1
|
Liu Y, Chen H, Liu C, Wang R, Zhang Z. Effects and mechanisms of reclaimed water irrigation and tillage treatment on the propagation of antibiotic resistome in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178935. [PMID: 39987826 DOI: 10.1016/j.scitotenv.2025.178935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Reclaimed water irrigation can alleviate water resource pressure, while soil tillage is a common agricultural practice to increase crop yield. However, both of these practices may lead to the propagation of antibiotic resistance genes (ARGs). To date, there has been little research that has systematically investigated this issue. To fill this gap, this study has conducted microcosmic experiments to reveal the effect and mechanisms of using reclaimed water for irrigation and tillage treatment on the propagation of ARGs in soil, by utilizing high-throughput sequencing-based metagenomic assembly analysis approaches. The results showed irrigation significantly enhanced the abundance and diversity of ARGs in the soil. Compared to the initial soil, the total coverage of ARGs in the irrigated soil increased by 14.0 % (without tillage) to 22.7 % (with tillage). In particular, tillage treatment facilitated the enhancement of antibiotic resistome in the environment. The analysis with null model suggested soil tillage enabled ecological drift (52.4 %-66.7 %) to dominate the ARGs. Quantitative source apportionment using a machine learning-based microbial source tracking tool showed the irrigation exhibited considerable effect on the ARGs in the soil, with an average contribution of about 13.3 %-17.0 %. Network analysis revealed a close association of ARGs with mobile genetic elements (MGEs) and virulence factors, indicating potential dissemination risk of ARGs in the soil. Microbial communities, MGEs, and environmental factors collectively shaped the ARGs in the environment. Relatively, soil tillage enhanced the complex and stability of network structure and led to the colonization of ARGs in modular manner, resulting in higher contribution of ecological drift to soil resistome. Findings of this study will contribute to the management of resistome risks in reclaimed water utilization and agricultural activities for protecting soil ecosystem safety and public health.
Collapse
Affiliation(s)
- Yiyi Liu
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Chang Liu
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Rui Wang
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Zhirou Zhang
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
2
|
Fady PE, Richardson AK, Barron LP, Mason AJ, Volpe R, Barr MR. Biochar filtration of drug-resistant bacteria and active pharmaceutical ingredients to combat antimicrobial resistance. Sci Rep 2025; 15:1256. [PMID: 39779747 PMCID: PMC11711200 DOI: 10.1038/s41598-024-83825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR. Creative solutions are required to mitigate environmental AMR, while taking into consideration other aspects of the planetary "Triple Crisis" of pollution, biodiversity loss, and climate change. Waste lignocellulosic biomass (LCB), a byproduct of agriculture and forestry, is the largest stream of non-edible biomass globally. Through pyrolysis, waste LCB can be converted into biochars, which have excellent attributes for adsorption of pollutants-though no studies have yet reliably correlated production conditions with efficacy, nor considered adsorption of human pathogens. By leveraging a bespoke pyrolysis reactor with precisely controlled parameters, we show that production conditions substantially affect sequestration of clinical bacterial isolates, removing up to 94% of Pseudomonas aeruginosa RP73 and 85% of Staphylococcus aureus EMRSA-15. In addition, we show that chars produced at higher peak pyrolysis temperatures (450 °C) can remove up to 88% of the antibiotic clarithromycin from wastewater, as well as significant proportions of many other APIs with varied physicochemical characteristics. These findings provide a first-in-kind insight into how production conditions affect the ability of biochars to mitigate environmental AMR.
Collapse
Affiliation(s)
- Paul-Enguerrand Fady
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
- Biosecurity Policy Unit, The Centre for Long-Term Resilience, 71-75 Shelton Street, London, WC2H 9JQ, UK
| | - Alexandra K Richardson
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK
- Department of Analytical, Environmental & Forensic Sciences, Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Leon P Barron
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK
- Department of Analytical, Environmental & Forensic Sciences, Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Roberto Volpe
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Meredith R Barr
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
- Division of Chemical & Energy Engineering, School of Engineering, London South Bank University, 103 Borough Rd, London, SE1 0AA, UK.
- Department of Aeronautics, Faculty of Engineering, Imperial College London, Exhibition Rd, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
McCorison CB, Kim T, Donato JJ, LaPara TM. Proximity-Ligation Metagenomic Sequence Analysis Reveals That the Antibiotic Resistome Makes Significant Transitions During Municipal Wastewater Treatment. Environ Microbiol 2025; 27:e70036. [PMID: 39797441 PMCID: PMC11724201 DOI: 10.1111/1462-2920.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05). In contrast, these results were statistically similar when comparing the ARGs in the pool of MAGs, suggesting that proximity-ligation metagenomic sequencing is particularly useful for pairing ARGs with their hosts but less adept at discerning quantitative differences in ARG types and relative abundances. For example, numerous MAGs of the genera Acinetobacter, Enterococcus, Klebsiella and Pseudomonas were identified in the untreated wastewater, many of which harboured plasmid-borne and/or chromosomal-borne ARGs; none of these MAGs, however, were detected in the activated sludge bioreactors or anaerobic digesters. In conclusion, this research demonstrates that the antibiotic resistome undergoes significant transitions in both the relative abundance and the host organisms during the municipal wastewater treatment process.
Collapse
Affiliation(s)
| | - Taegyu Kim
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Justin J. Donato
- Department of ChemistryUniversity of St. ThomasSt. PaulMinnesotaUSA
| | - Timothy M. LaPara
- Department of Civil, Environmental, and Geo‐EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
4
|
Yan X, Yang M, Ayala JE, Li L, Zhou Y, Hou R, Liu S, Li Y, Yue C, Zhang D, Su X. Antimicrobial resistance, virulence genes profiles and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae strains from captive giant pandas (Ailuropoda melanoleuca). BMC Vet Res 2024; 20:532. [PMID: 39609820 PMCID: PMC11603722 DOI: 10.1186/s12917-024-04377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) increases the difficulty of clinical treatment of giant pandas. This study aimed to investigate the antibiotic susceptibility, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence genes, and molecular epidemiology of CRKP strains isolated from giant pandas. A total of 187 nonduplicated Klebsiella pneumoniae (KP) isolates were collected from fresh feces of captive giant pandas at the Chengdu Research Base of Giant Panda Breeding. Then CRKP were isolated and identified through carbapenase Carba NP assay. Subsequently, the antimicrobial susceptibility testing and antibiotic resistance genes of CRKP isolates were studied by disk diffusion (K-B) and HT-qPCR, respectively. Then both the MGEs and virulence genes of CRKP isolates were analyzed by PCR. In addition, molecular epidemiology was analyzed among the CRKP strains using pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). RESULTS Eight strains of CRKP (4.5%) were isolated and identified among the 187 KP strains, and seven of eight CRKP strains both exhibited resistance to imipenem, while one strain showed resistance to meropenem, and one demonstrated multiple resistance; eight CRKP strains carried a large amount of ARGs, among which ampC/blaDHA, blaSHV-01, blaSHV-02, tetB-01, tetB-02, tetC-01, and tetC-02 were the most abundant. The MGEs analysis revealed the presence of intI1 in all strains, while the detection rates of other MGEs varied, and strain 24 exhibited the highest diversity of MGE species. Seven virulence genes, including wabG, uge, ycf, entB, kpn, alls, and wcaG, showed positive results with different proportions across the strains. In addition, PFGE patterns indicated a high level of genetic diversity among the CRKP strains. MLST analysis classified the strains into different sequence types (STs). CONCLUSIONS This study highlighted the diversity of CRKP strains isolated from giant panda feces, which exhibited varying levels of antibiotic resistance along with multiple ARGs, MGEs and virulence genes present. These findings emphasized the importance of monitoring and researching antibiotic resistance within wildlife populations to protect the health status of these conservation dependent animals.
Collapse
Affiliation(s)
- Xia Yan
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Mei Yang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - James Edward Ayala
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Lin Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Yang Zhou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Yunli Li
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Dongsheng Zhang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
| | - Xiaoyan Su
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China.
| |
Collapse
|
5
|
Stanton CR, Petrovski S, Batinovic S. Isolation of a PRD1-like phage uncovers the carriage of three putative conjugative plasmids in clinical Burkholderia contaminans. Res Microbiol 2024; 175:104202. [PMID: 38582389 DOI: 10.1016/j.resmic.2024.104202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
The Burkholderia cepacia complex (Bcc) is a group of increasingly multi-drug resistant opportunistic bacteria. This resistance is driven through a combination of intrinsic factors and the carriage of a broad range of conjugative plasmids harbouring virulence determinants. Therefore, novel treatments are required to treat and prevent further spread of these virulence determinants. In the search for phages infective for clinical Bcc isolates, CSP1 phage, a PRD1-like phage was isolated. CSP1 phage was found to require pilus machinery commonly encoded on conjugative plasmids to facilitate infection of Gram-negative bacteria genera including Escherichia and Pseudomonas. Whole genome sequencing and characterisation of one of the clinical Burkholderia isolates revealed it to be Burkholderia contaminans. B. contaminans 5080 was found to contain a genome of over 8 Mbp encoding multiple intrinsic resistance factors, such as efflux pump systems, but more interestingly, carried three novel plasmids encoding multiple putative virulence factors for increased host fitness, including antimicrobial resistance. Even though PRD1-like phages are broad host range, their use in novel antimicrobial treatments shouldn't be dismissed, as the dissemination potential of conjugative plasmids is extensive. Continued survey of clinical bacterial strains is also key to understanding the spread of antimicrobial resistance determinants and plasmid evolution.
Collapse
Affiliation(s)
- Cassandra R Stanton
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia.
| | - Steven Batinovic
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Victoria, Australia; Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| |
Collapse
|
6
|
Parra B, Lutz VT, Brøndsted L, Carmona JL, Palomo A, Nesme J, Van Hung Le V, Smets BF, Dechesne A. Characterization and Abundance of Plasmid-Dependent Alphatectivirus Bacteriophages. MICROBIAL ECOLOGY 2024; 87:85. [PMID: 38935220 PMCID: PMC11211187 DOI: 10.1007/s00248-024-02401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Antimicrobial resistance (AMR) is a major public health threat, exacerbated by the ability of bacteria to rapidly disseminate antimicrobial resistance genes (ARG). Since conjugative plasmids of the incompatibility group P (IncP) are ubiquitous mobile genetic elements that often carry ARG and are broad-host-range, they are important targets to prevent the dissemination of AMR. Plasmid-dependent phages infect plasmid-carrying bacteria by recognizing components of the conjugative secretion system as receptors. We sought to isolate plasmid-dependent phages from wastewater using an avirulent strain of Salmonella enterica carrying the conjugative IncP plasmid pKJK5. Irrespective of the site, we only obtained bacteriophages belonging to the genus Alphatectivirus. Eleven isolates were sequenced, their genomes analyzed, and their host range established using S. enterica, Escherichia coli, and Pseudomonas putida carrying diverse conjugative plasmids. We confirmed that Alphatectivirus are abundant in domestic and hospital wastewater using culture-dependent and culture-independent approaches. However, these results are not consistent with their low or undetectable occurrence in metagenomes. Therefore, overall, our results emphasize the importance of performing phage isolation to uncover diversity, especially considering the potential of plasmid-dependent phages to reduce the spread of ARG carried by conjugative plasmids, and to help combat the AMR crisis.
Collapse
Affiliation(s)
- Boris Parra
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Laboratorio de Investigación de Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Concepción, Chile
| | - Veronika T Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Javiera L Carmona
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alejandro Palomo
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vuong Van Hung Le
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barth F Smets
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofs Plads, Building 221, Kgs. Lyngby, 2800, Denmark.
| |
Collapse
|
7
|
Cai M, Song K, Wang R, Wang S, Chen H, Wang H. Tracking intra-species and inter-genus transmission of KPC through global plasmids mining. Cell Rep 2024; 43:114351. [PMID: 38923465 DOI: 10.1016/j.celrep.2024.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) poses a major public health risk. Understanding its transmission dynamics requires examining the epidemiological features of related plasmids. Our study compiled 15,660 blaKPC-positive isolates globally over the past two decades. We found extensive diversity in the genetic background of KPC, with 23 Tn4401-related and 341 non-Tn4401 variants across 163 plasmid types in 14 genera. Intra-K. pneumoniae and cross-genus KPC transmission patterns varied across four distinct periods. In the initial periods, plasmids with narrow host ranges gradually established a survival advantage. In later periods, broad-host-range plasmids became crucial for cross-genera transmission. In total, 61 intra-K. pneumoniae and 66 cross-genus transmission units have been detected. Furthermore, phylogenetic reconstruction dated the origin of KPC transmission back to 1991 and revealed frequent exchanges across countries. Our research highlights the frequent and transient spread events of KPC mediated by plasmids across multiple genera and offers theoretical support for high-risk plasmid monitoring.
Collapse
Affiliation(s)
- Meng Cai
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Kaiwen Song
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China.
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
8
|
Wang Y, Zhang S, Li L, Zhang Q, Yang L, Yang K, Liu Y, Zhu H, Lai B, Wu J, Hua L. Airborne ARGs/MGEs from two sewage types during the COVID-21: Population, microbe interactions, cytotoxicity, formation mechanism, and dispersion. WATER RESEARCH 2024; 254:121368. [PMID: 38417267 DOI: 10.1016/j.watres.2024.121368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
During the COVID-2021 epidemic, a large number of antibiotics were used for clinical treatment in hospitals or daily prevention. Sewage from hospital sewage treatment centers (HSTC) and wastewater treatment plants (WWTP) produced a lot of antibiotic-resistance genes/mobile genetic elements (ARGs/MGEs). In this study, the sewage and bioaerosol in the biochemical tank (BT) of an HSTC and a WWTP were sampled throughout the year. The results showed that the average absolute abundance of sewage in BT of WWTP (BTW-W) was higher than sewage in BT of HSTC (BTW-H). Sewage was an important source of microorganisms and ARGs/MGEs in the air of BT. Microorganisms and MGEs were the factors affecting the differences in ARGs/MGEs. Cytotoxicity experiment proved that the cytotoxicity changed from Grade III to Grade IV with the increase in drug-resistant Escherichia coli concentration. According to the formation mechanism formula, the average generation rate of ARGs/MGEs in BT of HSTC was lower than that in WWTP. The diffusion range of ARGs/MGEs of HSTC was larger than that of WWTP. According to the above results, this study found that when people were far away from BT, the health risk of HSTC caused by the diffusion of bioaerosol was higher than WWTP; When people were close to BT, the health risk of WWTP was higher than HSTC due to the aeration of BT. This study provided a basis for public protection of ARGs. In the future, the elimination of airborne ARGs and crowd protection can be further studied in detail.
Collapse
Affiliation(s)
- Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China; Lancaster Environment Centre, Lancaster University, United Kingdom; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Song Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Qiao Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Liying Yang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Kai Yang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yang Liu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Haoran Zhu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Bisheng Lai
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jian Wu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Linlin Hua
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China; Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, PR China.
| |
Collapse
|
9
|
Daw Elbait G, Daou M, Abuoudah M, Elmekawy A, Hasan SW, Everett DB, Alsafar H, Henschel A, Yousef AF. Comparison of qPCR and metagenomic sequencing methods for quantifying antibiotic resistance genes in wastewater. PLoS One 2024; 19:e0298325. [PMID: 38578803 PMCID: PMC10997137 DOI: 10.1371/journal.pone.0298325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/18/2024] [Indexed: 04/07/2024] Open
Abstract
Surveillance methods of circulating antibiotic resistance genes (ARGs) are of utmost importance in order to tackle what has been described as one of the greatest threats to humanity in the 21st century. In order to be effective, these methods have to be accurate, quickly deployable, and scalable. In this study, we compare metagenomic shotgun sequencing (TruSeq DNA sequencing) of wastewater samples with a state-of-the-art PCR-based method (Resistomap HT-qPCR) on four wastewater samples that were taken from hospital, industrial, urban and rural areas. ARGs that confer resistance to 11 antibiotic classes have been identified in these wastewater samples using both methods, with the most abundant observed classes of ARGs conferring resistance to aminoglycoside, multidrug-resistance (MDR), macrolide-lincosamide-streptogramin B (MLSB), tetracycline and beta-lactams. In comparing the methods, we observed a strong correlation of relative abundance of ARGs obtained by the two tested methods for the majority of antibiotic classes. Finally, we investigated the source of discrepancies in the results obtained by the two methods. This analysis revealed that false negatives were more likely to occur in qPCR due to mutated primer target sites, whereas ARGs with incomplete or low coverage were not detected by the sequencing method due to the parameters set in the bioinformatics pipeline. Indeed, despite the good correlation between the methods, each has its advantages and disadvantages which are also discussed here. By using both methods together, a more robust ARG surveillance program can be established. Overall, the work described here can aid wastewater treatment plants that plan on implementing an ARG surveillance program.
Collapse
Affiliation(s)
- Gihan Daw Elbait
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mariane Daou
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Miral Abuoudah
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed Elmekawy
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dean B. Everett
- Department of Pathology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Emirates Bio-research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Andreas Henschel
- Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed F. Yousef
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Shintani M, Vestergaard G, Milaković M, Kublik S, Smalla K, Schloter M, Udiković-Kolić N. Integrons, transposons and IS elements promote diversification of multidrug resistance plasmids and adaptation of their hosts to antibiotic pollutants from pharmaceutical companies. Environ Microbiol 2023; 25:3035-3051. [PMID: 37655671 DOI: 10.1111/1462-2920.16481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | | | - Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Croatia
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Zagreb, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Zagreb, Germany
| | | |
Collapse
|
11
|
Xu L, Canales M, Zhou Q, Karu K, Zhou X, Su J, Campos LC, Ciric L. Antibiotic resistance genes and the association with bacterial community in biofilms occurring during the drinking water granular activated carbon (GAC) sandwich biofiltration. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132511. [PMID: 37708648 DOI: 10.1016/j.jhazmat.2023.132511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The granular activated carbon (GAC) sandwich modification to slow sand filtration could be considered as a promising technology for improved drinking water quality. Biofilms developed on sand and GAC surfaces are expected to show a functional diversity during the biofiltration. Bench-scale GAC sandwich biofilters were set-up and run continuously with and without antibiotic exposure. Surface sand (the schmutzdecke) and GAC biofilms were sampled and subject to high-throughput qPCR for antibiotic resistance gene (ARG) analysis and 16 S rRNA amplicon sequencing. Similar diversity of ARG profile was found in both types of biofilms, suggesting that all ARG categories decreased in richness along the filter bed. In general, surface sand biofilm remained the most active layer with regards to the richness and abundance of ARGs, where GAC biofilms showed slightly lower ARG risks. Network analysis suggested that 10 taxonomic genera were implicated as possible ARG hosts, among which Nitrospira, Methyloversatilis and Methylotenera showed the highest correlation. Overall, this study was the first attempt to consider the whole structure of the GAC sandwich biofilter and results from this study could help to further understand the persistence of ARGs and their association with the microbial community in drinking water biofiltration system.
Collapse
Affiliation(s)
- Like Xu
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK
| | - Melisa Canales
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK
| | - Qizhi Zhou
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, University College London, London WC1E 6BT, UK
| | - Xinyuan Zhou
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jianqiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
12
|
Nairat LL, Abahri NA, Hamdan YA, Abdel-Khaliq RT, Odeh SM, Abutaha S, Al-Jabi SW, Koni AA, Abushanab AS, Zyoud SH. Assessment of practices and awareness regarding the disposal of unwanted pharmaceutical products among community pharmacies: a cross-sectional study in Palestine. BMC Health Serv Res 2023; 23:1035. [PMID: 37759203 PMCID: PMC10537554 DOI: 10.1186/s12913-023-09888-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The improper disposal of pharmaceutical preparations substantially threatens human health and environmental safety. Pharmacists are responsible for properly disposing of unwanted medications and educating patients about how to do so themselves. This study aimed to assess community pharmacists' knowledge, determine their views on how to dispose of unwanted pharmaceuticals, and assess the extent to which they realize that it is their responsibility to guide patients toward the safe disposal of expired medications. METHODS A descriptive cross-sectional study was conducted between December 2021 and April 2022 among 400 practicing pharmacists who were chosen to participate by random cluster sampling. Community pharmacists' practices, awareness, and beliefs about disposing of unused drugs were evaluated. The Statistical Package for Social Sciences (IBM-SPSS) version 21 was used for data entry and analysis. RESULTS Of 400 pharmacists, 348 stated that they did not participate in courses on the safe disposal of unwanted medications. Disposal of drugs in the garbage, an unsafe method, was very frequently recommended by pharmacists to patients, especially regarding inhalers, antibiotics, hormonal drugs, and solid and semisolid drugs. However, many pharmacists advised patients to return their hormonal, category B, and category C drugs to the pharmacy. A total of 61.3% of pharmacists agreed and 26% strongly agreed that unsafe disposal of drugs negatively affects the environment. A total of 54.3% of the participants agreed that improper disposal of antibiotics might be a reason for increased antimicrobial resistance, and 54.5% of them agreed that improper disposal of hormonal drugs might contribute to the development of certain cancers. A total of 80.3% of the participants perceived that most unwanted drugs in pharmacies were those returned from patients. A total of 97.3% of the participants supported establishing a drug disposal system, with 77.5% choosing to have the district health board responsible for funding this system. A total of 48.5% of the participants indicated that a lack of education and awareness on the issue of getting rid of unused drugs constitutes a challenge to the safe disposal of medicines, and 66% of them said that a lack of law enforcement constitutes another challenge. A total of 95.5% of the participants agreed or strongly agreed that good training for health sector workers and organizing workshops to develop knowledge on this subject would improve practices. A total of 93.3% supported distributing educational brochures, and 92.8% supported placing special containers in every pharmacy to collect unwanted drugs. CONCLUSIONS Most pharmacists in our study returned drugs to manufacturing companies and stores, and few followed the correct methods of incineration and return of drugs to the Ministry of Health. Current data emphasize the issue of improper disposal of medicine in Palestine and the need for improved education among healthcare workers.
Collapse
Affiliation(s)
- Lamees L Nairat
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Noor A Abahri
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Yosr A Hamdan
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Razan T Abdel-Khaliq
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Sawsan M Odeh
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Shatha Abutaha
- Department of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Samah W Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
| | - Amer A Koni
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine
- Division of Clinical Pharmacy, Department of Hematology and Oncology, An-Najah National University Hospital, Nablus, 44839, Palestine
| | - Amani S Abushanab
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
| | - Sa'ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
- Clinical Research Center, An-Najah National University Hospital, Nablus, 44839, Palestine.
| |
Collapse
|
13
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
14
|
Gill SP, Snelling WJ, Dooley JSG, Ternan NG, Banat IM, Arnscheidt J, Hunter WR. Biological and synthetic surfactant exposure increases antimicrobial gene occurrence in a freshwater mixed microbial biofilm environment. Microbiologyopen 2023; 12:e1351. [PMID: 37186226 PMCID: PMC10022493 DOI: 10.1002/mbo3.1351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Aquatic habitats are particularly susceptible to chemical pollution, such as antimicrobials, from domestic, agricultural, and industrial sources. This has led to the rapid increase of antimicrobial resistance (AMR) gene prevalence. Alternate approaches to counteract pathogenic bacteria are in development including synthetic and biological surfactants such as sodium dodecyl sulfate (SDS) and rhamnolipids. In the aquatic environment, these surfactants may be present as pollutants with the potential to affect biofilm formation and AMR gene occurrence. We tested the effects of rhamnolipid and SDS on aquatic biofilms in a freshwater stream in Northern Ireland. We grew biofilms on contaminant exposure substrates deployed within the stream over 4 weeks. We then extracted DNA and carried out shotgun sequencing using a MinION portable sequencer to determine microbial community composition, with 16S rRNA analyses (64,678 classifiable reads identified), and AMR gene occurrence (81 instances of AMR genes over 9 AMR gene classes) through a metagenomic analysis. There were no significant changes in community composition within all systems; however, biofilm exposed to rhamnolipid had a greater number of unique taxa as compared to SDS treatments and controls. AMR gene prevalence was higher in surfactant-treated biofilms, although not significant, with biofilm exposed to rhamnolipids having the highest presence of AMR genes and classes compared to the control or SDS treatments. Our results suggest that the presence of rhamnolipid encourages an increase in the prevalence of AMR genes in biofilms produced in mixed-use water bodies.
Collapse
Affiliation(s)
- Stephanie P. Gill
- Department of Geography and Environmental StudiesUlster University ColeraineLondonderryNorthern Ireland
| | - William J. Snelling
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - James S. G. Dooley
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Nigel G. Ternan
- Nutrition Innovation Centre for Food and Health (NICHE)Ulster University ColeraineLondonderryNorthern Ireland
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Ibrahim M. Banat
- School of Biomedical SciencesUlster University ColeraineLondonderryNorthern Ireland
| | - Joerg Arnscheidt
- Department of Geography and Environmental StudiesUlster University ColeraineLondonderryNorthern Ireland
| | - William R. Hunter
- Fisheries and Aquatic Ecosystems BranchAgri‐Food and Biosciences InstituteBelfastNorthern Ireland
| |
Collapse
|
15
|
Fate of Horizontal-Gene-Transfer Markers and Beta-Lactamase Genes during Thermophilic Composting of Human Excreta. Microorganisms 2023; 11:microorganisms11020308. [PMID: 36838273 PMCID: PMC9958827 DOI: 10.3390/microorganisms11020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Thermophilic composting is a suitable treatment for the recycling of organic wastes for agriculture. However, using human excreta as feedstock for composting raises concerns about antibiotic resistances. We analyzed samples from the start and end of a thermophilic composting trial of human excreta, together with green cuttings and straw, with and without biochar. Beta-lactamase genes blaCTX-M, blaIMP, and blaTEM conferring resistance to broad-spectrum beta-lactam antibiotics, as well as horizontal gene transfer marker genes, intI1 and korB, were quantified using qPCR. We found low concentrations of the beta-lactamase genes in all samples, with non-significant mean decreases in blaCTX-M and blaTEM copy numbers and a mean increase in blaIMP copy numbers. The decrease in both intI1 and korB genes from start to end of composting indicated that thermophilic composting can decrease the horizontal spread of resistance genes. Thus, thermophilic composting can be a suitable treatment for the recycling of human excreta.
Collapse
|
16
|
Basiry D, Entezari Heravi N, Uluseker C, Kaster KM, Kommedal R, Pala-Ozkok I. The effect of disinfectants and antiseptics on co- and cross-selection of resistance to antibiotics in aquatic environments and wastewater treatment plants. Front Microbiol 2022; 13:1050558. [PMID: 36583052 PMCID: PMC9793094 DOI: 10.3389/fmicb.2022.1050558] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The outbreak of the SARS-CoV-2 pandemic led to increased use of disinfectants and antiseptics (DAs), resulting in higher concentrations of these compounds in wastewaters, wastewater treatment plant (WWTP) effluents and receiving water bodies. Their constant presence in water bodies may lead to development and acquisition of resistance against the DAs. In addition, they may also promote antibiotic resistance (AR) due to cross- and co-selection of AR among bacteria that are exposed to the DAs, which is a highly important issue with regards to human and environmental health. This review addresses this issue and provides an overview of DAs structure together with their modes of action against microorganisms. Relevant examples of the most effective treatment techniques to increase the DAs removal efficiency from wastewater are discussed. Moreover, insight on the resistance mechanisms to DAs and the mechanism of DAs enhancement of cross- and co-selection of ARs are presented. Furthermore, this review discusses the impact of DAs on resistance against antibiotics, the occurrence of DAs in aquatic systems, and DA removal mechanisms in WWTPs, which in principle serve as the final barrier before releasing these compounds into the receiving environment. By recognition of important research gaps, research needs to determine the impact of the majority of DAs in WWTPs and the consequences of their presence and spread of antibiotic resistance were identified.
Collapse
Affiliation(s)
- Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Nooshin Entezari Heravi
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Cansu Uluseker
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ilke Pala-Ozkok
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
17
|
Lo HY, Martínez-Lavanchy PM, Goris T, Heider J, Boll M, Kaster AK, Müller JA. IncP-type plasmids carrying genes for antibiotic resistance or for aromatic compound degradation are prevalent in sequenced Aromatoleum and Thauera strains. Environ Microbiol 2022; 24:6411-6425. [PMID: 36306376 DOI: 10.1111/1462-2920.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/25/2022] [Indexed: 01/12/2023]
Abstract
Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172T , a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172T for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria and provide novel insights into the in situ host profile of these plasmids.
Collapse
Affiliation(s)
- Hao-Yu Lo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Paula M Martínez-Lavanchy
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tobias Goris
- Department of Molecular Toxicology, Intestinal Microbiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Johann Heider
- Department of Biology, Philipps-Universität Marburg, Germany
| | - Matthias Boll
- Institute of Biology II, Albert-Ludwigs-Universität Freiburg, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Huang Y, Wang F, Li Y, Yue C, Zhang Y, Zhou P, Mu J. Influence of anthropogenic disturbances on antibiotic resistance gene distributions along the Minjiang River in Southeast China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116154. [PMID: 36095989 DOI: 10.1016/j.jenvman.2022.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
River-reservoir systems have become ubiquitous among modern global aquatic environments due to the widespread construction of dams. However, little is known of antibiotic resistance gene (ARG) distributions in reservoir-river systems experiencing varying degrees of anthropogenic impacts. Here, the diversity, abundance, and spatial distribution of ARGs were comprehensively characterized along the main stem of the Minjiang River, a typical subtropic reservoir-river system in Southeast China using high-throughput quantitative PCR. A total of 252 ARG subtypes were detected from twelve sampling sites that were dominated by aac(3)-Via, followed by czcA, blaTEM, and sul1. Urban river waters (sites S9-S12) harbored more diverse ARGs than did the reservoir waters (sites S1-S7), indicating more serious antibiotic resistance pollution in areas with larger population densities. Dam construction could reduce the richness and absolute abundance of ARGs from upstream (site S7) to downstream (site S8). Urban river waters also harbored a higher proportion of mobile genetic elements (MGEs), suggesting that intensive human activities may promote ARG horizontal gene transfers. The mean relative abundance of Proteobacteria that could promote antibiotic resistance within microbial communities was also highest in urban river waters. Variance partitioning analysis indicated that MGEs and bacterial communities could explain 67.33%, 44.7%, and 90.29% of variation in selected ARGs for the entire watershed, aquaculture waters, and urban river waters, respectively. These results further suggest that urban rivers are ideal media for the acquisition and spread of ARGs. These findings provide new insights into the occurrence and potential mechanisms determining the distributions of ARGs in a reservoir-river system experiencing various anthropogenic disturbances at the watershed scale.
Collapse
Affiliation(s)
- Yaling Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Feipeng Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yue Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China; College Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Yue
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China; College Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuting Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Pei Zhou
- Xiamen Urban Planning & Design Institute Co, LTD, Xiamen, 361012, China
| | - Jingli Mu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
19
|
Tohmaz M, Askari Badouei M, Kalateh Rahmani H, Hashemi Tabar G. Antimicrobial resistance, virulence associated genes and phylogenetic background versus plasmid replicon types: the possible associations in avian pathogenic Escherichia coli (APEC). BMC Vet Res 2022; 18:421. [PMID: 36447231 PMCID: PMC9710092 DOI: 10.1186/s12917-022-03496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) in bacterial isolates from food producing animals not only challenges the preventive and therapeutic strategies in veterinary medicine, but also threatens public health. Genetic elements placed on both chromosome and plasmids could be involved in AMR. In the present study, the associations of genomic backbone and plasmids with AMR were evaluated. We also provided some primary evidences that which genetic lineages potentially host certain groups of plasmids. RESULTS In the current study, 72 avian pathogenic Escherichia coli (APEC) strains were examined. Isolates resistant to tetracycline and trimethoprim-sulfamethoxazole (87.5%; each), and harboring blaTEM (61.1%) were dominant. Moreover, phylogroup D was the most prevalent phylogroup in total (23.6%), and among multidrug-resistant (MDR) isolates (14/63). The most prevalent Inc-types were also defined as follows: IncP (65.2%), IncI1 (58.3%), and IncF group (54.1%). Significant associations among phylogroups and AMR were observed such as group C to neomycin (p = 0.002), gentamicin (p = 0.017) and florfenicol (p = 0.036). Furthermore, group D was associated with blaCTX. In terms of associations among Inc-types and AMR, resistance to aminoglycoside antibiotics was considerably linked with IncP (p = 0.012), IncI1 (p = 0.038) and IncA/C (p = 0.005). The blaTEM and blaCTX genes presence were connected with IncI1 (p = 0.003) and IncFIC (p = 0.013), respectively. It was also shown that members of the D phylogroup frequently occured in replicon types FIC (8/20), P (13/47), I1 (13/42), HI2 (5/14) and L/M (3/3). CONCLUSIONS Accorging to the results, it seems that group D strains have a great potential to host a variety of plasmids (Inc-types) carrying different AMR genes. Thus, based on the results of the current study, phyogroup D could be a potential challenge in dealing with AMR in poultry. There were more strong correlations among Inc-types and AMR compared to phylotypes and AMR. It is suggested that in epidemiological studies on AMR both genomic backbone and major plasmid types should be investigated.
Collapse
Affiliation(s)
- Maad Tohmaz
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Askari Badouei
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamideh Kalateh Rahmani
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemi Tabar
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
20
|
Zhai H, Guo Y, Zhang L, Miao Y, Wang J. Presence of bromide and iodide promotes the horizontal transfer of antibiotic resistance genes during chlorination: A preliminary study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157250. [PMID: 35817106 DOI: 10.1016/j.scitotenv.2022.157250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Chlorination was reported to have a great potential to increase horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), which poses a great threat to global human health. Bromide (Br-) and iodide (I-) ions are widely spread ions in water and wastewater. In chlorination, Br- and I- can be oxidized to active bromine and iodine species. The influence of the co-existing different halogen oxidants (chlorine + bromine or iodine species) on HGT of ARGs were rarely investigated. In this study, the conjugative transfer of ARGs between a donor strain E. coli K12 and a recipient strain E. coli HB101 was investigated in chlorination without/with the presence of Br- or I-. Immediately after the addition of sodium hypochlorite, 53-88 % of the dosed chlorine was rapidly consumed, 10 %-42 % fast transformed into organic combined chloramines, and only low levels of free chlorine (0.02-0.8 mg/L as Cl2) left in the diluted cultural medium. Conjugative transfer mediated by the RP4 plasmid was not significantly enhanced in chlorination without the presence of Br- or I-. With the presence of Br- (0.5-5.0 mg/L) or I- (0.05-0.5 mg/L) in chlorination, the co-existing free halogen oxidants and their organic combined ones up-regulated the mRNA expression of the oxidative stress-regulatory gene (rpoS), outer membrane protein gene (ompC), and conjugation-relevant genes (trbBp and trfAp), and caused more damage to cell entirety. As a result, the co-existing reactive halogen oxidants enhanced the HGT of ARGs probably via conjugative transfer and transformation. This study showed that the presence of Br- and I- of common levels in aquatic environment promoted HGT of ARGs in chlorination, thus accelerating the transmission and prevalence of ARGs.
Collapse
Affiliation(s)
- Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China.
| | - Yujing Guo
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China
| | - Liangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China
| | - Yu Miao
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China
| | - Jingfeng Wang
- Tianjin Institute of Environmental & Operational Medicine, Dali Road 1, Tianjin 300050, PR China
| |
Collapse
|
21
|
Lu J, Yu Z, Ding P, Guo J. Triclosan Promotes Conjugative Transfer of Antibiotic Resistance Genes to Opportunistic Pathogens in Environmental Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15108-15119. [PMID: 36251935 DOI: 10.1021/acs.est.2c05537] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although triclosan, as a widely used antiseptic chemical, is known to promote the transmission of antibiotic resistance to diverse hosts in pure culture, it is still unclear whether and how triclosan could affect the transmission of broad-host-range plasmids among complex microbial communities. Here, bacterial culturing, fluorescence-based cell sorting, and high-throughput 16S rRNA gene amplicon sequencing were combined to investigate contributions of triclosan on the transfer rate and range of an IncP-type plasmid from a proteobacterial donor to an activated sludge microbiome. Our results demonstrate that triclosan significantly enhances the conjugative transfer of the RP4 plasmid among activated sludge communities at environmentally relevant concentrations. High-throughput 16S rRNA gene sequencing on sorted transconjugants demonstrates that triclosan not only promoted the intergenera transfer but also the intragenera transfer of the RP4 plasmid among activated sludge communities. Moreover, triclosan mediated the transfer of the RP4 plasmid to opportunistic human pathogens, for example, Legionella spp. The mechanism of triclosan-mediated conjugative transfer is primarily associated with excessive oxidative stress, followed by increased membrane permeability and provoked SOS response. Our findings offer insights into the impacts of triclosan on the dissemination of antibiotic resistance in the aquatic environmental microbiome.
Collapse
Affiliation(s)
- Ji Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Pengbo Ding
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
22
|
Deciphering the Regulatory Circuits of RA3 Replication Module - Mechanisms of the Copy Number Control. Int J Mol Sci 2022; 23:ijms23179964. [PMID: 36077372 PMCID: PMC9455977 DOI: 10.3390/ijms23179964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
The RA3 plasmid, the archetype of IncU incompatibility group, represents a mosaic-modular genome of 45.9 kb. The replication module encompasses repA and repB (initiator) surrounded by two long repetitive sequences DR1 and DR2 of unknown function. Here, we mapped the origin of replication oriV to the 3′ end of repB and showed that oriV was activated by the transcription coming from orf02revp in the adjacent stability module. Using various in vivo and in vitro methods we demonstrated that the repB expression proceeded either from repBp located in the intergenic repA-repB region or from the upstream strong repAp that was autoregulated by RepA. Additionally, the repBp activity was modulated by the transcription from the overlapping, divergently oriented repXp. Both repXmRNA (antisense for repAmRNA) and its small polypeptide product, RepX, were strong incompatibility determinants. Hence, we showed that the sophisticated RA3 copy number control combined the multivalent regulation of repB expression, RepB titration by DR1, and transcriptional activation of oriV, dependent on the RA3 global regulatory network. Similarly organized replicons have been found in diverse bacterial species confirming the significance of these mechanisms in establishing the IncU plasmids in a broad spectrum of hosts.
Collapse
|
23
|
Steenbeek R, Timmers PHA, van der Linde D, Hup K, Hornstra L, Been F. Monitoring the exposure and emissions of antibiotic resistance: Co-occurrence of antibiotics and resistance genes in wastewater treatment plants. JOURNAL OF WATER AND HEALTH 2022; 20:1157-1170. [PMID: 36044186 DOI: 10.2166/wh.2022.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has brought new momentum to 'wastewater-based epidemiology' (WBE). This approach can be applied to monitor the levels of antibiotic-resistant genes (ARGs), which in terms are used to make inferences about the burden of antimicrobial resistance (AMR) in human settlements. However, there is still little information about temporal variability in ARG levels measured in wastewater streams and how these influence the inferences made about the occurrence of AMR in communities. The goal of this study was hence to gain insights into the variability in ARG levels measured in the influent and effluent of two wastewater treatment plants in The Netherlands and link these to levels of antibiotic residues measured in the same samples. Eleven antibiotics were detected, together with all selected ARGs, except for VanB. Among the measured antibiotics, significant positive correlations (p > 0.70) with the corresponding resistance genes and some non-corresponding ARGs were found. Mass loads varied up to a factor of 35 between days and in concomitance with rainfall. Adequate sampling schemes need to be designed to ensure that conclusions are drawn from valid and representative data. Additionally, we advocate for the use of mass loads to interpret levels of AMR measured in wastewater.
Collapse
|
24
|
Ma CY, Sugie Y, Yu Z, Okuno Y, Tanaka H, Ihara M. Occurrence of E. coli and antibiotic-resistant E. coli in the southern watershed of Lake Biwa, including in wastewater treatment plant effluent and inflow rivers. CHEMOSPHERE 2022; 301:134372. [PMID: 35314177 DOI: 10.1016/j.chemosphere.2022.134372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The emergence of antibiotic-resistant bacteria (ARB) and their antibiotic resistance genes (ARGs) poses a serious challenge to human, animal, and environmental health worldwide. ARB can spread into the environment via various sources and routes. In this study, we investigated the occurrence of antibiotic-resistant E. coli in the southern watershed of Lake Biwa. Two-year monitoring of antibiotic-resistant E. coli was carried out in the southern part of Lake Biwa and inflow rivers and at three WWTPs around the southern part of the lake. Concentrations of E. coli in waters that are resistant to ampicillin (AMP), cefotaxime (CTX), ceftazidime (CAZ), levofloxacin (LVFX), tetracycline (TC), and amikacin (AMK) were measured using the culture method. Of these antibiotic-resistant E. coli, AMP-resistant E. coli were found at the highest prevalence, followed by LVFX, CTX, CAZ, TC, and AMK-resistant in both the influent and effluent of WWTPs. These resistance patterns in wastewater are the same as those in clinical samples in Japan. The numbers of antibiotic-resistant E. coli decreased by around a factor of 1000 during the wastewater treatment processes, but the rates clearly increased, suggesting that selection for antibiotic resistance might occur during the wastewater treatment process. AMP-resistant and TC-resistant E. coli were also detected in Lake Biwa and inflow rivers, which suggests that antibiotic resistance might come from not only WWTPs but also livestock farms and small-scale wastewater treatment facilities located in the river catchment.
Collapse
Affiliation(s)
- Chih-Yu Ma
- Research Center for Environmental Quality Management, Kyoto University, Shiga, 520-0811, Japan; Louis Pasteur Center for Medical Research, Kyoto, 606-8225, Japan.
| | - Yoshinori Sugie
- Research Center for Environmental Quality Management, Kyoto University, Shiga, 520-0811, Japan
| | - Zaizhi Yu
- Research Center for Environmental Quality Management, Kyoto University, Shiga, 520-0811, Japan
| | - Yoshiki Okuno
- Research Center for Environmental Quality Management, Kyoto University, Shiga, 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Kyoto University, Shiga, 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Kyoto University, Shiga, 520-0811, Japan; Department of General Affairs, Monobe General Affairs Division, Kochi University, Kochi, 783-8502, Japan.
| |
Collapse
|
25
|
Mutuku C, Gazdag Z, Melegh S. Occurrence of antibiotics and bacterial resistance genes in wastewater: resistance mechanisms and antimicrobial resistance control approaches. World J Microbiol Biotechnol 2022; 38:152. [PMID: 35781751 PMCID: PMC9250919 DOI: 10.1007/s11274-022-03334-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial pharmaceuticals are classified as emergent micropollutants of concern, implying that even at low concentrations, long-term exposure to the environment can have significant eco-toxicological effects. There is a lack of a standardized regulatory framework governing the permissible antibiotic content for monitoring environmental water quality standards. Therefore, indiscriminate discharge of antimicrobials at potentially active concentrations into urban wastewater treatment facilities is rampant. Antimicrobials may exert selective pressure on bacteria, leading to resistance development and eventual health consequences. The emergence of clinically important multiple antibiotic-resistant bacteria in untreated hospital effluents and wastewater treatment plants (WWTPs) has been linked to the continuous exposure of bacteria to antimicrobials. The levels of environmental exposure to antibiotics and their correlation to the evolution and spread of resistant bacteria need to be elucidated to help in the formulation of mitigation measures. This review explores frequently detected antimicrobials in wastewater and gives a comprehensive coverage of bacterial resistance mechanisms to different antibiotic classes through the expression of a wide variety of antibiotic resistance genes either inherent and/or exchanged among bacteria or acquired from the reservoir of antibiotic resistance genes (ARGs) in wastewater systems. To complement the removal of antibiotics and ARGs from WWTPs, upscaling the implementation of prospective interventions such as vaccines, phage therapy, and natural compounds as alternatives to widespread antibiotic use provides a multifaceted approach to minimize the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Christopher Mutuku
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary.
| | - Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Ifjúság u. 6, Pecs, 7624, Hungary
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7622, Pecs, Hungary
| |
Collapse
|
26
|
Yu D, Ryu K, Zhi S, Otto SJG, Neumann NF. Naturalized Escherichia coli in Wastewater and the Co-evolution of Bacterial Resistance to Water Treatment and Antibiotics. Front Microbiol 2022; 13:810312. [PMID: 35707173 PMCID: PMC9189398 DOI: 10.3389/fmicb.2022.810312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance represents one of the most pressing concerns facing public health today. While the current antibiotic resistance crisis has been driven primarily by the anthropogenic overuse of antibiotics in human and animal health, recent efforts have revealed several important environmental dimensions underlying this public health issue. Antibiotic resistant (AR) microbes, AR genes, and antibiotics have all been found widespread in natural environments, reflecting the ancient origins of this phenomenon. In addition, modern societal advancements in sanitation engineering (i.e., sewage treatment) have also contributed to the dissemination of resistance, and concerningly, may also be promoting the evolution of resistance to water treatment. This is reflected in the recent characterization of naturalized wastewater strains of Escherichia coli-strains that appear to be adapted to live in wastewater (and meat packing plants). These strains carry a plethora of stress-resistance genes against common treatment processes, such as chlorination, heat, UV light, and advanced oxidation, mechanisms which potentially facilitate their survival during sewage treatment. These strains also carry an abundance of common antibiotic resistance genes, and evidence suggests that resistance to some antibiotics is linked to resistance to treatment (e.g., tetracycline resistance and chlorine resistance). As such, these naturalized E. coli populations may be co-evolving resistance against both antibiotics and water treatment. Recently, extraintestinal pathogenic strains of E. coli (ExPEC) have also been shown to exhibit phenotypic resistance to water treatment, seemingly associated with the presence of various shared genetic elements with naturalized wastewater E. coli. Consequently, some pathogenic microbes may also be evolving resistance to the two most important public health interventions for controlling infectious disease in modern society-antibiotic therapy and water treatment.
Collapse
Affiliation(s)
- Daniel Yu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| | - Kanghee Ryu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo, China
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Simon J. G. Otto
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
- Human-Environment-Animal Transdisciplinary Antimicrobial Resistance Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
- Healthy Environments, Centre for Health Communities, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Norman F. Neumann
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| |
Collapse
|
27
|
Regecová I, Výrostková J, Zigo F, Gregová G, Pipová M, Jevinová P, Becová J. Detection of Resistant and Enterotoxigenic Strains of Staphylococcus warneri Isolated from Food of Animal Origin. Foods 2022; 11:1496. [PMID: 35627066 PMCID: PMC9141015 DOI: 10.3390/foods11101496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
The topic of this work is the detection of antimicrobial resistance to Staphylococcus warneri strains and the genes encoding staphylococcal enterotoxins. It is considered a potential pathogen that can cause various-mostly inflammatory-diseases in immunosuppressed patients. The experimental part of the paper deals with the isolation of individual isolates from meat samples of Oryctolagus cuniculus, Oncorhynchus mykiss, Scomber scombrus, chicken thigh, beef thigh muscle, pork thigh muscle, and bryndza cheese. In total, 45 isolates were obtained and subjected to phenotypic (plasma coagulase activity, nuclease, pigment, hemolysis, lecithinase, and lipase production) and genotypic analyses to confirm the presence of the S. warneri species. The presence of genes encoding staphylococcal enterotoxins A (three isolates) and D (six isolates) was determined by PCR. Using the Miditech system, the minimum inhibitory concentration for various antibiotics or antibiotics combinations was determined, namely for ampicillin; ampicillin + sulbactam; oxacillin; cefoxitin; piperacillin + tazobactam; erythromycin; clindamycin; linezolid; rifampicin; gentamicin; teicoplanin; vancomycin; trimethoprim; chloramphenicol; tigecycline; moxifloxacin; ciprofloxacin; tetracycline; trimethoprim + sulfonamide; and nitrofurantoin. Resistance to ciprofloxacin and tetracycline was most common (73%). At the same time, out of a total of 45 isolates, 22% of the isolates were confirmed as multi-resistant. Isolates that showed phenotypic resistance to β-lactam antibiotics were subjected to mecA gene detection by PCR.
Collapse
Affiliation(s)
- Ivana Regecová
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (I.R.); (M.P.); (P.J.); (J.B.)
| | - Jana Výrostková
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (I.R.); (M.P.); (P.J.); (J.B.)
| | - František Zigo
- Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| | - Gabika Gregová
- Department of Public Veterinary Medicine and Animal Welfare, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| | - Monika Pipová
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (I.R.); (M.P.); (P.J.); (J.B.)
| | - Pavlina Jevinová
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (I.R.); (M.P.); (P.J.); (J.B.)
| | - Jana Becová
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (I.R.); (M.P.); (P.J.); (J.B.)
| |
Collapse
|
28
|
Selvaraj GK, Wang H, Zhang Y, Tian Z, Chai W, Lu H. Class 1 In-Tn5393c array contributed to antibiotic resistance of non-pathogenic Pseudoxanthomonas mexicana isolated from a wastewater bioreactor treating streptomycin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153537. [PMID: 35101502 DOI: 10.1016/j.scitotenv.2022.153537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The emergence of antibiotic resistance in retort to environmental pollutants during wastewater treatment still remains elusive. Here, we first to investigate the emergence of antibiotic resistance in an environmental non-pathogenic bacterium, Pseudoxanthomonas mexicana isolated from a lab-scale bioreactor treating wastewater containing streptomycin. The molecular mechanism of antibiotic resistance development was evaluated in its genomic, transcriptional, and proteomic levels. The streptomycin resistant (SR) strain showed strong resistance to streptomycin (MIC > 600 μg/mL) as well to sulfamethoxazole, ampicillin, and kanamycin (≥250 μg/mL). A 13.4 kb class-1-integron array consisting of a new arrangement of gene cassette (IS6100-sul1-aadA2-catB3-aacA1-2-aadB-int1-IS256-int) linked with Tn5393c transposon was identified in the SR strain, which has only been reported in clinical pathogens so far. iTRAQ-LC-MS/MS proteomics revealed 22 up-regulated proteins in the SR strain growing under 100 mg L-1 streptomycin, involving antibiotic resistance, toxin production, stress response, and ribosomal protein synthesis. At the mRNA level, elevated expressions of ARGs (strA, strB, and aadB) and 30S-ribosomal protein genes (rpsA and rpsU) were observed in the SR strain. The results highlighted the genomic plasticity and multifaceted regulatory mechanism employed by P. mexicana in adaptation to high-level streptomycin during biological wastewater treatment.
Collapse
Affiliation(s)
- Ganesh-Kumar Selvaraj
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India
| | - Hanqing Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenbo Chai
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
blaKPC-2-Encoding IncP-6 Plasmids in Citrobacter freundii and Klebsiella variicola Strains from Hospital Sewage in Japan. Appl Environ Microbiol 2022; 88:e0001922. [PMID: 35380451 DOI: 10.1128/aem.00019-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) producers are an emerging threat to global health, and the hospital water environment is considered an important reservoir of these life-threatening bacteria. We characterized plasmids of KPC-2-producing Citrobacter freundii and Klebsiella variicola isolates recovered from hospital sewage in Japan. Antimicrobial susceptibility testing, whole-genome sequencing analysis, bacterial conjugation, and transformation experiments were performed for both KPC-2 producers. The blaKPC-2 gene was located on the Tn3 transposon-related region from an IncP-6 replicon plasmid that could not be transferred via conjugation. Compared to the blaKPC-2-encoding plasmid of the C. freundii isolate, alignment analysis of plasmids with blaKPC-2 showed that the blaKPC-2-encoding plasmid of the K. variicola isolate was a novel IncP-6/IncF-like hybrid plasmid containing a 75,218-bp insertion sequence composed of IncF-like plasmid conjugative transfer proteins. Carbapenem-resistant transformants harboring blaKPC-2 were obtained for both isolates. However, no IncF-like insertion region was found in the K. variicola donor plasmid of the transformant, suggesting that this IncF-like region is not readily functional for plasmid conjugative transfer and is maintained depending on the host cells. The findings on the KPC-2 producers and novel genetic content emphasize the key role of hospital sewage as a potential reservoir of pathogens and its linked dissemination of blaKPC-2 through the hospital water environment. Our results indicate that continuous monitoring for environmental emergence of antimicrobial-resistant bacteria might be needed to control the spread of these infectious bacteria. Moreover, it will help elucidate both the evolution and transmission pathways of these bacteria harboring antimicrobial resistance. IMPORTANCE Antimicrobial resistance is a significant problem for global health, and the hospital environment has been recognized as a reservoir of antimicrobial resistance. Here, we provide insight into the genomic features of blaKPC-2-harboring isolates of Citrobacter freundii and Klebsiella variicola obtained from hospital sewage in Japan. The findings of carbapenem-resistant bacteria containing this novel genetic context emphasize that hospital sewage could act as a potential reservoir of pathogens and cause the subsequent spread of blaKPC-2 via horizontal gene transfer in the hospital water environment. This indicates that serial monitoring for environmental bacteria possessing antimicrobial resistance may help us control the spread of infection and also lead to elucidating the evolution and transmission pathways of these bacteria.
Collapse
|
30
|
Wolters B, Hauschild K, Blau K, Mulder I, Heyde BJ, Sørensen SJ, Siemens J, Jechalke S, Smalla K, Nesme J. Biosolids for safe land application: does wastewater treatment plant size matters when considering antibiotics, pollutants, microbiome, mobile genetic elements and associated resistance genes? Environ Microbiol 2022; 24:1573-1589. [PMID: 35192222 PMCID: PMC9306954 DOI: 10.1111/1462-2920.15938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/04/2023]
Abstract
Soil fertilization with wastewater treatment plant (WWTP) biosolids is associated with the introduction of resistance genes (RGs), mobile genetic elements (MGEs) and potentially selective pollutants (antibiotics, heavy metals, disinfectants) into soil. Not much data are available on the parallel analysis of biosolid pollutant contents, RG/MGE abundances and microbial community composition. In the present study, DNA extracted from biosolids taken at 12 WWTPs (two large-scale, six middle-scale and four small-scale plants) was used to determine the abundance of RGs and MGEs via quantitative real-time PCR and the bacterial and archaeal community composition was assessed by 16S rRNA gene amplicon sequencing. Concentrations of heavy metals, antibiotics, the biocides triclosan, triclocarban and quaternary ammonium compounds (QACs) were measured. Strong and significant correlations were revealed between several target genes and concentrations of Cu, Zn, triclosan, several antibiotics and QACs. Interestingly, the size of the sewage treatment plant (inhabitant equivalents) was negatively correlated with antibiotic concentrations, RGs and MGEs abundances and had little influence on the load of metals and QACs or the microbial community composition. Biosolids from WWTPs with anaerobic treatment and hospitals in their catchment area were associated with a higher abundance of potential opportunistic pathogens and higher concentrations of QACs.
Collapse
Affiliation(s)
- Birgit Wolters
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kristin Hauschild
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Khald Blau
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Ines Mulder
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Benjamin Justus Heyde
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jan Siemens
- Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Sven Jechalke
- Justus Liebig University Giessen, Institute of Phytopathology, iFZ Research Centre for Biosystems, Land Use and Nutrition, Giessen, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Long range PCR reveals the genetic cargo of IncP-1 plasmids in the complex microbial community of an on-farm biopurification system treating pesticide contaminated wastewater. Appl Environ Microbiol 2021; 88:e0164821. [PMID: 34878814 DOI: 10.1128/aem.01648-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Promiscuous plasmids like IncP-1 plasmids play an important role in the bacterial adaptation to pollution by acquiring and distributing xenobiotic catabolic genes. However, most information comes from isolates and the role of plasmids in governing community-wide bacterial adaptation to xenobiotics and other adaptive forces is not fully understood. Current information on the contribution of IncP-1 plasmids in community adaptation is limited because methods are lacking that directly isolate and identify the plasmid borne adaptive functions in whole-community DNA. In this study, we optimized long range PCR to directly access and identify the cargo carried by IncP-1 plasmids in environmental DNA. The DNA between the IncP-1 backbone genes trbP and traC, a main insertion site of adaptive trait determinants, is amplified and its content analysed by high-throughput sequencing. The method was applied to DNA of an on-farm biopurification system (BPS), treating pesticide contaminated wastewater, to examine whether horizontal gene exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. The cargo recovered from BPS community DNA, encoded catabolic but also resistance traits and various other (un)known functions. Unexpectedly, catabolic traits composed only a minor fraction of the cargo, indicating that the IncP-1 region between trbP and traC is not a major contributor to catabolic adaptation of the BPS microbiome. Instead, it contains a functionally diverse set of genes which either may assist biodegradation functions, be remnants of random gene recruitment, or confer other crucial functions for proliferation in the BPS environment. IMPORTANCE This study presents a long range PCR for direct and cultivation-independent access to the identity of the cargo of a major insertion hot spot of adaptive genes in IncP-1 plasmids and hence a new mobilome tool for understanding the role of IncP-1 plasmids in complex communities. The method was applied to DNA of an on-farm biopurification system (BPS) treating pesticide-contaminated wastewater, aiming at new insights on whether horizontal exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. Unexpectedly, catabolic functions represented a small fraction of the cargo genes while multiple other gene functions were recovered. These results show that the cargo of the target insertion hot spot in IncP-1 plasmids in a community, not necessarily relates to the main selective trait imposed on that community. Instead these functions might contribute to adaptation to unknown selective forces or represent remnants of random gene recruitment.
Collapse
|
32
|
Uluseker C, Kaster KM, Thorsen K, Basiry D, Shobana S, Jain M, Kumar G, Kommedal R, Pala-Ozkok I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front Microbiol 2021; 12:717809. [PMID: 34707579 PMCID: PMC8542863 DOI: 10.3389/fmicb.2021.717809] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022] Open
Abstract
This paper reviews current knowledge on sources, spread and removal mechanisms of antibiotic resistance genes (ARGs) in microbial communities of wastewaters, treatment plants and downstream recipients. Antibiotic is the most important tool to cure bacterial infections in humans and animals. The over- and misuse of antibiotics have played a major role in the development, spread, and prevalence of antibiotic resistance (AR) in the microbiomes of humans and animals, and microbial ecosystems worldwide. AR can be transferred and spread amongst bacteria via intra- and interspecies horizontal gene transfer (HGT). Wastewater treatment plants (WWTPs) receive wastewater containing an enormous variety of pollutants, including antibiotics, and chemicals from different sources. They contain large and diverse communities of microorganisms and provide a favorable environment for the spread and reproduction of AR. Existing WWTPs are not designed to remove micropollutants, antibiotic resistant bacteria (ARB) and ARGs, which therefore remain present in the effluent. Studies have shown that raw and treated wastewaters carry a higher amount of ARB in comparison to surface water, and such reports have led to further studies on more advanced treatment processes. This review summarizes what is known about AR removal efficiencies of different wastewater treatment methods, and it shows the variations among different methods. Results vary, but the trend is that conventional activated sludge treatment, with aerobic and/or anaerobic reactors alone or in series, followed by advanced post treatment methods like UV, ozonation, and oxidation removes considerably more ARGs and ARB than activated sludge treatment alone. In addition to AR levels in treated wastewater, it examines AR levels in biosolids, settled by-product from wastewater treatment, and discusses AR removal efficiency of different biosolids treatment procedures. Finally, it puts forward key-points and suggestions for dealing with and preventing further increase of AR in WWTPs and other aquatic environments, together with a discussion on the use of mathematical models to quantify and simulate the spread of ARGs in WWTPs. Mathematical models already play a role in the analysis and development of WWTPs, but they do not consider AR and challenges remain before models can be used to reliably study the dynamics and reduction of AR in such systems.
Collapse
Affiliation(s)
- Cansu Uluseker
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Kristian Thorsen
- Department of Electrical Engineering and Computer Science, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Sutha Shobana
- Department of Chemistry and Research Centre, Aditanar College of Arts and Science, Tiruchendur, India
| | - Monika Jain
- Department of Natural Resource Management, College of Forestry, Banda University of Agricultural and Technology, Banda, India
| | - Gopalakrishnan Kumar
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ilke Pala-Ozkok
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
33
|
Amirsoleimani A, Brion G, Francois P. Co-Carriage of Metal and Antibiotic Resistance Genes in Sewage Associated Staphylococci. Genes (Basel) 2021; 12:genes12101473. [PMID: 34680871 PMCID: PMC8535820 DOI: 10.3390/genes12101473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Controlling spread of resistance genes from wastewater to aquatic systems requires more knowledge on how resistance genes are acquired and transmitted. Whole genomic sequences from sewage-associated staphylococcus isolates (20 S. aureus, 2 Staphylococcus warneri, and 2 Staphylococcus delphini) were analyzed for the presence of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs). Plasmid sequences were identified in each isolate to investigate co-carriage of ARGs and MRGs within. BLASTN analysis showed that 67% of the isolates carried more than one ARG. The carriage of multiple plasmids was observed more in CC5 than CC8 S. aureus strains. Plasmid exchange was observed in all staphylococcus species except the two S. delphini isolates that carried multiple MRGs, no ARGs, and no plasmids. 85% of S. aureus isolates carried the blaZ gene, 76% co-carried blaZ with cadD and cadX, with 62% of these isolates carrying blaZ, cadD, and cadX on the same plasmid. The co-carriage of ARGs and MRGs in S. warneri isolates, and carriage of MRGs in S. delphini, without plasmids suggests non-conjugative transmission routes for gene acquisition. More studies are required that focus on the transduction and transformation routes of transmission to prevent interspecies exchange of ARGs and MRGs in sewage-associated systems.
Collapse
Affiliation(s)
- Atena Amirsoleimani
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA;
- Correspondence: ; Tel.: +1-(859)257-4467
| | - Gail Brion
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA;
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Department, University Medical Center, 364-8501 Geneva, Switzerland;
| |
Collapse
|
34
|
Zhuang M, Achmon Y, Cao Y, Liang X, Chen L, Wang H, Siame BA, Leung KY. Distribution of antibiotic resistance genes in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117402. [PMID: 34051569 DOI: 10.1016/j.envpol.2021.117402] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/03/2021] [Accepted: 05/16/2021] [Indexed: 05/12/2023]
Abstract
The prevalence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the microbiome is a major public health concern globally. Many habitats in the environment are under threat due to excessive use of antibiotics and evolutionary changes occurring in the resistome. ARB and ARGs from farms, cities and hospitals, wastewater treatment plants (WWTPs) or as water runoffs, may accumulate in water, soil, and air. We present a global picture of the resistome by examining ARG-related papers retrieved from PubMed and published in the last 30 years (1990-2020). Natural Language Processing (NLP) was used to retrieve 496,640 papers, out of which 9374 passed the filtering test and were further analyzed to determine the distribution and diversity of ARG subtypes. The papers revealed seven major antibiotic families together with their respective ARG subtypes in different habitats on six continents. Asia, especially China, had the highest number of ARGs related papers compared to other countries/regions/continents. ARGs belonging to multidrug, glycopeptide, and β-lactam families were the most common in reports from hospitals and sulfonamide and tetracycline families were common in reports from farms, WWTPs, water and soil. We also highlight the 'omics' tools used in resistome research, describe some factors that shape the development of resistome, and suggest future work needed to better understand the resistome. The goal was to show the global nature of ARB and ARGs in order to encourage collaborate research efforts aimed at reducing the negative impacts of antibiotic resistance on the One Health concept.
Collapse
Affiliation(s)
- Mei Zhuang
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yigal Achmon
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuping Cao
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xiaomin Liang
- Department of Computer Science, College of Engineering, Shantou University, Shantou, 515063, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, 515063, China; Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, 515063, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China
| | - Bupe A Siame
- Department of Biology, Trinity Western University, Langley, British Columbia, V2Y 1Y1, Canada
| | - Ka Yin Leung
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
35
|
Zhang B, Qin S, Guan X, Jiang K, Jiang M, Liu F. Distribution of Antibiotic Resistance Genes in Karst River and Its Ecological Risk. WATER RESEARCH 2021; 203:117507. [PMID: 34392041 DOI: 10.1016/j.watres.2021.117507] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
In recent years, karst water has been polluted by emerging pollutants such as antibiotics. In this study, the bacterial communities and antibiotic resistance genes (ARGs) in antibiotics contaminated karst river was studied in summer and winter. The concentration of antibiotics in winter karst river is higher than that in summer, and there are significant differences in structure of bacterial community and ARGs between karst river water samples. Aminoglycoside, beta-lactamase and multidrug are the main types of ARGs, and transposons play an important role in the spread of ARGs. The horizontal gene transfer (HGT) of ARGs between bacteria mediated by mobile genetic elements (MGEs) would cause the spread of ARGs and bring potential ecological risks. In addition, we found that the risk of antibiotic resistant pathogenic bacteria (ARPB) in winter was possibly higher than that in summer. It was suggested that the discharge of antibiotics, water amount and seasonal occurrence time of human intestinal diseases affect the risks caused by antibiotics contaminants. This study helps us to understand the transmission mechanism of ARGs and their potential seasonal ecological risks in complex karst water systems.
Collapse
Affiliation(s)
- Biao Zhang
- School of Ocean Sciences, China University of Geosciences, Beijing, China; The Fifth Geology Company of Hebei Geology and Minerals Bureau, Tangshan, Hebei, China
| | - Shang Qin
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences, Beijing, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083, China.
| | - Kaidi Jiang
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083, China
| | - Minhui Jiang
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Fei Liu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
36
|
Ranjan R, Thatikonda S. β-Lactam Resistance Gene NDM-1 in the Aquatic Environment: A Review. Curr Microbiol 2021; 78:3634-3643. [PMID: 34410464 DOI: 10.1007/s00284-021-02630-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
New Delhi Metallo-β-lactamase-1 (NDM-1) offers carbapenem antibiotics resistance that creates an evolving challenge in treating bacterial infections. NDM-1-bearing strains were observed in surface waters around New Delhi in 2010 and after then identified globally. The usage of antibiotics may hasten the growth of the NDM-1-producing bacteria, which pose severe hazards to human and animal health. The emergence of the NDM-1 in the aquatic environment is turning out to be a growing concern worldwide. NDM-1 gene conferring resistance to a widespread class of antibiotics has been observed in bacteria disseminated in animal production wastewaters, hospital sewage, domestic sewage, industrial effluents, wastewater treatment plants, drinking water, surface water, and even in groundwater. This review recapitulates the currently published research studies on the prevalence and geographical distribution of the NDM-1 gene in the aquatic environment, its habitats, and healthcare risk associated with NDM-1-producing bacteria, in addition to molecular techniques employed to reveal the occurrence of the NDM-1 in the aquatic environment, including conventional polymerase chain reaction, real-time qPCR, DNA hybridization, and microarray-based methods.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India.
| |
Collapse
|
37
|
Ajayi AO, Perry B, Yost CK, Jamieson R, Truelstrup Hansen L, Rahube T. Comparative Genomic Analyses of the β-lactamase (blaCMY-42) Encoding Plasmids Isolated from Wastewater Treatment Plants in Canada. Can J Microbiol 2021; 67:737-748. [PMID: 34077692 DOI: 10.1139/cjm-2021-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wastewater treatment plants are useful environments for investigating the occurrence, diversity, and evolution of plasmids encoding clinically relevant antibiotic resistance genes. Our objective was to isolate and sequence plasmids encoding meropenem resistance from bacterial hosts within Canadian WWTPs. We used two enrichment culture approaches for primary plasmid isolation, followed by screening of antibiotic resistance, conjugative mobility, and stability in enteric bacteria. Isolated plasmids were sequenced using Illumina MiSeq and Sanger sequencing methods. Bioinformatics analyses resolved a multi-resistance IncF/MOBF12 plasmid, pFEMG (209,357 bp), harbouring resistance genes to beta-lactam (blaCMY-42, blaTEM-1β, and blaNDM-5), macrolide (mphA-mrx-mphR), tetracycline (tetR-tetB-tetC-tetD), trimethoprim (dfrA12), aminoglycoside (aadA2), and sulfonamide (sul1) antibiotic classes. We also isolated an IncI1/MOBP12 plasmid pPIMR (172,280 bp), carrying similar beta-lactamase and a small multidrug efflux resistance gene cluster (blaCMY-42-blc-sugE) to pFEMG. The co-occurrence of different ARGs within a single 24,552 bp cluster in pFEMG - intersperced with transposons, insertion sequence elements, and a class 1 integron - maybe of significant interest to human and veterinary medicine. Additionally, the presence of conjugative and plasmid maintenance genes in the studied plasmids corresponds to the observed high conjugative transfer frequencies and stable maintenance. Extensive investigation is required to further understand the fitness trade offs of plasmids having differing types of conjugative transfer and maintenance modules.
Collapse
Affiliation(s)
| | - Ben Perry
- University of Regina, 6846, Regina, Saskatchewan, Canada;
| | | | - Rob Jamieson
- Dalhousie University, 3688, Halifax, Nova Scotia, Canada;
| | - Lisbeth Truelstrup Hansen
- Dalhousie University, 3688, Department of Process Engineering and Applied Science, Halifax, Canada.,Technical University of Denmark, 5205, Department of Process Engineering and Applied Science, Lyngby, Denmark;
| | - Teddie Rahube
- University of Regina, 6846, Biology Department, Regina, Canada, S4S 0A2.,Botswana International University of Science and Technology, 357305, Biology Department, Palapye, Botswana;
| |
Collapse
|
38
|
Elevated Incidences of Antimicrobial Resistance and Multidrug Resistance in the Maumee River (Ohio, USA), a Major Tributary of Lake Erie. Microorganisms 2021; 9:microorganisms9050911. [PMID: 33923266 PMCID: PMC8146589 DOI: 10.3390/microorganisms9050911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Maumee River, the major tributary in the western basin of Lake Erie, serves as one of major sources of freshwater in the area, supplying potable, recreational, and industrial water. In this study we collected water samples from four sites in the Maumee River Bay between 2016–2017 and E. coli was isolated, enumerated, and analyzed for antimicrobial resistance (AMR) and multidrug resistance (MDR). Strikingly, 95% of the total isolates were found to be resistant to at least one antibiotic. A very high resistance to the drugs cephalothin (95.3%), ampicillin (38.3%), tetracycline (8.8%), gentamicin (8.2%), ciprofloxacin (4.2%), cefoperazone (4%), and sulfamethoxazole (1.5%) was observed within isolates from all four sampling sites. Percentages of AMR and MDR was consistently very high in the summer and fall months, whereas it was observed to be lowest in the winter. A remarkably high number of the isolates were detected to be MDR—95% resistant to ≥1 antibiotic, 43% resistant to ≥2 antibiotics, 15% resistant to ≥3 antibiotics, 4.9% resistant to ≥4 antibiotic and 1.2% resistant to ≥5 antibiotics. This data will serve in better understanding the environmental occurrence and dissemination of AMR/MDR in the area and assist in improving and establishing control measures.
Collapse
|
39
|
Mitchell S, Bull M, Muscatello G, Chapman B, Coleman NV. The equine hindgut as a reservoir of mobile genetic elements and antimicrobial resistance genes. Crit Rev Microbiol 2021; 47:543-561. [PMID: 33899656 DOI: 10.1080/1040841x.2021.1907301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Antibiotic resistance in bacterial pathogens is a growing problem for both human and veterinary medicine. Mobile genetic elements (MGEs) such as plasmids, transposons, and integrons enable the spread of antibiotic resistance genes (ARGs) among bacteria, and the overuse of antibiotics drives this process by providing the selection pressure for resistance genes to establish and persist in bacterial populations. Because bacteria, MGEs, and resistance genes can readily spread between different ecological compartments (e.g. soil, plants, animals, humans, wastewater), a "One Health" approach is needed to combat this problem. The equine hindgut is an understudied but potentially significant reservoir of ARGs and MGEs, since horses have close contact with humans, their manure is used in agriculture, they have a dense microbiome of both bacteria and fungi, and many antimicrobials used for equine treatment are also used in human medicine. Here, we collate information to date about resistance genes, plasmids, and class 1 integrons from equine-derived bacteria, we discuss why the equine hindgut deserves increased attention as a potential reservoir of ARGs, and we suggest ways to minimize the selection for ARGs in horses, in order to prevent their spread to the wider community.
Collapse
Affiliation(s)
- Scott Mitchell
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Gary Muscatello
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
Law A, Solano O, Brown CJ, Hunter SS, Fagnan M, Top EM, Stalder T. Biosolids as a Source of Antibiotic Resistance Plasmids for Commensal and Pathogenic Bacteria. Front Microbiol 2021; 12:606409. [PMID: 33967971 PMCID: PMC8098119 DOI: 10.3389/fmicb.2021.606409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/09/2021] [Indexed: 12/05/2022] Open
Abstract
Antibiotic resistance (AR) is a threat to modern medicine, and plasmids are driving the global spread of AR by horizontal gene transfer across microbiomes and environments. Determining the mobile resistome responsible for this spread of AR among environments is essential in our efforts to attenuate the current crisis. Biosolids are a wastewater treatment plant (WWTP) byproduct used globally as fertilizer in agriculture. Here, we investigated the mobile resistome of biosolids that are used as fertilizer. This was done by capturing resistance plasmids that can transfer to human pathogens and commensal bacteria. We used a higher-throughput version of the exogenous plasmid isolation approach by mixing several ESKAPE pathogens and a commensal Escherichia coli with biosolids and screening for newly acquired resistance to about 10 antibiotics in these strains. Six unique resistance plasmids transferred to Salmonella typhimurium, Klebsiella aerogenes, and E. coli. All the plasmids were self-transferable and carried 3-6 antibiotic resistance genes (ARG) conferring resistance to 2-4 antibiotic classes. These plasmids-borne resistance genes were further embedded in genetic elements promoting intracellular recombination (i.e., transposons or class 1 integrons). The plasmids belonged to the broad-host-range plasmid (BHR) groups IncP-1 or PromA. Several of them were persistent in their new hosts when grown in the absence of antibiotics, suggesting that the newly acquired drug resistance traits would be sustained over time. This study highlights the role of BHRs in the spread of ARG between environmental bacteria and human pathogens and commensals, where they may persist. The work further emphasizes biosolids as potential vehicles of highly mobile plasmid-borne antibiotic resistance genes.
Collapse
Affiliation(s)
- Aaron Law
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Olubunmi Solano
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Celeste J. Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Samuel S. Hunter
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
- UC-Davis Genome Center, Davis, CA, United States
| | - Matt Fagnan
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| |
Collapse
|
41
|
Kosheleva IA, Izmalkova TY, Sazonova OI, Siunova TV, Gafarov AB, Sokolov SL, Boronin AM. Antibiotic-Resistant Microorganisms and Multiple Drug Resistance Determinants in Pseudomonas Bacteria from the Pushchino Wastewater Treatment Facilities. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Rubab M, Oh DH. Molecular Detection of Antibiotic Resistance Genes in Shiga Toxin-Producing E. coli Isolated from Different Sources. Antibiotics (Basel) 2021; 10:344. [PMID: 33804818 PMCID: PMC8063812 DOI: 10.3390/antibiotics10040344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen associated with human gastroenteritis outbreaks. Extensive use of antibiotics in agriculture selects resistant bacteria that may enter the food chain and potentially causes foodborne illnesses in humans that are less likely to respond to treatment with conventional antibiotics. Due to the importance of antibiotic resistance, this study aimed to investigate the combination of phenotypic and genotypic antibiotic resistance in STEC isolates belonging to serogroups O26, O45, O103, O104, O111, O121, O145, and O157 using disc diffusion and polymerase chain reaction (PCR), respectively. All strains were phenotypically resistant to at least one antibiotic, with 100% resistance to erythromycin, followed by gentamicin (98%), streptomycin (82%), kanamycin (76%), and ampicillin (72%). The distribution of antibiotic resistance genes (ARGs) in the STEC strains was ampC (47%), aadA1 (70%), ere(A) (88%), blaSHV (19%), blaCMY (27%), aac(3)-I (90%), and tet(A) (35%), respectively. The results suggest that most of the strains were multidrug-resistant (MDR) and the most often observed resistant pattern was of aadA1, ere(A), and aac(3)-I genes. These findings indicate the significance of monitoring the prevalence of MDR in both animals and humans around the globe. Hence, with a better understanding of antibiotic genotypes and phenotypes among the diverse STEC strains obtained, this study could guide the administration of antimicrobial drugs in STEC infections when necessary.
Collapse
Affiliation(s)
- Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea;
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea;
| |
Collapse
|
43
|
Wan K, Guo L, Ye C, Zhu J, Zhang M, Yu X. Accumulation of antibiotic resistance genes in full-scale drinking water biological activated carbon (BAC) filters during backwash cycles. WATER RESEARCH 2021; 190:116744. [PMID: 33401101 DOI: 10.1016/j.watres.2020.116744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/14/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Biological activated carbon (BAC) filtration, a process widely used in drinking water treatment, was recently reported to harbor antibiotic resistance genes (ARGs). This emerging contamination is poorly understood. This study was conducted to investigate the occurrence of ARGs and bacterial community in full-scale BAC filters during the backwash cycle using high-throughput qPCR and high-throughput sequencing. A total of 178 ARGs were detected in all biofilm samples, with relative abundance ranging from 0.1 to 1.37 copies per 16S rRNA and absolute abundance ranging from 4.48 × 107 to 3.09 × 109 copies/g carbon. Biofilms sampled from different filters shared most detected ARGs and dominant genera including Bryobacter, Pedomicrobium, Reyranella, and Terrimonas, though their bacterial community structure differed significantly. After backwashing, the relative ARGs abundance increased by 1.5- to 3.8-folds and the absolute ARGs abundance increased by 0.90- to 1.12-logs in all biofilm samples during filter ripening, indicating that ARGs accumulated in filters during this period. Redundancy analysis suggested that such ARGs accumulation was mainly driven by horizontal gene transfer in winter, but highly correlated with the increasing relative abundance of genera Bryobacter and Acidibacter in summer. It was observed that 80.6 %-89.3% of the detected ARGs persisted in the filters despite of the backwashing. Given the high richness and relative abundance of ARGs in BAC filter and the ineffectiveness of backwashing in ARG removal, more stringent downstream disinfection strategies are deserved and more research is necessary to assess potential human health risks due to the persistence of ARGs in drinking water.
Collapse
Affiliation(s)
- Kun Wan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lizheng Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jianwen Zhu
- Hangzhou Water Group Company, Ltd, Hangzhou 310009, China
| | - Menglu Zhang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
44
|
Tn 6603, a Carrier of Tn 5053 Family Transposons, Occurs in the Chromosome and in a Genomic Island of Pseudomonas aeruginosa Clinical Strains. Microorganisms 2020; 8:microorganisms8121997. [PMID: 33333808 PMCID: PMC7765201 DOI: 10.3390/microorganisms8121997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Transposons of the Pseudomonasaeruginosa accessory gene pool contribute to phenotype and to genome plasticity. We studied local P. aeruginosa strains to ascertain the encroachment of mer-type res site hunter transposons into clinical settings and their associations with other functional modules. Five different Tn5053 family transposons were detected, all chromosomal. Some were solitary elements; one was in res of Tn1013#, a relative of a reported carrier of int-type res site hunters (class 1 integrons), but most were in res of Tn6603, a new Tn501-related transposon of unknown phenotype. Most of the Tn6603::Tn elements, and some Tn6603 and Tn6603::Tn elements found in GenBank sequences, were at identical sites in an hypothetical gene of P. aeruginosa genomic island PAGI-5v. The island in clonally differing strains was at either of two tRNALys loci, suggesting lateral transfer to these sites. This observation is consistent with the membership of the prototype PAGI-5 island to the ICE family of mobile genetic elements. Additionally, the res site hunters in the nested transposons occupied different positions in the Tn6603 carrier. This suggested independent insertion events on five occasions at least. Tn5053 family members that were mer-/tni-defective were found in Tn6603- and Tn501-like carriers in GenBank sequences of non-clinical Pseudomonas spp. The transposition events in these cases presumably utilized tni functions in trans, as can occur with class 1 integrons. We suggest that in the clinical context, P. aeruginosa strains that carry Tn6603 alone or in PAGI-5v can serve to disseminate functional res site hunters; these in turn can provide the requisite trans-acting tni functions to assist in the dissemination of class 1 integrons, and hence of their associated antibiotic resistance determinants.
Collapse
|
45
|
Redhead S, Nieuwland J, Esteves S, Lee DH, Kim DW, Mathias J, Cha CJ, Toleman M, Dinsdale R, Guwy A, Hayhurst E. Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge. PLoS One 2020; 15:e0237283. [PMID: 33259486 PMCID: PMC7707479 DOI: 10.1371/journal.pone.0237283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Antibiotic resistant bacteria (ARB) and their genes (ARGs) have become recognised as significant emerging environmental pollutants. ARB and ARGs in sewage sludge can be transmitted back to humans via the food chain when sludge is recycled to agricultural land, making sludge treatment key to control the release of ARB and ARGs to the environment. This study investigated the fate of antibiotic resistant Escherichia coli and a large set of antibiotic resistance genes (ARGs) during full scale anaerobic digestion (AD) of sewage sludge at two U.K. wastewater treatment plants and evaluated the impact of thermal hydrolysis (TH) pre-treatment on their abundance and diversity. Absolute abundance of 13 ARGs and the Class I integron gene intI1 was calculated using single gene quantitative (q) PCR. High through-put qPCR analysis was also used to determine the relative abundance of 370 ARGs and mobile genetic elements (MGEs). Results revealed that TH reduced the absolute abundance of all ARGs tested and intI1 by 10-12,000 fold. After subsequent AD, a rebound effect was seen in many ARGs. The fate of ARGs during AD without pre-treatment was variable. Relative abundance of most ARGs and MGEs decreased or fluctuated, with the exception of macrolide resistance genes, which were enriched at both plants, and tetracyline and glycopeptide resistance genes which were enriched in the plant employing TH. Diversity of ARGs and MGEs decreased in both plants during sludge treatment. Principal coordinates analysis revealed that ARGs are clearly distinguished according to treatment step, whereas MGEs in digested sludge cluster according to site. This study provides a comprehensive within-digestor analysis of the fate of ARGs, MGEs and antibiotic resistant E. coli and highlights the effectiveness of AD, particularly when TH is used as a pre-treatment, at reducing the abundance of most ARGs and MGEs in sludgeand preventing their release into the environment.
Collapse
Affiliation(s)
- Sky Redhead
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
| | - Jeroen Nieuwland
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
| | - Sandra Esteves
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
| | - Do-Hoon Lee
- Department of Systems Biotechnology and Centre for Antibiotic Resistome, College of Biotechnology & Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Dae-Wi Kim
- Department of Systems Biotechnology and Centre for Antibiotic Resistome, College of Biotechnology & Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Jordan Mathias
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Chang-Jun Cha
- Department of Systems Biotechnology and Centre for Antibiotic Resistome, College of Biotechnology & Natural Resources, Chung-Ang University, Anseong, Republic of Korea
| | - Mark Toleman
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard Dinsdale
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
| | - Alan Guwy
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
| | - Emma Hayhurst
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Jong MC, Harwood CR, Blackburn A, Snape JR, Graham DW. Impact of Redox Conditions on Antibiotic Resistance Conjugative Gene Transfer Frequency and Plasmid Fate in Wastewater Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14984-14993. [PMID: 33191749 DOI: 10.1021/acs.est.0c03714] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wastewater is a common pathway for the spread of antibiotic resistance (AR) genes and bacteria into the environment. Biological treatment can mitigate this path, but horizontal gene transfer (HGT) between bacteria also occurs in such processes, although the influence of bioreactor habitat and ecology on HGT frequency is not well understood. Here, we quantified how oxidation-reduction (redox) conditions impact the fate of a Green fluorescent protein (Gfp)-tagged AR plasmid (pRP4-gfp) within an E. coli host (EcoFJ1) in the liquid phase and biofilms in bioreactors. Replicate reactors treating domestic wastewater were operated under stable aerobic (+195 ± 25 mV), anoxic (-15 ± 50 mV), and anaerobic (-195 ± 15 mV) conditions, and flow cytometry and selective plating were used to quantify donor strain, EcoFJ1(pRP4-gfp), and putative transconjugants over time. Plasmid pRP4-gfp-bearing cells disappeared rapidly in aerobic ecosystems (∼2.0 log reduction after 72 h), especially in the liquid phase. In contrast, EcoFJ1(pRP4-gfp) and putative transconjugants persisted much longer in anaerobic biofilms (∼1.0 log reduction, after 72 h). Plasmid transfer frequencies were also higher under anaerobic conditions. In parallel, protozoan abundances were over 20 times higher in aerobic reactors relative to anaerobic reactors, and protozoa numbers significantly inversely correlated with pRP4-gfp signals across all reactors (p < 0.05). Taken together, observed HGT frequency and plasmid retention are impacted by habitat conditions and trophic effects, especially oxygen conditions and apparent predation. New aerobic bioreactor designs are needed, ideally employing passive aeration to save energy, to minimize resistance HGT in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Mui-Choo Jong
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Colin R Harwood
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 42X, United Kingdom
| | - Adrian Blackburn
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Jason R Snape
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
47
|
Shintani M, Nour E, Elsayed T, Blau K, Wall I, Jechalke S, Spröer C, Bunk B, Overmann J, Smalla K. Plant Species-Dependent Increased Abundance and Diversity of IncP-1 Plasmids in the Rhizosphere: New Insights Into Their Role and Ecology. Front Microbiol 2020; 11:590776. [PMID: 33329469 PMCID: PMC7728920 DOI: 10.3389/fmicb.2020.590776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
IncP-1 plasmids, first isolated from clinical specimens (R751, RP4), are recognized as important vectors spreading antibiotic resistance genes. The abundance of IncP-1 plasmids in the environment, previously reported, suggested a correlation with anthropogenic pollution. Unexpectedly, qPCR-based detection of IncP-1 plasmids revealed also an increased relative abundance of IncP-1 plasmids in total community DNA from the rhizosphere of lettuce and tomato plants grown in non-polluted soil along with plant age. Here we report the successful isolation of IncP-1 plasmids by exploiting their ability to mobilize plasmid pSM1890. IncP-1 plasmids were captured from the rhizosphere but not from bulk soil, and a high diversity was revealed by sequencing 14 different plasmids that were assigned to IncP-1β, δ, and ε subgroups. Although backbone genes were highly conserved and mobile elements or remnants as Tn501, IS1071, Tn402, or class 1 integron were carried by 13 of the sequenced IncP-1 plasmids, no antibiotic resistance genes were found. Instead, seven plasmids had a mer operon with Tn501-like transposon and five plasmids contained putative metabolic gene clusters linked to these mobile elements. In-depth sequence comparisons with previously known plasmids indicate that the IncP-1 plasmids captured from the rhizosphere are archetypes of those found in clinical isolates. Our findings that IncP-1 plasmids do not always carry accessory genes in unpolluted rhizospheres are important to understand the ecology and role of the IncP-1 plasmids in the natural environment.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan.,Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.,Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Eman Nour
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Tarek Elsayed
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Khald Blau
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Inessa Wall
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Cathrin Spröer
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
48
|
Heyde BJ, Glaeser SP, Bisping L, Kirchberg K, Ellinghaus R, Siemens J, Mulder I. Smectite clay minerals reduce the acute toxicity of quaternary alkylammonium compounds towards potentially pathogenic bacterial taxa present in manure and soil. Sci Rep 2020; 10:15397. [PMID: 32958787 PMCID: PMC7505985 DOI: 10.1038/s41598-020-71720-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 11/09/2022] Open
Abstract
Quaternary alkylammonium compounds (QAACs) are a group of cationic surfactants which are disinfectants with numerous industrial and agricultural applications and frequently released into the environment. One recent hypothesis is that bacteria present in soil will be protected from acute toxic effects of QAACs in the presence of expandable layer silicates due to interlayer sorption. We therefore studied bacterial growth kinetics with high temporal resolution and determined minimal inhibitory concentrations (MICs) of two QAACs, benzyldimethyldodecylammonium chloride (BAC-C12) and didecyldimethylammonium chlorid (DADMAC-C10), for eight strains of different bacterial taxa (Escherichia coli, Acinetobacter, Enterococcus faecium, Enterococcus faecalis, and Pseudomonas fluorescens) in relation to QAAC sorption to smectite and kaolinite. The MICs of BAC-C12 and DADMAC-C10 were in the absence of smectite and kaolinite in the order of 10 to 30 µg mL−1 and 1.0 to 3.5 µg mL−1 for all strains except the more sensitive Acinetobacter strain. For all tested strains and both tested QAACs, the presence of smectite increased apparent MIC values while kaolinite had no effect on MICs. Sorption curves without bacteria showed that smectite sorbed larger amounts of QAACs than kaolinite. Correcting nominal QAAC concentrations employed in toxicity tests for QAAC sorption using the sorption curves explained well the observed shifts in apparent MICs. Transmission electron microscopy (TEM) demonstrated that the interlayer space of smectite expanded from 13.7 ± 1 Å to 19.9 ± 1.5 Å after addition of BAC-C12. This study provides first evidence that low charge 2:1 expandable layer silicates can play an important role for buffering QAAC toxicity in soils.
Collapse
Affiliation(s)
- Benjamin Justus Heyde
- Institute of Soil Sciences and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
| | - Stefanie P Glaeser
- Institute for Applied Microbiology, iFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany.
| | - Linda Bisping
- Institute of Soil Sciences and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany.,Institute for Applied Microbiology, iFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
| | - Kristin Kirchberg
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| | - Rüdiger Ellinghaus
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
| | - Jan Siemens
- Institute of Soil Sciences and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
| | - Ines Mulder
- Institute of Soil Sciences and Soil Conservation, iFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany.
| |
Collapse
|
49
|
Piotrowska M, Dziewit L, Ostrowski R, Chmielowska C, Popowska M. Molecular Characterization and Comparative Genomics of IncQ-3 Plasmids Conferring Resistance to Various Antibiotics Isolated from a Wastewater Treatment Plant in Warsaw (Poland). Antibiotics (Basel) 2020; 9:antibiotics9090613. [PMID: 32957637 PMCID: PMC7557826 DOI: 10.3390/antibiotics9090613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
As small, mobilizable replicons with a broad host range, IncQ plasmids are widely distributed among clinical and environmental bacteria. They carry antibiotic resistance genes, and it has been shown that they confer resistance to β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, sulphonamides, and tetracycline. The previously proposed classification system divides the plasmid group into four subgroups, i.e., IncQ-1, IncQ-2, IncQ-3, and IncQ-4. The last two subgroups have been poorly described so far. The aim of this study was to analyze five newly identified IncQ-3 plasmids isolated from a wastewater treatment plant in Poland and to compare them with all known plasmids belonging to the IncQ-3 subgroup whose sequences were retrieved from the NCBI database. The complete nucleotide sequences of the novel plasmids were annotated and bioinformatic analyses were performed, including identification of core genes and auxiliary genetic load. Furthermore, functional experiments testing plasmid mobility were carried out. Phylogenetic analysis based on three core genes (repA, mobA/repB, and mobC) revealed the presence of three main clusters of IncQ-3 replicons. Apart from having a highly conserved core, the analyzed IncQ-3 plasmids were vectors of antibiotic resistance genes, including (I) the qnrS2 gene that encodes fluoroquinolone resistance and (II) β-lactam, trimethoprim, and aminoglycoside resistance genes within integron cassettes.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Rafał Ostrowski
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|
50
|
Amato HK, Wong NM, Pelc C, Taylor K, Price LB, Altabet M, Jordan TE, Graham JP. Effects of concentrated poultry operations and cropland manure application on antibiotic resistant Escherichia coli and nutrient pollution in Chesapeake Bay watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139401. [PMID: 32464410 PMCID: PMC7324218 DOI: 10.1016/j.scitotenv.2020.139401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 05/27/2023]
Abstract
Manure from poultry operations is typically applied to nearby cropland and may affect nutrient loading and the spread of antibiotic resistance (ABR). We analyzed the concentrations of nitrogen and phosphorus and the occurrence of ABR in Escherichia coli (E. coli) and extra-intestinal pathogenic E. coli isolates from streams draining 15 small (<19 km2) watersheds of the Chesapeake Bay with contrasting levels of concentrated poultry operations. Total nitrogen and nitrate plus nitrite concentrations increased with poultry barn density with concentrations two and three times higher, respectively, in watersheds with the highest poultry barn densities compared to those without poultry barns. Analysis of N and O isotopes in nitrate by mass spectrometry showed an increase in the proportion of 15N associated with an increase in barn density, suggesting that the nitrate associated with poultry barns originated from manure. Phosphorus concentrations were not correlated with barn density. Antibiotic susceptibility testing of putative E. coli isolates was conducted using the disk diffusion method for twelve clinically important antibiotics. Of the isolates tested, most were completely susceptible (67%); 33% were resistant to at least one antibiotic, 24% were resistant to ampicillin, 13% were resistant to cefazolin, and 8% were multi-drug resistant. Resistance to three cephalosporin drugs was positively associated with an index of manure exposure estimated from poultry barn density and proportion of cropland in a watershed. The proportion of E. coli isolates resistant to cefoxitin, cefazolin, and ceftriaxone, broad-spectrum antibiotics important in human medicine, increased by 18.9%, 16.9%, and 6.2%, respectively, at the highest estimated level of manure exposure compared to watersheds without manure exposure. Our results suggest that comparisons of small watersheds could be used to identify geographic areas where remedial actions may be needed to reduce nutrient pollution and the public health risks of ABR bacteria.
Collapse
Affiliation(s)
- Heather K Amato
- Division of Environmental Health Sciences, University of California, Berkeley School of Public Health, 2121 Berkeley Way, Berkeley, CA 94704, United States of America
| | - Nora M Wong
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, D.C. 20052, United States of America
| | - Carey Pelc
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21037, United States of America
| | - Kishana Taylor
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis, CA 95616, United States of America
| | - Lance B Price
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave NW, Washington, D.C. 20052, United States of America
| | - Mark Altabet
- Department of Estuarine and Ocean Sciences, School for Marine Science and Technology, University of Massachusetts Dartmouth, 836 S Rodney French Blvd, New Bedford, MA 02744, United States of America
| | - Thomas E Jordan
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD 21037, United States of America
| | - Jay P Graham
- Division of Environmental Health Sciences, University of California, Berkeley School of Public Health, 2121 Berkeley Way, Berkeley, CA 94704, United States of America.
| |
Collapse
|