1
|
Sousa M, Machado I, Simões LC, Simões M. Biocides as drivers of antibiotic resistance: A critical review of environmental implications and public health risks. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 25:100557. [PMID: 40230384 PMCID: PMC11995807 DOI: 10.1016/j.ese.2025.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025]
Abstract
The widespread and indiscriminate use of biocides poses significant threats to global health, socioeconomic development, and environmental sustainability by accelerating antibiotic resistance. Bacterial resistance development is highly complex and influenced significantly by environmental factors. Increased biocide usage in households, agriculture, livestock farming, industrial settings, and hospitals produces persistent chemical residues that pollute soil and aquatic environments. Such contaminants contribute to the selection and proliferation of resistant bacteria and antimicrobial resistance genes (ARGs), facilitating their dissemination among humans, animals, and ecosystems. In this review, we conduct a critical assessment of four significant issues pertaining to this topic. Specifically, (i) the role of biocides in exerting selective pressure within the environmental resistome, thereby promoting the proliferation of resistant microbial populations and contributing to the global spread of antimicrobial resistance genes (ARGs); (ii) the role of biocides in triggering transient phenotypic adaptations in bacteria, including efflux pump overexpression, membrane alterations, and reduced porin expression, which often result in cross-resistance to multiple antibiotics; (iii) the capacity of biocides to disrupt bacteria and make the genetic content accessible, releasing DNA into the environment that remains intact under certain conditions, facilitating horizontal gene transfer and the spread of resistance determinants; (iv) the capacity of biocides to disrupt bacterial cells, releasing intact DNA into the environment and enhancing horizontal gene transfer of resistance determinants; and (iv) the selective interactions between biocides and bacterial biofilms in the environment, strengthening biofilm cohesion, inducing resistance mechanisms, and creating reservoirs for resistant microorganisms and ARG dissemination. Collectively, this review highlights the critical environmental and public health implications of biocide use, emphasizing an urgent need for strategic interventions to mitigate their role in antibiotic resistance proliferation.
Collapse
Affiliation(s)
- Mariana Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Idalina Machado
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| | - Lúcia C. Simões
- CEB—Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga, Guimarães, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical and Biological Engineering, University of Porto, 4200-465, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal
| |
Collapse
|
2
|
Swain PP, Sahoo RK. Blocking horizontal transfer of antibiotic resistance genes: an effective strategy in combating antibiotic resistance. Crit Rev Microbiol 2025:1-20. [PMID: 40207493 DOI: 10.1080/1040841x.2025.2489463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/15/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance (AMR) poses a significant public health threat, with emerging and novel forms of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) potentially crossing international borders and challenging the global health systems. The rate of development of antibiotic resistance surpasses the development of new antibiotics. Consequently, there is a growing threat of bacteria acquiring resistance even to newer antibiotics further complicating the treatment of bacterial infections. Horizontal gene transfer (HGT) is the key mechanism for the spread of antibiotic resistance in bacteria through the processes of conjugation, transformation, and transduction. Several compounds, other than antibiotics, have also been shown to promote HGT of ARGs. Given the crucial role of HGT in the dissemination of ARGs, inhibition of HGT is a key strategy to mitigate AMR. Therefore, this review explores the contribution of HGT in bacterial evolution, identifies specific hotspots andhighlights the role of HGT inhibitors in impeding the spread of ARGs. By specifically focusing on the HGT mechanism and its inhibition, these inhibitors offer a highly promising approach to combating AMR.
Collapse
Affiliation(s)
- Pragyan Paramita Swain
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
3
|
Thompson S, Ojo OR, Hoyles L, Winter J. Menadione reduces the expression of virulence- and colonization-associated genes in Helicobacter pylori. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40072906 DOI: 10.1099/mic.0.001539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Novel treatment options are needed for the gastric pathogen Helicobacter pylori due to its increasing antibiotic resistance. The vitamin K analogue menadione has been extensively studied due to interest in its anti-bacterial and anti-cancer properties. Here, we investigated the effects of menadione on H. pylori growth, viability, antibiotic resistance, motility and gene expression using clinical isolates. The MIC of menadione was 313 µM for 11/13 isolates and 156 µM for 2/13 isolates. The minimum bactericidal concentrations were 1.25-2.5 mM, indicating that concentrations in the micromolar range were bacteriostatic rather than bactericidal. We were not able to experimentally evolve resistance to menadione in vitro. Sub-MIC menadione (16 µM for 24 h) did not significantly inhibit bacterial growth but significantly (P<0.05) changed the expression of 1291/1615 (79.9%) genes encoded by strain 322A. The expression of the virulence factor genes cagA and vacA was downregulated in the presence of sub-MIC menadione, while genes involved in stress responses were upregulated. Sub-MIC menadione significantly (P<0.0001) inhibited the motility of H. pylori, consistent with the predicted effects of the observed significant (P<0.05) downregulation of cheY, upregulation of rpoN and changes in the expression of flagellar assembly pathway genes seen in the transcriptomic analysis. Through in-depth interrogation of transcriptomic data, we concluded that sub-MIC menadione elicits a general stress response in H. pylori with survival in the stationary phase likely mediated by the upregulation of surE and rpoN. Sub-MIC menadione caused some modest increases in H. pylori susceptibility to antibiotics, but the effect was variable with strain and antibiotic type and did not reach statistical significance. Menadione (78 µM) was minimally cytotoxic to human gastric adenocarcinoma (AGS) cells after 4 h but caused a significant loss of cell viability after 24 h. Given its inhibitory effects on bacterial growth, motility and expression of virulence- and colonization-associated genes, menadione at low micromolar concentrations may have potential utility as a virulence-attenuating agent against H. pylori.
Collapse
Affiliation(s)
- Stephen Thompson
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Omoyemi Rebecca Ojo
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lesley Hoyles
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Jody Winter
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
4
|
Armanu EG, Bertoldi S, Chrzanowski Ł, Volf I, Heipieper HJ, Eberlein C. Benefits of Immobilized Bacteria in Bioremediation of Sites Contaminated with Toxic Organic Compounds. Microorganisms 2025; 13:155. [PMID: 39858923 PMCID: PMC11768004 DOI: 10.3390/microorganisms13010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Although bioremediation is considered the most environmentally friendly and sustainable technique for remediating contaminated soil and water, it is most effective when combined with physicochemical methods, which allow for the preliminary removal of large quantities of pollutants. This allows microorganisms to efficiently eliminate the remaining contaminants. In addition to requiring the necessary genes and degradation pathways for specific substrates, as well as tolerance to adverse environmental conditions, microorganisms may perform below expectations. One typical reason for this is the high toxicity of xenobiotics present in large concentrations, stemming from the vulnerability of bacteria introduced to a contaminated site. This is especially true for planktonic bacteria, whereas bacteria within biofilms or microcolonies have significant advantages over their planktonic counterparts. A physical matrix is essential for the formation, maintenance, and survival of bacterial biofilms. By providing such a matrix for bacterial immobilization, the formation of biofilms can be facilitated and accelerated. Therefore, bioremediation combined with bacterial immobilization offers a comprehensive solution for environmental cleanup by harnessing the specialized metabolic activities of microorganisms while ensuring their retention and efficacy at target sites. In many cases, such bioremediation can also eliminate the need for physicochemical methods that are otherwise required to initially reduce contaminant concentrations. Then, it will be possible to use microorganisms for the remediation of higher concentrations of xenobiotics, significantly reducing costs while maintaining a rapid rate of remediation processes. This review explores the benefits of bacterial immobilization, highlighting materials and processes for developing an optimal immobilization matrix. It focuses on the following four key areas: (i) the types of organic pollutants impacting environmental and human health, (ii) the bacterial strains used in bioremediation processes, (iii) the types and benefits of immobilization, and (iv) the immobilization of bacterial cells on various carriers for targeted pollutant degradation.
Collapse
Affiliation(s)
- Emanuel Gheorghita Armanu
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73A Prof. D. Mangeron Blvd., 700050 Iasi, Romania
| | - Simone Bertoldi
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Irina Volf
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73A Prof. D. Mangeron Blvd., 700050 Iasi, Romania
| | - Hermann J. Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (E.G.A.); (S.B.); (C.E.)
| |
Collapse
|
5
|
Galazka S, Vigl V, Kuffner M, Dielacher I, Spettel K, Kriz R, Kreuzinger N, Vierheilig J, Woegerbauer M. Prevalence of Antibiotic Resistance Genes in Differently Processed Smoothies and Fresh Produce from Austria. Foods 2024; 14:11. [PMID: 39796301 PMCID: PMC11720611 DOI: 10.3390/foods14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE ISPps and the class 1 integron-integrase gene intI1 were detected by probe-based qPCR in concentrations up to 104 copies/mL in all smoothies, lettuce, carrots and a single tomato sample. The highest total (2.2 × 105 copies/mL) and the most diverse ARG and MGE loads (16/26 targets) were observed in freshly prepared and the lowest prevalences (5/26) and concentrations (4.1 × 103 copies/mL) in high-pressure-processed (HPP) smoothies. BlaCTX-M-1-15 (1.2 × 105 c/mL) and strB (6.3 × 104 c/mL) were the most abundant, and qacEΔ1 (95%), blaTEM1 (85%), ermB and sul1 (75%, each) were the most prevalent ARGs. QnrS, vanA, sat-4, blaKPC, blaNDM-1 and blaOXA-10 were never detected. HPP treatment reduced the microbial loads by ca. 5 logs, also destroying extracellular DNA potentially encoding ARGs that could otherwise be transferred by bacterial transformation. The bacterial microbiome, potential pathogens, bacterial ARG carriers and competent bacteria able to take up ARGs were identified by Illumina 16S rRNA gene sequencing. To reduce the risk of AMR spread from smoothies, our data endorse the application of DNA-disintegrating processing techniques such as HPP.
Collapse
Affiliation(s)
- Sonia Galazka
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria; (S.G.)
- Institute of Water Quality and Resource Management, TU Wien, 1040 Vienna, Austria
| | - Valerie Vigl
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria; (S.G.)
| | - Melanie Kuffner
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria; (S.G.)
| | - Irina Dielacher
- Institute of Water Quality and Resource Management, TU Wien, 1040 Vienna, Austria
| | - Kathrin Spettel
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, 1100 Vienna, Austria
| | - Richard Kriz
- Section Biomedical Science, Health Sciences, FH Campus Wien University of Applied Sciences, 1100 Vienna, Austria
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Norbert Kreuzinger
- Institute of Water Quality and Resource Management, TU Wien, 1040 Vienna, Austria
| | - Julia Vierheilig
- Institute of Water Quality and Resource Management, TU Wien, 1040 Vienna, Austria
- Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Markus Woegerbauer
- Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria; (S.G.)
| |
Collapse
|
6
|
Alav I, Buckner MMC. Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit Rev Microbiol 2024; 50:993-1010. [PMID: 37462915 PMCID: PMC11523920 DOI: 10.1080/1040841x.2023.2233603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 02/15/2024]
Abstract
Horizontal gene transfer plays a key role in the global dissemination of antimicrobial resistance (AMR). AMR genes are often carried on self-transmissible plasmids, which are shared amongst bacteria primarily by conjugation. Antibiotic use has been a well-established driver of the emergence and spread of AMR. However, the impact of commonly used non-antibiotic compounds and environmental pollutants on AMR spread has been largely overlooked. Recent studies found common prescription and over-the-counter drugs, artificial sweeteners, food preservatives, and environmental pollutants, can increase the conjugative transfer of AMR plasmids. The potential mechanisms by which these compounds promote plasmid transmission include increased membrane permeability, upregulation of plasmid transfer genes, formation of reactive oxygen species, and SOS response gene induction. Many questions remain around the impact of most non-antibiotic compounds on AMR plasmid conjugation in clinical isolates and the long-term impact on AMR dissemination. By elucidating the role of routinely used pharmaceuticals, food additives, and pollutants in the dissemination of AMR, action can be taken to mitigate their impact by closely monitoring use and disposal. This review will discuss recent progress on understanding the influence of non-antibiotic compounds on plasmid transmission, the mechanisms by which they promote transfer, and the level of risk they pose.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michelle M. C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Abe K, Yahara H, Nakao R, Yamaguchi T, Akeda Y. A simple and cost-effective transformation system for Porphyromonas gingivalis via natural competence. Front Microbiol 2024; 15:1476171. [PMID: 39498132 PMCID: PMC11532111 DOI: 10.3389/fmicb.2024.1476171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Porphyromonas gingivalis is a major oral bacterial pathogen responsible for severe periodontal diseases. Numerous studies have used genetic approaches to elucidate the molecular mechanisms underlying its pathogenicity. Typically, electroporation and conjugation are utilized for mutagenesis of P. gingivalis; however, these techniques require specialized equipment such as high-voltage electroporators, conjugative plasmids and donor strains. In this study, we present a simple, cost-effective transformation method for P. gingivalis without any special equipment by exploiting its natural DNA competence. P. gingivalis ATCC 33277 was grown to the early-exponential phase and mixed with a donor DNA cassette. This mixture was then spotted onto a BHI-HM blood-agar plate and incubated for one day to promote colony biofilm formation. The resulting colony biofilm was suspended in a liquid medium and spread onto antibiotic-containing agar plates. Transformants appeared within 4 to 5 days, achieving a maximum efficiency of 7.7 × 106 CFU/μg. Although we optimized the transformation conditions using a representative strain ATCC 33277, but the method was also effective for other P. gingivalis strains, W83 and TDC60. Additionally, we discovered that deletion of PGN_0421 or PGN_0519, encoding putative ComEA and ComEC, abolished competency, indicating that these gene products are essential for the natural competence.
Collapse
Affiliation(s)
- Kimihiro Abe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroko Yahara
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
9
|
Winter M, Vos M, Buckling A, Johnsen PJ, Harms K. Effect of chemotherapeutic agents on natural transformation frequency in Acinetobacter baylyi. Access Microbiol 2024; 6:000733.v4. [PMID: 39135654 PMCID: PMC11318045 DOI: 10.1099/acmi.0.000733.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/21/2024] [Indexed: 08/15/2024] Open
Abstract
Natural transformation is the ability of a bacterial cell to take up extracellular DNA which is subsequently available for recombination into the chromosome (or maintenance as an extrachromosomal element). Like other mechanisms of horizontal gene transfer, natural transformation is a significant driver for the dissemination of antimicrobial resistance. Recent studies have shown that many pharmaceutical compounds such as antidepressants and anti-inflammatory drugs can upregulate transformation frequency in the model species Acinetobacter baylyi. Chemotherapeutic compounds have been shown to increase the abundance of antimicrobial resistance genes and increase colonization rates of potentially pathogenic bacteria in patient gastrointestinal tracts, indicating an increased risk of infection and providing a pool of pathogenicity or resistance genes for transformable commensal bacteria. We here test for the effect of six cancer chemotherapeutic compounds on A. baylyi natural transformation frequency, finding two compounds, docetaxel and daunorubicin, to significantly decrease transformation frequency, and daunorubicin to also decrease growth rate significantly. Enhancing our understanding of the effect of chemotherapeutic compounds on the frequency of natural transformation could aid in preventing the horizontal spread of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Macaulay Winter
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Exeter TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Exeter TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
- Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Exeter TR10 9FE, UK
| | - Pål Jarle Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
10
|
Toussaint F, Henry de Frahan M, Poncelet F, Ladrière JM, Horvath P, Fremaux C, Hols P. Unveiling the regulatory network controlling natural transformation in lactococci. PLoS Genet 2024; 20:e1011340. [PMID: 38950059 PMCID: PMC11244767 DOI: 10.1371/journal.pgen.1011340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/12/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Lactococcus lactis is a lactic acid bacterium of major importance for food fermentation and biotechnological applications. The ability to manipulate its genome quickly and easily through competence for DNA transformation would accelerate its general use as a platform for a variety of applications. Natural transformation in this species requires the activation of the master regulator ComX. However, the growth conditions that lead to spontaneous transformation, as well as the regulators that control ComX production, are unknown. Here, we identified the carbon source, nitrogen supply, and pH as key factors controlling competence development in this species. Notably, we showed that these conditions are sensed by three global regulators (i.e., CcpA, CodY, and CovR), which repress comX transcription directly. Furthermore, our systematic inactivation of known signaling systems suggests that classical pheromone-sensing regulators are not involved. Finally, we revealed that the ComX-degrading MecA-ClpCP machinery plays a predominant role based on the identification of a single amino-acid substitution in the adaptor protein MecA of a highly transformable strain. Contrasting with closely-related streptococci, the master competence regulator in L. lactis is regulated both proximally by general sensors and distantly by the Clp degradation machinery. This study not only highlights the diversity of regulatory networks for competence control in Gram-positive bacteria, but it also paves the way for the use of natural transformation as a tool to manipulate this biotechnologically important bacterium.
Collapse
Affiliation(s)
- Frédéric Toussaint
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie Henry de Frahan
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Félix Poncelet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Marc Ladrière
- IFF Health & Biosciences, Danisco France SAS, Dangé-Saint-Romain, France
| | - Philippe Horvath
- IFF Health & Biosciences, Danisco France SAS, Dangé-Saint-Romain, France
| | - Christophe Fremaux
- IFF Health & Biosciences, Danisco France SAS, Dangé-Saint-Romain, France
| | - Pascal Hols
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Christi K, Hudson J, Egan S. Current approaches to genetic modification of marine bacteria and considerations for improved transformation efficiency. Microbiol Res 2024; 284:127729. [PMID: 38663232 DOI: 10.1016/j.micres.2024.127729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
Marine bacteria play vital roles in symbiosis, biogeochemical cycles and produce novel bioactive compounds and enzymes of interest for the pharmaceutical, biofuel and biotechnology industries. At present, investigations into marine bacterial functions and their products are primarily based on phenotypic observations, -omic type approaches and heterologous gene expression. To advance our understanding of marine bacteria and harness their full potential for industry application, it is critical that we have the appropriate tools and resources to genetically manipulate them in situ. However, current genetic tools that are largely designed for model organisms such as E. coli, produce low transformation efficiencies or have no transfer ability in marine bacteria. To improve genetic manipulation applications for marine bacteria, we need to improve transformation methods such as conjugation and electroporation in addition to identifying more marine broad host range plasmids. In this review, we aim to outline the reported methods of transformation for marine bacteria and discuss the considerations for each approach in the context of improving efficiency. In addition, we further discuss marine plasmids and future research areas including CRISPR tools and their potential applications for marine bacteria.
Collapse
Affiliation(s)
- Katrina Christi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
12
|
Garcia-Diosa JA, Grundmeier G, Keller A. Effect of DNA Origami Nanostructures on Bacterial Growth. Chembiochem 2024; 25:e202400091. [PMID: 38299762 DOI: 10.1002/cbic.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
DNA origami nanostructures are a powerful tool in biomedicine and can be used to combat drug-resistant bacterial infections. However, the effect of unmodified DNA origami nanostructures on bacteria is yet to be elucidated. With the aim to obtain a better understanding of this phenomenon, the effect of three DNA origami shapes, i.e., DNA origami triangles, six-helix bundles (6HBs), and 24-helix bundles (24HBs), on the growth of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis is investigated. The results reveal that while triangles and 24HBs can be used as a source of nutrients by E. coli and thereby promote population growth, their effect is much smaller than that of genomic single- and double-stranded DNA. However, no effect on E. coli population growth is observed for the 6HBs. On the other hand, B. subtilis does not show any significant changes in population growth when cultured with the different DNA origami shapes or genomic DNA. The detailed effect of DNA origami nanostructures on bacterial growth thus depends on the competence signals and uptake mechanism of each bacterial species, as well as the DNA origami shape. This should be considered in the development of antimicrobial DNA origami nanostructures.
Collapse
Affiliation(s)
- Jaime Andres Garcia-Diosa
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
13
|
Specht DA, Sheppard TJ, Kennedy F, Li S, Gadikota G, Barstow B. Efficient natural plasmid transformation of Vibrio natriegens enables zero-capital molecular biology. PNAS NEXUS 2024; 3:pgad444. [PMID: 38352175 PMCID: PMC10863642 DOI: 10.1093/pnasnexus/pgad444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024]
Abstract
The fast-growing microbe Vibrio natriegens is capable of natural transformation where it draws DNA in from media via an active process under physiological conditions. Using an engineered strain with a genomic copy of the master competence regulator tfoX from Vibrio cholerae in combination with a new minimal competence media (MCM) that uses acetate as an energy source, we demonstrate naturally competent cells which are created, transformed, and recovered entirely in the same media, without exchange or addition of fresh media. Cells are naturally competent to plasmids, recombination with linear DNA, and cotransformation of both to select for scarless and markerless genomic edits. The entire process is simple and inexpensive, requiring no capital equipment for an entirely room temperature process (zero capital protocol, 104 cfu/μg), or just an incubator (high-efficiency protocol, 105-6 cfu/μg). These cells retain their naturally competent state when frozen and are transformable immediately upon thawing like a typical chemical or electrochemical competent cell. Since the optimized transformation protocol requires only 50 min of hands-on time, and V. natriegens grows quickly even on plates, a transformation started at 9 AM yields abundant culturable single colonies by 5 PM. Further, because all stages of transformation occur in the same media, and the process can be arbitrarily scaled in volume, this natural competence strain and media could be ideal for automated directed evolution applications. As a result, naturally competent V. natriegens could compete with Escherichia coli as an excellent chassis for low-cost and highly scalable synthetic biology.
Collapse
Affiliation(s)
- David A Specht
- Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Timothy J Sheppard
- Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Finn Kennedy
- Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sijin Li
- Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Greeshma Gadikota
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Buz Barstow
- Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Kronborg K, Zhang YE. cAMP competitively inhibits periplasmic phosphatases to coordinate nutritional growth with competence of Haemophilus influenzae. J Biol Chem 2023; 299:105404. [PMID: 38229398 PMCID: PMC10694654 DOI: 10.1016/j.jbc.2023.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 01/18/2024] Open
Abstract
Most naturally competent bacteria tightly regulate the window of the competent state to maximize their ecological fitness under specific conditions. Development of competence by Haemophilus influenzae strain Rd KW20 is stimulated by cAMP and inhibited by purine nucleotides, respectively. In contrast, cAMP inhibits cell growth, but nucleotides are important for KW20 growth. However, the mechanisms underlying the abovementioned reciprocal effects are unclear. Here, we first identified a periplasmic acid phosphatase AphAEc of Escherichia coli as a new cAMP-binding protein. We show cAMP competitively inhibits the phosphatase activities of AphAEc and its homolog protein AphAHi in the KW20 strain. Furthermore, we found cAMP inhibits two other periplasmic nonspecific phosphatases, NadNHi (which provides the essential growth factor V, NAD) and HelHi (eP4, which converts NADP to NAD) in KW20. We demonstrate cAMP inhibits cell growth rate, especially via NadNHi. On the other hand, the inhibitory effect of purine nucleotide AMP on competence was abolished in the triple deletion mutant ΔhelHiΔnadNHiΔaphAHi, but not in the single, double deletion or complemented strains. Adenosine, however, still inhibited the competence of the triple deletion mutant, demonstrating the crucial role of the three phosphatases in converting nucleotides to nucleosides and thus inhibiting KW20 competence. Finally, cAMP restored the competence inhibited by GMP in a dose-dependent manner, but not competence inhibited by guanosine. Altogether, we uncovered these three periplasmic phosphatases as the key players underlying the antagonistic effects of cAMP and purine nucleotides on both cell growth and competence development of H. influenzae.
Collapse
Affiliation(s)
- Kristina Kronborg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
15
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
16
|
Kwun MJ, Ion AV, Oggioni MR, Bentley S, Croucher N. Diverse regulatory pathways modulate bet hedging of competence induction in epigenetically-differentiated phase variants of Streptococcus pneumoniae. Nucleic Acids Res 2023; 51:10375-10394. [PMID: 37757859 PMCID: PMC10602874 DOI: 10.1093/nar/gkad760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Despite enabling Streptococcus pneumoniae to acquire antibiotic resistance and evade vaccine-induced immunity, transformation occurs at variable rates across pneumococci. Phase variants of isolate RMV7, distinguished by altered methylation patterns driven by the translocating variable restriction-modification (tvr) locus, differed significantly in their transformation efficiencies and biofilm thicknesses. These differences were replicated when the corresponding tvr alleles were introduced into an RMV7 derivative lacking the locus. RNA-seq identified differential expression of the type 1 pilus, causing the variation in biofilm formation, and inhibition of competence induction in the less transformable variant, RMV7domi. This was partly attributable to RMV7domi's lower expression of ManLMN, which promoted competence induction through importing N-acetylglucosamine. This effect was potentiated by analogues of some proteobacterial competence regulatory machinery. Additionally, one of RMV7domi's phage-related chromosomal island was relatively active, which inhibited transformation by increasing expression of the stress response proteins ClpP and HrcA. However, HrcA increased competence induction in the other variant, with its effects depending on Ca2+ supplementation and heat shock. Hence the heterogeneity in transformation efficiency likely reflects the diverse signalling pathways by which it is affected. This regulatory complexity will modulate population-wide responses to synchronising quorum sensing signals to produce co-ordinated yet stochastic bet hedging behaviour.
Collapse
Affiliation(s)
- Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London W12 0BZ, UK
| | - Alexandru V Ion
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London W12 0BZ, UK
| | - Marco R Oggioni
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London W12 0BZ, UK
| |
Collapse
|
17
|
Winter M, Harms K, Johnsen PJ, Buckling A, Vos M. Testing for the fitness benefits of natural transformation during community-embedded evolution. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001375. [PMID: 37526972 PMCID: PMC10482379 DOI: 10.1099/mic.0.001375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Natural transformation is a process where bacteria actively take up DNA from the environment and recombine it into their genome or reconvert it into extra-chromosomal genetic elements. The evolutionary benefits of transformation are still under debate. One main explanation is that foreign allele and gene uptake facilitates natural selection by increasing genetic variation, analogous to meiotic sex. However, previous experimental evolution studies comparing fitness gains of evolved transforming- and isogenic non-transforming strains have yielded mixed support for the 'sex hypothesis.' Previous studies testing the sex hypothesis for natural transformation have largely ignored species interactions, which theory predicts provide conditions favourable to sex. To test for the adaptive benefits of bacterial transformation, the naturally transformable wild-type Acinetobacter baylyi and a transformation-deficient ∆comA mutant were evolved for 5 weeks. To provide strong and potentially fluctuating selection, A. baylyi was embedded in a community of five other bacterial species. DNA from a pool of different Acinetobacter strains was provided as a substrate for transformation. No effect of transformation ability on the fitness of evolved populations was found, with fitness increasing non-significantly in most treatments. Populations showed fitness improvement in their respective environments, with no apparent costs of adaptation to competing species. Despite the absence of fitness effects of transformation, wild-type populations evolved variable transformation frequencies that were slightly greater than their ancestor which potentially could be caused by genetic drift.
Collapse
Affiliation(s)
- Macaulay Winter
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, UK
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Pål Jarle Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, UK
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, UK
| |
Collapse
|
18
|
Shin J, Rychel K, Palsson BO. Systems biology of competency in Vibrio natriegens is revealed by applying novel data analytics to the transcriptome. Cell Rep 2023; 42:112619. [PMID: 37285268 DOI: 10.1016/j.celrep.2023.112619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Vibrio natriegens regulates natural competence through the TfoX and QstR transcription factors, which are involved in external DNA capture and transport. However, the extensive genetic and transcriptional regulatory basis for competency remains unknown. We used a machine-learning approach to decompose Vibrio natriegens's transcriptome into 45 groups of independently modulated sets of genes (iModulons). Our findings show that competency is associated with the repression of two housekeeping iModulons (iron metabolism and translation) and the activation of six iModulons; including TfoX and QstR, a novel iModulon of unknown function, and three housekeeping iModulons (representing motility, polycations, and reactive oxygen species [ROS] responses). Phenotypic screening of 83 gene deletion strains demonstrates that loss of iModulon function reduces or eliminates competency. This database-iModulon-discovery cycle unveils the transcriptomic basis for competency and its relationship to housekeeping functions. These results provide the genetic basis for systems biology of competency in this organism.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Jurdzinski KT, Mehrshad M, Delgado LF, Deng Z, Bertilsson S, Andersson AF. Large-scale phylogenomics of aquatic bacteria reveal molecular mechanisms for adaptation to salinity. SCIENCE ADVANCES 2023; 9:eadg2059. [PMID: 37235649 PMCID: PMC10219603 DOI: 10.1126/sciadv.adg2059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The crossing of environmental barriers poses major adaptive challenges. Rareness of freshwater-marine transitions separates the bacterial communities, but how these are related to brackish counterparts remains elusive, as do the molecular adaptations facilitating cross-biome transitions. We conducted large-scale phylogenomic analysis of freshwater, brackish, and marine quality-filtered metagenome-assembled genomes (11,248). Average nucleotide identity analyses showed that bacterial species rarely existed in multiple biomes. In contrast, distinct brackish basins cohosted numerous species, but their intraspecific population structures displayed clear signs of geographic separation. We further identified the most recent cross-biome transitions, which were rare, ancient, and most commonly directed toward the brackish biome. Transitions were accompanied by systematic changes in amino acid composition and isoelectric point distributions of inferred proteomes, which evolved over millions of years, as well as convergent gains or losses of specific gene functions. Therefore, adaptive challenges entailing proteome reorganization and specific changes in gene content constrains the cross-biome transitions, resulting in species-level separation between aquatic biomes.
Collapse
Affiliation(s)
- Krzysztof T. Jurdzinski
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luis Fernando Delgado
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Ziling Deng
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders F. Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
20
|
Random transposon mutagenesis identifies genes essential for transformation in Methanococcus maripaludis. Mol Genet Genomics 2023; 298:537-548. [PMID: 36823423 PMCID: PMC10133366 DOI: 10.1007/s00438-023-01994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/15/2023] [Indexed: 02/25/2023]
Abstract
Natural transformation, the process whereby a cell acquires DNA directly from the environment, is an important driver of evolution in microbial populations, yet the mechanism of DNA uptake is only characterized in bacteria. To expand our understanding of natural transformation in archaea, we undertook a genetic approach to identify a catalog of genes necessary for transformation in Methanococcus maripaludis. Using an optimized method to generate random transposon mutants, we screened 6144 mutant strains for defects in natural transformation and identified 25 transformation-associated candidate genes. Among these are genes encoding components of the type IV-like pilus, transcription/translation associated genes, genes encoding putative membrane bound transport proteins, and genes of unknown function. Interestingly, similar genes were identified regardless of whether replicating or integrating plasmids were provided as a substrate for transformation. Using allelic replacement mutagenesis, we confirmed that several genes identified in these screens are essential for transformation. Finally, we identified a homolog of a membrane bound substrate transporter in Methanoculleus thermophilus and verified its importance for transformation using allelic replacement mutagenesis, suggesting a conserved mechanism for DNA transfer in multiple archaea. These data represent an initial characterization of the genes important for transformation which will inform efforts to understand gene flow in natural populations. Additionally, knowledge of the genes necessary for natural transformation may assist in identifying signatures of transformation machinery in archaeal genomes and aid the establishment of new model genetic systems for studying archaea.
Collapse
|
21
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
22
|
Xu C, Rao J, Xie Y, Lu J, Li Z, Dong C, Wang L, Jiang J, Chen C, Chen S. The DNA Phosphorothioation Restriction-Modification System Influences the Antimicrobial Resistance of Pathogenic Bacteria. Microbiol Spectr 2023; 11:e0350922. [PMID: 36598279 PMCID: PMC9927239 DOI: 10.1128/spectrum.03509-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Bacterial defense barriers, such as DNA methylation-associated restriction-modification (R-M) and the CRISPR-Cas system, play an important role in bacterial antimicrobial resistance (AMR). Recently, a novel R-M system based on DNA phosphorothioate (PT) modification has been shown to be widespread in the kingdom of Bacteria as well as Archaea. However, the potential role of the PT R-M system in bacterial AMR remains unclear. In this study, we explored the role of PT R-Ms in AMR with a series of common clinical pathogenic bacteria. By analyzing the distribution of AMR genes related to mobile genetic elements (MGEs), it was shown that the presence of PT R-M effectively reduced the distribution of horizontal gene transfer (HGT)-derived AMR genes in the genome, even in the bacteria that did not tend to acquire AMR genes by HGT. In addition, unique gene variation analysis based on pangenome analysis and MGE prediction revealed that the presence of PT R-M could suppress HGT frequency. Thus, this is the first report showing that the PT R-M system has the potential to repress HGT-derived AMR gene acquisition by reducing the HGT frequency. IMPORTANCE In this study, we demonstrated the effect of DNA PT modification-based R-M systems on horizontal gene transfer of AMR genes in pathogenic bacteria. We show that there is no apparent association between the genetic background of the strains harboring PT R-Ms and the number of AMR genes or the kinds of gene families. The strains equipped with PT R-M harbor fewer plasmid-derived, prophage-derived, or integrating mobile genetic element (iMGE)-related AMR genes and have a lower HGT frequency, but the degree of inhibition varies among different bacteria. In addition, compared with Salmonella enterica and Escherichia coli, Klebsiella pneumoniae prefers to acquire MGE-derived AMR genes, and there is no coevolution between PT R-M clusters and bacterial core genes.
Collapse
Affiliation(s)
- Congrui Xu
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jing Rao
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yuqing Xie
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jiajun Lu
- Information Engineering Institute, Wuchang Institute of Technology, Wuhan, China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Lianrong Wang
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jinghong Jiang
- Department of Obstetrics & Gynecology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chao Chen
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shi Chen
- Brain Center, Department of Neurosurgery, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
23
|
Merfa MV, Zhu X, Shantharaj D, Gomez LM, Naranjo E, Potnis N, Cobine PA, De La Fuente L. Complete functional analysis of type IV pilus components of a reemergent plant pathogen reveals neofunctionalization of paralog genes. PLoS Pathog 2023; 19:e1011154. [PMID: 36780566 PMCID: PMC9956873 DOI: 10.1371/journal.ppat.1011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Type IV pilus (TFP) is a multifunctional bacterial structure involved in twitching motility, adhesion, biofilm formation, as well as natural competence. Here, by site-directed mutagenesis and functional analysis, we determined the phenotype conferred by each of the 38 genes known to be required for TFP biosynthesis and regulation in the reemergent plant pathogenic fastidious prokaryote Xylella fastidiosa. This pathogen infects > 650 plant species and causes devastating diseases worldwide in olives, grapes, blueberries, and almonds, among others. This xylem-limited, insect-transmitted pathogen lives constantly under flow conditions and therefore is highly dependent on TFP for host colonization. In addition, TFP-mediated natural transformation is a process that impacts genomic diversity and environmental fitness. Phenotypic characterization of the mutants showed that ten genes were essential for both movement and natural competence. Interestingly, seven sets of paralogs exist, and mutations showed opposing phenotypes, indicating evolutionary neofunctionalization of subunits within TFP. The minor pilin FimT3 was the only protein exclusively required for natural competence. By combining approaches of molecular microbiology, structural biology, and biochemistry, we determined that the minor pilin FimT3 (but not the other two FimT paralogs) is the DNA receptor in TFP of X. fastidiosa and constitutes an example of neofunctionalization. FimT3 is conserved among X. fastidiosa strains and binds DNA non-specifically via an electropositive surface identified by homolog modeling. This protein surface includes two arginine residues that were exchanged with alanine and shown to be involved in DNA binding. Among plant pathogens, fimT3 was found in ~ 10% of the available genomes of the plant associated Xanthomonadaceae family, which are yet to be assessed for natural competence (besides X. fastidiosa). Overall, we highlight here the complex regulation of TFP in X. fastidiosa, providing a blueprint to understand TFP in other bacteria living under flow conditions.
Collapse
Affiliation(s)
- Marcus V. Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Laura M. Gomez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
24
|
Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. Antibiotics (Basel) 2023; 12:antibiotics12020333. [PMID: 36830244 PMCID: PMC9952537 DOI: 10.3390/antibiotics12020333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil have become research hotspots in the fields of public health and environmental ecosystems, but the effects of soil types and soil components on the occurrence and spread of ARGs still lack systematic sorting and in-depth research. Firstly, investigational information about ARB and ARGs contamination of soil was described. Then, existing laboratory studies about the influence of the soil component on ARGs were summarized in the following aspects: the influence of soil types on the occurrence of ARGs during natural or human activities and the control of exogenously added soil components on ARGs from the macro perspectives, the effects of soil components on the HGT of ARGs in a pure bacterial system from the micro perspectives. Following that, the similarities in pathways by which soil components affect HGT were identified, and the potential mechanisms were discussed from the perspectives of intracellular responses, plasmid activity, quorum sensing, etc. In the future, related research on multi-component systems, multi-omics methods, and microbial communities should be carried out in order to further our understanding of the occurrence and spread of ARGs in soil.
Collapse
|
25
|
Sharma M, Bhushan S, Sharma D, Kaul S, Dhar MK. A Brief Review of Plant Cell Transfection, Gene Transcript Expression, and Genotypic Integration for Enhancing Compound Production. Methods Mol Biol 2023; 2575:153-179. [PMID: 36301475 DOI: 10.1007/978-1-0716-2716-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants possess a plethora of important secondary metabolites, which are unique sources of natural pigments, pharmaceutical compounds, food additives, natural pesticides, and other industrial components. The commercial significance of such metabolites/compounds has directed the research toward their production and exploration of methods for enhancement of production. Biotechnological tools are critical in selecting, integrating, multiplying, improving, and analyzing medicinal plants for secondary metabolite production. Out of many techniques that are being explored to enhance secondary metabolite production, "plant cell transfection" is the latest tool to achieve maximum output from the plant source. It is based upon the introduction of foreign DNA into the plant cell relying on physical treatment such as electroporation, cell squeezing, sonoporation, optical transfection nanoparticles, magnetofection, and chemical treatment or biological treatment that depends upon carrier. One of the promising tools that have been exploited is CRISPR-Cas9. Overall, the abovementioned tools focus on the stable transfection of desired gene transcripts. Since the integration and continuous expression of transfected gene of particular trait represents stable transfection of host cell genome, resulting from transfer of required trait to daughter cells ultimately leading to enhanced production of secondary metabolites of interest. This chapter will review a set of biotechnological tools that are candidates for achieving the enhanced bioactive compound production indicated here to be used for drug discovery.
Collapse
Affiliation(s)
- Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, India.
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, India
| | - Deepak Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| |
Collapse
|
26
|
Membrane-Binding Biomolecules Influence the Rate of Vesicle Exchange between Bacteria. Appl Environ Microbiol 2022; 88:e0134622. [PMID: 36342184 PMCID: PMC9746307 DOI: 10.1128/aem.01346-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The exchange of bacterial extracellular vesicles facilitates molecular exchange between cells, including the horizontal transfer of genetic material. Given the implications of such transfer events on cell physiology and adaptation, some bacterial cells have likely evolved mechanisms to regulate vesicle exchange. Past work has identified mechanisms that influence the formation of extracellular vesicles, including the production of small molecules that modulate membrane structure; however, whether these mechanisms also modulate vesicle uptake and have an overall impact on the rate of vesicle exchange is unknown. Here, we show that membrane-binding molecules produced by microbes influence both the formation and uptake of extracellular vesicles and have the overall impact of increasing the vesicle exchange rate within a bacterial coculture. In effect, production of compounds that increase vesicle exchange rates encourage gene exchange between neighboring cells. The ability of several membrane-binding compounds to increase vesicle exchange was demonstrated. Three of these compounds, nisin, colistin, and polymyxin B, are antimicrobial peptides added at sub-inhibitory concentrations. These results suggest that a potential function of exogenous compounds that bind to membranes may be the regulation of vesicle exchange between cells. IMPORTANCE The exchange of bacterial extracellular vesicles is one route of gene transfer between bacteria, although it was unclear if bacteria developed strategies to modulate the rate of gene transfer within vesicles. In eukaryotes, there are many examples of specialized molecules that have evolved to facilitate the production, loading, and uptake of vesicles. Recent work with bacteria has shown that some small molecules influence membrane curvature and induce vesicle formation. Here, we show that similar compounds facilitate vesicle uptake, thereby increasing the overall rate of vesicle exchange within bacterial populations. The addition of membrane-binding compounds, several of them antibiotics at subinhibitory concentrations, to a bacterial coculture increased the rate of horizontal gene transfer via vesicle exchange.
Collapse
|
27
|
Langille E, Bottaro CS, Lang AS. Purification of Functional Gene Transfer Agents Using Two-Step Preparative Monolithic Chromatography. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:194-203. [PMID: 36793882 PMCID: PMC9917305 DOI: 10.1089/phage.2022.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Gene transfer agents (GTAs) are phage-like particles that transfer cellular genomic DNA between cells. A hurdle faced in studying GTA function and interactions with cells is the difficulty in obtaining pure and functional GTAs from cultures. Materials and Methods We used a novel two-step method for purification of GTAs from R. capsulatus by monolithic chromatography. Results Our efficient and simple process had advantages compared to previous approaches. The purified GTAs retained gene transfer activity and the packaged DNA could be used for further studies. Conclusions This method is applicable to GTAs produced by other species and small phages, and could be useful for therapeutic applications.
Collapse
Affiliation(s)
- Evan Langille
- Department of Chemistry and Memorial University of Newfoundland, St. John's, Canada
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| | - Christina S. Bottaro
- Department of Chemistry and Memorial University of Newfoundland, St. John's, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
28
|
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 2022; 13:933017. [PMID: 36325026 PMCID: PMC9618965 DOI: 10.3389/fmicb.2022.933017] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Upasana Agri
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | - Ashish Kumar
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Govind Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
29
|
Riva V, Patania G, Riva F, Vergani L, Crotti E, Mapelli F. Acinetobacter baylyi Strain BD413 Can Acquire an Antibiotic Resistance Gene by Natural Transformation on Lettuce Phylloplane and Enter the Endosphere. Antibiotics (Basel) 2022; 11:1231. [PMID: 36140010 PMCID: PMC9495178 DOI: 10.3390/antibiotics11091231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Antibiotic resistance spread must be considered in a holistic framework which comprises the agri-food ecosystems, where plants can be considered a bridge connecting water and soil habitats with the human microbiome. However, the study of horizontal gene transfer events within the plant microbiome is still overlooked. Here, the environmental strain Acinetobacter baylyi BD413 was used to study the acquisition of extracellular DNA (exDNA) carrying an antibiotic resistance gene (ARG) on lettuce phylloplane, performing experiments at conditions (i.e., plasmid quantities) mimicking those that can be found in a water reuse scenario. Moreover, we assessed how the presence of a surfactant, a co-formulant widely used in agriculture, affected exDNA entry in bacteria and plant tissues, besides the penetration and survival of bacteria into the leaf endosphere. Natural transformation frequency in planta was comparable to that occurring under optimal conditions (i.e., temperature, nutrient provision, and absence of microbial competitors), representing an entrance pathway of ARGs into an epiphytic bacterium able to penetrate the endosphere of a leafy vegetable. The presence of the surfactant determined a higher presence of culturable transformant cells in the leaf tissues but did not significantly increase exDNA entry in A. baylyi BD413 cells and lettuce leaves. More research on HGT (Horizontal Gene Transfer) mechanisms in planta should be performed to obtain experimental data on produce safety in terms of antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| |
Collapse
|
30
|
Tang X, Yang Z, Dai K, Liu G, Chang YF, Tang X, Wang K, Zhang Y, Hu B, Cao S, Huang X, Yan Q, Wu R, Zhao Q, Du S, Lang Y, Han X, Huang Y, Wen X, Wen Y. The molecular diversity of transcriptional factor TfoX is a determinant in natural transformation in Glaesserella parasuis. Front Microbiol 2022; 13:948633. [PMID: 35966685 PMCID: PMC9372613 DOI: 10.3389/fmicb.2022.948633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Natural transformation is a mechanism by which a particular bacterial species takes up foreign DNA and integrates it into its genome. The swine pathogen Glaesserella parasuis (G. parasuis) is a naturally transformable bacterium. The regulation of competence, however, is not fully understood. In this study, the natural transformability of 99 strains was investigated. Only 44% of the strains were transformable under laboratory conditions. Through a high-resolution melting curve and phylogenetic analysis, we found that genetic differences in the core regulator of natural transformation, the tfoX gene, leads to two distinct natural transformation phenotypes. In the absence of the tfoX gene, the highly transformable strain SC1401 lost its natural transformability. In addition, when the SC1401 tfoX gene was replaced by the tfoX of SH0165, which has no natural transformability, competence was also lost. These results suggest that TfoX is a core regulator of natural transformation in G. parasuis, and that differences in tfoX can be used as a molecular indicator of natural transformability. Transcriptomic and proteomic analyses of the SC1401 wildtype strain, and a tfoX gene deletion strain showed that differential gene expression and protein synthesis is mainly centered on pathways related to glucose metabolism. The results suggest that tfoX may mediate natural transformation by regulating the metabolism of carbon sources. Our study provides evidence that tfoX plays an important role in the natural transformation of G. parasuis.
Collapse
Affiliation(s)
- Xiaoyu Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Yang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ke Dai
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Geyan Liu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xinwei Tang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Wang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiwen Zhang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bangdi Hu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yifei Lang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yiping Wen,
| |
Collapse
|
31
|
Huang L, Zhang Y, Du X, An R, Liang X. Escherichia coli Can Eat DNA as an Excellent Nitrogen Source to Grow Quickly. Front Microbiol 2022; 13:894849. [PMID: 35836416 PMCID: PMC9273947 DOI: 10.3389/fmicb.2022.894849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Is DNA or RNA a good nutrient? Although scientists have raised this question for dozens of years, few textbooks mention the nutritional role of nucleic acids. Paradoxically, mononucleotides are widely added to infant formula milk and animal feed. Interestingly, competent bacteria can bind and ingest extracellular DNA and even integrate it into their genome. These results prompt us to clarify whether bacteria can “eat” DNA as food. We found that Escherichia coli can grow well in the medium with DNA as carbon and nitrogen sources. More interestingly, in the presence of glucose and DNA, bacteria grew more rapidly, showing that bacteria can use DNA as an excellent nitrogen source. Surprisingly, the amount of DNA in the culture media decreased but its length remained unchanged, demonstrating that E. coli ingested long DNA directly. The gene expression study shows that E. coli mainly ingests DNA before digestion and digests it in the periplasm. Bifidobacterium bifidum can also use DNA as the nitrogen source for growth, but not efficiently as E. coli. This study is of great significance to study DNA metabolism and utilization in organisms. It also lays a foundation to understand the nutritional function of DNA in intestinal flora and human health.
Collapse
Affiliation(s)
- Lili Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yehui Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xinmei Du
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- *Correspondence: Ran An
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Xingguo Liang
| |
Collapse
|
32
|
Yan X, Dai K, Gu C, Yu Z, He M, Xiao W, Zhao M, He L. Deletion of two-component system QseBC weakened virulence of Glaesserella parasuis in a murine acute infection model and adhesion to host cells. PeerJ 2022; 10:e13648. [PMID: 35769141 PMCID: PMC9235811 DOI: 10.7717/peerj.13648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
The widespread two-component system (TCS), QseBC, involves vital virulence regulators in Enterobacteriaceae and Pasteurellaceae. Here we studied the function of QseBC in Glaesserella parasuis. A ΔqseBC mutant was constructed using a Glaesserella parasuis serovar 11 clinical strain SC1401 by natural transformation. Immunofluorescence was used to evaluate cellular adhesion, the levels of inflammation and apoptosis. The ability of ΔqseBC and ΔqseC mutant strains to adhere to PAM and MLE-12 cells was significantly reduced. Additionally, by focusing on the clinical signs, H&E, and IFA for inflammation and apoptosis, we found that the ΔqseBC mutant weakened virulence in the murine models. Together, these findings suggest that QseBC plays an important role in the virulence of Glaesserella parasuis.
Collapse
Affiliation(s)
| | - Ke Dai
- Sichuan Agricultural University, Chengdu, China
| | - Congwei Gu
- Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Southwest Medical University, Luzhou, China
| | - Manli He
- Southwest Medical University, Luzhou, China
| | | | | | - Lvqin He
- Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Richard D, Roumagnac P, Pruvost O, Lefeuvre P. A network approach to decipher the dynamics of Lysobacteraceae plasmid gene sharing. Mol Ecol 2022; 32:2660-2673. [PMID: 35593155 DOI: 10.1111/mec.16536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
Plasmids provide an efficient vehicle for gene sharing among bacterial populations, playing a key role in bacterial evolution. Network approaches are particularly suitable to represent multipartite relationships and are useful tools to characterize plasmid-mediated gene sharing events. The Lysobacteraceae bacterial family gathers plant commensal, plant pathogenic and opportunistic human pathogens for which plasmid mediated adaptation was reported. We searched for homologues of plasmid gene sequences from this family in all the diversity of available bacterial genome sequences and built a network of plasmid gene sharing from the results. While plasmid genes are openly shared between the bacteria of the Lysobacteraceae family, taxonomy strongly defined the boundaries of these exchanges, that only barely reached other families. Most inferred plasmid gene sharing events involved a few genes only, and evidence of full plasmid transfers were restricted to taxonomically close taxon. We detected multiple plasmid-chromosome gene transfers, among which the otherwise known sharing of a heavy metal resistance transposon. In the network, bacterial lifestyles shaped sub-structures of isolates colonizing specific ecological niches and harboring specific types of resistance genes. Genes associated to pathogenicity or antibiotic and metal resistance were among those that most importantly structured the network, highlighting the imprints of human-mediated selective pressure on pathogenic populations. A massive sequencing effort on environmental Lysobacteraceae is therefore required to refine our understanding on how this reservoir fuels the emergence and the spread of genes amongst this family and its potential impact on plant, animal and human health.
Collapse
Affiliation(s)
- D Richard
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France.,ANSES, Plant Health Laboratory, F-97410 St Pierre, Réunion, France.,Université de La Réunion, La Réunion, France
| | - P Roumagnac
- Montpellier, France.,PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - O Pruvost
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France
| | - P Lefeuvre
- Cirad, UMR PVBMT, F-97410 St Pierre, Réunion, France
| |
Collapse
|
34
|
Russell JN, Yost CK. Metagenomic and Metatranscriptomic Analyses Reveal that Biobed Systems can Enrich for Antibiotic Resistance and Genetic Mobility Genes. Lett Appl Microbiol 2022; 75:145-151. [PMID: 35366344 DOI: 10.1111/lam.13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Antibiotic resistance gene pollution in the environment has been identified as a potential contributor to the global issue of antibiotic resistance prevalence, creating a need to identify and characterize environmental reservoirs for antibiotic resistance genes. Because many polluted environments have been shown to contain elevated levels of antibiotic resistance genes, agriculturally-based pesticide bioremediation systems called 'biobeds' could serve as environmental reservoirs for antibiotic resistance genes, although this has never been extensively explored. Metagenomic and metatranscriptomic analyses of an on-farm biobed system sampled before and after a season of pesticide use demonstrated that in situ pesticide applications applied to biobeds can enrich for multidrug, sulfonamide, aminoglycoside, and beta-lactam resistance genes. Additionally, this study demonstrated an enrichment for genes associated with gene mobilization, such as genes involved in horizontal gene transfer and plasmid mobility, as well as transposons and integrases.
Collapse
Affiliation(s)
- J N Russell
- Department of Biology, University of Regina, Regina, S4S 0A2, Canada.,Institute for Microbial Systems and Society, University of Regina, Regina, Canada
| | - C K Yost
- Department of Biology, University of Regina, Regina, S4S 0A2, Canada.,Institute for Microbial Systems and Society, University of Regina, Regina, Canada
| |
Collapse
|
35
|
Abstract
Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.
Collapse
|
36
|
Stukenberg D, Hoff J, Faber A, Becker A. NT-CRISPR, combining natural transformation and CRISPR-Cas9 counterselection for markerless and scarless genome editing in Vibrio natriegens. Commun Biol 2022; 5:265. [PMID: 35338236 PMCID: PMC8956659 DOI: 10.1038/s42003-022-03150-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
The fast-growing bacterium Vibrio natriegens has recently gained increasing attention as a novel chassis organism for fundamental research and biotechnology. To fully harness the potential of this bacterium, highly efficient genome editing methods are indispensable to create strains tailored for specific applications. V. natriegens is able to take up free DNA and incorporate it into its genome by homologous recombination. This highly efficient natural transformation is able to mediate uptake of multiple DNA fragments, thereby allowing for multiple simultaneous edits. Here, we describe NT-CRISPR, a combination of natural transformation with CRISPR-Cas9 counterselection. In two temporally distinct steps, we first performed a genome edit by natural transformation and second, induced CRISPR-Cas9 targeting the wild type sequence, and thus leading to death of non-edited cells. Through cell killing with efficiencies of up to 99.999%, integration of antibiotic resistance markers became dispensable, enabling scarless and markerless edits with single-base precision. We used NT-CRISPR for deletions, integrations and single-base modifications with editing efficiencies of up to 100%. Further, we confirmed its applicability for simultaneous deletion of multiple chromosomal regions. Lastly, we showed that the near PAM-less Cas9 variant SpG Cas9 is compatible with NT-CRISPR and thereby broadens the target spectrum. Stukenberg et al. present NT-CRISPR, a method for performing genome editing in the marine bacterium Vibrio natriegens without using antibiotic resistance or other types of markers. This method combines V. natriegens’ capability for highly efficient natural transformation with an extremely efficient CRISPR-Cas9-based counterselection step for editing efficiencies of up to 100% and highly efficient simultaneous deletion of multiple sequences.
Collapse
Affiliation(s)
- Daniel Stukenberg
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.,Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Josef Hoff
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.,Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anna Faber
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.,Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Anke Becker
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany. .,Department of Biology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
37
|
Recombination resolves the cost of horizontal gene transfer in experimental populations of Helicobacter pylori. Proc Natl Acad Sci U S A 2022; 119:e2119010119. [PMID: 35298339 PMCID: PMC8944584 DOI: 10.1073/pnas.2119010119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Horizontal gene transfer (HGT)—the transfer of DNA between lineages—is responsible for a large proportion of the genetic variation that contributes to evolution in microbial populations. While HGT can bring beneficial genetic innovation, the transfer of DNA from other species or strains can also have deleterious effects. In this study, we evolve populations of the bacteria Helicobacter pylori and use DNA sequencing to identify over 40,000 genetic variants transferred by HGT. We measure the cost of many of these and find that both strongly beneficial mutations and deleterious mutations are genetic variants transferred by natural transformation. Importantly, we also show how recombination that separates linked beneficial and deleterious mutations resolves the cost of HGT. Horizontal gene transfer (HGT) is important for microbial evolution, yet we know little about the fitness effects and dynamics of horizontally transferred genetic variants. In this study, we evolve laboratory populations of Helicobacter pylori, which take up DNA from their environment by natural transformation, and measure the fitness effects of thousands of transferred genetic variants. We find that natural transformation increases the rate of adaptation but comes at the cost of significant genetic load. We show that this cost is circumvented by recombination, which increases the efficiency of selection by decoupling deleterious and beneficial genetic variants. Our results show that adaptation with HGT, pervasive in natural microbial populations, is shaped by a combination of selection, recombination, and genetic drift not accounted for in existing models of evolution.
Collapse
|
38
|
Hu Y, Zheng J, Zhang J. Natural Transformation in Acinetobacter baumannii W068: A Genetic Analysis Reveals the Involvements of the CRP, XcpV, XcpW, TsaP, and TonB2. Front Microbiol 2022; 12:738034. [PMID: 35126321 PMCID: PMC8811193 DOI: 10.3389/fmicb.2021.738034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/14/2021] [Indexed: 01/25/2023] Open
Abstract
Acinetobacter baumannii is a serious threat to public health, and there is increasing attention to the development of antibiotic resistance in this bacterium. Natural transformation is a major horizontal gene transfer mechanism that can lead to antibiotic resistance. To better understand the mechanism of natural transformation in A. baumannii, we selected a clinical isolate that was transformable but had no visible extracellular type IV pili (T4P) filaments and then examined the effects of multiple single-gene knockouts on natural plasmid transformation. Among 33 candidate genes, 28 knockout mutants had severely or completely impaired transformability. Some of these genes had established roles in T4P biogenesis; DNA transfer across the outer membrane, periplasm, or inner membrane; and protection of intracellular single-stranded DNA (ssDNA). Other genes had no previously reported roles in natural transformation of A. baumannii, including competence activator cAMP receptor protein (CRP), a periplasmic protein that may function in T4P assembly (TonB2), a T4P secretin-associated protein (TsaP), and two type II secretion system (T2SS) minor pseudopilus assembly prime complex competent proteins (XcpV and XcpW). The deletion of the T2SS assembly platform protein X had no effect on transformation, and the minor pseudopilins were capable of initiating major pilin assembly. Thus, we speculate that XcpV and XcpW may function in DNA uptake with major pilin assembly, a non-T2SS-dependent mechanism and that a competence pseudopilus similar to T4P constituted the central part of the DNA uptake complex. These results may help guide future research on the alarming increase of antibiotic resistance in this pathogen.
Collapse
Affiliation(s)
- Yuan Hu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junjie Zheng
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Jianzhong Zhang,
| |
Collapse
|
39
|
Huang M, Liu M, Huang L, Wang M, Jia R, Zhu D, Chen S, Zhao X, Zhang S, Gao Q, Zhang L, Cheng A. The activation and limitation of the bacterial natural transformation system: The function in genome evolution and stability. Microbiol Res 2021; 252:126856. [PMID: 34454311 DOI: 10.1016/j.micres.2021.126856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/26/2022]
Abstract
Bacteria can take up exogenous naked DNA and integrate it into their genomes, which has been regarded as a main contributor to bacterial evolution. The competent status of bacteria is influenced by environmental cues and by the immune systems of bacteria. Here, we review recent advances in understanding the working mechanisms underlying activation of the natural transformation system and limitations thereof. Environmental stresses including the presence of antimicrobials can activate the natural transformation system. However, bacterial enzymes (nucleases), non-coding RNAs, specific DNA sequences, the restriction-modification (R-M) systems, CRISPR-Cas systems and prokaryotic Argonaute proteins (Agos) are have been found to be involved in the limitation of the natural transformation system. Together, this review represents an opportunity to gain insight into bacterial genome stability and evolution.
Collapse
Affiliation(s)
- Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
40
|
Zhang L, Huang L, Huang M, Wang M, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Tian B, Cheng A, Liu M. Effect of Nutritional Determinants and TonB on the Natural Transformation of Riemerella anatipestifer. Front Microbiol 2021; 12:644868. [PMID: 34447355 PMCID: PMC8383284 DOI: 10.3389/fmicb.2021.644868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/13/2021] [Indexed: 11/27/2022] Open
Abstract
Riemerella anatipestifer is a gram-negative bacterium that is the first naturally competent bacterium identified in the family Flavobacteriaceae. However, the determinants that influence the natural transformation and the underlying mechanism remain unknown. In this study, we evaluated the effects of various nutritional factors of the GCB medium [glucose, L-glutamine, vitamin B1, Fe (NO3)3, NaCl, phosphate, and peptone], on the natural transformation of R. anatipestifer ATCC 11845. Among the assayed nutrients, peptone and phosphate affected the natural transformation of R. anatipestifer ATCC 11845, and the transformation frequency was significantly decreased when phosphate or peptone was removed from the GCB medium. When the iron chelator 2,2′-dipyridyl (Dip) was added, the transformation frequency was decreased by approximately 100-fold and restored gradually when Fe (NO3)3 was added, suggesting that the natural transformation of R. anatipestifer ATCC 11845 requires iron. Given the importance of TonB in nutrient transportation, we further identified whether TonB is involved in the natural transformation of R. anatipestifer ATCC 11845. Mutation of tonBA or tonBB, but not tbfA, was shown to inhibit the natural transformation of R. anatipestifer ATCC 11845 in the GCB medium. In parallel, it was shown that the tonBB mutant, but not the tonBA mutant, decreased iron acquisition in the GCB medium. This result suggested that the tonBB mutant affects the natural transformation frequency due to the deficiency of iron utilization.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mengying Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
41
|
Huang Q, Chen J, Zhu J, Hao X, Dao G, Chen W, Cai P, Huang Q. Divergent bacterial transformation exerted by soil minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147173. [PMID: 34088059 DOI: 10.1016/j.scitotenv.2021.147173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
As one of the horizontal gene transfer processes, transformation provides bacteria flexible adaptation to changing environmental conditions. Soil minerals have been shown to inhibit bacterial transformation efficiency due to their high adsorption affinity for DNA molecules. However, the intrinsic mechanisms in regulating genetic transformation by soil components remain elusive. Little is known whether bacterial exposure to minerals may influence competence development which is regarded as a prerequisite of bacterial transformation. In this study, we examined the effects of kaolinite, montmorillonite, and goethite on the transformation of B. subtilis via chemical adsorption, Live-Dead staining, β-galactosidase assay, and qPCR. Results showed that kaolinite and montmorillonite reduced the transformability of B. subtilis by strong adsorption of CSF (competence-stimulating factor), a signaling molecule of cell competence, and the down-regulated transcriptional genes resulting from suppressed competence development. Conversely, goethite depressed bacterial transformation only at low mineral content by DNA adsorption. The striking membrane damage on B. subtilis in presence of high content of goethite yielded a marked increase of bacterial transformation. This finding subverted our previous view regarding the impact of soil minerals on bacterial transformation. Three mechanisms were thus proposed governing bacterial transformation in mineral systems: adsorption of CSF, gene expression and membrane damage. This work has advanced our understanding on the genetic transformation of bacteria as influenced by minerals in a wide range of soils and associated environments.
Collapse
Affiliation(s)
- Qiong Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaojiao Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Guohua Dao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
42
|
Bonifácio M, Mateus C, Alves AR, Maldonado E, Duarte AP, Domingues F, Oleastro M, Ferreira S. Natural Transformation as a Mechanism of Horizontal Gene Transfer in Aliarcobacter butzleri. Pathogens 2021; 10:pathogens10070909. [PMID: 34358059 PMCID: PMC8308473 DOI: 10.3390/pathogens10070909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Aliarcobacter butzleri is an emergent enteropathogen, showing high genetic diversity, which likely contributes to its adaptive capacity to different environments. Whether natural transformation can be a mechanism that generates genetic diversity in A. butzleri is still unknown. In the present study, we aimed to establish if A. butzleri is naturally competent for transformation and to investigate the factors influencing this process. Two different transformation procedures were tested using exogenous and isogenic DNA containing antibiotic resistance markers, and different external conditions influencing the process were evaluated. The highest number of transformable A. butzleri strains were obtained with the agar transformation method when compared to the biphasic system (65% versus 47%). A. butzleri was able to uptake isogenic chromosomal DNA at different growth phases, and the competence state was maintained from the exponential to the stationary phases. Overall, the optimal conditions for transformation with the biphasic system were the use of 1 μg of isogenic DNA and incubation at 30 °C under a microaerobic atmosphere, resulting in a transformation frequency ~8 × 10−6 transformants/CFU. We also observed that A. butzleri favored the transformation with the genetic material of its own strain/species, with the DNA incorporation process occurring promptly after the addition of genomic material. In addition, we observed that A. butzleri strains could exchange genetic material in co-culture assays. The presence of homologs of well-known genes involved in the competence in the A. butzleri genome corroborates the natural competence of this species. In conclusion, our results show that A. butzleri is a naturally transformable species, suggesting that horizontal gene transfer mediated by natural transformation is one of the processes contributing to its genetic diversity. In addition, natural transformation can be used as a tool for genetic studies of this species.
Collapse
Affiliation(s)
- Marina Bonifácio
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Cristiana Mateus
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Ana R. Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Emanuel Maldonado
- C4-UBI-Cloud Computing Competence Centre, University of Beira Interior, 6200-284 Covilhã, Portugal;
| | - Ana P. Duarte
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
- C4-UBI-Cloud Computing Competence Centre, University of Beira Interior, 6200-284 Covilhã, Portugal;
| | - Fernanda Domingues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal;
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
- Correspondence:
| |
Collapse
|
43
|
Pilus Production in Acinetobacter baumannii Is Growth Phase Dependent and Essential for Natural Transformation. J Bacteriol 2021; 203:JB.00034-21. [PMID: 33495250 PMCID: PMC8088505 DOI: 10.1128/jb.00034-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Rapid bacterial evolution has alarming negative impacts on animal and human health which can occur when pathogens acquire antimicrobial resistance traits. As a major cause of antibiotic-resistant opportunistic infections, A. baumannii is a high-priority health threat which has motivated renewed interest in studying how this pathogen acquires new, dangerous traits. Acinetobacter baumannii is a severe threat to human health as a frequently multidrug-resistant hospital-acquired pathogen. Part of the danger from this bacterium comes from its genome plasticity and ability to evolve quickly by taking up and recombining external DNA into its own genome in a process called natural competence for transformation. This mode of horizontal gene transfer is one of the major ways that bacteria can acquire new antimicrobial resistances and toxic traits. Because these processes in A. baumannii are not well studied, we herein characterized new aspects of natural transformability in this species that include the species’ competence window. We uncovered a strong correlation with a growth phase-dependent synthesis of a type IV pilus (TFP), which constitutes the central part of competence-induced DNA uptake machinery. We used bacterial genetics and microscopy to demonstrate that the TFP is essential for the natural transformability and surface motility of A. baumannii, whereas pilus-unrelated proteins of the DNA uptake complex do not affect the motility phenotype. Furthermore, TFP biogenesis and assembly is subject to input from two regulatory systems that are homologous to Pseudomonas aeruginosa, namely, the PilSR two-component system and the Pil-Chp chemosensory system. We demonstrated that these systems affect not only the piliation status of cells but also their ability to take up DNA for transformation. Importantly, we report on discrepancies between TFP biogenesis and natural transformability within the same genus by comparing data for our work on A. baumannii to data reported for Acinetobacter baylyi, the latter of which served for decades as a model for natural competence. IMPORTANCE Rapid bacterial evolution has alarming negative impacts on animal and human health which can occur when pathogens acquire antimicrobial resistance traits. As a major cause of antibiotic-resistant opportunistic infections, A. baumannii is a high-priority health threat which has motivated renewed interest in studying how this pathogen acquires new, dangerous traits. In this study, we deciphered a specific time window in which these bacteria can acquire new DNA and correlated that with its ability to produce the external appendages that contribute to the DNA acquisition process. These cell appendages function doubly for motility on surfaces and for DNA uptake. Collectively, we showed that A. baumannii is similar in its TFP production to Pseudomonas aeruginosa, though it differs from the well-studied species A. baylyi.
Collapse
|
44
|
Huang L, Liu M, Zhu D, Xie L, Huang M, Xiang C, Biville F, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Wang M, Cheng A. Natural Transformation of Riemerella columbina and Its Determinants. Front Microbiol 2021; 12:634895. [PMID: 33746928 PMCID: PMC7965970 DOI: 10.3389/fmicb.2021.634895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
In a previous study, it was shown that Riemerella anatipestifer, a member of Flavobacteriaceae, is naturally competent. However, whether natural competence is universal in Flavobacteriaceae remains unknown. In this study, it was shown for the first time that Riemerella columbina was naturally competent in the laboratory condition; however, Flavobacterium johnsoniae was not naturally competent under the same conditions. The competence of R. columbina was maintained throughout the growth phases, and the transformation frequency was highest during the logarithmic phase. A competition assay revealed that R. columbina preferentially took up its own genomic DNA over heterologous DNA. The natural transformation frequency of R. columbina was significantly increased in GCB medium without peptone or phosphate. Furthermore, natural transformation of R. columbina was inhibited by 0.5 mM EDTA, but could be restored by the addition of CaCl2, MgCl2, ZnCl2, and MnCl2, suggesting that these divalent cations promote the natural transformation of R. columbina. Overall, this study revealed that natural competence is not universal in Flavobacteriaceae members and triggering of competence differs from species to species.
Collapse
Affiliation(s)
- Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Li Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Chen Xiang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Francis Biville
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
45
|
Phenotypic Characterization and Transformation Attempts Reveal Peculiar Traits of Xylella fastidiosa Subspecies pauca Strain De Donno. Microorganisms 2020; 8:microorganisms8111832. [PMID: 33233703 PMCID: PMC7699976 DOI: 10.3390/microorganisms8111832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Xylella fastidiosa subsp. pauca strain De Donno has been recently identified as the causal agent of a severe disease affecting olive trees in a wide area of the Apulia Region (Italy). While insights on the genetics and epidemiology of this virulent strain have been gained, its phenotypic and biological traits remained to be explored. We investigated in vitro behavior of the strain and compare its relevant biological features (growth rate, biofilm formation, cell-cell aggregation, and twitching motility) with those of the type strain Temecula1. The experiments clearly showed that the strain De Donno did not show fringe on the agar plates, produced larger amounts of biofilm and had a more aggregative behavior than the strain Temecula1. Repeated attempts to transform, by natural competence, the strain De Donno failed to produce a GFP-expressing and a knockout mutant for the rpfF gene. Computational prediction allowed us to identify potentially deleterious sequence variations most likely affecting the natural competence and the lack of fringe formation. GFP and rpfF- mutants were successfully obtained by co-electroporation in the presence of an inhibitor of the type I restriction-modification system. The availability of De Donno mutant strains will open for new explorations of its interactions with hosts and insect vectors.
Collapse
|
46
|
Wallace MJ, Fishbein SRS, Dantas G. Antimicrobial resistance in enteric bacteria: current state and next-generation solutions. Gut Microbes 2020; 12:1799654. [PMID: 32772817 PMCID: PMC7524338 DOI: 10.1080/19490976.2020.1799654] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial resistance is one of the largest threats to global health and imposes substantial burdens in terms of morbidity, mortality, and economic costs. The gut is a key conduit for the genesis and spread of antimicrobial resistance in enteric bacterial pathogens. Distinct bacterial species that cause enteric disease can exist as invasive enteropathogens that immediately evoke gastrointestinal distress, or pathobionts that can arise from established bacterial commensals to inflict dysbiosis and disease. Furthermore, various environmental reservoirs and stressors facilitate the evolution and transmission of resistance. In this review, we present a comprehensive discussion on circulating resistance profiles and gene mobilization strategies of the most problematic species of enteric bacterial pathogens. Importantly, we present emerging approaches toward surveillance of pathogens and their resistance elements as well as promising treatment strategies that can circumvent common resistance mechanisms.
Collapse
Affiliation(s)
- M. J. Wallace
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - S. R. S. Fishbein
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G. Dantas
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
47
|
The evolution of bacterial pathogens in the Anthropocene. INFECTION GENETICS AND EVOLUTION 2020; 86:104611. [PMID: 33130070 DOI: 10.1016/j.meegid.2020.104611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Humankind has become a primary driver of global environmental and climate change. The extent of planetary change is such that it has been proposed to classify the current geological age as the 'Anthropocene'. Anthropogenic environmental degradation presents numerous threats to human health and wellbeing, including an increased risk of infectious disease. This review focuses on how processes such as pollution, climate change and human-mediated dispersal could affect the evolution of bacterial pathogens. Effects of environmental change on the 'big five' of evolution: mutation rate, recombination (horizontal gene transfer), migration, selection and drift are discussed. Microplastic pollution is used as a case study to highlight the combined effects of some of these processes on the evolutionary diversification of human pathogens. Although the evidence is still incomplete, a picture is emerging that environmental pathogens could evolve at increased rates in the Anthropocene, with potential consequences for human infection.
Collapse
|
48
|
Schirmacher AM, Hanamghar SS, Zedler JAZ. Function and Benefits of Natural Competence in Cyanobacteria: From Ecology to Targeted Manipulation. Life (Basel) 2020; 10:E249. [PMID: 33105681 PMCID: PMC7690421 DOI: 10.3390/life10110249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria. Many cyanobacterial species appear to have the genetic potential to be naturally competent, however, this ability has only been demonstrated in a few species. Reasons for this might be due to a high variety of largely uncharacterised competence inducers and a lack of understanding the ecological context of natural competence in cyanobacteria. To shed light on these questions, we describe what is known about the molecular mechanisms of natural competence in cyanobacteria and analyse how widespread this trait might be based on available genomic datasets. Potential regulators of natural competence and what benefits or drawbacks may derive from taking up foreign DNA are discussed. Overall, many unknowns about natural competence in cyanobacteria remain to be unravelled. A better understanding of underlying mechanisms and how to manipulate these, can aid the implementation of cyanobacteria as sustainable production chassis.
Collapse
Affiliation(s)
| | | | - Julie A. Z. Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.M.S.); (S.S.H.)
| |
Collapse
|
49
|
Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc Natl Acad Sci U S A 2020; 117:26868-26875. [PMID: 33055207 DOI: 10.1073/pnas.2005331117] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Horizontal gene transfer (HGT) confers the rapid acquisition of novel traits and is pervasive throughout microbial evolution. Despite the central role of HGT, the evolutionary forces that drive the dynamics of HGT alleles in evolving populations are poorly understood. Here, we show that HGT alters the evolutionary dynamics of genetic variation, so that deleterious genetic variants, including antibiotic resistance genes, can establish in populations without selection. We evolve antibiotic-sensitive populations of the human pathogen Helicobacter pylori in an environment without antibiotic but with HGT from an antibiotic-resistant isolate of H. pylori We find that HGT increases the rate of adaptation, with most horizontally transferred genetic variants establishing at a low frequency in the population. When challenged with antibiotic, this low-level variation potentiates adaptation, with HGT populations flourishing in conditions where nonpotentiated populations go extinct. By extending previous models of evolution under HGT, we evaluated the conditions for the establishment and spread of HGT-acquired alleles into recipient populations. We then used our model to estimate parameters of HGT and selection from our experimental evolution data. Together, our findings show how HGT can act as an evolutionary force that facilitates the spread of nonselected genetic variation and expands the adaptive potential of microbial populations.
Collapse
|
50
|
Impact of Sequential Passaging on Protein Expression of E. coli Using Proteomics Analysis. Int J Microbiol 2020; 2020:2716202. [PMID: 32802068 PMCID: PMC7414335 DOI: 10.1155/2020/2716202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Urinary tract infection (UTI) is one of the most prevalent bacterial infections in the world affecting the bladder and the kidney. Escherichia coli (E. coli) is the main causative agent of 80–90% of community-acquired UTIs, about 40% of nosocomial UTIs, and 25% of recurrent UTIs. The field of proteomics has emerged as a great tool to analyze expressed proteins to identify possible biomarkers associated with many pathological states and, to the same extent, those associated with bacterial pathogenesis and their ability to cause recurrent infections. Here, in a descriptive cross-sectional pilot study, we employed proteomic techniques to investigate the effects of environmental stress on protein profiles of E. coli simulated by sequential passaging of samples from patients with UTIs to screen for unique proteins that arise under stressful environment and could aid in the early detection of UTIs. Four urine samples were collected from individuals with recurrent UTI and sequentially subcultured; protein samples were extracted from bacterial pellets and analyzed using 2-dimensional gel electrophoresis (2DGE). Protein spots of interest arising from changes in the protein profile were analyzed using liquid chromatography-mass spectrometry (LC-MS/MS) and matched against known databases to identify related proteins. We identified ATPB_ECOBW, ASPA ECOLI, DPS ECOL6, and DCEB ECOLI as proteins associated with higher passaging. We concluded that passaging resulted in identifiable changes in the protein profile of E. coli, namely, proteins that are associated with survival and possible adaptation of bacteria, suggestive of factors contributing to antibiotic resistance and recurrent UTIs. Furthermore, our method could be further used to identify indicator-protein candidates that could be a part of a growing protein database to diagnose and identify causative agents in UTIs.
Collapse
|