1
|
Du Y, Hu M, Xia Y, Jin K. Unveiling the functions of the Lim-domain binding protein MaPtaB in Metarhizium acridum. PEST MANAGEMENT SCIENCE 2025; 81:839-855. [PMID: 39469952 DOI: 10.1002/ps.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The Lim-domain binding protein PtaB, a homolog of Mfg1, governs conidiation and biofilm formation in several fungi. PtaB includes a conserved Lim-binding domain and two predicted nuclear localization sequences at its C terminus, and is co-regulated with the transcription factor Som1 downstream of the cyclic AMP-dependent protein kinase A (cAMP/PKA) pathway. However, the function of PtaB in entomopathogenic fungi remain poorly understood. RESULTS Inactivation of PtaB in Metarhizium acridum resulted in delayed conidial germination, reduced conidial yield and increased sensitivities to cell wall disruptors, ultraviolet B irradiation and heat shock. In addition, the fungal virulence was significantly decreased after deletion of MaPtaB because of impairments in appressorium formation, cuticle penetration and evasion of insect immune responses in M. acridum. The MaPtaB-deletion and MaSom1-deletion strains showed similar phenotypes supporting that MaSom1/MaPtaB complex controls M. acridum normal conidiation and pathogenic progress. Upon loss of MaPtaB or MaSom1, the fungal sporulation mode in M. acridium shifted from microcycle conidiation to normal conidiation on SYA, a microcycle conidiation medium. Transcriptional analysis showed that more differentially expression genes were identified in MaSom1 RNA sequencing, and MaSom1 and MaPtaB may regulate the expression of genes for conidiation, nutrient metabolism and the cell cycle to control conidiation pattern shift. CONCLUSION These data corroborate a complex control function for MaPtaB as an important central factor interacting with MaSom1 in the cAMP/PKA pathway, which links stress tolerance, conidiation and virulence in the entomopathogenic fungus M. acridum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanru Du
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Meiwen Hu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Mahmood F, Chen JM, Al-Huthaifi AM, Al-Alawi AA, Liu TB. Roles of Different Signaling Pathways in Cryptococcus neoformans Virulence. J Fungi (Basel) 2024; 10:786. [PMID: 39590705 PMCID: PMC11595439 DOI: 10.3390/jof10110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Cryptococcus neoformans is a widespread fungal pathogen that can infect the human central nervous system (CNS) and cause fungal meningitis, leading to hundreds of thousands of deaths worldwide each year. Previous studies have demonstrated that many signal transduction pathways are crucial for the morphological development and virulence of C. neoformans. In this review, data from over 116 research articles have been compiled to show that many signaling pathways control various characteristics of C. neoformans, individually or in association with other pathways, and to establish strong links among them to better understand C. neoformans pathogenesis. Every characteristic of C. neoformans is closely linked to these signaling pathways, making this a rich area for further research. It is essential to thoroughly explore these pathways to address questions that remain and apply a molecular mechanistic approach to link them. Targeting these pathways is crucial for understanding the exact mechanism of infection pathogenesis and will facilitate the development of antifungal drugs as well as the diagnosis and prevention of cryptococcosis.
Collapse
Affiliation(s)
- Fawad Mahmood
- Medical Research Institute, Southwest University, Chongqing 400715, China; (F.M.); (A.M.A.-H.); (A.A.A.-A.)
| | - Jun-Ming Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China;
| | - Ammar Mutahar Al-Huthaifi
- Medical Research Institute, Southwest University, Chongqing 400715, China; (F.M.); (A.M.A.-H.); (A.A.A.-A.)
| | - Abdullah Ali Al-Alawi
- Medical Research Institute, Southwest University, Chongqing 400715, China; (F.M.); (A.M.A.-H.); (A.A.A.-A.)
| | - Tong-Bao Liu
- Medical Research Institute, Southwest University, Chongqing 400715, China; (F.M.); (A.M.A.-H.); (A.A.A.-A.)
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Jakobson CM, Hartl J, Trébulle P, Mülleder M, Jarosz DF, Ralser M. A genome-to-proteome atlas charts natural variants controlling proteome diversity and forecasts their fitness effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619054. [PMID: 39484408 PMCID: PMC11526991 DOI: 10.1101/2024.10.18.619054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite abundant genomic and phenotypic data across individuals and environments, the functional impact of most mutations on phenotype remains unclear. Here, we bridge this gap by linking genome to proteome in 800 meiotic progeny from an intercross between two closely related Saccharomyces cerevisiae isolates adapted to distinct niches. Modest genetic distance between the parents generated remarkable proteomic diversity that was amplified in the progeny and captured by 6,476 genotype-protein associations, over 1,600 of which we resolved to single variants. Proteomic adaptation emerged through the combined action of numerous cis- and trans-regulatory mutations, a regulatory architecture that was conserved across the species. Notably, trans-regulatory variants often arose in proteins not traditionally associated with gene regulation, such as enzymes. Moreover, the proteomic consequences of mutations predicted fitness under various stresses. Our study demonstrates that the collective action of natural genetic variants drives dramatic proteome diversification, with molecular consequences that forecast phenotypic outcomes.
Collapse
Affiliation(s)
- Christopher M. Jakobson
- Depasssrtment of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Johannes Hartl
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pauline Trébulle
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel F. Jarosz
- Depasssrtment of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Markus Ralser
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
4
|
Diao Y, Wang Y, Xiong X, Jin J, Yu C, Wu Y, Zhao C, Liu H. VmSom1 is essential for growth, development, maintenance of cell wall integrity and virulence in Valsa mali. Microb Pathog 2024; 195:106878. [PMID: 39173851 DOI: 10.1016/j.micpath.2024.106878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/28/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Apple Valsa canker disease, caused by Valsa mali Miyabe et Yamada, severely endangers the healthy growth of apple trees. The Som1, located downstream of the cyclic AMP-dependent protein kinase A (cAMP-PKA) pathway, plays crucial roles in the growth, development, morphological differentiation, and virulence of filamentous fungi. In this study, we identify and functionally characterize VmSom1, a homolog of Som1, in Valsa mali. The VmSom1 gene is located on chromosome 12, encoding an 824 amino acid protein. Phylogenetic analysis reveals VmSom1 as a fungal Som1 homolog. The VmSom1 deletion mutants exhibit slower growth rates and fail to produce pycnidia. Additionally, their hyphal growth is significantly inhibited on media containing Calcofluor White, Congo Red, NaCl, and sorbitol. The growth rate of VmSom1 deletion mutants is reduced on maltose, lactose, sucrose and fructose media but increases on glucose medium. Moreover, the mycelial growth rate of the VmSom1 deletion mutant is significantly lower than that of the wild-type strain in peptone, NH4SO4, NaNO3, and no nitrogen. Notably, the distances between the septa increase, and chitin concentration shifts to the hyphal tip in the VmSom1 deletion mutant. Furthermore, compared with the wild-type strain, the VmSom1 deletion mutant exhibits fewer diseased spots on apple fruit and branches. Overall, our findings demonstrate that VmSom1 is involved in regulating the growth and development, colony surface hydrophobicity, osmotic stress, cell wall integrity maintenance, carbon and nitrogen source utilization, septa formation, and virulence of V. mali.
Collapse
Affiliation(s)
- Yufei Diao
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yilin Wang
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiong Xiong
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Forestry College of Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiyang Jin
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Forestry College of Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chengming Yu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yueming Wu
- Development of Plant Pathology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chunqing Zhao
- Development of Plant Pathology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
5
|
Lu T, Wang XM, Chen PX, Xi J, Yang HB, Zheng WF, Zhao YX. Adaptative responses of Neurospora crassa by histidine kinases upon the attack of the arthropod Sinella curviseta. Curr Genet 2024; 70:16. [PMID: 39276284 DOI: 10.1007/s00294-024-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Histidine kinases (HKs) are important sensor proteins in fungi and play an essential role in environmental adaptation. However, the mechanisms by which fungi sense and respond to fungivores attack via HKs are not fully understood. In this study, we utilized Neurospora crassa to investigate the involvement of HKs in responding to fungivores attack. We found that the 11 HKs in N. crassa not only affected the growth and development, but also led to fluctuations in antioxidant production. Ten mutants in the genes encoding HKs (except ∆phy1) showed increased production of reactive oxygen species (ROS), especially upon Sinella curviseta attack. The ROS burst triggered changes in conidia and perithecial beaks formation, as well as accumulation of β-glucan, ergothioneine, ergosterol, and carotenoids. β-glucan was increased in ∆hk9, ∆os1, ∆hcp1, ∆nik2, ∆sln1, ∆phy1 and ∆phy2 mutants compared to the wild-type strain. In parallel, ergothioneine accumulation was improved in ∆phy1 and ∆hk16 mutants and further increased upon attack, except in ∆os1 and ∆hk16 mutants. Additionally, fungivores attack stimulated ergosterol and dehydroergosterol production in ∆hk9 and ∆os1 mutants. Furthermore, deletion of these genes altered carotenoid accumulation, with wild-type strain, ∆hk9, ∆os1, ∆hcp1, ∆sln1, ∆phy2, and ∆dcc1mutants showing an increase in carotenoids upon attack. Taken together, HKs are involved in regulating the production of conidia and antioxidants. Thus, HKs may act as sensors of fungivores attack and effectively improve the adaptive capacity of fungi to environmental stimuli.
Collapse
Affiliation(s)
- Ting Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiao-Meng Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Peng-Xu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Juan Xi
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Han-Bing Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wei-Fa Zheng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Yan-Xia Zhao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
6
|
Sezer G, Çetinkaya Ü. Vinpocetine increases the microsporicidal effect of albendazole on Encephalitozoon intestinalis. Med Mycol 2024; 62:myae072. [PMID: 39043448 DOI: 10.1093/mmy/myae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024] Open
Abstract
Microsporidia are obligate, intracellular, spore-forming eukaryotic fungi that infect humans and animals. In the treatment of disseminated microsporidiosis albendazole is the choice of drug. In recent years, antiparasitic activity of phosphodiesterase (PDE) enzyme inhibitors has been demonstrated against parasites and fungi, however, there is no information on microsporidia. Vinpocetine is currently used as a cerebral vasodilator drug and also as a dietary supplement to improve cognitive functions. Vinpocetine inhibits PDE1, so we aimed to investigate whether vinpocetine alone or in combination with albendazole has any effect on the spore load of Encephalitozoon intestinalis (E. intestinalis)-infected HEK293 cells. After determining the noncytotoxic concentrations of vinpocetine and albendazole on the host cell by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, HEK293 cells were infected with E. intestinalis spores. Then, two different concentrations of vinpocetine, albendazole, and a combination of both drugs were applied to the cells with an interval of 72 h for 15 days. Spore load of the cells was analyzed by real-time PCR. After the last treatment, spore Deoxyribonucleic Acid (DNA) load was significantly reduced only in the group treated with 14 ng/ml albendazole. It was not different from control in groups treated with 7 ng/ml albendazole and 4-20 µM vinpocetine. However, the combination of vinpocetine significantly increased the effect of albendazole at both concentrations. To our knowledge, this is the first study to investigate the microsporicidal activity of vinpocetine as well as its combinations with albendazole. However, further studies are needed to investigate the mechanism of action and also confirm in vivo conditions.
Collapse
Affiliation(s)
- Gülay Sezer
- Department of Pharmacology, Faculty of Medicine, Erciyes University, 38039 Talas/Kayseri, Türkiye
- Genkök Genome and Stem Cell Center, Erciyes University, 38039 Talas/Kayseri, Türkiye
| | - Ülfet Çetinkaya
- Genkök Genome and Stem Cell Center, Erciyes University, 38039 Talas/Kayseri, Türkiye
- Halil Bayraktar Health Vocational High School, Erciyes University, 38039 Talas/Kayseri, Türkiye
| |
Collapse
|
7
|
Komath SS. To each its own: Mechanisms of cross-talk between GPI biosynthesis and cAMP-PKA signaling in Candida albicans versus Saccharomyces cerevisiae. J Biol Chem 2024; 300:107444. [PMID: 38838772 PMCID: PMC11294708 DOI: 10.1016/j.jbc.2024.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can switch between yeast and hyphal morphologies depending on the environmental cues it receives. The switch to hyphal form is crucial for the establishment of invasive infections. The hyphal form is also characterized by the cell surface expression of hyphae-specific proteins, many of which are GPI-anchored and important determinants of its virulence. The coordination between hyphal morphogenesis and the expression of GPI-anchored proteins is made possible by an interesting cross-talk between GPI biosynthesis and the cAMP-PKA signaling cascade in the fungus; a parallel interaction is not found in its human host. On the other hand, in the nonpathogenic yeast, Saccharomyces cerevisiae, GPI biosynthesis is shut down when filamentation is activated and vice versa. This too is achieved by a cross-talk between GPI biosynthesis and cAMP-PKA signaling. How are diametrically opposite effects obtained from the cross-talk between two reasonably well-conserved pathways present ubiquitously across eukarya? This Review attempts to provide a model to explain these differences. In order to do so, it first provides an overview of the two pathways for the interested reader, highlighting the similarities and differences that are observed in C. albicans versus the well-studied S. cerevisiae model, before going on to explain how the different mechanisms of regulation are effected. While commonalities enable the development of generalized theories, it is hoped that a more nuanced approach, that takes into consideration species-specific differences, will enable organism-specific understanding of these processes and contribute to the development of targeted therapies.
Collapse
|
8
|
Fan X, Gao X, Zang H, Liu Z, Jing X, Liu X, Guo S, Jiang H, Wu Y, Huang Z, Chen D, Guo R. Transcriptional dynamics and regulatory function of milRNAs in Ascosphaera apis invading Apis mellifera larvae. Front Microbiol 2024; 15:1355035. [PMID: 38650880 PMCID: PMC11033319 DOI: 10.3389/fmicb.2024.1355035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
In the present study, small RNA (sRNA) data from Ascosphaera apis were filtered from sRNA-seq datasets from the gut tissues of A. apis-infected Apis mellifera ligustica worker larvae, which were combined with the previously gained sRNA-seq data from A. apis spores to screen differentially expressed milRNAs (DEmilRNAs), followed by trend analysis and investigation of the DEmilRNAs in relation to significant trends. Additionally, the interactions between the DEmilRNAs and their target mRNAs were verified using a dual-luciferase reporter assay. In total, 974 A. apis milRNAs were identified. The first base of these milRNAs was biased toward U. The expression of six milRNAs was confirmed by stem-loop RT-PCR, and the sequences of milR-3245-y and milR-10285-y were validated using Sanger sequencing. These miRNAs grouped into four significant trends, with the target mRNAs of DEmilRNAs involving 42 GO terms and 120 KEGG pathways, such as the fungal-type cell wall and biosynthesis of secondary metabolites. Further investigation demonstrated that 299 DEmilRNAs (novel-m0011-3p, milR-10048-y, bantam-y, etc.) potentially targeted nine genes encoding secondary metabolite-associated enzymes, while 258 (milR-25-y, milR-14-y, milR-932-x, etc.) and 419 (milR-4561-y, milR-10125-y, let-7-x, etc.) DEmilRNAs putatively targeted virulence factor-encoded genes and nine genes involved in the MAPK signaling pathway, respectively. Additionally, the interaction between ADM-B and milR-6882-x, as well as between PKIA and milR-7009-x were verified. Together, these results not only offer a basis for clarifying the mechanisms underlying DEmilRNA-regulated pathogenesis of A. apis and a novel insight into the interaction between A. apis and honey bee larvae, but also provide candidate DEmilRNA-gene axis for further investigation.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuze Gao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Jiang
- Jilin Apicultural Research Institute, Jilin, China
| | - Ying Wu
- Jilin Apicultural Research Institute, Jilin, China
| | - Zhijian Huang
- Animal Husbandry Terminus of Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
9
|
Zhou M, Li X, Liu J, Wu Y, Tan Z, Deng N. Adenine's impact on mice's gut and kidney varies with the dosage administered and relates to intestinal microorganisms and enzyme activities. 3 Biotech 2024; 14:88. [PMID: 38406640 PMCID: PMC10884393 DOI: 10.1007/s13205-024-03959-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
This study aimed to investigate the effects of different dosages of adenine on intestinal microorganisms and enzyme activities, laying the experimental groundwork for subsequent exploration of the microbial mechanisms underlying diarrhea with kidney yang deficiency syndrome. Twenty-four mice were assigned to the following four groups: the control (NC) group, low-dosage adenine (NML) group, middle-dosage adenine (NMM) group, and high-dosage adenine (NMH) group. Mice in the NML, NMM, and NMH groups received 25 mg/(kg·d), 50 mg/(kg·d), and 100 mg/(kg·d) of adenine, respectively, 0.4 mL/each, once a day for 14 days. The NC group received 0.4 mL sterile water. Parameters including body weight, rectal temperature, intestinal microorganisms, enzyme activities, and microbial activity were measured. Results indicated that mice in the experimental group displayed signs of a poor mental state, curled up with their backs arched, and felt sleepy and lazy, with sparse fur that was easily shed, and damp bedding. Some mice showed fecal adhesion contamination in the perianal and tail areas. Dosage-dependent effects were observed, with decreased food intake, body weight, rectal temperature, and microbial activity and increased water intake and fecal water content. Enzyme activity analyses revealed significantly higher activities of protease, sucrase, amylase, and cellulase in intestinal contents and lactase, sucrase, amylase, and cellulase in the mucosa of the NMM group compared to those of other groups. Ultimately, the higher adenine dosage was associated with more pronounced symptoms of kidney yang deficiency syndrome, with 50 mg/kg adenine exhibiting the most substantial impact on the number of intestinal microbial colonies and enzyme activities.
Collapse
Affiliation(s)
- Mengsi Zhou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650000 China
| | - Jin Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208 China
| |
Collapse
|
10
|
Child HT, Deeks MJ, Rudd JJ, Bates S. Comparison of the impact of two key fungal signalling pathways on Zymoseptoria tritici infection reveals divergent contribution to invasive growth through distinct regulation of infection-associated genes. MOLECULAR PLANT PATHOLOGY 2023; 24:1220-1237. [PMID: 37306534 PMCID: PMC10502814 DOI: 10.1111/mpp.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
The lifecycle of Zymoseptoria tritici requires a carefully regulated asymptomatic phase within the wheat leaf following penetration of the mesophyll via stomata. Here we compare the roles in this process of two key fungal signalling pathways, mutants of which were identified through forward genetics due to their avirulence on wheat. Whole-genome resequencing of avirulent Z. tritici T-DNA transformants identified disruptive mutations in ZtBCK1 from the kinase cascade of the cell wall integrity (CWI) pathway, and the adenylate cyclase gene ZtCYR1. Targeted deletion of these genes abolished the pathogenicity of the fungus and led to similar in vitro phenotypes to those associated with disruption of putative downstream kinases, both supporting previous studies and confirming the importance of these pathways in virulence. RNA sequencing was used to investigate the effect of ZtBCK1 and ZtCYR1 deletion on gene expression in both the pathogen and host during infection. ZtBCK1 was found to be required for the adaptation to the host environment, controlling expression of infection-associated secreted proteins, including known virulence factors. Meanwhile, ZtCYR1 is implicated in controlling the switch to necrotrophy, regulating expression of effectors associated with this transition. This represents the first study to compare the influence of CWI and cAMP signalling on in planta transcription of a fungal plant pathogen, providing insights into their differential regulation of candidate effectors during invasive growth.
Collapse
Affiliation(s)
| | | | - Jason J. Rudd
- Department of Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
| | - Steven Bates
- Department of BiosciencesUniversity of ExeterExeterUK
| |
Collapse
|
11
|
Wong A, Chi W, Yu J, Bi C, Tian X, Yang Y, Gehring C. Plant adenylate cyclases have come full circle. NATURE PLANTS 2023; 9:1389-1397. [PMID: 37709954 DOI: 10.1038/s41477-023-01486-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/07/2023] [Indexed: 09/16/2023]
Abstract
In bacteria, fungi and animals, 3'-5'-cyclic adenosine monophosphate (cAMP) and adenylate cyclases (ACs), enzymes that catalyse the formation of 3',5'-cAMP from ATP, are recognized as key signalling components. In contrast, the presence of cAMP and its biological roles in higher plants have long been a matter of controversy due to the generally lower amounts in plant tissues compared with that in animal and bacterial cells, and a lack of clarity on the molecular nature of the generating and degrading enzymes, as well as downstream effectors. While treatment with 3',5'-cAMP elicited many plant responses, ACs were, however, somewhat elusive. This changed when systematic searches with amino acid motifs deduced from the conserved catalytic centres of annotated ACs from animals and bacteria identified candidate proteins in higher plants that were subsequently shown to have AC activities in vitro and in vivo. The identification of active ACs moonlighting within complex multifunctional proteins is consistent with their roles as molecular tuners and regulators of cellular and physiological functions. Furthermore, the increasing number of ACs identified as part of proteins with different domain architectures suggests that there are many more hidden ACs in plant proteomes and they may affect a multitude of mechanisms and processes at the molecular and systems levels.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China.
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.
| | - Wei Chi
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Jia Yu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Chuyun Bi
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Xuechen Tian
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Yixin Yang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| |
Collapse
|
12
|
Schalamun M, Molin EM, Schmoll M. RGS4 impacts carbohydrate and siderophore metabolism in Trichoderma reesei. BMC Genomics 2023; 24:372. [PMID: 37400774 PMCID: PMC10316542 DOI: 10.1186/s12864-023-09467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Adaptation to complex, rapidly changing environments is crucial for evolutionary success of fungi. The heterotrimeric G-protein pathway belongs to the most important signaling cascades applied for this task. In Trichoderma reesei, enzyme production, growth and secondary metabolism are among the physiological traits influenced by the G-protein pathway in a light dependent manner. RESULTS Here, we investigated the function of the SNX/H-type regulator of G-protein signaling (RGS) protein RGS4 of T. reesei. We show that RGS4 is involved in regulation of cellulase production, growth, asexual development and oxidative stress response in darkness as well as in osmotic stress response in the presence of sodium chloride, particularly in light. Transcriptome analysis revealed regulation of several ribosomal genes, six genes mutated in RutC30 as well as several genes encoding transcription factors and transporters. Importantly, RGS4 positively regulates the siderophore cluster responsible for fusarinine C biosynthesis in light. The respective deletion mutant shows altered growth on nutrient sources related to siderophore production such as ornithine or proline in a BIOLOG phenotype microarray assay. Additionally, growth on storage carbohydrates as well as several intermediates of the D-galactose and D-arabinose catabolic pathway is decreased, predominantly in light. CONCLUSIONS We conclude that RGS4 mainly operates in light and targets plant cell wall degradation, siderophore production and storage compound metabolism in T. reesei.
Collapse
Affiliation(s)
- Miriam Schalamun
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
| | - Eva Maria Molin
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Center for Health & Bioresources, Konrad Lorenz Strasse 24, Tulln, 3430 Austria
- Division of Terrestrial Ecosystem Research, Centre of Microbiology and Ecosystem Science, University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
| |
Collapse
|
13
|
Eisermann I, Garduño‐Rosales M, Talbot NJ. The emerging role of septins in fungal pathogenesis. Cytoskeleton (Hoboken) 2023; 80:242-253. [PMID: 37265147 PMCID: PMC10952683 DOI: 10.1002/cm.21765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Fungal pathogens undergo specific morphogenetic transitions in order to breach the outer surfaces of plants and invade the underlying host tissue. The ability to change cell shape and switch between non-polarised and polarised growth habits is therefore critical to the lifestyle of plant pathogens. Infection-related development involves remodelling of the cytoskeleton, plasma membrane and cell wall at specific points during fungal pathogenesis. Septin GTPases are components of the cytoskeleton that play pivotal roles in actin remodelling, micron-scale plasma membrane curvature sensing and cell polarity. Septin assemblages, such as rings, collars and gauzes, are known to have important roles in cell shape changes and are implicated in formation of specialised infection structures to enter plant cells. Here, we review and compare the reported functions of septins of plant pathogenic fungi, with a special focus on invasive growth. Finally, we discuss septins as potential targets for broad-spectrum antifungal plant protection strategies.
Collapse
Affiliation(s)
- Iris Eisermann
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
14
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
15
|
Transcriptome Analysis Reveals the Function of a G-Protein α Subunit Gene in the Growth and Development of Pleurotus eryngii. J Fungi (Basel) 2023; 9:jof9010069. [PMID: 36675890 PMCID: PMC9866537 DOI: 10.3390/jof9010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Pleurotus eryngii is a commercially important edible fungus with high nutritional and economic value. However, few functional studies have examined key genes affecting the growth and development of P. eryngii. In this study, transformed strains, including over-expression (PeGNAI-OE) and RNA interference (PeGNAI-RNAi) lines, were constructed to elucidate the role of GNAI in P. eryngii growth. GNAI expression was found to affect the mycelial growth and the number of clamp connections. Moreover, the transformed strains were shown to have higher endogenous cAMP levels, thus affecting amylase and laccase activity. Fruiting experiments showed that GNAI expression revealed the formation of P. eryngii primordia and the number of buttons, while transcription analysis identified GNAI gene involvement in the growth and development of P. eryngii. Seven downstream genes regulated by GNAI were differentially expressed in PeGNAI-OE and PeGNAI-RNAi compared to wild type (WT). These genes may be related to mycelial growth and enzyme activity. They were involved in the MAPK signaling pathway, inositol phosphate metabolism, ascorbate, aldarate metabolism, and starch and sucrose metabolism. In summary, GNAI performs different physiological functions in regulating the growth and development of P. eryngii. Importantly, the molecular mechanisms of GNAI regulatory function are relatively complex and need further study.
Collapse
|
16
|
Zhu MC, Zhao N, Liu YK, Li XM, Zhen ZY, Zheng YQ, Zhang KQ, Yang JK. The cAMP-PKA signalling pathway regulates hyphal growth, conidiation, trap morphogenesis, stress tolerance, and autophagy in Arthrobotrys oligospora. Environ Microbiol 2022; 24:6524-6538. [PMID: 36260054 DOI: 10.1111/1462-2920.16253] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023]
Abstract
The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signalling pathway is evolutionarily conserved in eukaryotes and plays a crucial role in defending against external environmental challenges, which can modulate the cellular response to external stimuli. Arthrobotrys oligospora is a typical nematode-trapping fungus that specializes in adhesive networks to kill nematodes. To elucidate the biological roles of the cAMP-PKA signalling pathway, we characterized the orthologous adenylate cyclase AoAcy, a regulatory subunit (AoPkaR), and two catalytic subunits (AoPkaC1 and AoPkaC2) of PKA in A. oligospora by gene disruption, transcriptome, and metabolome analyses. Deletion of Aoacy significantly reduced the levels of cAMP and arthrobotrisins. Results revealed that Aoacy, AopkaR, and AopkaC1 were involved in hyphal growth, trap morphogenesis, sporulation, stress resistance, and autophagy. In addition, Aoacy and AopkaC1 were involved in the regulation of mitochondrial morphology, thereby affecting energy metabolism, whereas AopkaC2 affected sporulation, nuclei, and autophagy. Multi-omics results showed that the cAMP-PKA signalling pathway regulated multiple metabolic and cellular processes. Collectively, these data highlight the indispensable role of cAMP-PKA signalling pathway in the growth, development, and pathogenicity of A. oligospora, and provide insights into the regulatory mechanisms of signalling pathways in sporulation, trap formation, and lifestyle transition.
Collapse
Affiliation(s)
- Mei-Chen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Na Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Yan-Kun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Xue-Mei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Zheng-Yi Zhen
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Ya-Qing Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Jin-Kui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
17
|
Liu Y, Shen S, Hao Z, Wang Q, Zhang Y, Zhao Y, Tong Y, Zeng F, Dong J. Protein kinase A participates in hyphal and appressorial development by targeting Efg1-mediated transcription of a Rab GTPase in Setosphaeria turcica. MOLECULAR PLANT PATHOLOGY 2022; 23:1608-1619. [PMID: 35929228 PMCID: PMC9562828 DOI: 10.1111/mpp.13253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The cyclic adenosine monophosphate (cAMP) signalling pathway plays an important role in the regulation of the development and pathogenicity of filamentous fungi. cAMP-dependent protein kinase A (PKA) is the conserved element downstream of cAMP, and its diverse mechanisms in multiple filamentous fungi are not well known yet. In the present study, gene knockout mutants of two catalytic subunits of PKA (PKA-C) in Setosphaeria turcica were created to illustrate the regulatory mechanisms of PKA-Cs on the development and pathogenicity of S. turcica. As a result, StPkaC2 was proved to be the main contributor of PKA activity in S. turcica. In addition, it was found that both StPkaC1 and StPkaC2 were necessary for conidiation and invasive growth, while only StPkaC2 played a negative role in the regulation of filamentous growth. We reveal that only StPkaC2 could interact with the transcription factor StEfg1, and it inhibited the transcription of StRAB1, a Rab GTPase homologue coding gene in S. turcica, whereas StPkaC1 could specifically interact with a transcriptional regulator StFlo8, which could rescue the transcriptional inhibition of StEfg1 on StRAB1. We also demonstrated that StRAB1 could positively influence the biosynthesis of chitin in hyphae, thus changing the filamentous growth. Our findings clarify that StPkaC2 participates in chitin biosynthesis to modulate mycelium development by targeting the Efg1-mediated transcription of StRAB1, while StFlo8, interacting with StPkaC1, acts as a negative regulator during this process.
Collapse
Affiliation(s)
- Yuwei Liu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Shen Shen
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Qing Wang
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Yumei Zhang
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Yulan Zhao
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Yameng Tong
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| |
Collapse
|
18
|
Valdez AF, Miranda DZ, Guimarães AJ, Nimrichter L, Nosanchuk JD. Pathogenicity & Virulence of Histoplasma capsulatum - a multifaceted organism adapted to intracellular environments. Virulence 2022; 13:1900-1919. [PMID: 36266777 DOI: 10.1080/21505594.2022.2137987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Histoplasmosis is a systemic mycosis caused by the thermally dimorphic fungus Histoplasma capsulatum. Although healthy individuals can develop histoplasmosis, the disease is particularly life-threatening in immunocompromised patients, with a wide range of clinical manifestations depending on the inoculum and virulence of the infecting strain. In this review, we discuss the established virulence factors and pathogenesis traits that make H. capsulatum highly adapted to a wide variety of hosts, including mammals. Understanding and integrating these mechanisms is a key step towards devising new preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro F Valdez
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Daniel Zamith Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Allan Jefferson Guimarães
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia - MIP, Niterói, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
19
|
Hou X, Rong C, Zhang Q, Song S, Cong Y, Zhang HT. Cyclic Nucleotide Phosphodiesterases in Alcohol Use Disorders: Involving Gut Microbiota. Int J Neuropsychopharmacol 2022; 26:70-79. [PMID: 36087271 PMCID: PMC9850663 DOI: 10.1093/ijnp/pyac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 01/22/2023] Open
Abstract
Alcohol abuse is 1 of the most significant public health problems in the world. Chronic, excessive alcohol consumption not only causes alcohol use disorder (AUD) but also changes the gut and lung microbiota, including bacterial and nonbacterial types. Both types of microbiota can release toxins, further damaging the gastrointestinal and respiratory tracts; causing inflammation; and impairing the functions of the liver, lung, and brain, which in turn deteriorate AUD. Phosphodiesterases (PDEs) are critical in the control of intracellular cyclic nucleotides, including cyclic adenosine monophosphate and cyclic guanosine monophosphate. Inhibition of certain host PDEs reduces alcohol consumption and attenuates alcohol-related impairment. These PDEs are also expressed in the microbiota and may play a role in controlling microbiota-associated inflammation. Here, we summarize the influences of alcohol on gut/lung bacterial and nonbacterial microbiota as well as on the gut-liver/brain/lung axis. We then discuss the relationship between gut and lung microbiota-mediated PDE signaling and AUD consequences in addition to highlighting PDEs as potential targets for treatment of AUD.
Collapse
Affiliation(s)
- Xueqin Hou
- Correspondence: Xueqin Hou, PhD, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China ()
| | | | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Shuangshuang Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Yifan Cong
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Han-Ting Zhang
- Han-Ting Zhang, MD, PhD, Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong 266073, P.R. China ()
| |
Collapse
|
20
|
Yang Y, Xie B, Jing Z, Lu Y, Ye J, Chen Y, Liu F, Li S, Xie B, Tao Y. Flammulina filiformis Pkac Gene Complementing in Neurospora crassa Mutant Reveals Its Function in Mycelial Growth and Abiotic Stress Response. Life (Basel) 2022; 12:life12091336. [PMID: 36143373 PMCID: PMC9502917 DOI: 10.3390/life12091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Flammulina filiformis is a popular edible mushroom that easily suffers from heat and oxidative stresses. The cyclic adenylate-dependent protein kinase A (cAMP/PKA) pathway is the main signaling pathway in response to environmental stress, and the PKAC is the terminal catalytic subunit of this pathway. In this study, the Pkac gene was identified in F. filiformis, which was highly conserved in basidiomycetes and ascomycetes. The transcription analysis showed that the Pkac gene was involved in the mycelial growth and the fruiting body development of fungi. In Neurospora crassa, the Pkac gene deletion (ΔPkac) resulted in the slower growth of the mycelia. We complemented the F. filiformis FfPkac to N. crassa ΔPkac mutant to obtain the CPkac strain. The mycelial growth in the CPkac strain was restored to the same level as the WT strain. In addition, the FfPkac gene showed significantly up-regulated expression under heat and oxidative stresses. By analyzing the differentially expressed genes of ΔPkac and Cpkac with WT, respectively, seven downstream genes regulated by Pkac were identified and may be related to mycelial growth. They were mainly focused on microbial metabolism in diverse environments, mitochondrial biogenesis, protein translation and nucleocytoplasmic transport. RT-qPCR results confirmed that the expression patterns of these seven genes were consistent with FfPkac under heat and oxidative stresses. The results revealed the conserved functions of PKAC in filamentous fungi and its regulatory mechanism in response to heat and oxidative stresses.
Collapse
Affiliation(s)
- Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanping Lu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yizhao Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fang Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (B.X.); (Y.T.); Tel.: +86-0591-83789281 (Y.T.)
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (B.X.); (Y.T.); Tel.: +86-0591-83789281 (Y.T.)
| |
Collapse
|
21
|
Toward modular construction of cell-free multienzyme systems. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Ma N, Jiang KX, Bai N, Li DN, Zhang KQ, Yang JK. Functional Analysis of Two Affinity cAMP Phosphodiesterases in the Nematode-Trapping Fungus Arthrobotrys oligospora. Pathogens 2022; 11:pathogens11040405. [PMID: 35456080 PMCID: PMC9026129 DOI: 10.3390/pathogens11040405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphodiesterases are essential regulators of cyclic nucleotide signaling with diverse physiological functions. Two phosphodiesterases, PdeH and PdeL, have been identified from yeast and filamentous fungi. Here, the orthologs of PdeH and PdeL were characterized in a typical nematode-trapping fungus Arthrobotrys oligospora by gene disruption and phenotypic comparison. Deletion of AopdeH caused serious defects in mycelial growth, conidiation, stress response, trap formation, and nematicidal efficiency compared to the wild-type strain. In contrast, these phenotypes have no significant difference in the absence of AopdeL. In addition, deletion of AopdeH and AopdeL resulted in a remarkable increase in cAMP level during vegetative growth and trap formation, and the number of autophagosomes was decreased in ΔAopdeH and ΔAopdeL mutants, whereas their volumes considerably increased. Moreover, metabolomic analyses revealed that many metabolites were downregulated in ΔAopdeH mutant compared to their expression in the wild-type strain. Our results indicate that AoPdeH plays a crucial role in mycelial growth, conidiation, stress response, secondary metabolism, and trap formation. In contrast, AoPdeL only plays a minor role in hyphal and conidial morphology, autophagy, and trap formation in A. oligospora. This work expands the roles of phosphodiesterases and deepens the understanding of the regulation of trap formation in nematode-trapping fungi.
Collapse
Affiliation(s)
- Ni Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (N.M.); (K.-X.J.); (N.B.); (D.-N.L.); (K.-Q.Z.)
- Yunnan Center for Disease Control and Prevention, Kunming 650022, China
| | - Ke-Xin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (N.M.); (K.-X.J.); (N.B.); (D.-N.L.); (K.-Q.Z.)
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (N.M.); (K.-X.J.); (N.B.); (D.-N.L.); (K.-Q.Z.)
| | - Dong-Ni Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (N.M.); (K.-X.J.); (N.B.); (D.-N.L.); (K.-Q.Z.)
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (N.M.); (K.-X.J.); (N.B.); (D.-N.L.); (K.-Q.Z.)
| | - Jin-Kui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (N.M.); (K.-X.J.); (N.B.); (D.-N.L.); (K.-Q.Z.)
- Correspondence:
| |
Collapse
|
23
|
Yu PL, Rollins JA. The cAMP-dependent protein kinase A pathway perturbs autophagy and plays important roles in development and virulence of Sclerotinia sclerotiorum. Fungal Biol 2022; 126:20-34. [DOI: 10.1016/j.funbio.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/15/2023]
|
24
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
25
|
De Luca V, Angeli A, Mazzone V, Adelfio C, Carginale V, Scaloni A, Carta F, Selleri S, Supuran CT, Capasso C. Heterologous expression and biochemical characterisation of the recombinant β-carbonic anhydrase (MpaCA) from the warm-blooded vertebrate pathogen malassezia pachydermatis. J Enzyme Inhib Med Chem 2021; 37:62-68. [PMID: 34894958 PMCID: PMC8667878 DOI: 10.1080/14756366.2021.1994559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Warm-blooded animals may have Malassezia pachydermatis on healthy skin, but changes in the skin microenvironment or host defences induce this opportunistic commensal to become pathogenic. Malassezia infections in humans and animals are commonly treated with azole antifungals. Fungistatic treatments, together with their long-term use, contribute to the selection and the establishment of drug-resistant fungi. To counteract this rising problem, researchers must find new antifungal drugs and enhance drug resistance management strategies. Cyclic adenosine monophosphate, adenylyl cyclase, and bicarbonate have been found to promote fungal virulence, adhesion, hydrolase synthesis, and host cell death. The CO2/HCO3-/pH-sensing in fungi is triggered by HCO3- produced by metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.1). It has been demonstrated that the growth of M. globosa can be inhibited in vivo by primary sulphonamides, which are the typical CA inhibitors. Here, we report the cloning, purification, and characterisation of the β-CA (MpaCA) from the pathogenic fungus M. pachydermatis, which is homologous to the enzyme encoded in the genome of M. globosa and M. restricta, that are responsible for dandruff and seborrhoeic dermatitis. Fungal CAs could be thus considered a new pharmacological target for combating fungal infections and drug resistance developed by most fungi to the already used drugs.
Collapse
Affiliation(s)
- Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Napoli, Italy.,Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Andrea Angeli
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Valeria Mazzone
- Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudia Adelfio
- Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, CNR, Naples, Italy
| | - Fabrizio Carta
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Silvia Selleri
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | | |
Collapse
|
26
|
De Luca V, Angeli A, Mazzone V, Adelfio C, Carta F, Selleri S, Carginale V, Scaloni A, Supuran CT, Capasso C. Inhibitory Effects of Sulfonamide Derivatives on the β-Carbonic Anhydrase (MpaCA) from Malassezia pachydermatis, a Commensal, Pathogenic Fungus Present in Domestic Animals. Int J Mol Sci 2021; 22:ijms222212601. [PMID: 34830480 PMCID: PMC8620791 DOI: 10.3390/ijms222212601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Fungi are exposed to various environmental variables during their life cycle, including changes in CO2 concentration. CO2 has the potential to act as an activator of several cell signaling pathways. In fungi, the sensing of CO2 triggers cell differentiation and the biosynthesis of proteins involved in the metabolism and pathogenicity of these microorganisms. The molecular machineries involved in CO2 sensing constitute a promising target for the development of antifungals. Carbonic anhydrases (CAs, EC 4.2.1.1) are crucial enzymes in the CO2 sensing systems of fungi, because they catalyze the reversible hydration of CO2 to proton and HCO3-. Bicarbonate in turn boots a cascade of reactions triggering fungal pathogenicity and metabolism. Accordingly, CAs affect microorganism proliferation and may represent a potential therapeutic target against fungal infection. Here, the inhibition of the unique β-CA (MpaCA) encoded in the genome of Malassezia pachydermatis, a fungus with substantial relevance in veterinary and medical sciences, was investigated using a series of conventional CA inhibitors (CAIs), namely aromatic and heterocyclic sulfonamides. This study aimed to describe novel candidates that can kill this harmful fungus by inhibiting their CA, and thus lead to effective anti-dandruff and anti-seborrheic dermatitis agents. In this context, current antifungal compounds, such as the azoles and their derivatives, have been demonstrated to induce the selection of resistant fungal strains and lose therapeutic efficacy, which might be restored by the concomitant use of alternative compounds, such as the fungal CA inhibitors.
Collapse
Affiliation(s)
- Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (V.D.L.); (V.M.); (C.A.); (V.C.)
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, CNR, P.le Enrico Fermi 1, 80055 Portici (Napoli), Italy;
| | - Andrea Angeli
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.); (S.S.)
| | - Valeria Mazzone
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (V.D.L.); (V.M.); (C.A.); (V.C.)
| | - Claudia Adelfio
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (V.D.L.); (V.M.); (C.A.); (V.C.)
| | - Fabrizio Carta
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.); (S.S.)
| | - Silvia Selleri
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.); (S.S.)
| | - Vincenzo Carginale
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (V.D.L.); (V.M.); (C.A.); (V.C.)
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, CNR, P.le Enrico Fermi 1, 80055 Portici (Napoli), Italy;
| | - Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (A.A.); (F.C.); (S.S.)
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; (V.D.L.); (V.M.); (C.A.); (V.C.)
- Correspondence: (C.T.S.); (C.C.); Tel.: +39-055-4573729 (C.T.S.); +39-081-613-2559 (C.C.)
| |
Collapse
|
27
|
FgSfl1 and Its Conserved PKA Phosphorylation Sites Are Important for Conidiation, Sexual Reproduction, and Pathogenesis in Fusarium graminearum. J Fungi (Basel) 2021; 7:jof7090755. [PMID: 34575793 PMCID: PMC8466192 DOI: 10.3390/jof7090755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022] Open
Abstract
The fungal plant pathogen, Fusarium graminearum, contains two genes, FgCPK1 and FgCPK2, encoding the catalytic subunits of cAMP-dependent protein kinase A. FgCPK1 and FgCPK2 are responsible for most of the PKA activities and have overlapping functions in various cellular processes in F. graminearum. The cpk1 cpk2 double mutant was significantly reduced in growth, rarely produced conidia, and was non-pathogenic. In this study, we found that the cpk1 cpk2 double mutant was unstable and produced fast-growing spontaneous sectors that were defective in plant infection. All spontaneous suppressor strains had mutations in FgSFL1, a transcription factor gene orthologous to SFL1 in yeast. Thirteen suppressor strains had non-sense mutations at Q501, three suppressor strains had frameshift mutations at W198, and five suppressor strains had mutations in the HSF binding domain of FgSfl1. Only one suppressor strain had both a non-synonymous mutation at H225 and a non-sense mutation at R490. We generated the SFL1 deletion mutant and found that it produced less than 2% of conidia than that of the wild-type strain PH-1. The sfl1 mutant was significantly reduced in the number of perithecia on carrot agar plates at 7 days post-fertilization (dpf). When incubated for more than 12 days, ascospore cirrhi were observed on the sfl1 mutant perithecia. The infection ability of the sfl1 deletion mutant was also obviously defective. Furthermore, we found that in addition to the S223 and S559 phosphorylation sites, FgSFL1 had another predicted phosphorylation site: T452. Interestingly, the S223 phosphorylation site was responsible for sexual reproduction, and the T452 phosphorylation site was responsible for growth and sexual reproduction. Only the S559 phosphorylation site was found to play an important role in conidiation, sexual reproduction, and infection. Overall, our results indicate that FgSFL1 and its conserved PKA phosphorylation sites are important for vegetative growth, conidiation, sexual reproduction, and pathogenesis in F. graminearum.
Collapse
|
28
|
Yan Y, Tang J, Yuan Q, Liu H, Huang J, Hsiang T, Bao C, Zheng L. Ornithine decarboxylase of the fungal pathogen Colletotrichum higginsianum plays an important role in regulating global metabolic pathways and virulence. Environ Microbiol 2021; 24:1093-1116. [PMID: 34472183 DOI: 10.1111/1462-2920.15755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Colletotrichum higginsianum is an important fungal pathogen causing anthracnose disease of cruciferous plants. In this study, we characterized a putative orthologue of yeast SPE1 in C. higginsianum, named ChODC. Deletion mutants of ChODC were defective in hyphal and conidial development. Importantly, deletion of ChODC significantly affected appressorium-mediated penetration in C. higginsianum. However, polyamines partially restore appressorium function and virulence indicating that loss of ChODC caused significantly decreased virulence by the crosstalk between polyamines and other metabolic pathways. Subsequently, transcriptomic and metabolomic analyses demonstrated that ChODC played an important role in metabolism of various carbon and nitrogen compounds including amino acids, carbohydrates and lipids. Along with these clues, we found deletion of ChODC affected glycogen and lipid metabolism, which were important for conidial storage utilization and functional appressorium formation. Loss of ChODC affected the mTOR signalling pathway via modulation of autophagy. Interestingly, cAMP treatment restored functional appressoria to the ΔChODC mutant, and rapamycin treatment also stimulated formation of functional appressoria in the ΔChODC mutant. Overall, ChODC was associated with the polyamine biosynthesis pathway, as a mediator of cAMP and mTOR signalling pathways to regulate appressorium function. Our study provides evidence of a link between ChODC and the cAMP signalling pathway and defines a novel mechanism by which ChODC regulates infection-associated autophagy and plant infection by fungi.
Collapse
Affiliation(s)
- Yaqin Yan
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China.,State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jintian Tang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinfeng Yuan
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Chonglai Bao
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
29
|
Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of Candida albicans. Pathogens 2021; 10:pathogens10070859. [PMID: 34358008 PMCID: PMC8308684 DOI: 10.3390/pathogens10070859] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans, accounting for 15% of nosocomial infections with an estimated attributable mortality of 47%. C. albicans is usually a benign member of the human microbiome in healthy people. Under constant exposure to highly dynamic environmental cues in diverse host niches, C. albicans has successfully evolved to adapt to both commensal and pathogenic lifestyles. The ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous forms is a well-established virulent trait. Over the past few decades, a significant amount of research has been carried out to understand the underlying regulatory mechanisms, signaling pathways, and transcription factors that govern the C. albicans yeast-to-hyphal transition. This review will summarize our current understanding of well-elucidated signal transduction pathways that activate C. albicans hyphal morphogenesis in response to various environmental cues and the cell cycle machinery involved in the subsequent regulation and maintenance of hyphal morphogenesis.
Collapse
Affiliation(s)
- Eve Wai Ling Chow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
| | - Li Mei Pang
- National Dental Centre Singapore, National Dental Research Institute Singapore (NDRIS), 5 Second Hospital Ave, Singapore 168938, Singapore;
| | - Yue Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
30
|
Xu R, Guo Y, Peng S, Liu J, Li P, Jia W, Zhao J. Molecular Targets and Biological Functions of cAMP Signaling in Arabidopsis. Biomolecules 2021; 11:biom11050688. [PMID: 34063698 PMCID: PMC8147800 DOI: 10.3390/biom11050688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023] Open
Abstract
Cyclic AMP (cAMP) is a pivotal signaling molecule existing in almost all living organisms. However, the mechanism of cAMP signaling in plants remains very poorly understood. Here, we employ the engineered activity of soluble adenylate cyclase to induce cellular cAMP elevation in Arabidopsis thaliana plants and identify 427 cAMP-responsive genes (CRGs) through RNA-seq analysis. Induction of cellular cAMP elevation inhibits seed germination, disturbs phytohormone contents, promotes leaf senescence, impairs ethylene response, and compromises salt stress tolerance and pathogen resistance. A set of 62 transcription factors are among the CRGs, supporting a prominent role of cAMP in transcriptional regulation. The CRGs are significantly overrepresented in the pathways of plant hormone signal transduction, MAPK signaling, and diterpenoid biosynthesis, but they are also implicated in lipid, sugar, K+, nitrate signaling, and beyond. Our results provide a basic framework of cAMP signaling for the community to explore. The regulatory roles of cAMP signaling in plant plasticity are discussed.
Collapse
Affiliation(s)
- Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: ; Tel.: +86-0371-6778-5095
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| | - Junheng Zhao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (S.P.); (J.L.); (P.L.); (W.J.); (J.Z.)
| |
Collapse
|
31
|
Supuran CT, Capasso C. A Highlight on the Inhibition of Fungal Carbonic Anhydrases as Drug Targets for the Antifungal Armamentarium. Int J Mol Sci 2021; 22:4324. [PMID: 33919261 PMCID: PMC8122340 DOI: 10.3390/ijms22094324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Carbon dioxide (CO2), a vital molecule of the carbon cycle, is a critical component in living organisms' metabolism, performing functions that lead to the building of compounds fundamental for the life cycle. In all living organisms, the CO2/bicarbonate (HCO3-) balancing is governed by a superfamily of enzymes, known as carbonic anhydrases (CAs, EC 4.2.1.1). CAs catalyze the pivotal physiological reaction, consisting of the reversible hydration of the CO2 to HCO3- and protons. Opportunistic and pathogenic fungi can sense the environmental CO2 levels, which influence their virulence or environmental subsistence traits. The fungal CO2-sensing is directly stimulated by HCO3- produced in a CA-dependent manner, which directly activates adenylyl cyclase (AC) involved in the fungal spore formation. The interference with CA activity may impair fungal growth and virulence, making this approach interesting for designing antifungal drugs with a novel mechanism of action: the inhibition of CAs linked to the CO2/HCO3-/pH chemosensing and signaling. This review reports that sulfonamides and their bioisosteres as well as inorganic anions can inhibit in vitro the β- and α-CAs from the fungi, suggesting how CAs may be considered as a novel "pathogen protein" target of many opportunistic, pathogenic fungi.
Collapse
Affiliation(s)
- Claudiu T. Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neurofarba, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
32
|
Gong M, Zhang H, Wu D, Zhang Z, Zhang J, Bao D, Yang Y. Key metabolism pathways and regulatory mechanisms of high polysaccharide yielding in Hericium erinaceus. BMC Genomics 2021; 22:160. [PMID: 33676419 PMCID: PMC7937317 DOI: 10.1186/s12864-021-07480-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 12/23/2022] Open
Abstract
Background Hericium erinaceus, a rare edible and medicine fungus, is widely used in the food and medical field. Polysaccharides from H. erinaceus are the main bioactive compound that exert high bioactive value in the medical and healthcare industries. Results The genome of H. erinaceus original strain HEA was reported 38.16 Mb, encoding 9780 predicted genes by single-molecule, real-time sequencing technology. The phylogenomic analysis showed that H. erinaceus had the closest evolutionary affinity with Dentipellis sp. The polysaccharide content in the fermented mycelia of mutated strains HEB and HEC, which obtained by ARTP mutagenesis in our previous study, was improved by 23.25 and 47.45%, and a new β-glucan fraction with molecular weight 1.056 × 106 Da was produced in HEC. Integrative analysis of transcriptome and proteomics showed the upregulation of the carbohydrate metabolism pathway modules in HEB and HEC might lead to the increased production of glucose-6P and promote the repeating units synthesis of polysaccharides. qPCR and PRM analysis confirmed that most of the co-enriched and differentially co-expressed genes involved in carbohydrate metabolism shared a similar expression trend with the transcriptome and proteome data in HEB and HEC. Heatmap analysis showed a noticeably decreased protein expression profile of the RAS-cAMP-PKA pathway in HEC with a highly increased 47.45% of polysaccharide content. The S phase progression blocking experiment further verified that the RAS-cAMP-PKA pathway’s dysfunction might promote high polysaccharide and β-glucan production in the mutant strain HEC. Conclusions The study revealed the primary mechanism of the increased polysaccharide synthesis induced by ARTP mutagenesis and explored the essential genes and pathways of polysaccharide synthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07480-x.
Collapse
Affiliation(s)
- Ming Gong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Jinsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, No.1000, Jinqi Road, Shanghai, 201403, China.
| |
Collapse
|
33
|
Understanding Pearl Millet Blast Caused by Magnaporthe grisea and Strategies for Its Management. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Maybruck BT, Lam WC, Specht CA, Ilagan MXG, Donlin MJ, Lodge JK. The Aminoalkylindole BML-190 Negatively Regulates Chitosan Synthesis via the Cyclic AMP/Protein Kinase A1 Pathway in Cryptococcus neoformans. mBio 2019; 10:e02264-19. [PMID: 31848271 PMCID: PMC6918072 DOI: 10.1128/mbio.02264-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Cryptococcus neoformans can cause fatal meningoencephalitis in patients with AIDS or other immunocompromising conditions. Current antifungals are suboptimal to treat this disease; therefore, novel targets and new therapies are needed. Previously, we have shown that chitosan is a critical component of the cryptococcal cell wall and is required for survival in the mammalian host and that chitosan deficiency results in rapid clearance from the mammalian host. We had also identified several specific proteins that were required for chitosan biosynthesis, and we hypothesize that screening for compounds that inhibit chitosan biosynthesis would identify additional genes/proteins that influence chitosan biosynthesis. To identify these compounds, we developed a robust and novel cell-based flow cytometry screening method to identify small-molecule inhibitors of chitosan production. We screened the ICCB Known Bioactives library and identified 8 compounds that reduced chitosan in C. neoformans We used flow cytometry-based counterscreens and confirmatory screens, followed by a biochemical secondary screen to refine our primary screening hits to 2 confirmed hits. One of the confirmed hits that reduced chitosan content was the aminoalkylindole BML-190, a known inverse agonist of mammalian cannabinoid receptors. We demonstrated that BML-190 likely targets the C. neoformans G-protein-coupled receptor Gpr4 and, via the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, contributes to an intracellular accumulation of cAMP that results in decreased chitosan. Our discovery suggests that this approach could be used to identify additional compounds and pathways that reduce chitosan biosynthesis and could lead to potential novel therapeutics against C. neoformansIMPORTANCECryptococcus neoformans is a fungal pathogen that kills ∼200,000 people every year. The cell wall is an essential organelle that protects fungi from the environment. Chitosan, the deacetylated form of chitin, has been shown to be an essential component of the cryptococcal cell wall during infection of a mammalian host. In this study, we screened a set of 480 compounds, which are known to have defined biological activities, for activity that reduced chitosan production in C. neoformans Two of these compounds were confirmed using an alternative method of measuring chitosan, and one of these was demonstrated to impact the cAMP signal transduction pathway. This work demonstrates that the cAMP pathway regulates chitosan biosynthesis in C. neoformans and validates that this screening approach could be used to find potential antifungal agents.
Collapse
Affiliation(s)
- Brian T Maybruck
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Woei C Lam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles A Specht
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ma Xenia G Ilagan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maureen J Donlin
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Jennifer K Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
35
|
Hinterdobler W, Schuster A, Tisch D, Özkan E, Bazafkan H, Schinnerl J, Brecker L, Böhmdorfer S, Schmoll M. The role of PKAc1 in gene regulation and trichodimerol production in Trichoderma reesei. Fungal Biol Biotechnol 2019; 6:12. [PMID: 31528353 PMCID: PMC6734591 DOI: 10.1186/s40694-019-0075-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichoderma reesei represents a model system for investigation of plant cell wall degradation and its connection to light response. The cyclic adenosine monophosphate pathway (cAMP pathway) plays an important role in both physiological outputs, being crucial for regulation of photoreceptor function as well as for cellulase regulation on different carbon sources. Phosphorylation of photoreceptors and of the carbon catabolite repressor CRE1 was shown in ascomycetes, indicating a relevance of protein kinase A in regulation of the target genes of these transcription factors as well as an impact on regulation of induction specific genes. Moreover, the cAMP pathway impacts growth and development. RESULTS Here, we investigated gene regulation by the catalytic subunit of protein kinase A (PKAc1) upon growth on cellulose. We found distinct gene sets for regulation upon growth in light and darkness with an overlap of only 13 genes. PKAc1 regulates metabolic genes as well as transport and defense functions. The overlap of gene regulation by PKAc1 with the genes representing the cAMP dependent regulatory output of the photoreceptor ENV1 indicates an involvement of PKA in this pathway, which counteracts its effects by contrasting regulation. Moreover, we found considerable overlap with the gene sets regulated under cellulase inducing conditions and by the carbon catabolite repressor CRE1. Our analysis also showed that PKAc1 regulates the genes of the SOR cluster associated with the biosynthesis of sorbicillinoids. The homologue of gin4, encoding a CAMK type kinase, which is regulated by PKAc1, CRE1 and YPR2 showed a moderate impact on trichodimerol production. We isolated trichodimerol as representative sorbicillin compound and established a method for its quantification in large sample sets using high performance thin layer chromatography (HPTLC), which can be broadly applied for secondary metabolite screening of mutants or different growth conditions. Due to the high expression levels of the SOR cluster under conditions of sexual development we crosschecked the relevance of PKAc1 under these conditions. We could show that PKAc1 impacts biosynthesis of trichodimerol in axenic growth and upon mating. CONCLUSIONS We conclude that PKAc1 is involved in light dependent regulation of plant cell wall degradation, including carbon catabolite repression as well as secondary metabolism and development in T. reesei.
Collapse
Affiliation(s)
- Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - André Schuster
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Doris Tisch
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Ezgi Özkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Hoda Bazafkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Johann Schinnerl
- Chemodiversity Research Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
36
|
Chen Y, Kistler HC, Ma Z. Fusarium graminearum Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:15-39. [PMID: 30893009 DOI: 10.1146/annurev-phyto-082718-100318] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fusarium head blight (FHB) of small grain cereals caused by Fusarium graminearum and other Fusarium species is an economically important plant disease worldwide. Fusarium infections not only result in severe yield losses but also contaminate grain with various mycotoxins, especially deoxynivalenol (DON). With the complete genome sequencing of F. graminearum, tremendous progress has been made during the past two decades toward understanding the basis for DON biosynthesis and its regulation. Here, we summarize the current understanding of DON biosynthesis and the effect of regulators, signal transduction pathways, and epigenetic modifications on DON production and the expression of biosynthetic TRI genes. In addition, strategies for controlling FHB and DON contamination are reviewed. Further studies on these biosynthetic and regulatory systems will provide useful knowledge for developing novel management strategies to prevent FHB incidence and mycotoxin accumulation in cereals.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - H Corby Kistler
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Saint Paul, Minnesota 55108, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
37
|
Yang M, Lu L, Li S, Zhang J, Li Z, Wu S, Guo Q, Liu H, Wang C. Transcriptomic Insights into Benzenamine Effects on the Development, Aflatoxin Biosynthesis, and Virulence of Aspergillus flavus. Toxins (Basel) 2019; 11:E70. [PMID: 30691218 PMCID: PMC6410012 DOI: 10.3390/toxins11020070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Aspergillus flavus is a soilborne pathogenic fungus that poses a serious public health threat due to it contamination of food with carcinogenic aflatoxins. Our previous studies have demonstrated that benzenamine displayed strong inhibitory effects on the mycelial growth of A. flavus. In this study, we systematically investigated the inhibitory effects of benzenamine on the development, aflatoxin biosynthesis, and virulence in A. flavus, as well as the underlying mechanism. The results indicated that benzenamine exhibited great capacity to combat A. flavus at a concentration of 100 µL/L, leading to significantly decreased aflatoxin accumulation and colonization capacity in maize. The transcriptional profile revealed that 3589 genes show altered mRNA levels in the A. flavus after treatment with benzenamine, including 1890 down-regulated and 1699 up-regulated genes. Most of the differentially expressed genes participated in the biosynthesis and metabolism of amino acid, purine metabolism, and protein processing in endoplasmic reticulum. Additionally, the results brought us to a suggestion that benzenamine affects the development, aflatoxin biosynthesis, and pathogenicity of A. flavus via down-regulating related genes by depressing the expression of the global regulatory factor leaA. Overall, this study indicates that benzenamine have tremendous potential to act as a fumigant against pathogenic A. flavus. Furthermore, this work offers valuable information regarding the underlying antifungal mechanism of benzenamine against A. flavus at the level of transcription, and these potential targets may be conducive in developing new strategies for preventing aflatoxin contamination.
Collapse
Affiliation(s)
- Mingguan Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuhua Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jing Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shufen Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
38
|
Transcriptional Profiling of Patient Isolates Identifies a Novel TOR/Starvation Regulatory Pathway in Cryptococcal Virulence. mBio 2018; 9:mBio.02353-18. [PMID: 30563896 PMCID: PMC6299223 DOI: 10.1128/mbio.02353-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human infection with Cryptococcus causes up to a quarter of a million AIDS-related deaths annually and is the most common cause of nonviral meningitis in the United States. As an opportunistic fungal pathogen, Cryptococcus neoformans is distinguished by its ability to adapt to diverse host environments, including plants, amoebae, and mammals. In the present study, comparative transcriptomics of the fungus within human cerebrospinal fluid identified expression profiles representative of low-nutrient adaptive responses. Transcriptomics of fungal isolates from a cohort of HIV/AIDS patients identified high expression levels of an alternative carbon nutrient transporter gene, STL1, to be associated with poor early fungicidal activity, an important clinical prognostic marker. Mouse modeling and pathway analysis demonstrated a role for STL1 in mammalian pathogenesis and revealed that STL1 expression is regulated by a novel multigene regulatory mechanism involving the CAC2 subunit of the chromatin assembly complex 1, CAF-1. In this pathway, the global regulator of virulence gene VAD1 was found to transcriptionally regulate a cryptococcal homolog of a cytosolic protein, Ecm15, in turn required for nuclear transport of the Cac2 protein. Derepression of STL1 by the CAC2-containing CAF-1 complex was mediated by Cac2 and modulated binding and suppression of the STL1 enhancer element. Derepression of STL1 resulted in enhanced survival and growth of the fungus in the presence of low-nutrient, alternative carbon sources, facilitating virulence in mice. This study underscores the utility of ex vivo expression profiling of fungal clinical isolates and provides fundamental genetic understanding of saprophyte adaption to the human host.IMPORTANCE Cryptococcus is a fungal pathogen that kills an estimated quarter of a million individuals yearly and is the most common cause of nonviral meningitis in the United States. The fungus is carried in about 10% of the adult population and, after reactivation, causes disease in a wide variety of immunosuppressed individuals, including the HIV infected and patients receiving transplant conditioning, cancer therapy, or corticosteroid therapy for autoimmune diseases. The fungus is widely carried in the soil but can also cause infections in plants and mammals. However, the mechanisms for this widespread ability to infect a variety of hosts are poorly understood. The present study identified adaptation to low nutrients as a key property that allows the fungus to inhabit these diverse environments. Further studies identified a nutrient transporter gene, STL1, to be upregulated under low nutrients and to be associated with early fungicidal activity, a marker of poor clinical outcome in a cohort of HIV/AIDS patients. Understanding molecular mechanisms involved in adaptation to the human host may help to design better methods of control and treatment of widely dispersed fungal pathogens such as Cryptococcus.
Collapse
|
39
|
Kayikci Ö, Magwene PM. Divergent Roles for cAMP-PKA Signaling in the Regulation of Filamentous Growth in Saccharomyces cerevisiae and Saccharomyces bayanus. G3 (BETHESDA, MD.) 2018; 8:3529-3538. [PMID: 30213866 PMCID: PMC6222581 DOI: 10.1534/g3.118.200413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/27/2018] [Indexed: 01/18/2023]
Abstract
The cyclic AMP - Protein Kinase A (cAMP-PKA) pathway is an evolutionarily conserved eukaryotic signaling network that is essential for growth and development. In the fungi, cAMP-PKA signaling plays a critical role in regulating cellular physiology and morphological switches in response to nutrient availability. We undertook a comparative investigation of the role that cAMP-PKA signaling plays in the regulation of filamentous growth in two closely related budding yeast species, Saccharomyces cerevisiae and Saccharomyces bayanus Using chemical and genetic perturbations of this pathway and its downstream targets we discovered divergent roles for cAMP-PKA signaling in the regulation of filamentous growth. While cAMP-PKA signaling is required for the filamentous growth response in both species, increasing or decreasing the activity of this pathway leads to drastically different phenotypic outcomes. In S. cerevisiae, cAMP-PKA inhibition ameliorates the filamentous growth response while hyper-activation of the pathway leads to increased filamentous growth; the same perturbations in S. bayanus result in the obverse. Divergence in the regulation of filamentous growth between S. cerevisiae and S. bayanus extends to downstream targets of PKA, including several kinases, transcription factors, and effector proteins. Our findings highlight the potential for significant evolutionary divergence in gene network function, even when the constituent parts of such networks are well conserved.
Collapse
Affiliation(s)
- Ömur Kayikci
- Department of Biology, Duke University, Durham, North Carolina
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, North Carolina
| |
Collapse
|
40
|
Huang G, Huang Q, Wei Y, Wang Y, Du H. Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in Candida albicans. Mol Microbiol 2018; 111:6-16. [PMID: 30299574 DOI: 10.1111/mmi.14148] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 01/15/2023]
Abstract
Candida albicans is a major fungal pathogen of humans, causing both superficial and life-threatening systemic infections in immunocompromised people. The conserved Ras/cAMP/PKA pathway plays a key role in regulating multiple traits important for the virulence of C. albicans such as cell growth, yeast-hyphal transition, white-opaque switching, sexual reproduction and biofilm development. Diverse external signals influence cell physiology by activating this signaling pathway. The key components of the Ras/cAMP/PKA pathway include two Ras GTPases (Ras1 and Ras2), an adenylyl cyclase (Cyr1, also known as Cdc35), two cyclic nucleotide phosphodiesterases (Pde1 and Pde2) and the catalytic (Tpk1 and Tpk2) and regulatory (Bcy1) subunits of PKA kinase. Activation of this pathway dramatically alters the gene expression profile via several transcription factors, leading to the activation of specific biological processes. Here, we review the progress made in the past two decades to elucidate the molecular mechanisms by which the Ras/cAMP/PKA pathway senses diverse environmental cues and controls specific cellular responses and its connection with other signaling pathways in C. albicans.
Collapse
Affiliation(s)
- Guanghua Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Huang
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Yujia Wei
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Yue Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Han Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
41
|
New Genomic Approaches to Enhance Biomass Degradation by the Industrial Fungus Trichoderma reesei. Int J Genomics 2018; 2018:1974151. [PMID: 30345291 PMCID: PMC6174759 DOI: 10.1155/2018/1974151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/20/2018] [Accepted: 07/29/2018] [Indexed: 11/17/2022] Open
Abstract
The filamentous fungi Trichoderma reesei is one of the most well-studied cellulolytic microorganisms. It is the most important fungus for the industrial production of enzymes to biomass deconstruction being widely used in the biotechnology industry, mainly in the production of biofuels. Here, we performed an analytic review of the holocellulolytic system presented by T. reesei as well as the transcriptional and signaling mechanisms involved with holocellulase expression in this fungus. We also discuss new perspectives about control of secretion and cellulase expression based on RNA-seq and functional characterization data of T. reesei growth in different carbon sources, which comprise glucose, cellulose, sophorose, and sugarcane bagasse.
Collapse
|
42
|
Discovery of microRNA-like RNAs during early fruiting body development in the model mushroom Coprinopsis cinerea. PLoS One 2018; 13:e0198234. [PMID: 30231028 PMCID: PMC6145500 DOI: 10.1371/journal.pone.0198234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
Coprinopsis cinerea is a model mushroom particularly suited for the study of fungal fruiting body development and the evolution of multicellularity in fungi. While microRNAs (miRNAs) have been extensively studied in animals and plants for their essential roles in post-transcriptional regulation of gene expression, miRNAs in fungi are less well characterized and their potential roles in controlling mushroom development remain unknown. To identify miRNA-like RNAs (milRNAs) in C. cinerea and explore their expression patterns during the early developmental transition of mushroom development, small RNA libraries of vegetative mycelium and primordium were generated and putative milRNA candidates were identified following the standards of miRNA prediction in animals and plants. Two out of 22 novel predicted milRNAs, cci-milR-12c and cci-milR-13e-5p, were validated by northern blot and stem-loop reverse transcription real-time PCR. Cci-milR-12c was differentially expressed whereas the expression levels of cci-milR-13e-5p were similar in the two developmental stages. Target prediction of the validated milRNAs resulted in genes associated with fruiting body development, including pheromone, hydrophobin, cytochrome P450, and protein kinase. Essential genes for miRNA biogenesis, including three coding for Dicer-like (DCL), one for Argonaute (AGO), one for AGO-like and one for quelling deficient-2 (QDE-2) proteins, were also identified in the C. cinerea genome. Phylogenetic analysis showed that the DCL and AGO proteins of C. cinerea were more closely related to those in other basidiomycetes and ascomycetes than to those in animals and plants. Taken together, our findings provided the first evidence for milRNAs in the model mushroom and their potential roles in regulating fruiting body development. New information on the evolutionary relationship of milRNA biogenesis proteins across kingdoms has also provided new insights for guiding further functional and evolutionary studies of miRNAs.
Collapse
|
43
|
Edel KH, Marchadier E, Brownlee C, Kudla J, Hetherington AM. The Evolution of Calcium-Based Signalling in Plants. Curr Biol 2018; 27:R667-R679. [PMID: 28697370 DOI: 10.1016/j.cub.2017.05.020] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcium-based intracellular signalling system is used ubiquitously to couple extracellular stimuli to their characteristic intracellular responses. It is becoming clear from genomic and physiological investigations that while the basic elements in the toolkit are common between plants and animals, evolution has acted in such a way that, in plants, some components have diversified with respect to their animal counterparts, while others have either been lost or have never evolved in the plant lineages. In comparison with animals, in plants there appears to have been a loss of diversity in calcium-influx mechanisms at the plasma membrane. However, the evolution of the calcium-storing vacuole may provide plants with additional possibilities for regulating calcium influx into the cytosol. Among the proteins that are involved in sensing and responding to increases in calcium, plants possess specific decoder proteins that are absent from the animal lineage. In seeking to understand the selection pressures that shaped the plant calcium-signalling toolkit, we consider the evolution of fast electrical signalling. We also note that, in contrast to animals, plants apparently do not make extensive use of cyclic-nucleotide-based signalling. It is possible that reliance on a single intracellular second-messenger-based system, coupled with the requirement to adapt to changing environmental conditions, has helped to define the diversity of components found in the extant plant calcium-signalling toolkit.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Elodie Marchadier
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK; Génétique Quantitative et Evolution - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Colin Brownlee
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton, SO14 3ZH, UK
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
44
|
Yang L, Yin Z, Zhang X, Feng W, Xiao Y, Zhang H, Zheng X, Zhang Z. New findings on phosphodiesterases, MoPdeH and MoPdeL, in Magnaporthe oryzae revealed by structural analysis. MOLECULAR PLANT PATHOLOGY 2018; 19:1061-1074. [PMID: 28752677 PMCID: PMC6638029 DOI: 10.1111/mpp.12586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/27/2017] [Accepted: 07/22/2017] [Indexed: 05/29/2023]
Abstract
The cyclic adenosine monophosphate (cAMP) signalling pathway mediates signal communication and sensing during infection-related morphogenesis in eukaryotes. Many studies have implicated cAMP as a critical mediator of appressorium development in the rice blast fungus, Magnaporthe oryzae. The cAMP phosphodiesterases, MoPdeH and MoPdeL, as key regulators of intracellular cAMP levels, play pleiotropic roles in cell wall integrity, cellular morphology, appressorium formation and infectious growth in M. oryzae. Here, we analysed the roles of domains of MoPdeH and MoPdeL separately or in chimeras. The results indicated that the HD and EAL domains of MoPdeH are indispensable for its phosphodiesterase activity and function. Replacement of the MoPdeH HD domain with the L1 and L2 domains of MoPdeL, either singly or together, resulted in decreased cAMP hydrolysis activity of MoPdeH. All of the transformants exhibited phenotypes similar to that of the ΔMopdeH mutant, but also revealed that EAL and L1 play additional roles in conidiation, and that L1 is involved in infectious growth. We further found that the intracellular cAMP level is important for surface signal recognition and hyphal autolysis. The intracellular cAMP level negatively regulates Mps1-MAPK and positively regulates Pmk1-MAPK in the rice blast fungus. Our results provide new information to better understand the cAMP signalling pathway in the development, differentiation and plant infection of the fungus.
Collapse
Affiliation(s)
- Li‐Na Yang
- Department of Plant PathologyKey Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural UniversityNanjing 210095China
| | - Ziyi Yin
- Department of Plant PathologyKey Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural UniversityNanjing 210095China
| | - Xi Zhang
- Department of Plant PathologyKey Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural UniversityNanjing 210095China
| | - Wanzhen Feng
- Department of Plant PathologyKey Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural UniversityNanjing 210095China
| | - Yuhan Xiao
- Department of Plant PathologyKey Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural UniversityNanjing 210095China
| | - Haifeng Zhang
- Department of Plant PathologyKey Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural UniversityNanjing 210095China
| | - Xiaobo Zheng
- Department of Plant PathologyKey Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural UniversityNanjing 210095China
| | - Zhengguang Zhang
- Department of Plant PathologyKey Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural UniversityNanjing 210095China
| |
Collapse
|
45
|
Involvement of MaSom1, a downstream transcriptional factor of cAMP/PKA pathway, in conidial yield, stress tolerances, and virulence in Metarhizium acridum. Appl Microbiol Biotechnol 2018; 102:5611-5623. [PMID: 29713793 DOI: 10.1007/s00253-018-9020-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 01/29/2023]
Abstract
Flo8/Som1, which functions downstream from the cyclic AMP (cAMP)-dependent protein kinase A (PKA) pathway, plays important roles in hyphal development, spore formation, and virulence in yeast and several filamentous fungi. However, the functions of Som1 in entomopathogenic fungi are still a mystery. In this study, MaSom1, a Flo8/Som1 homolog, was identified and functionally characterized in a model entomopathogenic fungus Metarhizium acridum. Similar to Flo8/Som1 in other fungi, MaSom1 mainly localized to the nucleus in M. acridum. Disruption of MaSom1 reduced conidial yield, delayed conidial germination, and impaired the fungal tolerances to heat and UV-B. The expression levels of some genes involved in defenses of heat shock and UV-B radiation were significantly reduced in ΔMaSom1. MaSom1 is also important for cell wall integrity and conidial surface structures in M. acridum. Some genes related to fungal cell wall synthesis were downregulated in ΔMaSom1. Bioassays showed that ΔMaSom1 had a dramatically decreased virulence after both topical inoculation and intrahemocoel injection of the fungus in locusts. Moreover, inactivation of MaSom1 reduced appressorium formation, diminished fungal growth in locust hemolymph in vitro, and enhanced insect immune responses. Taken together, these results indicate that disruption of MaSom1 leads to a decline of fungal virulence because of impairments in conidial germination and appressorium formation, reduction of fungal growth in host hemolymph, and enhancement of insect immune responses owing to the changes in conidial surface structures.
Collapse
|
46
|
Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 2018; 93:1778-1794. [DOI: 10.1111/brv.12418] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- László G. Nagy
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy; Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C; H-1117 Budapest Hungary
- Plant Protection Institute, Centre for Agricultural Research; Hungarian Academy of Sciences (MTA-ATK); PO Box 102, H-1525 Budapest Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| |
Collapse
|
47
|
Qi T, Zhu X, Tan C, Liu P, Guo J, Kang Z, Guo J. Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:797-807. [PMID: 28881438 PMCID: PMC5814584 DOI: 10.1111/pbi.12829] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 05/18/2023]
Abstract
Rust fungi are devastating plant pathogens and cause a large economic impact on wheat production worldwide. To overcome this rapid loss of resistance in varieties, we generated stable transgenic wheat plants expressing short interfering RNAs (siRNAs) targeting potentially vital genes of Puccinia striiformis f. sp. tritici (Pst). Protein kinase A (PKA) has been proved to play important roles in regulating the virulence of phytopathogenic fungi. PsCPK1, a PKA catalytic subunit gene from Pst, is highly induced at the early infection stage of Pst. The instantaneous silencing of PsCPK1 by barley stripe mosaic virus (BSMV)-mediated host-induced gene silencing (HIGS) results in a significant reduction in the length of infection hyphae and disease phenotype. These results indicate that PsCPK1 is an important pathogenicity factor by regulating Pst growth and development. Two transgenic lines expressing the RNA interference (RNAi) construct in a normally susceptible wheat cultivar displayed high levels of stable and consistent resistance to Pst throughout the T3 to T4 generations. The presence of the interfering RNAs in transgenic wheat plants was confirmed by northern blotting, and these RNAs were found to efficiently down-regulate PsCPK1 expression in wheat. This study addresses important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control cereal rust diseases.
Collapse
Affiliation(s)
- Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoguo Zhu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Chenlong Tan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
48
|
Mondo SJ, Lastovetsky OA, Gaspar ML, Schwardt NH, Barber CC, Riley R, Sun H, Grigoriev IV, Pawlowska TE. Bacterial endosymbionts influence host sexuality and reveal reproductive genes of early divergent fungi. Nat Commun 2017; 8:1843. [PMID: 29184190 PMCID: PMC5705715 DOI: 10.1038/s41467-017-02052-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
Many heritable mutualisms, in which beneficial symbionts are transmitted vertically between host generations, originate as antagonisms with parasite dispersal constrained by the host. Only after the parasite gains control over its transmission is the symbiosis expected to transition from antagonism to mutualism. Here, we explore this prediction in the mutualism between the fungus Rhizopus microsporus (Rm, Mucoromycotina) and a beta-proteobacterium Burkholderia, which controls host asexual reproduction. We show that reproductive addiction of Rm to endobacteria extends to mating, and is mediated by the symbiont gaining transcriptional control of the fungal ras2 gene, which encodes a GTPase central to fungal reproductive development. We also discover candidate G-protein-coupled receptors for the perception of trisporic acids, mating pheromones unique to Mucoromycotina. Our results demonstrate that regulating host asexual proliferation and modifying its sexual reproduction are sufficient for the symbiont's control of its own transmission, needed for antagonism-to-mutualism transition in heritable symbioses. These properties establish the Rm-Burkholderia symbiosis as a powerful system for identifying reproductive genes in Mucoromycotina.
Collapse
Affiliation(s)
- Stephen J Mondo
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Maria L Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Nicole H Schwardt
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Colin C Barber
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Robert Riley
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Hui Sun
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
49
|
Sephton-Clark PCS, Voelz K. Spore Germination of Pathogenic Filamentous Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:117-157. [PMID: 29680124 DOI: 10.1016/bs.aambs.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fungi, algae, plants, protozoa, and bacteria are all known to form spores, especially hardy and ubiquitous propagation structures that are also often the infectious agents of diseases. Spores can survive for thousands of years, frozen in the permafrost (Kochkina et al., 2012), with the oldest viable spores extracted after 250 million years from salt crystals (Vreeland, Rosenzweig, & Powers, 2000). Their resistance to high levels of UV, desiccation, pressure, heat, and cold enables the survival of spores in the harshest conditions (Setlow, 2016). For example, Bacillus subtilis spores can survive and remain viable after experiencing conditions similar to those on Mars (Horneck et al., 2012). Spores are disseminated through environmental factors. Wind, water, or animal carriage allow spores to be spread ubiquitously throughout the environment. Spores will break dormancy and begin to germinate once exposed to favorable conditions. Germination is the mechanism that converts the spore from a dormant biological organism to one that grows vegetatively and is capable of either sexual or asexual reproduction. The process of germination has been well studied in plants, moss, bacteria, and many fungi (Hohe & Reski, 2005; Huang & Hull, 2017; Vesty et al., 2016). Unfortunately, information on the complex signaling involved in the regulation of germination, particularly in fungi remains lacking. This chapter will discuss germination of fungal spores covering our current understanding of the regulation, signaling, outcomes, and implications of germination of pathogenic fungal spores. Owing to the morphological similarities between the spore-hyphal and yeast-hyphal transition and their relevance for disease progression, relevant aspects of fungal dimorphism will be discussed alongside spore germination in this chapter.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kerstin Voelz
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
50
|
Selvaraj P, Shen Q, Yang F, Naqvi NI. Cpk2, a Catalytic Subunit of Cyclic AMP-PKA, Regulates Growth and Pathogenesis in Rice Blast. Front Microbiol 2017; 8:2289. [PMID: 29209297 PMCID: PMC5702331 DOI: 10.3389/fmicb.2017.02289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022] Open
Abstract
The cAMP-Protein Kinase A signaling, anchored on CpkA, is necessary for appressorium development and host penetration, but indispensable for infectious growth in Magnaporthe oryzae. In this study, we identified and characterized the gene encoding the second catalytic subunit, CPK2, whose expression was found to be lower compared to CPKA at various stages of pathogenic growth in M. oryzae. Deletion of CPK2 caused no alterations in vegetative growth, conidiation, appressorium formation, or pathogenicity. Surprisingly, the cpkAΔcpk2Δ double deletion strain displayed significant reduction in growth rate and conidiation compared to the single deletion mutants. Interestingly, loss of CPKA and CPK2 resulted in morphogenetic defects in germ tubes (with curled/wavy and serpentine growth pattern) on hydrophobic surfaces, and a complete failure to produce appressoria therein, thus suggesting an important role for CPK2-mediated cAMP-PKA in surface sensing and response pathway. CPKA promoter-driven expression of CPK2 partially suppressed the defects in host penetration and pathogenicity in the cpkAΔ. Such ectopic CPK2 expressing strain successfully penetrated the rice leaves, but was unable to produce proper secondary invasive hyphae, thus underscoring the importance of CpkA in growth and differentiation in planta. The Cpk2-GFP localized to the nuclei and cytoplasmic vesicles in conidia and germ tubes. The Cpk2-GFP colocalized with CpkA-mCherry on vesicles in the cytosol, but such overlap was not evident in the nuclei. Our studies indicate that CpkA and Cpk2 share overlapping functions, but also play distinct roles during pathogenesis-associated signaling and morphogenesis in the rice blast fungus.
Collapse
Affiliation(s)
- Poonguzhali Selvaraj
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Qing Shen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Fan Yang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|