 DOI: 10.1016/j.carbpol.2025.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 05/07/2025]
Abstract
Dictyosphaerium chlorelloides is a green microalga from the Chlorella clade that produces highly viscous exocellular polysaccharides. The cell wall polysaccharides of this alga have not been studied in detail. In this article, water-soluble polysaccharides from D. chlorelloides biomass were extracted with hot water and purified by preparative chromatography. The composition, structural features and molecular masses of subsequently eluted fractions F1, F2, F3, F4 and F5 (minor) were determined. Three high-yield products F1, F3 and F4 consisted mainly of galactopyranosyl, 2-O-methyl-galactopyranosyl, rhamnopyranosyl and mannopyranosyl units at different proportions, while F2 was rich in glucose. Immunoactivity of these fractions was evidenced in a mixed population of immune cells derived from mice spleens after incubation with polysaccharides by flow cytometry, MTT and Immunospot assays. These fractions, except F2, demonstrated selective immunostimulant activity, and the F1 fraction induced the most potent effect, closely followed by the F3 and F4 fractions. The in vivo mechanism of their action is associated with the activation of innate immunity and shapes the immune response to the Th1 type.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic; Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic.
| | - Pavol Lukáč
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Lenka Rajsiglová
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Peter Capek
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo sq. 2, 166 28 Prague 6, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic
| | - Luca E Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic.
| | - Daniel Smrz
- Laboratory of Immunotherapy, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic; Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic
| | - Petr Kaštánek
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague 6 Dejvice, Czech Republic; EcoFuel Laboratories s.r.o., Ocelářská 9, Prague 9 Libeň 190 00, Czech Republic
| |
Collapse
|
3
|
Kochan K, Jiang JH, Kostoulias X, Lai E, Richardson Z, Pebotuwa S, Heraud P, Wood BR, Peleg AY. Fast and Accurate Prediction of Antibiotic Susceptibility in Clinical Methicillin-Resistant S. aureus Isolates Using ATR-FTIR Spectroscopy: A Model Validation Study. Anal Chem 2025; 97:6041-6048. [PMID: 40063694 DOI: 10.1021/acs.analchem.4c06086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Diagnosing antimicrobial resistance (AMR) remains critical for improving patient survival rates and treatment outcomes. Current antibiotic susceptibility tests (AST) suffer prolonged turnaround times, necessitating a minimum of 24 h for results. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy emerges as a promising phenotypic testing method in bacteriology due to its rapid chemical characterization capability. Here, we present an innovative approach utilizing ATR-FTIR spectroscopy for rapid AMR assessment, distinguishing between methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA). Our approach focuses on detecting early markers of effective antibiotic action and using these to predict resistance profiles. To identify the earliest time for detection, five MSSA and five MRSA strains were subjected to oxacillin exposure for up to 2 h. We observed discernible molecular changes arising in MSSA as early as 1 h after exposure to oxacillin, which were absent in MRSA strains. Bands at 1624 and 1515 cm-1 were identified as markers of positive drug response in MSSA using principal component analysis (PCA) and were associated with peptidoglycan precursor accumulation upon transpeptidation inhibition. To develop predictive models for determining resistance profiles, we implemented ML-based modeling of the spectral data, reflective of the oxacillin-induced chemical composition changes in MSSA and MRSA. Partial least squares discriminant analysis (PLS-DA) and support vector machines classification (SVM-C) algorithms produced the best results, achieving 100% consistency with minimum inhibitory concentration (MIC) classification. Our models were independently validated by blind testing with 35 clinical strains and demonstrated 100% agreement with resistance profiling determined by MIC. Our study underscores the potential of ATR-FTIR spectroscopy for rapid and accurate AMR assessment, with the capacity to revolutionize diagnostics in combating antibiotic resistance.
Collapse
Affiliation(s)
- Kamila Kochan
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Jhih-Hang Jiang
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Xenia Kostoulias
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Elizabeth Lai
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Zack Richardson
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Savithri Pebotuwa
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Philip Heraud
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Bayden R Wood
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Anton Y Peleg
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Güler A, Yardımcı BK, Özek NŞ. Human anti-apoptotic Bcl-2 and Bcl-xL proteins protect yeast cells from aging induced oxidative stress. Biochimie 2025; 229:69-83. [PMID: 39413900 DOI: 10.1016/j.biochi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Aging is a degenerative, biological, and time-dependent process that affects all organisms. Yeast aging is a physiological phenomenon characterized by the progressive transformation of yeast cells, resulting in modifications to their viability and vitality. Aging in yeast cells is comparable to that in higher organisms in some respects; however, due to their straightforward and well-characterized genetic makeup, these cells present unique advantages when it comes to researching the aging process. Here, we assessed the impact of human anti-apoptotic Bcl-2 and Bcl-xL proteins on aging using a yeast model. The findings clearly showed that these proteins exhibited remarkable anti-aging properties in yeast cells. Our data indicate that the presence of both proteins enhanced the reproductive survival of aging cells, likely by effecting the components functioning as both pro- and anti-oxidants, depending on the stage of yeast cell lifespan. Both proteins partially protected yeast cells from aging-related morphological deformations and cellular damage during the aging period. In particular, Bcl-xL expressing yeast cells reached the maximum activity levels for almost all of the major antioxidant enzymes and the total antioxidant status on the 8th day of lifespan and could provide effective protection at the latest stage of the investigated aging period. The chemometric data analysis of IR spectra confirmed the findings of the morphological and biochemical analyses. In this regard, specifically, understanding the mechanism of action on the cellular redox state of Bcl-xL in yeast may facilitate comprehension of its indirect antioxidant function in higher eukaryotes.
Collapse
Affiliation(s)
- Ayşenur Güler
- Chemistry Department, Graduate School of Natural and Applied Sciences, Pamukkale University, Denizli, Turkey
| | - Berna Kavakcıoğlu Yardımcı
- Department of Chemistry, Faculty of Science, Pamukkale University, Denizli, Turkey; Advanced Technology Application and Research Center, Pamukkale University, Denizli, Turkey.
| | - Nihal Şimşek Özek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey; East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Hatip G, Karaman K. Yeast cell biocarrier for the encapsulation of ascorbic acid: effect of plasmolysis process, suspension media and ascorbic acid levels on the physicochemical, morphological and bioactive properties of microcapsules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1298-1311. [PMID: 39360747 DOI: 10.1002/jsfa.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/31/2024] [Accepted: 09/08/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Ascorbic acid is a water-soluble vitamin and shows weak stability against external factors such as heat, oxygen, light etc. Due to its lower stability, encapsulation is an effective process for the preservation of its activity. Although there are a wide variety of encapsulation methods, the technique of encapsulation with yeast cells has been followed with increasing interest in recent years. In this study, encapsulation possibilities of ascorbic acid by yeast cells were investigated. In this context, Saccharomycess cerevisiae yeast cells in plasmolyzed and non-plasmolyzed forms were used in two different suspension media (water and ethanol) and effect of ascorbic acid concentrations (10, 20 and 50 g per 10 g yeast) were studied. A total of 12 different yeast microcapsule samples were produced and some physicochemical, bioactive and structural characterizations were performed. RESULTS The ascorbic acid level of yeast microcapsule samples was determined as 206.4-713.9 and 202.8-726.1 mg g-1 for plasmolyzed and non-plasmolyzed yeast cell types, respectively. ABTS radical scavenging activity increased from 27.23 to 233.04 μg TE g-1 by increased ascorbic acid levels. Ascorbic acid capsules were used in soft candy processing against free ascorbic acid and it was found that 47.9% ascorbic acid loss was detected for control sample at the 24-day storage while the ascorbic acid loss was approximately 25% for yeast microcapsules. CONCLUSION It was concluded that yeast cells are capable of preserving ascorbic acid stability during storage and yeast cells can be used effectively and safely for the manufacturing of the ascorbic acid microcapsules. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gamze Hatip
- Faculty of Agriculture, Agricultural Biotechnology Department, Erciyes University, Kayseri, Türkiye
| | - Kevser Karaman
- Faculty of Agriculture, Agricultural Biotechnology Department, Erciyes University, Kayseri, Türkiye
- Genome and Stem Cell Center, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
6
|
de Jesus Costa T, Thomazini M, Cristina José J, Peres Brexó R, Martelli-Tosi M, Sílvia Favaro-Trindade C. Impact of plasmolysis process on the enrichment of brewer's spent yeast biomass with vitamin D 3 by biosorption followed by spray-drying process. Food Res Int 2024; 191:114677. [PMID: 39059906 DOI: 10.1016/j.foodres.2024.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Vitamin D3(cholecalciferol)plays a crucial role in various physiological processes. However, vitamin D3 deficiency is a major public health problem affecting millions of people. Therefore, it is important to develop effective strategies that ensure the protection and stability of this important vitamin for food supplementation and fortification. This work aimed to impregnate intact and plasmolyzedSaccharomyces pastorianus brewer's yeast biomass with cholecalciferol using a biosorption process followed by spray drying to characterize the obtained material in terms of morphology, average particle size, zeta potential, moisture, water activity, FT-IR, and the stability of the encapsulated vitamin during the drying and storage process. Plasmolysis proved to be an effective method for improving the biosorption efficiency, retention during spray drying, and stability of vitamin D3. In addition, this process promoted an increase in cell size, which favored the dispersion stability of the system, as evidenced by the zeta potential values. These results contribute to the understanding of a new method for delivering this vitamin that conforms to environmentally conscious practices.
Collapse
Affiliation(s)
- Tatielly de Jesus Costa
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Av. Duque de Caxias Norte, 225, J. Elite, CEP 13635-900, Pirassununga, SP, Brazil
| | - Marcelo Thomazini
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Av. Duque de Caxias Norte, 225, J. Elite, CEP 13635-900, Pirassununga, SP, Brazil
| | - Julia Cristina José
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Av. Duque de Caxias Norte, 225, J. Elite, CEP 13635-900, Pirassununga, SP, Brazil
| | - Ramon Peres Brexó
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Av. Duque de Caxias Norte, 225, J. Elite, CEP 13635-900, Pirassununga, SP, Brazil
| | - Milena Martelli-Tosi
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Av. Duque de Caxias Norte, 225, J. Elite, CEP 13635-900, Pirassununga, SP, Brazil
| | - Carmen Sílvia Favaro-Trindade
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Av. Duque de Caxias Norte, 225, J. Elite, CEP 13635-900, Pirassununga, SP, Brazil.
| |
Collapse
|
7
|
Vishweshwaran M, Sujatha ER, Baldovino JA. Freeze-Dried β-Glucan and Poly-γ-glutamic Acid: An Efficient Stabilizer to Strengthen Subgrades of Low Compressible Fine-Grained Soils with Varying Curing Periods. Polymers (Basel) 2024; 16:1586. [PMID: 38891532 PMCID: PMC11174659 DOI: 10.3390/polym16111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The freeze-drying of biopolymers presents a fresh option with greater potential for application in soil subgrade stabilization. A freeze-dried combination of β-glucan (BG) and γ-poly-glutamic acid (GPA) biopolymers was used to treat low compressible clay (CL) and low compressible silt (ML) soils in dosages of 0.5%, 1%, 1.5%, and 2%. The California bearing ratio (CBR) test for the treated specimens was performed under three curing conditions: (i) thermal curing at 60 °C, (ii) air-curing for seven days followed by submergence for 4 days, and (iii) no curing, i.e., tested immediately after mixing. To investigate the influence of shear strength on the freeze-dried biopolymer-stabilized soil specimens and their variations with aging, unconfined compressive strength (UCS) tests were conducted after thermal curing at 60 °C for 3 days, 7 days, and 7 days of thermal curing followed by 21 days of air curing. The maximum CBR of 125.3% was observed for thermally cured CL and a minimum CBR of 6.1% was observed under soaked curing conditions for ML soils. Scanning electron microscopy (SEM), infrared spectroscopy, average particle size, permeability, and adsorption tests revealed the pore filling, biopolymer adsorption and coating on the soil surface, and agglomeration of the soil along with the presence of hydrogen bonds, covalent amide bonds, and Van der Waals forces that contributed to the stiffening of the stabilized soil. Using three-dimensional (3D) finite element analysis (FEA) and layered elastic analysis (LEA), a mechanistic-empirical pavement design was carried out for the stabilized soil and a design thickness catalog was prepared for the maximum CBR. The cost reductions for a 1 km section of the pavement were expected to be 12.5%.
Collapse
Affiliation(s)
- Muralidaran Vishweshwaran
- Centre for Advanced Research in Environment, School of Civil Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | - Evangelin Ramani Sujatha
- Centre for Advanced Research in Environment, School of Civil Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | - Jair Arrieta Baldovino
- Applied Geotechnical Research Group, Department of Civil Engineering, Universidad de Cartagena, Cartagena de Indias 130015, Colombia
| |
Collapse
|
8
|
Lee HJ, Park BR, Chewaka LS. A Comparative Study of Composition and Soluble Polysaccharide Content between Brewer's Spent Yeast and Cultured Yeast Cells. Foods 2024; 13:1567. [PMID: 38790867 PMCID: PMC11121356 DOI: 10.3390/foods13101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Yeast, crucial in beer production, holds great potential owing to its ability to transform into a valuable by-product resource, known as brewer's spent yeast (BSY), with potentially beneficial physiological effects. This study aimed to compare the composition and soluble polysaccharide content of Brewer's spent yeast with those of cultured yeast strains, namely Saccharomyces cerevisiae (SC) and S. boulardii (SB), to facilitate the utilization of BSY as an alternative source of functional polysaccharides. BSY exhibited significantly higher carbohydrate content and lower crude protein content than SC and SB cells. The residues recovered through autolysis were 53.11%, 43.83%, and 44.99% for BSY, SC, and SB, respectively. Notably, the polysaccharide content of the BSY residue (641.90 μg/mg) was higher than that of SC (553.52 μg/mg) and SB (591.56 μg/mg). The yields of alkali-extracted water-soluble polysaccharides were 33.62%, 40.76%, and 42.97% for BSY, SC, and SB, respectively, with BSY comprising a comparable proportion of water-soluble saccharides made with SC and SB, including 49.31% mannan and 20.18% β-glucan. Furthermore, BSY demonstrated antioxidant activities, including superoxide dismutase (SOD), ABTS, and DPPH scavenging potential, suggesting its ability to mitigate oxidative stress. BSY also exhibited a significantly higher total phenolic compound content, indicating its potential to act as an effective functional food material.
Collapse
Affiliation(s)
| | | | - Legesse Shiferaw Chewaka
- Department of Agro-Food Resource, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju 54875, Republic of Korea; (H.J.L.); (B.-R.P.)
| |
Collapse
|
9
|
Bakir G, Dahms TES, Martin-Yken H, Bechtel HA, Gough KM. Saccharomyces cerevisiae CellWall Remodeling in the Absence of Knr4 and Kre6 Revealed by Nano-FourierTransform Infrared Spectroscopy. APPLIED SPECTROSCOPY 2024; 78:355-364. [PMID: 38378014 PMCID: PMC10935619 DOI: 10.1177/00037028231213658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/17/2023] [Indexed: 02/22/2024]
Abstract
The cell wall integrity (CWI) signaling pathway regulates yeast cell wall biosynthesis, cell division, and responses to external stress. The cell wall, comprised of a dense network of chitin, β-1,3- and β-1,6- glucans, and mannoproteins, is very thin, <100 nm. Alterations in cell wall composition may activate the CWI pathway. Saccharomyces cerevisiae, a model yeast, was used to study the role of individual wall components in altering the structure and biophysical properties of the yeast cell wall. Near-field Fourier transform infrared spectroscopy (nano-FT-IR) was used for the first direct, spectrochemical identification of cell wall composition in a background (wild-type) strain and two deletion mutants from the yeast knock-out collection: kre6Δ and knr4Δ. Killer toxin resistant 6 (Kre6) is an integral membrane protein required for biosynthesis of β-1,6-glucan, while Knr4 is a cell signaling protein involved in the control of cell wall biosynthesis, in particular, biosynthesis and deposition of chitin. Complementary spectral data were obtained with far-field (FF)-FT-IR, in transmission, and with attenuated total reflectance (ATR) spectromicroscopy with 3-10 μm wavelength-dependent spatial resolution. The FF-FT-IR spectra of cells and spectra of isolated cell wall components showed that components of the cell body dominated transmission spectra and were still evident in ATR spectra. In contrast, the nano-FT-IR at ∼25 nm spatial resolution could be used to characterize the yeast wall chemical structure. Our results show that the β-1,6-glucan content is decreased in kre6Δ, while all glucan content is decreased in the knr4Δ cell wall. The latter may be thinner than in wild type, since not only are mannan and chitin detectable by nano-FT-IR, but also lipid membranes and protein, indicative of cell interior.
Collapse
Affiliation(s)
- Gorkem Bakir
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tanya E. S. Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Helene Martin-Yken
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- LAAS–CNRS, Université de Toulouse, Toulouse, France
| | - Hans A. Bechtel
- Advanced Light Source Division, Lawrence Berkeley National Lab, Berkeley, California, USA
| | - Kathleen M. Gough
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Huang J, Chen Y, Su Y, Yuan W, Peng D, Guan Z, Chen J, Li P, Du B. Identification of carbohydrate in Polygonatum kingianum Coll. et Hemsl and inhibiting oxidative stress. Int J Biol Macromol 2024; 261:129760. [PMID: 38286375 DOI: 10.1016/j.ijbiomac.2024.129760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
The specific structure of Polygonatum kingianum Coll. et Hemsl polysaccharide (PKP) has been rarely reported. In this study, an inulin-type fructan PKP-1, was extracted and purified from Polygonatum kingianum Coll. et Hemsl, and its structural characteristics and antioxidants activity were evaluated. The molecular weights of PKP-1 was determined to be 4.802 kDa. Monosaccharide composition analysis evidenced that PKP-1 was composed of galactose, glucose and fructose in a molar ratio of 0.8 %:7.2 %:92.0 %. Glycosidic linkage and Nuclear Magnetic Resonance (NMR) analysis revealed that PKP-1 exhibited a primary sugar residue linkage of →1-β-d-Fruf-2→2,6-β-d-Fruf-1→, where β-d-Fruf-2→ acts as the side chain and links to the C-6 position of →2,6-β-d-Fruf-1→. In vitro antioxidant activity assays demonstrated that PKP-1 enhanced the mitigation of hepatic oxidative stress in HepG2 cells induced by free fatty acids. This effect was marked by increased enzymatic activities of superoxidase dismutase (SOD) and catalase (CAT), along with elevated glutathione (GSH) levels. These findings indicate that PKP-1 could be used as a potential natural antioxidant.
Collapse
Affiliation(s)
- Junyuan Huang
- South China Agricultural University, College of Food Science, Guangzhou 510642, China
| | - Yanlan Chen
- South China Agricultural University, College of Food Science, Guangzhou 510642, China
| | - Yi Su
- South China Agricultural University, College of Food Science, Guangzhou 510642, China
| | - Wanqing Yuan
- South China Agricultural University, College of Food Science, Guangzhou 510642, China
| | - Dong Peng
- South China Agricultural University, College of Food Science, Guangzhou 510642, China
| | - Ziwen Guan
- South China Agricultural University, College of Food Science, Guangzhou 510642, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pan Li
- South China Agricultural University, College of Food Science, Guangzhou 510642, China
| | - Bing Du
- South China Agricultural University, College of Food Science, Guangzhou 510642, China.
| |
Collapse
|
11
|
Kassem A, Abbas L, Coutinho O, Opara S, Najaf H, Kasperek D, Pokhrel K, Li X, Tiquia-Arashiro S. Applications of Fourier Transform-Infrared spectroscopy in microbial cell biology and environmental microbiology: advances, challenges, and future perspectives. Front Microbiol 2023; 14:1304081. [PMID: 38075889 PMCID: PMC10703385 DOI: 10.3389/fmicb.2023.1304081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/03/2023] [Indexed: 01/02/2024] Open
Abstract
Microorganisms play pivotal roles in shaping ecosystems and biogeochemical cycles. Their intricate interactions involve complex biochemical processes. Fourier Transform-Infrared (FT-IR) spectroscopy is a powerful tool for monitoring these interactions, revealing microorganism composition and responses to the environment. This review explores the diversity of applications of FT-IR spectroscopy within the field of microbiology, highlighting its specific utility in microbial cell biology and environmental microbiology. It emphasizes key applications such as microbial identification, process monitoring, cell wall analysis, biofilm examination, stress response assessment, and environmental interaction investigation, showcasing the crucial role of FT-IR in advancing our understanding of microbial systems. Furthermore, we address challenges including sample complexity, data interpretation nuances, and the need for integration with complementary techniques. Future prospects for FT-IR in environmental microbiology include a wide range of transformative applications and advancements. These include the development of comprehensive and standardized FT-IR libraries for precise microbial identification, the integration of advanced analytical techniques, the adoption of high-throughput and single-cell analysis, real-time environmental monitoring using portable FT-IR systems and the incorporation of FT-IR data into ecological modeling for predictive insights into microbial responses to environmental changes. These innovative avenues promise to significantly advance our understanding of microorganisms and their complex interactions within various ecosystems.
Collapse
Affiliation(s)
- Amin Kassem
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Lana Abbas
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Oliver Coutinho
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Somie Opara
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Hawraa Najaf
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Diana Kasperek
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Keshav Pokhrel
- Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Xiaohua Li
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Sonia Tiquia-Arashiro
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| |
Collapse
|
12
|
Yin J, Zhang M, Tan Y, Guo Z, He H, Lan L, Cheng JX. Video-rate mid-infrared photothermal imaging by single-pulse photothermal detection per pixel. SCIENCE ADVANCES 2023; 9:eadg8814. [PMID: 37315131 PMCID: PMC10266719 DOI: 10.1126/sciadv.adg8814] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023]
Abstract
By optically sensing absorption-induced photothermal effect, mid-infrared (IR) photothermal (MIP) microscope enables super-resolution IR imaging of biological systems in water. However, the speed of current sample-scanning MIP system is limited to milliseconds per pixel, which is insufficient for capturing living dynamics. By detecting the transient photothermal signal induced by a single IR pulse through fast digitization, we report a laser-scanning MIP microscope that increases the imaging speed by three orders of magnitude. To realize single-pulse photothermal detection, we use synchronized galvo scanning of both mid-IR and probe beams to achieve an imaging line rate of more than 2 kilohertz. With video-rate speed, we observed the dynamics of various biomolecules in living organisms at multiple scales. Furthermore, by using hyperspectral imaging, we chemically dissected the layered ultrastructure of fungal cell wall. Last, with a uniform field of view more than 200 by 200 square micrometer, we mapped fat storage in free-moving Caenorhabditis elegans and live embryos.
Collapse
Affiliation(s)
- Jiaze Yin
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Meng Zhang
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Hongjian He
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Lu Lan
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
13
|
Mun SB, Cho BG, Jin SR, Lim CR, Yun YS, Cho CW. Adsorption of organic micropollutants on yeast: Batch experiment and modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117507. [PMID: 36809737 DOI: 10.1016/j.jenvman.2023.117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Yeast is ubiquitous and may act as a solid phase in natural aquatic systems, which may affect the distribution of organic micropollutants (OMs). Therefore, it is important to understand the adsorption of OMs on yeast. Therefore, in this study, a predictive model for the adsorption values of OMs on the yeast was developed. For that, an isotherm experiment was performed to estimate the adsorption affinity of OMs on yeast (i.e., Saccharomyces cerevisiae). Afterwards, quantitative structure-activity relationship (QSAR) modeling was performed for the purpose of developing a prediction model and explaining the adsorption mechanism. For the modeling, empirical and in silico linear free energy relationship (LFER) descriptors were applied. The isotherm results showed that yeast adsorbs a wide range of OMs, but the magnitude of Kd strongly depends on the types of OMs. The measured log Kd values of the tested OMs ranged from -1.91 to 1.1. Additionally, it was confirmed that the Kd measured in distilled water is comparable to that measured in real anaerobic or aerobic wastewater (R2 = 0.79). In QSAR modeling, the Kd value could be predicted by the LFER concept with an R2 of 0.867 by empirical descriptors and an R2 of 0.796 by in silico descriptors. The adsorption mechanisms of yeast for OMs were identified in individual correlations between log Kd and each descriptor: Dispersive interaction, hydrophobicity, hydrogen-bond donor, and cationic Coulombic interaction of OMs attract the adsorption, while the hydrogen-bond acceptor and anionic Coulombic interaction of OMs act as repulsive forces. The developed model can be used as an efficient method to estimate OM adsorption to yeast at a low level of concentration.
Collapse
Affiliation(s)
- Se-Been Mun
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186 Gwangju, Republic of Korea
| | - Bo-Gyeon Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186 Gwangju, Republic of Korea
| | - Se-Ra Jin
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186 Gwangju, Republic of Korea
| | - Che-Ryong Lim
- School of Chemical Engineering Jeonbuk National University 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk 561-756, South Korea
| | - Yeoung-Sang Yun
- School of Chemical Engineering Jeonbuk National University 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk 561-756, South Korea.
| | - Chul-Woong Cho
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Yongbong-ro 77, Buk-gu, 61186 Gwangju, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|
14
|
Yin J, Zhang M, Tan Y, Guo Z, He H, Lan L, Cheng JX. Video-rate Mid-infrared Photothermal Imaging by Single Pulse Photothermal Detection per Pixel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530116. [PMID: 36909493 PMCID: PMC10002684 DOI: 10.1101/2023.02.27.530116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
By optically sensing the mid-infrared absorption induced photothermal effect, midinfrared photothermal (MIP) microscope enables super-resolution IR imaging and scrutinizing of biological systems in an aqueous environment. However, the speed of current lock-in based sample-scanning MIP system is limited to 1.0 millisecond or longer per pixel, which is insufficient for capturing dynamics inside living systems. Here, we report a single pulse laserscanning MIP microscope that dramatically increases the imaging speed by three orders of magnitude. We harness a lock-in free demodulation scheme which uses high-speed digitization to resolve single IR pulse induced contrast at nanosecond time scale. To realize single pulse photothermal detection at each pixel, we employ two sets of galvo mirrors for synchronized scanning of mid-infrared and probe beams to achieve an imaging line rate over 2 kHz. With video-rate imaging capability, we observed two types of distinct dynamics of lipids in living cells. Furthermore, by hyperspectral imaging, we chemically dissected a single cell wall at nanometer scale. Finally, with a uniform field of view over 200 by 200 μm 2 and 2 Hz frame rate, we mapped fat storage in free-moving C. elegans and live embryos.
Collapse
|
15
|
Synergistic Antifungal Interactions between Antibiotic Amphotericin B and Selected 1, 3, 4-thiadiazole Derivatives, Determined by Microbiological, Cytochemical, and Molecular Spectroscopic Studies. Int J Mol Sci 2023; 24:ijms24043430. [PMID: 36834848 PMCID: PMC9966784 DOI: 10.3390/ijms24043430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
In recent years, drug-resistant and multidrug-resistant fungal strains have been more frequently isolated in clinical practice. This phenomenon is responsible for difficulties in the treatment of infections. Therefore, the development of new antifungal drugs is an extremely important challenge. Combinations of selected 1,3,4-thiadiazole derivatives with amphotericin B showing strong synergic antifungal interactions are promising candidates for such formulas. In the study, microbiological, cytochemical, and molecular spectroscopy methods were used to investigate the antifungal synergy mechanisms associated with the aforementioned combinations. The present results indicate that two derivatives, i.e., C1 and NTBD, demonstrate strong synergistic interactions with AmB against some Candida species. The ATR-FTIR analysis showed that yeasts treated with the C1 + AmB and NTBD + AmB compositions, compared with those treated with single compounds, exhibited more pronounced abnormalities in the biomolecular content, suggesting that the main mechanism of the synergistic antifungal activity of the compounds is related to a disturbance in cell wall integrity. The analysis of the electron absorption and fluorescence spectra revealed that the biophysical mechanism underlying the observed synergy is associated with disaggregation of AmB molecules induced by the 1,3,4-thiadiazole derivatives. Such observations suggest the possibility of the successful application of thiadiazole derivatives combined with AmB in the therapy of fungal infections.
Collapse
|
16
|
Avramia I, Amariei S. Formulation of Fast Dissolving β-Glucan/Bilberry Juice Films for Packaging Dry Powdered Pharmaceuticals for Diabetes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2040. [PMID: 35956516 PMCID: PMC9370384 DOI: 10.3390/plants11152040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to develop fast dissolving films based on β-glucan and bilberry juice due to the bioactive potential of β-glucan and antidiabetic effect of bilberry juice. The benefit of incorporation of bioactive compounds into the films is due to the removal of unnecessary excipients and to confer protection as well as increase stability and shelf life to the packaged product. Due to the fast dissolving requirements of the European Pharmacopeia, which reduced the dissolution time from 180 to 60 s, indicating less than a minute, hygroscopic materials, such as sodium alginate and a suitable plasticizer, such as glycerin were incorporated. Moreover, the influence of ingredients and surfactants, such as soybean oil was studied in the design of fast dissolving films. Additionally, the steady state rate water vapor transmission rate (WVTR), water vapor permeability (WVP), and FT-IR spectroscopy tests were performed at high resolution to ensure the reliability of the films and composition as well as to validate the results. Our data suggest that the addition of surfactants contributed to the development of fast dissolving films without influencing the diffusion of water vapor. Low levels of WVTR and short dissolution time made from β-glucan and bilberry juice are a convenient candidate for packaging dry powdered pharmaceuticals for diabetes.
Collapse
Affiliation(s)
- Ionut Avramia
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Sonia Amariei
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
17
|
Bikmurzin R, Bandzevičiūtė R, Maršalka A, Maneikis A, Kalėdienė L. FT-IR Method Limitations for β-Glucan Analysis. Molecules 2022; 27:molecules27144616. [PMID: 35889491 PMCID: PMC9318380 DOI: 10.3390/molecules27144616] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
β-glucans are known as biological response modifiers. However, different sources can result in structural differences and as a result differences in their biological activity. The hot water extraction method allows to obtain, high molecular weight β-glucans without altering their structure by using strong chemicals, such as alkalis or acids. Analysis of β-glucans by FT-IR and NMR spectroscopy in solid state is superior to analysis in solution as it allows researchers to study the preserved structure of the extracted polysaccharides. FT-IR spectroscopy was used in this study to make side-by-side comparison analysis of hot water extracted β-glucans from different yeast sources. NMR spectroscopy was used to confirm findings made by FT-IR spectroscopy. Extracted β-glucans exhibit characteristic structure of β-1,3/1,6-linked glucans with noticeable levels of proteins, possibly in a form of oligopeptides, chitin and other impurities. β-glucans obtained from C. guilliermondii, P. pastoris and S. pastorianus exhibited higher protein content. Differences in mannan, chitin and α-glucan content were also observed; however, the species-specific structure of obtained β-glucans could not be confirmed without additional studies. Structural analysis of high molecular weight β-glucans in solid state by FT-IR spectroscopy is difficult or limited due to band intensity changes and overlapping originating from different molecules.
Collapse
Affiliation(s)
- Ruslan Bikmurzin
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania;
- Department of Medical Technology and Dietethics, Faculty of Health Care, Vilnius University of Applied Sciences, Didlaukio str. 45, LT-08303 Vilnius, Lithuania
- Correspondence:
| | - Rimantė Bandzevičiūtė
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; (R.B.); (A.M.)
| | - Arūnas Maršalka
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania; (R.B.); (A.M.)
| | - Andrius Maneikis
- Department of Computer Science and Communications Technologies, Vilnius Gediminas Technical University, Saulėtekio av. 11, LT-10221 Vilnius, Lithuania;
| | - Lilija Kalėdienė
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
18
|
M V, Sujatha ER. β-Glucan as a Sustainable Alternative to Stabilize Pavement Subgrade. Polymers (Basel) 2022; 14:polym14142850. [PMID: 35890626 PMCID: PMC9315503 DOI: 10.3390/polym14142850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Beta glucan (β-Glucan), a polysaccharide biopolymer, is used to improve the subgrade strength of clayey soils in an attempt to advocate a sustainable, carbon-neutral, and eco-friendly stabilizer. A design thickness catalog was developed for a three-layered flexible pavement using 3D finite element analysis (FEA) and layered elastic analysis. The analyses were performed for β-glucan-treated fine-grained soils with varying traffic intensities based on a mechanistic design philosophy conforming to IRC: 37-2018. Genetic programming (GP) was employed to obtain equations governing the rutting and fatigue failure in pavements. Thirty-nine datasets were used in the determination and analysis of critical strains governing the failure of a flexible pavement. Energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Zetasizer analysis, and pH tests of the β-glucan-treated soil revealed the mechanism of strength improvement of the fine-grained soils. The savings in cost for a 1 km stretch of the pavement were estimated to be 14.3%.
Collapse
|
19
|
Wahia H, Zhang L, Zhou C, Mustapha AT, Fakayode OA, Amanor-Atiemoh R, Ma H, Dabbour M. Pulsed multifrequency thermosonication induced sonoporation in Alicyclobacillus acidoterrestris spores and vegetative cells. Food Res Int 2022; 156:111087. [DOI: 10.1016/j.foodres.2022.111087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
|
20
|
Avramia I, Amariei S. Formulation, Characterization and Optimization of β-Glucan and Pomegranate Juice Based Films for Its Potential in Diabetes. Nutrients 2022; 14:2142. [PMID: 35631282 PMCID: PMC9144072 DOI: 10.3390/nu14102142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to develop films based on β-glucans in association with pomegranate juice for its potential in metabolic disorders such as diabetes due to plenty of bioactive compounds from the film composition. Initially, a Box-Behnken design was generated by varying the level of β-glucan content (0.5, 1, 1.5 g), sodium alginate (0.2, 0.4, 0.6 g) and pomegranate juice (10, 20, 30 mL) for development of films. Subsequently, glycerin was added as 25% of the total dry matter. The optimization of the films prepared by the solvent casting method was conducted based on the different responses such as: water vapor transmission rate (WVTR), water vapor permeability (WVP), thickness, density, moisture content, solubility, film opacity and color. The water activity profile and FT-IR analysis were performed in all tests. The model was used to determine the optimal experimental values considering that the optimal film will make a sustained contribution to diabetes. The optimal values of the film sample made of β-glucans, sodium alginate, pomegranate juice and glycerin make it befitting for packaging dry powdered pharmaceuticals. Finally, antimicrobial activity against Gram-negative and Gram-positive bacteria, UV barrier properties and microcrack and pore detections through SEM were also investigated for the optimal film sample.
Collapse
Affiliation(s)
- Ionut Avramia
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
| | | |
Collapse
|
21
|
Ran X, Zhou M, Wang T, Wang W, Kumari S, Wang Y. Multidisciplinary characterization of nitrogen-removal granular sludge: A review of advances and technologies. WATER RESEARCH 2022; 214:118214. [PMID: 35240472 DOI: 10.1016/j.watres.2022.118214] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-removal granular sludge (NRGS) is a promising technology in wastewater treatment, with advantages of efficient nitrogen removal, less footprint, lower sludge production and energy consumption, and is a way for wastewater treatment plants to achieve carbon-neutrality. Aerobic granular sludge (AGS) and anammox granular sludge (AnGS) are two typical NRGS technologies that have attracted extensive attention. Mounting evidence has shown strong associations between NRGS properties and the status of NRGS systems; however, a holistic view is still missing. The aim of this article is to provide an overview of NRGS with an emphasis on characterization. Specifically, the integrated nitrogen transformation pathways inside NRGS and the performance of NRGS treating various wastewaters are discussed. NRGS properties are categorized as physical-, chemical-, biological- and systematical ones, presenting current advances and corresponding characterization technologies. Finally, the future prospects for furthering the mechanistic understanding and engineering application of NRGS are proposed. Overall, the technological advancements in characterization have greatly contributed to understanding NRGS properties, which are potential factors for optimizing the performance and evaluating the working status of NRGS. This review will provide guidance in characterizing NRGS properties and boost the introduction of novel characterization technologies.
Collapse
Affiliation(s)
- Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| |
Collapse
|
22
|
Production and Chemical Characterization of Exopolysaccharides by Antarctic Yeasts Vishniacozyma victoriae and Tremellomycetes sp. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study aimed to investigate exopolysaccharides (EPSs) produced by two Antarctic yeasts isolated from Livingston Island. The species were identified as Vishniacozyma victoriae (V) and Tremellomycetes sp. (T) based on a molecular genetic analysis of ITS1-5.8S-ITS4 regions of the 18S rRNA gene. The EPS production was investigated under stress conditions in culture flasks and a bioreactor. Different chromatographic (HPLC-RID, HPSEC-RID) and spectral (FT-IR) analyses were employed to characterize EPSs. Tremellomycetes sp. accumulated 7 g/L biomass and 4.5 g/L EPS after 120 h of cultivation. The total carbohydrate content of V-EPS and T-EPS was 75.4% and 79.0%, respectively. The EPSs mainly consisted of mannose (30–32%), which was followed by glucose, xylose, galactose, and small amounts of uronic acids (6.3–7.0%). EPSs had appreciable amounts of proteins (11–12%). The FT-IR spectra contained absorption bands typical for hetero-mannans and β-glucans (797–1033 cm−1). EPSs were heterogeneous with a broad molecular weight distribution range (47 × 104–68 × 104 g/mol). In conclusion, both yeasts synthesized high-molecular-weight heteromannans, and Tremellomycetes sp. stood out as being a better producer than V. victoriae. The current study also formed a basis for a better assessment of the potential for practical application of EPSs and yeasts in biochemical engineering and biotechnology.
Collapse
|
23
|
Yardimci BK, Sahin SC, Sever NI, Ozek NS. Biochemical effects of sodium benzoate, potassium sorbate and sodium nitrite on food spoilage yeast Saccharomyces cerevisiae. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00964-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Bleha R, Třešnáková L, Sushytskyi L, Capek P, Čopíková J, Klouček P, Jablonský I, Synytsya A. Polysaccharides from Basidiocarps of the Polypore Fungus Ganoderma resinaceum: Isolation and Structure. Polymers (Basel) 2022; 14:255. [PMID: 35054662 PMCID: PMC8778809 DOI: 10.3390/polym14020255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
In this study, we focused on the isolation and structural characterization of polysaccharides from a basidiocarp of polypore fungus Ganoderma resinaceum. Polysaccharide fractions were obtained by successive extractions with cold water at room temperature (20 °C), hot water under reflux (100 °C), and a solution of 1 mol L-1 sodium hydroxide. The purity of all fractions was controlled mainly by Fourier transform infrared (FTIR) spectroscopy, and their composition and structure were characterized by organic elemental analysis; neutral sugar and methylation analyses by gas chromatography equipped with flame ionization detector (GC/FID) and mass spectrometry detector (GC/MS), respectively; and by correlation nuclear magnetic resonance (NMR) spectroscopy. The aqueous extracts contained two main polysaccharides identified as a branched O-2-β-d-mannosyl-(1→6)-α-d-galactan and a highly branched (1→3)(1→4)(1→6)-β-d-glucan. Mannogalactan predominated in the cold water extract, and β-d-glucan was the main product of the hot water extract. The hot water soluble fraction was further separated by preparative anion exchange chromatography into three sub-fractions; two of them were identified as branched β-d-glucans with a structure similar to the corresponding polysaccharide of the original fraction. The alkaline extract contained a linear (1→3)-α-d-glucan and a weakly branched (1→3)-β-d-glucan having terminal β-d-glucosyl residues attached to O-6 of the backbone. The insoluble part after all extractions was identified as a polysaccharide complex containing chitin and β-d-glucans.
Collapse
Affiliation(s)
- Roman Bleha
- Department of Carbohydrates and Cereals, UCT Prague, 166 28 Prague, Czech Republic; (L.T.); (L.S.); (J.Č.)
| | - Lucie Třešnáková
- Department of Carbohydrates and Cereals, UCT Prague, 166 28 Prague, Czech Republic; (L.T.); (L.S.); (J.Č.)
| | - Leonid Sushytskyi
- Department of Carbohydrates and Cereals, UCT Prague, 166 28 Prague, Czech Republic; (L.T.); (L.S.); (J.Č.)
| | - Peter Capek
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 842 38 Bratislava, Slovakia;
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, UCT Prague, 166 28 Prague, Czech Republic; (L.T.); (L.S.); (J.Č.)
| | - Pavel Klouček
- Department of Gardening, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic;
| | - Ivan Jablonský
- Department of Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic;
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, UCT Prague, 166 28 Prague, Czech Republic; (L.T.); (L.S.); (J.Č.)
| |
Collapse
|
25
|
Antimicrobial and prebiotic activity of mannoproteins isolated from conventional and nonconventional yeast species-the study on selected microorganisms. World J Microbiol Biotechnol 2022; 38:256. [PMID: 36319710 PMCID: PMC9626417 DOI: 10.1007/s11274-022-03448-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Yeast mannoproteins are proposed as a paraprobiotics with antimicrobial and prebiotic properties. They can be used as biopreservatives in food and in diseases therapies. The knowledge about the specificity and/or capability of their influence on the growth of different microorganism is limited. The study determined the effect of mannoprotein preparations of Saccharomyces cerevisiae (S. cerevisiae) ATCC 7090 and nonconventional yeast origin [Metschnikowia reukaufii (M. reukaufii) WLP 4650 and Wickerhamomyces anomalus (W. anomalus) CCY 38-1-13] on the growth of selected bacteria of the genera: Lactobacilllus, Limosilatobacillus, Limosilatobacillus, Bifidobacterium, Staphylococcus, Enterococcus, Pseudomonas, Escherichia, Proteus and Salmonella. The degree of stimulation or growth inhibition of tested bacteria depended on the type and dose of the mannoprotein and the bacterial strain. The addition of the tested preparations in the entire range of applied concentrations had a positive effect especially on the growth of Lactobacillus arabinosus ATCC 8014 and Bifidobacterium animalis subsp. lactis B12. Mannoproteins isolated from S. cerevisiae limited the growth of the Escherichia coli (E. coli) ATCC 25922, Pseudomonas aureoginosa (P. aureoginosa) ATCC 27853, Proteus mirabilis ATCC 35659 and Salmonella Enteritidis ATCC 13076 to the greatest extent, while preparations of M. reukaufii and W. anomalus origin most effectively limited the growth of Staphylococcus aureus strains, E. coli and P. aureoginosa. The growth of Enterococcus faecalis was stimulated by the presence of all studied preparations in most of the concentrations used. Further research will determine how the purification process of studied mannoproteins or oligosaccharide fractions, its structure and composition influence on the growth of selected bacteria and what is the mechanism of its activity.
Collapse
|
26
|
Huang WX, Chen XW, Wu L, Yu ZS, Gao MY, Zhao HM, Mo CH, Li YW, Cai QY, Wong MH, Li H. Root cell wall chemistry remodelling enhanced arsenic fixation of a cabbage cultivar. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126165. [PMID: 34273883 DOI: 10.1016/j.jhazmat.2021.126165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 05/27/2023]
Abstract
The low- and high-arsenic (As) transferring cultivars (LTC and HTC) of cabbage showed significant differences in As uptake and distribution. We hypothesise that chemistry of root cell wall matrix plays a critical role. LTC and HTC were treated with As and grown for 60 days. As concentration and distribution at subcellular and cell wall component (pectin, hemicellulose and lignin) levels were determined. Remodelling enzymes (PME and PAL) and functional groups of cell wall were analysed. Results showed that shoot biomass of LTC was not affected by As. Less As was accumulated in shoot of LTC than HTC. LTC allocated more As in root and majority of As was deposited in cell wall. LTC had more hemicellulose 1 (HC1) and lignin, PME and PAL activities. The uronic acid contents of pectin, HC1 or HC2 were all positively (P < 0.05) correlated with As concentrations in each component, respectively. Chemistry of LTC root cell wall was remodelled in terms of changes in porosity, HC and lignin contents, and functional groups, which potentially exerted coupling effects on As entering and deposition. The LTC can restrain As in roots through changing characteristics of root cell wall matrix.
Collapse
Affiliation(s)
- Wei Xiong Huang
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xun Wen Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Wu
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zheng Sheng Yu
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Ying Gao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai Ming Zhao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce Hui Mo
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan Wen Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan Ying Cai
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming Hung Wong
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Hui Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
27
|
Banerjee A, Bansal N, Kumar J, Bhaskar T, Ray A, Ghosh D. Characterization of the de-oiled yeast biomass for plausible value mapping in a biorefinery perspective. BIORESOURCE TECHNOLOGY 2021; 337:125422. [PMID: 34186333 DOI: 10.1016/j.biortech.2021.125422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Oleaginous yeast fermentation process has gained attention for yeast single cell oil production. However, after lipid extraction, the leftover de-oiled yeast biomass has not been investigated in detail for its suitability for thermochemical conversion. To understand the structural and morphological changes, the comparative characterization of yeast and de-oiled yeast biomass before and post lipid extraction is necessary. The present study investigates the characteristics of an oleaginous yeast Rhodotorula mucilaginosa IIPL32's de-oiled biomass for its potential utilization. FTIR, XRD, SEM, EDX, XRF, and TGA analysis were performed to understand the biomass properties. Increased surface area and structural changes were observed in de-oiled yeast biomass with an increase in crystallinity, indicating chitosan availability. Maximum thermal degradation temperature was reduced to 260 °C for de-oiled yeast biomass from 300 °C for dried yeast after lipid extraction. The findings favored de-oiled yeast biomass for multiple applications that merit further detailed investigation with different thermochemical interventions.
Collapse
Affiliation(s)
- Ayan Banerjee
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India
| | - Neha Bansal
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India
| | - Jitendra Kumar
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India
| | - Anjan Ray
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India
| | - Debashish Ghosh
- Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum, Mohkampur, Haridwar Road, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 210002, India.
| |
Collapse
|
28
|
Cocean A, Cocean I, Cocean G, Postolachi C, Pricop DA, Munteanu BS, Cimpoesu N, Gurlui S. Study of Physico-Chemical Interactions during the Production of Silver Citrate Nanocomposites with Hemp Fiber. NANOMATERIALS 2021; 11:nano11102560. [PMID: 34684999 PMCID: PMC8537300 DOI: 10.3390/nano11102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 11/19/2022]
Abstract
In the study presented in this paper, the results obtained by producing nanocomposites consisting of a silver citrate thin layer deposited on hemp fiber surfaces are analyzed. Using the pulsed laser deposition (PLD) method applied to a silver target with impurities of nickel and iron, the formation of the silver citrate film is performed in various ways and the results are discussed based on Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray (SEM-EDX) spectroscopy analyses. A mechanism of the physico-chemical processes that take place based on the FTIR vibrational modes and the elemental composition established by the SEM-EDS analysis is proposed. Inhibition of the fermentation process of Saccharomyces cerevisae is demonstrated for the nanocomposite material of the silver citrate thin layer, obtained by means of the PLD method, on hemp fabric. The usefulness of composite materials of this type can extend from sensors and optoelectronics to the medical fields of analysis and treatment.
Collapse
Affiliation(s)
- Alexandru Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld, 700506 Iasi, Romania; (A.C.); (I.C.); (G.C.); (C.P.); (N.C.)
| | - Iuliana Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld, 700506 Iasi, Romania; (A.C.); (I.C.); (G.C.); (C.P.); (N.C.)
| | - Georgiana Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld, 700506 Iasi, Romania; (A.C.); (I.C.); (G.C.); (C.P.); (N.C.)
- Rehabilitation Hospital Borsa, 1 Floare de Colt Street, 435200 Borsa, Romania
| | - Cristina Postolachi
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld, 700506 Iasi, Romania; (A.C.); (I.C.); (G.C.); (C.P.); (N.C.)
| | - Daniela Angelica Pricop
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld, 700506 Iasi, Romania; (D.A.P.); (B.S.M.)
| | - Bogdanel Silvestru Munteanu
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld, 700506 Iasi, Romania; (D.A.P.); (B.S.M.)
| | - Nicanor Cimpoesu
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld, 700506 Iasi, Romania; (A.C.); (I.C.); (G.C.); (C.P.); (N.C.)
- Faculty of Material Science and Engineering, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Bld, 700050 Iasi, Romania
| | - Silviu Gurlui
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld, 700506 Iasi, Romania; (A.C.); (I.C.); (G.C.); (C.P.); (N.C.)
- Correspondence:
| |
Collapse
|
29
|
Chotigavin N, Sriphochanart W, Yaiyen S, Kudan S. Increasing the Production of β-Glucan from Saccharomyces carlsbergensis RU01 by Using Tannic Acid. Appl Biochem Biotechnol 2021; 193:2591-2601. [PMID: 33788085 PMCID: PMC8324626 DOI: 10.1007/s12010-021-03553-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/22/2021] [Indexed: 12/04/2022]
Abstract
In this study, we increased β-glucan production from brewer's yeast, Saccharomyces carlsbergensis RU01, by using tannic acid. High-pressure freezing and transmission electron microscopy (HPF-TEM) revealed that the yeast cell wall obtained from yeast malt (YM) medium supplemented with 0.1% w/v tannic acid was thicker than that of yeast cultured in YM medium alone. The production of β-glucan from S. carlsbergensis RU01 was optimized in 3% w/v molasses and 0.1% w/v diammonium sulfate (MDS) medium supplemented with 0.1% w/v tannic acid. The results showed that MDS medium supplemented with 0.1% w/v tannic acid significantly increased the dry cell weight (DCW), and the β-glucan production was 0.28±0.01% w/v and 11.99±0.04% w/w. Tannic acid enhanced the β-glucan content by up to 42.23%. β-Glucan production in the stirred tank reactor (STR) was 1.4-fold higher than that in the shake flask (SF) culture. Analysis of the β-glucan composition by Fourier transform infrared (FTIR) spectroscopy showed that the β-glucan of S. carlsbergensis RU01 cultured in MDS medium supplemented with 0.1% w/v tannic acid had a higher proportion of polysaccharide than that of the control. In addition, β-glucans from brewer's yeast can be used as prebiotic and functional foods for human health and in animal feed.
Collapse
Affiliation(s)
- Natthaporn Chotigavin
- Program in Food Science, Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Wiramsri Sriphochanart
- Program in Fermentation Technology in Food Industry, Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Surachai Yaiyen
- Department of Art and Science Technology, Western University, Lumlukka, Pathumthani Province, 10350, Thailand
| | - Sanya Kudan
- Department of Biotechnology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| |
Collapse
|
30
|
Comparison of structural differences between yeast β-glucan sourced from different strains of saccharomyces cerevisiae and processed using proprietary manufacturing processes. Food Chem 2021; 367:130708. [PMID: 34352692 DOI: 10.1016/j.foodchem.2021.130708] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/25/2022]
Abstract
In this study, we explored structural differences of five commercial samples of yeast β-glucan. Samples were assayed for their β-glucan content and the yeast storage carbohydrate, glycogen. The β-glucan content ranged from 74% to 86%, the glycogen content varied from 0 to 20%. The linkage pattern of each sample was measured by the partially methylated alditol acetate method. This method showed that the samples varied from 1.9% to 9.2% branching. The side chain length distribution for each sample was analyzed by an alkaline degradation assay followed by ion chromatography. The side length distributions of the samples were shown to be similar. The samples were also analyzed by FT-IR and 1HNMR spectroscopy but it was difficult to derive quantitative differences in the samples by these methods. Our findings confirm that each proprietary source of yeast β-glucan has a unique purity profile, branching, and linkage patterns that determine the chemical structure and composition.
Collapse
|
31
|
Dimopoulou M, Kefalloniti V, Tsakanikas P, Papanikolaou S, Nychas GJE. Assessing the Biofilm Formation Capacity of the Wine Spoilage Yeast Brettanomyces bruxellensis through FTIR Spectroscopy. Microorganisms 2021; 9:microorganisms9030587. [PMID: 33809238 PMCID: PMC7999561 DOI: 10.3390/microorganisms9030587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Brettanomyces bruxellensis is a wine spoilage yeast known to colonize and persist in production cellars. However, knowledge on the biofilm formation capacity of B. bruxellensis remains limited. The present study investigated the biofilm formation of 11 B. bruxellensis strains on stainless steel coupons after 3 h of incubation in an aqueous solution. FTIR analysis was performed for both planktonic and attached cells, while comparison of the obtained spectra revealed chemical groups implicated in the biofilm formation process. The increased region corresponding to polysaccharides and lipids clearly discriminated the obtained spectra, while the absorption peaks at the specific wavenumbers possibly reveal the presence of β-glucans, mannas and ergosterol. Unsupervised clustering and supervised classification were employed to identify the important wavenumbers of the whole spectra. The fact that all the metabolic fingerprints of the attached versus the planktonic cells were similar within the same cell phenotype class and different between the two phenotypes, implies a clear separation of the cell phenotype; supported by the results of the developed classification model. This study represents the first to succeed at applying a non-invasive technique to reveal the metabolic fingerprint implicated in the biofilm formation capacity of B. bruxellensis, underlying the homogenous mechanism within the yeast species.
Collapse
|
32
|
Valorization and upgrading of the nutritional value of seaweed and seaweed waste using the marine fungi Paradendryphiella salina to produce mycoprotein. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Valasques Junior GL, dos Santos JDG, Chaves PFP, Cordeiro LMC, de Jesus CL, de Lima FO, Boffo EF, de Assis SA. Antinociceptive and anti-inflammatory activity of α-d-mannan from Pseudozyma sp. 3 Biotech 2021; 11:73. [PMID: 33489690 PMCID: PMC7806684 DOI: 10.1007/s13205-020-02635-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/30/2020] [Indexed: 01/06/2023] Open
Abstract
Pseudozyma sp. are yeasts that are commercially important due to their production of glycolipid biosurfactants, squalene, itaconic acid, and exopolysaccharide. The search for other analgesia inducing drugs, such as opiates and non-steroidal anti-inflammatory drugs (NSAIDs), as alternatives is beneficial. In this study, the antinociceptive and anti-inflammatory actions of α-d-mannan were studied using acetic acid-induced writhing, open field test, formalin test, and carrageenan-induced paw oedema tests in mice. The α-d-mannan obtained from Pseudozyma sp. was confirmed by methylation analysis, 1D and 2D NMR spectroscopic analysis, and GC-MS. The results show that α-d-mannan from Pseudozyma sp. has analgesic and anti-inflammatory activities. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02635-1.
Collapse
Affiliation(s)
- Gildomar Lima Valasques Junior
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Av Transnordestina, km 0, BR 116, Feira de Santana, BA CEP 44036-900 Brazil
| | | | - Pedro Felipe Pereira Chaves
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CP 19.046, Curitiba, PR CEP 81531-980 Brazil
| | - Lucimara Mach Côrtes Cordeiro
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CP 19.046, Curitiba, PR CEP 81531-980 Brazil
| | - Cleisiane Lima de Jesus
- Health Department, State University of Feira de Santana, Feira de Santana, CEP 44036-900 Bahia Brazil
| | - Flávia Oliveira de Lima
- Health Department, State University of Feira de Santana, Feira de Santana, CEP 44036-900 Bahia Brazil
| | - Elisangela Fabiana Boffo
- Department of Organic Chemistry, Institute of Chemistry, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, BA 40170-115 Brazil
| | - Sandra Aparecida de Assis
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Av Transnordestina, km 0, BR 116, Feira de Santana, BA CEP 44036-900 Brazil
| |
Collapse
|
34
|
Spent Brewer's Yeast as a Source of Insoluble β-Glucans. Int J Mol Sci 2021; 22:ijms22020825. [PMID: 33467670 PMCID: PMC7829969 DOI: 10.3390/ijms22020825] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
In the brewing process, the consumption of resources and the amount of waste generated are high and due to a lot of organic compounds in waste-water, the capacity of natural regeneration of the environment is exceeded. Residual yeast, the second by-product of brewing is considered to have an important chemical composition. An approach with nutritional potential refers to the extraction of bioactive compounds from the yeast cell wall, such as β-glucans. Concerning the potential food applications with better textural characteristics, spent brewer’s yeast glucan has high emulsion stability and water-holding capacity fitting best as a fat replacer in different food matrices. Few studies demonstrate the importance and nutritional role of β-glucans from brewer’s yeast, and even less for spent brewer’s yeast, due to additional steps in the extraction process. This review focuses on describing the process of obtaining insoluble β-glucans (particulate) from spent brewer’s yeast and provides an insight into how a by-product from brewing can be converted to potential food applications.
Collapse
|
35
|
Antifungal activity of nanoemulsion from Cleome viscosa essential oil against food-borne pathogenic Candida albicans. Saudi J Biol Sci 2021; 28:286-293. [PMID: 33424308 PMCID: PMC7785440 DOI: 10.1016/j.sjbs.2020.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 11/22/2022] Open
Abstract
Pathogenic and spoilage fungi cause enormous challenges to food related fatal infections. Plant essential oil based classical emulsions can functions as antifungal agents. To investigate the antifungal spectrum, that is the scope of the nanoemulsion composed of Cleome viscosa essential oil and Triton-x-100 fabricated by ultrasonication method. Minimum inhibitory and fungicidal concentration of essential oil nanoemulsion (EONE) was tested against food borne pathogenic C. albicans. The MIC and MFC values ranged from 16.5 to 33 µl/ml with significant reduction on biofilm of C. albicans isolates. The alteration of molecular fingerprints was confirmed by Fourier transformed infrared spectroscopy and subsequent reduction of chitin levels in cell walls was noted by spectroscopic analysis. The EONE and their bioactive compounds cause collateral damage on C. albicans cells.
Collapse
|
36
|
Janjarasskul T, Tananuwong K, Phupoksakul T, Thaiphanit S. Fast dissolving, hermetically sealable, edible whey protein isolate-based films for instant food and/or dry ingredient pouches. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Vatanshenassan M, Boekhout T, Mauder N, Robert V, Maier T, Meis JF, Berman J, Then E, Kostrzewa M, Hagen F. Evaluation of Microsatellite Typing, ITS Sequencing, AFLP Fingerprinting, MALDI-TOF MS, and Fourier-Transform Infrared Spectroscopy Analysis of Candida auris. J Fungi (Basel) 2020; 6:jof6030146. [PMID: 32854308 PMCID: PMC7576496 DOI: 10.3390/jof6030146] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Candida auris is an emerging opportunistic yeast species causing nosocomial outbreaks at a global scale. A few studies have focused on the C. auris genotypic structure. Here, we compared five epidemiological typing tools using a set of 96 C. auris isolates from 14 geographical areas. Isolates were analyzed by microsatellite typing, ITS sequencing, amplified fragment length polymorphism (AFLP) fingerprint analysis, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and Fourier-transform infrared (FTIR) spectroscopy methods. Microsatellite typing grouped the isolates into four main clusters, corresponding to the four known clades in concordance with whole genome sequencing studies. The other investigated typing tools showed poor performance compared with microsatellite typing. A comparison between the five methods showed the highest agreement between microsatellite typing and ITS sequencing with 45% similarity, followed by microsatellite typing and the FTIR method with 33% similarity. The lowest agreement was observed between FTIR spectroscopy, MALDI-TOF MS, and ITS sequencing. This study indicates that microsatellite typing is the tool of choice for C. auris outbreak investigations. Additionally, FTIR spectroscopy requires further optimization and evaluation before it can be used as an epidemiological typing method, comparable with microsatellite typing, as a rapid method for tracing nosocomial fungal outbreaks.
Collapse
Affiliation(s)
- Mansoureh Vatanshenassan
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Norman Mauder
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
| | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- BioAware, B-4280 Hannut, Belgium
| | - Thomas Maier
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands;
- Center of Expertise in Mycology Radboudumc, Canisius Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, 80060-000 Curitiba, Brazil
| | - Judith Berman
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, 6997801 Tel Aviv, Israel;
| | - Euníce Then
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
| | - Markus Kostrzewa
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
- Correspondence: (M.K.); (F.H.); Tel.: +49-421-2205-1258 (M.K.); +31-30-2122-600 (F.H.)
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Correspondence: (M.K.); (F.H.); Tel.: +49-421-2205-1258 (M.K.); +31-30-2122-600 (F.H.)
| |
Collapse
|
38
|
Anti-staphylococcal activity of quaternized mannan from the yeast Candida albicans. Carbohydr Polym 2020; 240:116288. [PMID: 32475569 DOI: 10.1016/j.carbpol.2020.116288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
Global increase of antibiotic-resistant pathogens as well as elevated content of drug residues in the foodstuffs and the environment urgently calls for new biocompatible antimicrobial biomaterials. Yeast mannans represent readily available source of biodegradable materials for tailor-made derivatives that could be effective in biomedical applications. Here, antimicrobial properties of quaternized mannans (DSQ 0.12, 0.24, 0.30, 0.62) from Candida albicans against clinical multi-resistant strains of Staphylococcus aureus are confronted with possible cytotoxicity against human cells. As expected, both effects increase with increasing degree of quaternization. However, it is possible to define the "window", at quaternized mannan with DSQ 0.30 with good anti-microbial effectiveness and low cytotoxicity. This derivative exhibit minimum inhibitory (MIC) and minimum bactericidal (MBC) concentration from 62.5 to 250 μg/mL and demonstrate good biofilm inhibition effect. Also acceptable values were obtained in hemagglutination and hemolytic activity assays and also in cytotoxicity tests on human fibroblasts.
Collapse
|
39
|
Rubio FTV, Haminiuk CWI, Martelli-Tosi M, da Silva MP, Makimori GYF, Favaro-Trindade CS. Utilization of grape pomaces and brewery waste Saccharomyces cerevisiae for the production of bio-based microencapsulated pigments. Food Res Int 2020; 136:109470. [PMID: 32846555 DOI: 10.1016/j.foodres.2020.109470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022]
Abstract
This research approaches the utilization of brewery waste yeast Saccharomyces cerevisiae as a vehicle for the encapsulation and protection of phenolic compounds from Cabernet Sauvignon and Bordeaux grape pomace extracts. The main purpose of this research was to enrich the biomass of yeast to investigate its potential as a novel vehicle for further application as pigment or functional ingredient. The obtained powders presented characteristics appropriated for storage, such as low water activity (<0.289), hygroscopicity (<13.71 g/100 g) and moisture (<7.10%) and particle sizes lower than the sensory perceptible (<11.45 µm). This work proved that yeasts were loaded after spray-drying, thus, they might be considered as biocapsules. Furthermore, the bioaccessibility of encapsulated phenolic compounds from Bordeaux and Cabernet Sauvignon extracts was 34.96% and 14.25% higher compared to their respective free extracts, proving that yeasts are not only biocapsules of easy application, but also a biological material capable of protecting and delivering the compounds during gastrointestinal digestion.
Collapse
Affiliation(s)
- Fernanda Thaís Vieira Rubio
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | - Charles Windson Isidoro Haminiuk
- Universidade Tecnológica Federal do Paraná, Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Sede Ecoville, Curitiba, PR, Brazil
| | - Milena Martelli-Tosi
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | - Marluci Palazzolli da Silva
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil
| | | | - Carmen Sílvia Favaro-Trindade
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Departamento de Engenharia de Alimentos, Pirassununga, SP, Brazil.
| |
Collapse
|
40
|
Li W, Wang H, Xu XG, Yu Y. Simultaneous Nanoscale Imaging of Chemical and Architectural Heterogeneity on Yeast Cell Wall Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6169-6177. [PMID: 32419466 PMCID: PMC7882198 DOI: 10.1021/acs.langmuir.0c00627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Particles extracted from yeast cell walls are naturally occurring immunomodulators with significant therapeutic applications. Their biological function has been thought to be a consequence of the overall chemical composition. In contrast, here we achieve direct nanoscale visualization of the compositional and structural heterogeneity of yeast cell wall particles and demonstrate that such nanoscale heterogeneity directly influences the receptor function of immune cells. By combining peak force infrared (PFIR) microscopy with super-resolution fluorescence microscopy, we achieve simultaneous chemical, topographical, and mechanical mapping of cell wall particles extracted from the yeast Saccharomyces cerevisiae with ≈6 nm resolution. We show that polysaccharides (β-glucan and chitin) and proteins are organized in specific nonuniform structures, and their heterogeneous spatial organization leads to heterogeneous recruitment of receptors on immune cell membranes. Our findings indicate that the biological function of yeast cell wall particles depends on not only their overall composition but also the nanoscale distribution of the different cell wall components.
Collapse
Affiliation(s)
- Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
41
|
Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food Chem 2020; 313:126129. [DOI: 10.1016/j.foodchem.2019.126129] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 02/08/2023]
|
42
|
Beratto-Ramos A, Agurto-Muñoz C, Pablo Vargas-Montalba J, Castillo RDP. Fourier-transform infrared imaging and multivariate analysis for direct identification of principal polysaccharides in brown seaweeds. Carbohydr Polym 2020; 230:115561. [PMID: 31887876 DOI: 10.1016/j.carbpol.2019.115561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/06/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023]
Abstract
The current hydrocolloid industry requires new techniques for biomass characterization, which can quickly and ecologically characterize contained sugars. This work proposes the use of Fourier Transform Infrared microspectroscopy in combination with multivariate methods, to localize and identify the main carbohydrates and other components present in fresh brown seaweeds, avoiding time-consuming samples pre-treatments. Infrared images of Macrocystis pyrifera samples were analyzed by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis (PCA) as chemometrics techniques to identify the compounds. MCR-ALS was the best strategy, delivering pure spectra of chemical compound that PCA did not. The carbohydrates identified by this method were 1-3-β-glucans divided into endofibers and laminarin; two types of fucoidans (rich in fucose or mannuronic acid), alginate and mannitol, besides other compounds such as proteins. This technique represents an opportunity for the hydrocolloid industry for a modern, rapid and environmentally-friendly characterization of macroalgal biomass to enhance its use.
Collapse
Affiliation(s)
- Angelo Beratto-Ramos
- GIBMAR, Grupo Interdisciplinario de Biotecnología Marina, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Chile.
| | - Cristian Agurto-Muñoz
- GIBMAR, Grupo Interdisciplinario de Biotecnología Marina, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile; Departamento de Ciencias y Tecnología de los Alimentos, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
| | - Juan Pablo Vargas-Montalba
- GIBMAR, Grupo Interdisciplinario de Biotecnología Marina, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Rosario Del P Castillo
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Laboratorio de Recursos Renovables, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
43
|
The condensed tannins of Okoume (Aucoumea klaineana Pierre): A molecular structure and thermal stability study. Sci Rep 2020; 10:1773. [PMID: 32019952 PMCID: PMC7000823 DOI: 10.1038/s41598-020-58431-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
In order to promote convenient strategies for the valorization of Aucoumea klaineana Pierre (Okoume) plywood and sawmill wastes industry in the fields of adhesives and composites, the total phenolic content of Okoume bark, sapwood and heartwood was measured. The molecular structure of tannins extracted from the bark was determined by Matrix Assisted Laser Desorption/Ionization Time-Of-Flight (Maldi-ToF) mass spectrometry and Fourier transform infrared spectroscopy (FTIR). The total phenolic content displayed significant difference (p = 0.001) between the bark, sapwood and heartwood which decreased as follows: 6 ± 0.4, 2 ± 0.8 and 0.7 ± 0.1% respectively. The pro-anthocyanidins content was also significantly different (p = 0.01) among the three wood wastes, and the bark was the richest in condensed tannins (4.2 ± 0.4%) compared to the sapwood (0.5 ± 0.1%) and heartwood (0.2 ± 0.2%). Liquid chromatography coupled mass spectroscopy (LC-MS) and Maldi-ToF analysis of the bark showed for the first time that Okoume condensed tannins are fisetinidin, gallocatechin and trihydroxyflavan based monomers and complex polymers obtained with glycosylated units. No free catechin or robitinidin units were detected, whereas distinctive dihydroxy or trihydroxyflavan-3-benzoate dimers were observed in the investigated condensed tannin extracts. FTIR analysis showed the occurrence of glucan- and mannan-like sugars in the condensed tannins, and Maldi-ToF highlighted that these sugars should account for ten glycosylated units chemically bonded with two fisetinidins and one gallocatechin trimer. The condensation of these polyphenols with formaldehyde led to Stiasny numbers of 83.3, 73.3 and 53.3% for the bark, sapwood and heartwood, respectively.
Collapse
|
44
|
Antifungal effects of a 1,3,4-thiadiazole derivative determined by cytochemical and vibrational spectroscopic studies. PLoS One 2019; 14:e0222775. [PMID: 31568502 PMCID: PMC6768478 DOI: 10.1371/journal.pone.0222775] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
Compounds belonging to the group of 5-substituted 4-(1,3,4-thiadiazol-2-yl) benzene-1,3-diols exhibit a broad spectrum of biological activity, including antibacterial, antifungal, and anticancer properties. The mechanism of the antifungal activity of compounds from this group has not been described to date. Among the large group of 5-substituted 4-(1,3,4-thiadiazol-2-yl) benzene-1,3-diol derivatives, the compound 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol, abbreviated as C1, was revealed to be one of the most active agents against pathogenic fungi, simultaneously with the lowest toxicity to human cells. The C1 compound is a potent antifungal agent against different Candida species, including isolates resistant to azoles, and molds, with MIC100 values ranging from 8 to 96 μg/ml. The antifungal activity of the C1 compound involves disruption of the cell wall biogenesis, as evidenced by the inability of cells treated with C1 to maintain their characteristic cell shape, increase in size, form giant cells and flocculate. C1-treated cells were also unable to withstand internal turgor pressure causing protoplast material to leak out, exhibited reduced osmotic resistance and formed buds that were not covered with chitin. Disturbances in the chitin septum in the neck region of budding cells was observed, as well as an uneven distribution of chitin and β(1→3) glucan, and increased sensitivity to substances interacting with wall polymerization. The ATR-FTIR spectral shifts in cell walls extracted from C. albicans cells treated with the C1 compound suggested weakened interactions between the molecules of β(1→3) glucans and β(1→6) glucans, which may be the cause of impaired cell wall integrity. Significant spectral changes in the C1-treated cells were also observed in bands characteristic for chitin. The C1 compound did not affect the ergosterol content in Candida cells. Given the low cytotoxicity of the C1 compound to normal human dermal fibroblasts (NHDF), it is possible to use this compound as a therapeutic agent in the treatment of surface and gastrointestinal tract mycoses.
Collapse
|
45
|
Determination of Nutrient Supplementation by Means of ATR-FTIR Spectroscopy during Wine Fermentation. FERMENTATION 2019. [DOI: 10.3390/fermentation5030058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nitrogen is a limiting factor for the development of wine alcoholic fermentation. The addition of nutrients and different nitrogen sources is a usual practice for many winemakers. Currently, there is a market trend toward wine that is additive-free and there are also restrictions on the amount of ammonium fermentation agents that can be added to the wine. In this work, the changes produced on the alcoholic fermentation by the addition of different nitrogen sources were evaluated by the use of ATR-FTIR. The results showed the feasibility of this technique to observe differences in the growth yeast capacity depending on the type of the nutrients added. A high influence on the development of the alcoholic fermentation was observed, especially at its exponential and the stationary phases. Moreover, the changes observed in the recorded spectra were related to the proteins and lipid esters composition of the yeast cell wall. This technique should be a useful tool to evaluate nitrogen deficiencies during winemaking although further studies should be done in order to evaluate more influential factors.
Collapse
|
46
|
Potocki L, Depciuch J, Kuna E, Worek M, Lewinska A, Wnuk M. FTIR and Raman Spectroscopy-Based Biochemical Profiling Reflects Genomic Diversity of Clinical Candida Isolates That May Be Useful for Diagnosis and Targeted Therapy of Candidiasis. Int J Mol Sci 2019; 20:ijms20040988. [PMID: 30823514 PMCID: PMC6412866 DOI: 10.3390/ijms20040988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Despite the fact that Candida albicans is documented to be the main cause of human candidiasis, non-C. albicans Candida (NCAC) species, such as Candida glabrata and Candida tropicalis, are also suggested to be implicated in the etiopathogenesis of opportunistic fungal infections. As biology, epidemiology, pathogenicity, and antifungal resistance of NCAC species may be affected as a result of genomic diversity and plasticity, rapid and unambiguous identification of Candida species in clinical samples is essential for proper diagnosis and therapy. In the present study, 25 clinical isolates of C. albicans, C. glabrata, and C. tropicalis species were characterized in terms of their karyotype patterns, DNA content, and biochemical features. Fourier transform infrared (FTIR) spectra- and Raman spectra-based molecular fingerprints corresponded to the diversity of chromosomal traits and DNA levels that provided correct species identification. Moreover, Raman spectroscopy was documented to be useful for the evaluation of ergosterol content that may be associated with azole resistance. Taken together, we found that vibrational spectroscopy-based biochemical profiling reflects the variability of chromosome patterns and DNA content of clinical Candida species isolates and may facilitate the diagnosis and targeted therapy of candidiasis.
Collapse
Affiliation(s)
- Leszek Potocki
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland.
| | - Ewelina Kuna
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Mariusz Worek
- Department of Microbiology, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Anna Lewinska
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| |
Collapse
|
47
|
Shi QY, Câmara CRS, Schlegel V. Biochemical alterations of Candida albicans during the phenotypic transition from yeast to hyphae captured by Fourier transform mid-infrared-attenuated reflectance spectroscopy. Analyst 2019; 143:5404-5416. [PMID: 30302456 DOI: 10.1039/c8an01452c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Candida albicans is an opportunistic human pathogen that can become virulent due to its ability to switch from a benign yeast to virulent hyphae phenotype. The emergence of C. albicans resistant to commonly used antifungal agents has necessitated the development of innovative treatments, which must be accompanied by an understanding of the molecular changes that occur during the phenotypic shift. For this purpose, Fourier transform mid-infrared spectroscopy in attenuated total reflectance mode (FT-mIR-ATR) was applied to monitor the structural and compositional changes in C. albicans during the yeast-to-hyphae transition. FT-mIR-ATR measurements were completed on the whole cell of C. albicans (SC5314) during hyphal formation induced by N-acetylglucosamine at 0, 1, 2, 3, 6 and 24 h. Principal component analysis separated the FT-mIR-ATR spectra into four groups that were aligned with the morphological changes captured by microscopic imaging. Spectral signatures indicating the structural and compositional modifications during the transition were identified mainly in the fatty acid region (3100-2800 cm-1), the protein and peptide region (1800-1500 cm-1), the mixed region (1500-1200 cm-1) and the polysaccharide region (1200-900 cm-1). A spectral fingerprint of the transition via a heat map was generated based on the peak shift in position. Quantitative evaluation of the spectra by curve fitting further revealed the dynamics of the cell's main components during the transition. This work provides valuable structural and functional information on the C. albicans phenotypic transition to hyphae, which has diagnostic implications.
Collapse
Affiliation(s)
- Qin-Yin Shi
- Department of Food Science and Technology, 1901 N 21st St, Food Innovation Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-6205, USA.
| | | | | |
Collapse
|
48
|
Delgado JF, Peltzer MA, Salvay AG, de la Osa O, Wagner JR. Characterization of thermal, mechanical and hydration properties of novel films based on Saccharomyces cerevisiae biomass. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Sermwittayawong D, Patninan K, Phothiphiphit S, Boonyarattanakalin S, Sermwittayawong N, Hutadilok-Towatana N. Purification, characterization, and biological activities of purified polysaccharides extracted from the gray oyster mushroom [Pleurotus sajor-caju
(Fr.) Sing.]. J Food Biochem 2018. [DOI: 10.1111/jfbc.12606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Decha Sermwittayawong
- Faculty of Science, Department of Biochemistry; Prince of Songkla University; Hat Yai Thailand
| | - Kulwanit Patninan
- Faculty of Science, Department of Biochemistry; Prince of Songkla University; Hat Yai Thailand
| | - Somruthai Phothiphiphit
- Schoolof Bio-Chemical Engineering and Technology; Sirindhorn International Institute of Technology, Thammasat University; Pathum Thani Thailand
| | - Siwarutt Boonyarattanakalin
- Schoolof Bio-Chemical Engineering and Technology; Sirindhorn International Institute of Technology, Thammasat University; Pathum Thani Thailand
| | | | - Nongporn Hutadilok-Towatana
- Faculty of Science, Department of Biochemistry; Prince of Songkla University; Hat Yai Thailand
- College of Oriental Medicine; Rangsit University; Pathum Thani Thailand
| |
Collapse
|
50
|
Lopez-Fernandez M, Romero-González M, Günther A, Solari PL, Merroun ML. Effect of U(VI) aqueous speciation on the binding of uranium by the cell surface of Rhodotorula mucilaginosa, a natural yeast isolate from bentonites. CHEMOSPHERE 2018; 199:351-360. [PMID: 29453061 DOI: 10.1016/j.chemosphere.2018.02.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
This study presents the effect of aqueous uranium speciation (U-hydroxides and U-hydroxo-carbonates) on the interaction of this radionuclide with the cells of the yeast Rhodotorula mucigilanosa BII-R8. This strain was isolated from Spanish bentonites considered as reference materials for the engineered barrier components of the future deep geological repository of radioactive waste. X-ray absorption and infrared spectroscopy showed that the aqueous uranium speciation has no effect on the uranium binding process by this yeast strain. The cells bind mobile uranium species (U-hydroxides and U-hydroxo-carbonates) from solution via a time-dependent process initiated by the adsorption of uranium species to carboxyl groups. This leads to the subsequent involvement of organic phosphate groups forming uranium complexes with a local coordination similar to that of the uranyl mineral phase meta-autunite. Scanning transmission electron microscopy with high angle annular dark field analysis showed uranium accumulations at the cell surface associated with phosphorus containing ligands. Moreover, the effect of uranium mobile species on the cell viability and metabolic activity was examined by means of flow cytometry techniques, revealing that the cell metabolism is more affected by higher concentrations of uranium than the cell viability. The results obtained in this work provide new insights on the interaction of uranium with bentonite natural yeast from genus Rhodotorula under deep geological repository relevant conditions.
Collapse
Affiliation(s)
| | | | - Alix Günther
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Pier L Solari
- MARS Beamline, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette Cedex, France
| | | |
Collapse
|