1
|
Ebner M, Fröhlich F, Haucke V. Mechanisms and functions of lysosomal lipid homeostasis. Cell Chem Biol 2025; 32:392-407. [PMID: 40054455 DOI: 10.1016/j.chembiol.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 03/23/2025]
Abstract
Lysosomes are the central degradative organelle of mammalian cells and have emerged as major intersections of cellular metabolite flux. Macromolecules derived from dietary and intracellular sources are delivered to the acidic lysosomal lumen where they are subjected to degradation by acid hydrolases. Lipids derived from lipoproteins, autophagy cargo, or autophagosomal membranes themselves constitute major lysosomal substrates. Dysregulation of lysosomal lipid processing, defective export of lipid catabolites, and lysosomal membrane permeabilization underly diseases ranging from neurodegeneration to metabolic syndromes and lysosomal storage disorders. Mammalian cells are equipped with sophisticated homeostatic control mechanisms that protect the lysosomal limiting membrane from excessive damage, prevent the spillage of luminal hydrolases into the cytoplasm, and preserve the lysosomal membrane composition in the face of constant fusion with heterotypic organelles such as endosomes and autophagosomes. In this review we discuss the molecular mechanisms that govern lysosomal lipid homeostasis and, thereby, lysosome function in health and disease.
Collapse
Affiliation(s)
- Michael Ebner
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Florian Fröhlich
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Volker Haucke
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Freie Universität Berlin, Faculty of Biology, Chemistry, Pharmacy, 14195 Berlin, Germany.
| |
Collapse
|
2
|
Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi MR, Phinney BS, Bu G, Zhao N, Dickson DW, Murray ME, Rossoll W. Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies. Mol Neurodegener 2025; 20:32. [PMID: 40082954 PMCID: PMC11905455 DOI: 10.1186/s13024-025-00817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the mechanisms underlying the diversity of neuronal and glial tau pathology in different tauopathies are poorly understood. While there is a growing understanding of tauopathy-specific differences in tau isoforms and fibrillar structures, the specific composition of heterogenous tau lesions remains unknown. Here we study the protein composition of tau aggregates in four major tauopathies: Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP). METHODS We developed an approach for in situ proximity labeling and isolation of aggregate-associated proteins using glass slides with formalin-fixed paraffin-embedded (FFPE) human postmortem brain tissue, termed Probe-dependent Proximity Profiling (ProPPr). We used ProPPr for the analysis of proteomes associated with AT8-positive cellular lesions from frontal cortices. Isolated proximity proteomes were analyzed by data-independent acquisition mass spectrometry. Co-immunofluorescence staining and quantitative data analysis for selected proteins in human brain tissue was performed to further investigate associations with diverse tau pathologies. RESULTS Proteomics data analysis identified numerous common and tauopathy-specific proteins associated with phospho-tau aggregates. Extensive validations of candidates through quantitative immunofluorescence imaging of distinct aggregates across disease cases demonstrate successful implementation of ProPPr for unbiased discovery of aggregate-associated proteins in in human brain tissue. Our results reveal the association of retromer complex component vacuolar protein sorting-associated protein 35 (VPS35) and lysosome-associated membrane glycoprotein 2 (LAMP2) with specific types of phospho-tau lesions in tauopathies. Furthermore, we discovered a disease-specific association of certain proteins with distinct pathological lesions, including glycogen synthase kinase alpha (GSK3α), ferritin light chain (FTL), and the neuropeptide precursor VGF. Notably, the identification of FTL-positive microglia in CBD astrocytic plaques indicate their potential role in the pathogenesis of these lesions. CONCLUSIONS Our findings demonstrate the suitability of the ProPPr approach in FFPE brain tissue for unbiased discovery of local proteomes that provide valuable insights into the underlying proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes in a range of distinct tauopathies enhances our understanding of disease heterogeneity and mechanisms, informing strategies for the development of diagnostic biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Melissa C Wren
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nora Pobitzer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Brett S Phinney
- Proteomics Core, University of California Davis, Davis, CA, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Present address: Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | |
Collapse
|
3
|
Xu Z, Notomi S, Wu G, Fukuda Y, Maehara Y, Fukushima M, Murakami Y, Takahashi M, Izumi Y, Sonoda KH. Altered fatty acid distribution in lysosome-associated membrane protein-2 deficient mice. Biochem Biophys Rep 2024; 40:101822. [PMID: 39290347 PMCID: PMC11405639 DOI: 10.1016/j.bbrep.2024.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Lysosome-associated membrane protein-2 (LAMP2) deficiency causes the human Danon disease and represents a lysosomal dysfunction because of its pivotal role in regulating autophagy and lysosome biogenesis. LAMP2-deficient mice exhibit a spectrum of phenotypes, including cardioskeletal myopathy, mental retardation, and retinopathy, similar to those observed in patients with Danon disease. Its pathology is thought to involve altered energy metabolism and lipid dysregulation; however, the lipidomic profiles of LAMP2-deficient animals have not been investigated. In this study, we investigated lipid alterations in LAMP2 KO mice tissues, including those of the liver, plasma, and retina, using liquid chromatography-mass spectrometry. Our results revealed significantly increased free fatty acid (FFA) levels and decreased in triglyceride (TG) levels in LAMP2 KO liver tissues at three and six months. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species significantly decreased in LAMP2 KO mice livers at six months. Similarly, plasma TG and PC/PE levels decreased in LAMP2 KO mice. In contrast, plasma FFA levels were significantly lower in LAMP2 KO mice. Retina FFA levels were elevated in LAMP2 KO mice, accompanied by a partial decrease in PC/PE at six months. In summary, FFA levels increased in several tissues but not in the LAMP2 KO mice plasma, suggesting the potential consumption of FFA as an energy source in the peripheral tissues. The depletion of TG and PC/PE accelerated with age, suggesting an underlying age-dependent energy crisis condition. Our findings underscore the dysregulated distribution of fatty acids in LAMP2-deficient animals and provide new mechanistic insights into the pathology of Danon disease.
Collapse
Affiliation(s)
- Ziming Xu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Guannan Wu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yosuke Fukuda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yusuke Maehara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Masatoshi Fukushima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
4
|
Doyle A, Goodson BA, Kolaczkowski OM, Liu R, Jia J, Wang H, Han X, Ye C, Bradfute SB, Kell AM, Lemus MR, Pu J. Manipulation of Host Cholesterol by SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623299. [PMID: 39605369 PMCID: PMC11601339 DOI: 10.1101/2024.11.13.623299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
SARS-CoV-2 infection is associated with alterations in host lipid metabolism, including disruptions in cholesterol homeostasis. However, the specific mechanisms by which viral proteins influence cholesterol remain incompletely understood. Here, we report that SARS-CoV-2 infection induces cholesterol sequestration within lysosomes, with the viral protein ORF3a identified as the primary driver of this effect. Mechanistically, we found that ORF3a interacts directly with the HOPS complex subunit VPS39 through a hydrophobic interface formed by residues W193 and Y184. A W193A mutation in ORF3a significantly rescues cholesterol egress and corrects the mislocalization of the lysosomal cholesterol transporter NPC2, which is caused by defective trafficking of the trans-Golgi network (TGN) sorting receptor, the cation-independent mannose-6-phosphate receptor (CI-MPR). We further observed a marked reduction in bis(monoacylglycero)phosphate (BMP), a lipid essential for lysosomal cholesterol egress, in both SARS-CoV-2-infected cells and ORF3a-expressing cells, suggesting BMP reduction as an additional mechanism of SARS-CoV-2-caused cholesterol sequestration. Inhibition of lysosomal cholesterol egress using the compound U18666A significantly decreased SARS-CoV-2 infection, highlighting a potential viral strategy of manipulating lysosomal cholesterol to modulate host cell susceptibility. Our findings reveal that SARS-CoV-2 ORF3a disrupts cellular cholesterol transport by altering lysosomal protein trafficking and BMP levels, providing new insights into virus-host interactions that contribute to lipid dysregulation in infected cells.
Collapse
Affiliation(s)
- Aliza Doyle
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Baley A. Goodson
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Oralia M. Kolaczkowski
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Jingyue Jia
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Hu Wang
- Department of Medicine, UT Health San Antonio Long School of Medicine, San Antonio, Texas 78229, USA
| | - Xianlin Han
- Department of Medicine, UT Health San Antonio Long School of Medicine, San Antonio, Texas 78229, USA
| | - Chunyan Ye
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Steven B. Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Alison M. Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Monica Rosas Lemus
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
5
|
Wang Y, Yang Y, Cai Y, Aobulikasimu A, Wang Y, Hu C, Miao Z, Shao Y, Zhao M, Hu Y, Xu C, Chen X, Li Z, Chen J, Wang L, Chen S. Endo-Lysosomal Network Disorder Reprograms Energy Metabolism in SorL1-Null Rat Hippocampus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407709. [PMID: 39225620 PMCID: PMC11538633 DOI: 10.1002/advs.202407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Sortilin-related receptor 1 (SorL1) deficiency is a genetic predisposition to familial Alzheimer's disease (AD), but its pathology is poorly understood. In SorL1-null rats, a disorder of the global endosome-lysosome network (ELN) is found in hippocampal neurons. Deletion of amyloid precursor protein (APP) in SorL1-null rats could not completely rescue the neuronal abnormalities in the ELN of the hippocampus and the impairment of spatial memory in SorL1-null young rats. These in vivo observations indicated that APP is one of the cargoes of SorL1 in the regulation of the ELN, which affects hippocampal-dependent memory. When SorL1 is depleted, the endolysosome takes up more of the lysosome flux and damages lysosomal digestion, leading to pathological lysosomal storage and disturbance of cholesterol and iron homeostasis in the hippocampus. These disturbances disrupt the original homeostasis of the material-energy-subcellular structure and reprogram energy metabolism based on fatty acids in the SorL1-null hippocampus, instead of glucose. Although fatty acid oxidation increases ATP supply, it cannot reduce the levels of the harmful byproduct ROS during oxidative phosphorylation, as it does in glucose catabolism. Therefore, the SorL1-null rats exhibit hippocampal degeneration, and their spatial memory is impaired. Our research sheds light on the pathology of SorL1 deficiency in AD.
Collapse
Affiliation(s)
- Yajie Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuting Yang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ying Cai
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ayikaimaier Aobulikasimu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuexin Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chuanwei Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Zhikang Miao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Shao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Mengna Zhao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chang Xu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Xinjun Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Jincao Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Lianrong Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Respiratory Diseases, Institute of PediatricsShenzhen Children's HospitalShenzhen518026China
| | - Shi Chen
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Burn and Plastic SurgeryShenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and ApplicationShenzhen Institute of Translational MedicineMedical Innovation Technology Transformation CenterShenzhen University Medical School, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
6
|
Guo A, Wu Q, Yan X, Chen K, Liu Y, Liang D, Yang Y, Luo Q, Xiong M, Yu Y, Fei E, Chen F. Differential roles of lysosomal cholesterol transporters in the development of C. elegans NMJs. Life Sci Alliance 2024; 7:e202402584. [PMID: 39084875 PMCID: PMC11291935 DOI: 10.26508/lsa.202402584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Cholesterol homeostasis in neurons is critical for synapse formation and maintenance. Neurons with impaired cholesterol uptake undergo progressive synapse loss and eventual degeneration. To investigate the molecular mechanisms of neuronal cholesterol homeostasis and its role during synapse development, we studied motor neurons of Caenorhabditis elegans because these neurons rely on dietary cholesterol. Combining lipidomic analysis, we discovered that NCR-1, a lysosomal cholesterol transporter, promotes cholesterol absorption and synapse development. Loss of ncr-1 causes smaller synapses, and low cholesterol exacerbates the deficits. Moreover, NCR-1 deficiency hinders the increase in synapses under high cholesterol. Unexpectedly, NCR-2, the NCR-1 homolog, increases the use of cholesterol and sphingomyelins and impedes synapse formation. NCR-2 deficiency causes an increase in synapses regardless of cholesterol concentration. Inhibiting the degradation or synthesis of sphingomyelins can induce or suppress the synaptic phenotypes in ncr-2 mutants. Our findings indicate that neuronal cholesterol homeostasis is differentially controlled by two lysosomal cholesterol transporters and highlight the importance of neuronal cholesterol homeostasis in synapse development.
Collapse
Affiliation(s)
- Amin Guo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin Yan
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Kanghua Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuxiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dingfa Liang
- Queen Mary School of Nanchang University, Jiangxi Medical College, Nanchang, China
| | - Yuxiao Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qunfeng Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Mingtao Xiong
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Erkang Fei
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fei Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Yang YL, Zeng WH, Peng Y, Zuo SY, Fu YQ, Xiao YM, Huang WL, Wen ZY, Hu W, Yang YY, Huang XF. Characterization of three lamp genes from largemouth bass ( Micropterus salmoides): molecular cloning, expression patterns, and their transcriptional levels in response to fast and refeeding strategy. Front Physiol 2024; 15:1386413. [PMID: 38645688 PMCID: PMC11026864 DOI: 10.3389/fphys.2024.1386413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Lysosomes-associated membrane proteins (LAMPs), a family of glycosylated proteins and major constituents of the lysosomal membranes, play a dominant role in various cellular processes, including phagocytosis, autophagy and immunity in mammals. However, their roles in aquatic species remain poorly known. In the present study, three lamp genes were cloned and characterized from Micropterus salmoides. Subsequently, their transcriptional levels in response to different nutritional status were investigated. The full-length coding sequences of lamp1, lamp2 and lamp3 were 1251bp, 1224bp and 771bp, encoding 416, 407 and 256 amino acids, respectively. Multiple sequence alignment showed that LAMP1-3 were highly conserved among the different fish species, respectively. 3-D structure prediction, genomic survey, and phylogenetic analysis were further confirmed that these genes are widely existed in vertebrates. The mRNA expression of the three genes was ubiquitously expressed in all selected tissues, including liver, brain, gill, heart, muscle, spleen, kidney, stomach, adipose and intestine, lamp1 shows highly transcript levels in brain and muscle, lamp2 displays highly expression level in heart, muscle and spleen, but lamp3 shows highly transcript level in spleen, liver and kidney. To analyze the function of the three genes under starvation stress in largemouth bass, three experimental treatment groups (fasted group and refeeding group, control group) were established in the current study. The results indicated that the expression of lamp1 was significant induced after starvation, and then returned to normal levels after refeeding in the liver. The expression of lamp2 and lamp3 exhibited the same trend in the liver. In addition, in the spleen and the kidney, the transcript level of lamp1 and lamp2 was remarkably increased in the fasted treatment group and slightly decreased in the refed treatment group, respectively. Collectively, our findings suggest that three lamp genes may have differential function in the immune and energetic organism in largemouth bass, which is helpful in understanding roles of lamps in aquatic species.
Collapse
Affiliation(s)
- Yan-Lin Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Wan-Hong Zeng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yong Peng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Shi-Yu Zuo
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yuan-Qi Fu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yi-Ming Xiao
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Wen-Li Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Wei Hu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Yu-Ying Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Xiao-Feng Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Handy J, Macintosh GC, Jenny A. Ups and downs of lysosomal pH: conflicting roles of LAMP proteins? Autophagy 2024; 20:437-440. [PMID: 37960894 PMCID: PMC10813643 DOI: 10.1080/15548627.2023.2274253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
The acidic pH of lysosomes is critical for catabolism in eukaryotic cells and is altered in neurodegenerative disease including Alzheimer and Parkinson. Recent reports using Drosophila and mammalian cell culture systems have identified novel and, at first sight, conflicting roles for the lysosomal associated membrane proteins (LAMPs) in the regulation of the endolysosomal system.Abbreviation: AD: Alzheimer disease; LAMP: lysosomal associated membrane protein; LTR: LysoTracker; PD: Parkinson disease; TMEM175: transmembrane protein 175; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Jonathan Handy
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gustavo C Macintosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Zhang J, Zeng W, Han Y, Lee WR, Liou J, Jiang Y. Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel. Mol Cell 2023; 83:2524-2539.e7. [PMID: 37390818 PMCID: PMC10528928 DOI: 10.1016/j.molcel.2023.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Maintaining a highly acidic lysosomal pH is central to cellular physiology. Here, we use functional proteomics, single-particle cryo-EM, electrophysiology, and in vivo imaging to unravel a key biological function of human lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in regulating lysosomal pH homeostasis. Despite being widely used as a lysosomal marker, the physiological functions of the LAMP proteins have long been overlooked. We show that LAMP-1 and LAMP-2 directly interact with and inhibit the activity of the lysosomal cation channel TMEM175, a key player in lysosomal pH homeostasis implicated in Parkinson's disease. This LAMP inhibition mitigates the proton conduction of TMEM175 and facilitates lysosomal acidification to a lower pH environment crucial for optimal hydrolase activity. Disrupting the LAMP-TMEM175 interaction alkalinizes the lysosomal pH and compromises the lysosomal hydrolytic function. In light of the ever-increasing importance of lysosomes to cellular physiology and diseases, our data have widespread implications for lysosomal biology.
Collapse
Affiliation(s)
- Jiyuan Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weizhong Zeng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute at University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Han
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute at University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
11
|
Palladino C, Ellinger I, Kalic T, Humeniuk P, Ret D, Mayr V, Hafner C, Hemmer W, Hoffmann-Sommergruber K, Untersmayr E, Bublin M, Radauer C, Breiteneder H. Peanut lipids influence the response of bronchial epithelial cells to the peanut allergens Ara h 1 and Ara h 2 by decreasing barrier permeability. Front Mol Biosci 2023; 10:1126008. [PMID: 36845549 PMCID: PMC9945344 DOI: 10.3389/fmolb.2023.1126008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Background: Peanut-allergic individuals react upon their first known ingestion of peanuts, suggesting sensitization occurs through non-oral exposure. Increasing evidence suggests that the respiratory tract is a probable site for sensitization to environmental peanuts. However, the response of the bronchial epithelium to peanut allergens has never been explored. Furthermore, food matrix-derived lipids play an important role in allergic sensitization. Objective: To contribute to a better understanding of the mechanisms of allergic sensitization to peanuts via inhalation, by exploring the direct effect of the major peanut allergens Ara h 1 and Ara h 2 and peanut lipids on bronchial epithelial cells. Methods: Polarized monolayers of the bronchial epithelial cell line 16HBE14o- were stimulated apically with peanut allergens and/or peanut lipids (PNL). Barrier integrity, transport of allergens across the monolayers, and release of mediators were monitored. Results: Ara h 1 and Ara h 2 impacted the barrier integrity of the 16HBE14o- bronchial epithelial cells and crossed the epithelial barrier. Ara h 1 also induced the release of pro-inflammatory mediators. PNL improved the barrier function of the cell monolayers, decreased paracellular permeability and reduced the amount of allergens crossing the epithelial layer. Conclusion: Our study provides evidence of the transport of Ara h 1 and Ara h 2 across the airway epithelium, of the induction of a pro-inflammatory milieu, and identifies an important role for PNL in controlling the amount of allergens that can cross the epithelial barrier. These, all together, contribute to a better understanding of the effects of peanuts exposure on the respiratory tract.
Collapse
Affiliation(s)
- Chiara Palladino
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Isabella Ellinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Piotr Humeniuk
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Davide Ret
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Vanessa Mayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
- Karl Landsteiner Institute for Dermatological Research, St. Pölten, Austria
| | | | - Karin Hoffmann-Sommergruber
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Merima Bublin
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Radauer
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Amaral O, Martins M, Oliveira AR, Duarte AJ, Mondragão-Rodrigues I, Macedo MF. The Biology of Lysosomes: From Order to Disorder. Biomedicines 2023; 11:213. [PMID: 36672721 PMCID: PMC9856021 DOI: 10.3390/biomedicines11010213] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Since its discovery in 1955, the understanding of the lysosome has continuously increased. Once considered a mere waste removal system, the lysosome is now recognised as a highly crucial cellular component for signalling and energy metabolism. This notable evolution raises the need for a summarized review of the lysosome's biology. As such, throughout this article, we will be compiling the current knowledge regarding the lysosome's biogenesis and functions. The comprehension of this organelle's inner mechanisms is crucial to perceive how its impairment can give rise to lysosomal disease (LD). In this review, we highlight some examples of LD fine-tuned mechanisms that are already established, as well as others, which are still under investigation. Even though the understanding of the lysosome and its pathologies has expanded through the years, some of its intrinsic molecular aspects remain unknown. In order to illustrate the complexity of the lysosomal diseases we provide a few examples that have challenged the established single gene-single genetic disorder model. As such, we believe there is a strong need for further investigation of the exact abnormalities in the pathological pathways in lysosomal disease.
Collapse
Affiliation(s)
- Olga Amaral
- Departamento de Genética Humana, Unidade de Investigação e Desenvolvimento, Instituto Nacional de Saúde Ricardo Jorge (INSA), 4000-055 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA, ICETA), Universidade do Porto, 4485-661 Porto, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana Martins
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Ana Rita Oliveira
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Ana Joana Duarte
- Departamento de Genética Humana, Unidade de Investigação e Desenvolvimento, Instituto Nacional de Saúde Ricardo Jorge (INSA), 4000-055 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA, ICETA), Universidade do Porto, 4485-661 Porto, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Inês Mondragão-Rodrigues
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
- CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - M. Fátima Macedo
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
- CAGE, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
13
|
Yan X, Si H, Zhu Y, Li S, Han Y, Liu H, Du R, Pope PB, Qiu Q, Li Z. Integrated multi-omics of the gastrointestinal microbiome and ruminant host reveals metabolic adaptation underlying early life development. MICROBIOME 2022; 10:222. [PMID: 36503572 PMCID: PMC9743514 DOI: 10.1186/s40168-022-01396-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/15/2022] [Indexed: 06/07/2023]
Abstract
BACKGROUND The gastrointestinal tract (GIT) microbiome of ruminants and its metabolic repercussions vastly influence host metabolism and growth. However, a complete understanding of the bidirectional interactions that occur across the host-microbiome axis remains elusive, particularly during the critical development stages at early life. Here, we present an integrative multi-omics approach that simultaneously resolved the taxonomic and functional attributes of microbiota from five GIT regions as well as the metabolic features of the liver, muscle, urine, and serum in sika deer (Cervus nippon) across three key early life stages. RESULTS Within the host, analysis of metabolites over time in serum, urine, and muscle (longissimus lumborum) showed that changes in the fatty acid profile were concurrent with gains in body weight. Additional host transcriptomic and metabolomic analysis revealed that fatty acid β-oxidation and metabolism of tryptophan and branched chain amino acids play important roles in regulating hepatic metabolism. Across the varying regions of the GIT, we demonstrated that a complex and variable community of bacteria, viruses, and archaea colonized the GIT soon after birth, whereas microbial succession was driven by the cooperative networks of hub populations. Furthermore, GIT volatile fatty acid concentrations were marked by increased microbial metabolic pathway abundances linked to mannose (rumen) and amino acids (colon) metabolism. Significant functional shifts were also revealed across varying GIT tissues, which were dominated by host fatty acid metabolism associated with reactive oxygen species in the rumen epithelium, and the intensive immune response in both small and large intestine. Finally, we reveal a possible contributing role of necroptosis and apoptosis in enhancing ileum and colon epithelium development, respectively. CONCLUSIONS Our findings provide a comprehensive view for the involved mechanisms in the context of GIT microbiome and ruminant metabolic growth at early life. Video Abstract.
Collapse
Affiliation(s)
- Xiaoting Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710100, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuhang Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Songze Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu Han
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hanlu Liu
- Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, 1433, Ås, Norway.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433, Ås, Norway.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710100, China.
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun, 130118, China.
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
14
|
Chaudhry N, Sica M, Surabhi S, Hernandez DS, Mesquita A, Selimovic A, Riaz A, Lescat L, Bai H, MacIntosh GC, Jenny A. Lamp1 mediates lipid transport, but is dispensable for autophagy in Drosophila. Autophagy 2022; 18:2443-2458. [PMID: 35266854 PMCID: PMC9542896 DOI: 10.1080/15548627.2022.2038999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
The endolysosomal system not only is an integral part of the cellular catabolic machinery that processes and recycles nutrients for synthesis of biomaterials, but also acts as signaling hub to sense and coordinate the energy state of cells with growth and differentiation. Lysosomal dysfunction adversely influences vesicular transport-dependent macromolecular degradation and thus causes serious problems for human health. In mammalian cells, loss of the lysosome associated membrane proteins LAMP1 and LAMP2 strongly affects autophagy and cholesterol trafficking. Here we show that the previously uncharacterized Drosophila Lamp1 is a bona fide ortholog of vertebrate LAMP1 and LAMP2. Surprisingly and in contrast to lamp1 lamp2 double-mutant mice, Drosophila Lamp1 is not required for viability or autophagy, suggesting that fly and vertebrate LAMP proteins acquired distinct functions, or that autophagy defects in lamp1 lamp2 mutants may have indirect causes. However, Lamp1 deficiency results in an increase in the number of acidic organelles in flies. Furthermore, we find that Lamp1 mutant larvae have defects in lipid metabolism as they show elevated levels of sterols and diacylglycerols (DAGs). Because DAGs are the main lipid species used for transport through the hemolymph (blood) in insects, our results indicate broader functions of Lamp1 in lipid transport. Our findings make Drosophila an ideal model to study the role of LAMP proteins in lipid assimilation without the confounding effects of their storage and without interfering with autophagic processes.Abbreviations: aa: amino acid; AL: autolysosome; AP: autophagosome; APGL: autophagolysosome; AV: autophagic vacuole (i.e. AP and APGL/AL); AVi: early/initial autophagic vacuoles; AVd: late/degradative autophagic vacuoles; Atg: autophagy-related; CMA: chaperone-mediated autophagy; Cnx99A: Calnexin 99A; DAG: diacylglycerol; eMI: endosomal microautophagy; ESCRT: endosomal sorting complexes required for transport; FB: fat body; HDL: high-density lipoprotein; Hrs: Hepatocyte growth factor regulated tyrosine kinase substrate; LAMP: lysosomal associated membrane protein; LD: lipid droplet; LDL: low-density lipoprotein; Lpp: lipophorin; LTP: Lipid transfer particle; LTR: LysoTracker Red; MA: macroautophagy; MCC: Manders colocalization coefficient; MEF: mouse embryonic fibroblast MTORC: mechanistic target of rapamycin kinase complex; PV: parasitophorous vacuole; SNARE: soluble N-ethylmaleimide sensitive factor attachment protein receptor; Snap: Synaptosomal-associated protein; st: starved; TAG: triacylglycerol; TEM: transmission electron microscopy; TFEB/Mitf: transcription factor EB; TM: transmembrane domain; tub: tubulin; UTR: untranslated region.
Collapse
Affiliation(s)
- Norin Chaudhry
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Margaux Sica
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | - Satya Surabhi
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | | | - Ana Mesquita
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | - Adem Selimovic
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Ayesha Riaz
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Laury Lescat
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
| | - Hua Bai
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, USA
- Department of Genetics, Albert Einstein College of MedicineNew York, NY, USA
| |
Collapse
|
15
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
16
|
Anderson J, Walker G, Pu J. BORC-ARL8-HOPS ensemble is required for lysosomal cholesterol egress through NPC2. Mol Biol Cell 2022; 33:ar81. [PMID: 35653304 PMCID: PMC9582633 DOI: 10.1091/mbc.e21-11-0595-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
Lysosomes receive extracellular and intracellular cholesterol and redistribute it throughout the cell. Cholesterol egress from lysosomes is critical for cholesterol homeostasis, and its failure underlies the pathogenesis of genetic disorders such as Niemann-Pick C (NPC) disease. Here we report that the BLOC one-related complex (BORC)-ARL8-homotypic fusion and protein sorting (HOPS) ensemble is required for egress of free cholesterol from lysosomes and for storage of esterified cholesterol in lipid droplets. Depletion of BORC, ARL8, or HOPS does not alter the localization of the lysosomal transmembrane cholesterol transporter NPC1 to degradative compartments but decreases the association of the luminal transporter NPC2 and increases NPC2 secretion. BORC-ARL8-HOPS depletion also increases lysosomal degradation of cation-independent (CI)-mannose 6-phosphate (M6P) receptor (MPR), which normally sorts NPC2 to the endosomal-lysosomal system and then is recycled to the trans-Golgi network. These defects likely result from impaired HOPS-dependent fusion of endosomal-lysosomal organelles and an uncharacterized function of HOPS in CI-MPR recycling. Our study demonstrates that the BORC-ARL8-HOPS ensemble is required for cholesterol egress from lysosomes by enabling CI-MPR-dependent trafficking of NPC2 to the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Jacob Anderson
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131
| | - Gerard Walker
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
17
|
Drobny A, Prieto Huarcaya S, Dobert J, Kluge A, Bunk J, Schlothauer T, Zunke F. The role of lysosomal cathepsins in neurodegeneration: Mechanistic insights, diagnostic potential and therapeutic approaches. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119243. [PMID: 35217144 DOI: 10.1016/j.bbamcr.2022.119243] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
Lysosomes are ubiquitous organelles with a fundamental role in maintaining cellular homeostasis by mediating degradation and recycling processes. Cathepsins are the most abundant lysosomal hydrolyses and are responsible for the bulk degradation of various substrates. A correct autophagic function is essential for neuronal survival, as most neurons are post-mitotic and thus susceptible to accumulate cellular components. Increasing evidence suggests a crucial role of the lysosome in neurodegeneration as a key regulator of aggregation-prone and disease-associated proteins, such as α-synuclein, β-amyloid and huntingtin. Particularly, alterations in lysosomal cathepsins CTSD, CTSB and CTSL can contribute to the pathogenesis of neurodegenerative diseases as seen for neuronal ceroid lipofuscinosis, synucleinopathies (Parkinson's disease, Dementia with Lewy Body and Multiple System Atrophy) as well as Alzheimer's and Huntington's disease. In this review, we provide an overview of recent evidence implicating CTSD, CTSB and CTSL in neurodegeneration, with a special focus on the role of these enzymes in α-synuclein metabolism. In addition, we summarize the potential role of lysosomal cathepsins as clinical biomarkers in neurodegenerative diseases and discuss potential therapeutic approaches by targeting lysosomal function.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Jan Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Annika Kluge
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Josina Bunk
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
18
|
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23137206. [PMID: 35806209 PMCID: PMC9267071 DOI: 10.3390/ijms23137206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.
Collapse
|
19
|
Fote GM, Geller NR, Efstathiou NE, Hendricks N, Vavvas DG, Reidling JC, Thompson LM, Steffan JS. Isoform-dependent lysosomal degradation and internalization of apolipoprotein E requires autophagy proteins. J Cell Sci 2022; 135:jcs258687. [PMID: 34982109 PMCID: PMC8917355 DOI: 10.1242/jcs.258687] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/17/2021] [Indexed: 12/09/2022] Open
Abstract
The human apolipoprotein E4 isoform (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and lysosomal dysfunction has been implicated in AD pathogenesis. We found, by examining cells stably expressing each APOE isoform, that APOE4 increases lysosomal trafficking, accumulates in enlarged lysosomes and late endosomes, alters autophagic flux and the abundance of autophagy proteins and lipid droplets, and alters the proteomic contents of lysosomes following internalization. We investigated APOE-related lysosomal trafficking further in cell culture, and found that APOE from the post-Golgi compartment is degraded through autophagy. We found that this autophagic process requires the lysosomal membrane protein LAMP2 in immortalized neuron-like and hepatic cells, and in mouse brain tissue. Several macroautophagy-associated proteins were also required for autophagic degradation and internalization of APOE in hepatic cells. The dysregulated autophagic flux and lysosomal trafficking of APOE4 that we observed suggest a possible novel mechanism that might contribute to AD pathogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gianna M. Fote
- UC Irvine Department of Biological Chemistry, 825 Health Sciences Road, Medical Sciences I, Room D240, UC Irvine School of Medicine, Irvine, CA 92697-1700, USA
| | - Nicolette R. Geller
- UC Irvine Department of Psychiatry and Human Behavior, Neuropsychiatric Center, UC Irvine Medical Center, 101 The City Drive South, Building 3, Route 88, Orange, CA 92868, USA
| | - Nikolaos E. Efstathiou
- Harvard Medical School Department of Ophthalmology, 243 Charles Street, Boston, MA 02114, USA
| | - Nathan Hendricks
- Institute for Integrative Genome Biology, UC Riverside, Eucalyptus Drive, Riverside, CA 92521, USA
| | - Demetrios G. Vavvas
- Harvard Medical School Department of Ophthalmology, 243 Charles Street, Boston, MA 02114, USA
| | - Jack C. Reidling
- UC Irvine MIND Institute, 2642 Biological Sciences III, Irvine, CA 92697-4545, USA
| | - Leslie M. Thompson
- UC Irvine Department of Biological Chemistry, 825 Health Sciences Road, Medical Sciences I, Room D240, UC Irvine School of Medicine, Irvine, CA 92697-1700, USA
- UC Irvine Department of Psychiatry and Human Behavior, Neuropsychiatric Center, UC Irvine Medical Center, 101 The City Drive South, Building 3, Route 88, Orange, CA 92868, USA
- UC Irvine MIND Institute, 2642 Biological Sciences III, Irvine, CA 92697-4545, USA
- UC Irvine Department of Neurobiology and Behavior, 2205 McGaugh Hall, Irvine, CA 92697, USA
| | - Joan S. Steffan
- UC Irvine Department of Psychiatry and Human Behavior, Neuropsychiatric Center, UC Irvine Medical Center, 101 The City Drive South, Building 3, Route 88, Orange, CA 92868, USA
- UC Irvine MIND Institute, 2642 Biological Sciences III, Irvine, CA 92697-4545, USA
| |
Collapse
|
20
|
Oliveira ACS, Rezende L, Gorshkov V, Melo-Braga MN, Verano-Braga T, Fernandes-Braga W, Guadalupe JLDM, de Menezes GB, Kjeldsen F, de Andrade HM, Andrade LDO. Biological and Molecular Effects of Trypanosoma cruzi Residence in a LAMP-Deficient Intracellular Environment. Front Cell Infect Microbiol 2022; 11:788482. [PMID: 35071040 PMCID: PMC8770540 DOI: 10.3389/fcimb.2021.788482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023] Open
Abstract
Trypanosoma cruzi invades non-professional phagocytic cells by subverting their membrane repair process, which is dependent on membrane injury and cell signaling, intracellular calcium increase, and lysosome recruitment. Cells lacking lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2) are less permissive to parasite invasion but more prone to parasite intracellular multiplication. Several passages through a different intracellular environment can significantly change T. cruzi's gene expression profile. Here, we evaluated whether one single passage through LAMP-deficient (KO) or wild-type (WT) fibroblasts, thus different intracellular environments, could influence T. cruzi Y strain trypomastigotes' ability to invade L6 myoblasts and WT fibroblasts host cells. Parasites released from LAMP2 KO cells (TcY-L2-/-) showed higher invasion, calcium signaling, and membrane injury rates, for the assays in L6 myoblasts, when compared to those released from WT (TcY-WT) or LAMP1/2 KO cells (TcY-L1/2-/-). On the other hand, TcY-L1/2-/- showed higher invasion, calcium signaling, and cell membrane injury rates, for the assays in WT fibroblasts, compared to TcY-WT and TcY-L1/2-/-. Albeit TcY-WT presented an intermediary invasion and calcium signaling rates, compared to the others, in WT fibroblasts, they induced lower levels of injury, which reinforces that signals mediated by surface membrane protein interactions also have a significant contribution to trigger host cell calcium signals. These results clearly show that parasites released from WT or LAMP KO cells are distinct from each other. Additionally, these parasites' ability to invade the cell may be distinct depending on which cell type they interact with. Since these alterations most likely would reflect differences among parasite surface molecules, we also evaluated their proteome. We identified few protein complexes, membrane, and secreted proteins regulated in our dataset. Among those are some members of MASP, mucins, trans-sialidases, and gp63 proteins family, which are known to play an important role during parasite infection and could correlate to TcY-WT, TcY-L1/2-/-, and TcY-L2-/- biological behavior.
Collapse
Affiliation(s)
- Anny Carolline Silva Oliveira
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Luisa Rezende
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vladimir Gorshkov
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marcella Nunes Melo-Braga
- Department of Biochemistry and Immunology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Thiago Verano-Braga
- Hypertension Lab/Functional Proteomics Group, Department of Physiology and Biophysics, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Jorge Luís de Melo Guadalupe
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gustavo Batista de Menezes
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Frank Kjeldsen
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hélida Monteiro de Andrade
- Laboratory of Leishmanioses, Department of Parasitology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luciana de Oliveira Andrade
- Department of Morphology, Biological Sciences Institute—ICB, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
21
|
Cuesta-Geijo MÁ, García-Dorival I, del Puerto A, Urquiza J, Galindo I, Barrado-Gil L, Lasala F, Cayuela A, Sorzano COS, Gil C, Delgado R, Alonso C. New insights into the role of endosomal proteins for African swine fever virus infection. PLoS Pathog 2022; 18:e1009784. [PMID: 35081156 PMCID: PMC8820605 DOI: 10.1371/journal.ppat.1009784] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/07/2022] [Accepted: 01/11/2022] [Indexed: 01/01/2023] Open
Abstract
African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection. African swine fever virus (ASFV) causes a deadly disease of pigs and wild boars that was endemic in Africa but has spread in recent years to Europe, Asia and Oceania with a high socioeconomic impact. ASFV enters the cell by endocytosis and has adapted to the endosomal conditions to acquire infectivity. Fusion of the internal viral membrane with the endosomal membrane is required for the exit of viral DNA into the cytoplasm to start replication. We have found that ASF virion internal membrane proteins E248R and E199L interact with the endosomal proteins Niemann Pick C1 (NPC1) and lysosomal membrane proteins (Lamp)-1 and -2. And, appear to be required for endosomal trafficking of ASF virions endosomal traffic and exit to the cytoplasm in the cell entry process. These molecules act regulating cholesterol flux from the endosome to the endoplasmic reticulum, and appear to be important for the viral infection cycle. In silenced and knockout cells, ASFV infection was affected at early and later stages. In null cells, virion entry and progression through the endosomal pathway at entry was arrested and several viral cores were retained at late endosomes without entering the fusion phase for cytoplasmic exit. These results provide new insights into the role of endosomal proteins for ASFV infection.
Collapse
Affiliation(s)
- Miguel Ángel Cuesta-Geijo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel García-Dorival
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ana del Puerto
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Jesús Urquiza
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Inmaculada Galindo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Lucía Barrado-Gil
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Fátima Lasala
- Instituto de Investigación Hospital 12 de Octubre Imas12, Madrid, Spain
| | - Ana Cayuela
- Centro Nacional de Biotecnología CSIC, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Hospital 12 de Octubre Imas12, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Covadonga Alonso
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- * E-mail:
| |
Collapse
|
22
|
Bouhamdani N, Comeau D, Turcotte S. A Compendium of Information on the Lysosome. Front Cell Dev Biol 2021; 9:798262. [PMID: 34977038 PMCID: PMC8714965 DOI: 10.3389/fcell.2021.798262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
For a long time, lysosomes were considered as mere waste bags for cellular constituents. Thankfully, studies carried out in the past 15 years were brimming with elegant and crucial breakthroughs in lysosome research, uncovering their complex roles as nutrient sensors and characterizing them as crucial multifaceted signaling organelles. This review presents the scientific knowledge on lysosome physiology and functions, starting with their discovery and reviewing up to date ground-breaking discoveries highlighting their heterogeneous functions as well as pending questions that remain to be answered. We also review the roles of lysosomes in anti-cancer drug resistance and how they undergo a series of molecular and functional changes during malignant transformation which lead to tumor aggression, angiogenesis, and metastases. Finally, we discuss the strategy of targeting lysosomes in cancer which could lead to the development of new and effective targeted therapies.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Dr. Georges-L. Dumont University Hospital Centre, Clinical Research Sector, Vitalité Health Network, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Dominique Comeau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| |
Collapse
|
23
|
Mareninova OA, Vegh ET, Shalbueva N, Wightman CJ, Dillon DL, Malla S, Xie Y, Takahashi T, Rakonczay Z, French SW, Gaisano HY, Gorelick FS, Pandol SJ, Bensinger SJ, Davidson NO, Dawson DW, Gukovsky I, Gukovskaya AS. Dysregulation of mannose-6-phosphate-dependent cholesterol homeostasis in acinar cells mediates pancreatitis. J Clin Invest 2021; 131:146870. [PMID: 34128834 PMCID: PMC8321573 DOI: 10.1172/jci146870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/11/2021] [Indexed: 01/18/2023] Open
Abstract
Disordered lysosomal/autophagy pathways initiate and drive pancreatitis, but the underlying mechanisms and links to disease pathology are poorly understood. Here, we show that the mannose-6-phosphate (M6P) pathway of hydrolase delivery to lysosomes critically regulates pancreatic acinar cell cholesterol metabolism. Ablation of the Gnptab gene encoding a key enzyme in the M6P pathway disrupted acinar cell cholesterol turnover, causing accumulation of nonesterified cholesterol in lysosomes/autolysosomes, its depletion in the plasma membrane, and upregulation of cholesterol synthesis and uptake. We found similar dysregulation of acinar cell cholesterol, and a decrease in GNPTAB levels, in both WT experimental pancreatitis and human disease. The mechanisms mediating pancreatic cholesterol dyshomeostasis in Gnptab-/- and experimental models involve a disordered endolysosomal system, resulting in impaired cholesterol transport through lysosomes and blockage of autophagic flux. By contrast, in Gnptab-/- liver the endolysosomal system and cholesterol homeostasis were largely unaffected. Gnptab-/- mice developed spontaneous pancreatitis. Normalization of cholesterol metabolism by pharmacologic means alleviated responses of experimental pancreatitis, particularly trypsinogen activation, the disease hallmark. The results reveal the essential role of the M6P pathway in maintaining exocrine pancreas homeostasis and function, and implicate cholesterol disordering in the pathogenesis of pancreatitis.
Collapse
Affiliation(s)
- Olga A. Mareninova
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Eszter T. Vegh
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Natalia Shalbueva
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Carli J.M. Wightman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Dustin L. Dillon
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Sudarshan Malla
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yan Xie
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Samuel W. French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California, USA
| | | | - Fred S. Gorelick
- Departments of Cell Biology and Internal Medicine, Yale University School of Medicine and VA West Haven, West Haven, Connecticut, USA
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Nicholas O. Davidson
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David W. Dawson
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Anna S. Gukovskaya
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
24
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
25
|
Ponsford AH, Ryan TA, Raimondi A, Cocucci E, Wycislo SA, Fröhlich F, Swan LE, Stagi M. Live imaging of intra-lysosome pH in cell lines and primary neuronal culture using a novel genetically encoded biosensor. Autophagy 2021; 17:1500-1518. [PMID: 32515674 PMCID: PMC8205096 DOI: 10.1080/15548627.2020.1771858] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Disorders of lysosomal physiology have increasingly been found to underlie the pathology of a rapidly growing cast of neurodevelopmental disorders and sporadic diseases of aging. One cardinal aspect of lysosomal (dys)function is lysosomal acidification in which defects trigger lysosomal stress signaling and defects in proteolytic capacity. We have developed a genetically encoded ratiometric probe to measure lysosomal pH coupled with a purification tag to efficiently purify lysosomes for both proteomic and in vitro evaluation of their function. Using our probe, we showed that lysosomal pH is remarkably stable over a period of days in a variety of cell types. Additionally, this probe can be used to determine that lysosomal stress signaling via TFEB is uncoupled from gross changes in lysosomal pH. Finally, we demonstrated that while overexpression of ARL8B GTPase causes striking alkalinization of peripheral lysosomes in HEK293 T cells, peripheral lysosomes per se are no less acidic than juxtanuclear lysosomes in our cell lines.Abbreviations: ARL8B: ADP ribosylation factor like GTPase 8B; ATP: adenosine triphosphate; ATP5F1B/ATPB: ATP synthase F1 subunit beta; ATP6V1A: ATPase H+ transporting V1 subunit A; Baf: bafilomycin A1; BLOC-1: biogenesis of lysosome-related organelles complex 1; BSA: bovine serum albumin; Cos7: African green monkey kidney fibroblast-like cell line; CQ: chloroquine; CTSB: cathepsin B; CYCS: cytochrome c, somatic; DAPI: 4',6-diamidino -2- phenylindole; DIC: differential interference contrast; DIV: days in vitro; DMEM: Dulbecco's modified Eagle's medium; E8: embryonic day 8; EEA1: early endosome antigen 1; EGTA: ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid; ER: endoplasmic reticulum; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GTP: guanosine triphosphate; HEK293T: human embryonic kidney 293 cells, that expresses a mutant version of the SV40 large T antigen; HeLa: Henrietta Lacks-derived cell; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HRP: horseradish peroxidase; IGF2R/ciM6PR: insulin like growth factor 2 receptor; LAMP1/2: lysosomal associated membrane protein 1/2; LMAN2/VIP36: lectin, mannose binding 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PCR: polymerase chain reaction; PDL: poly-d-lysine; PGK1p: promotor from human phosphoglycerate kinase 1; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PPT1/CLN1: palmitoyl-protein thioesterase 1; RPS6KB1/p70: ribosomal protein S6 kinase B1; STAT3: signal transducer and activator of transcription 3; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGN: trans-Golgi network; TGOLN2/TGN46: trans-Golgi network protein 2; TIRF: total internal reflection fluorescence; TMEM106B: transmembrane protein 106B; TOR: target of rapamycin; TRPM2: transient receptor potential cation channel subfamily M member 2; V-ATPase: vacuolar-type proton-translocating ATPase; VPS35: VPS35 retromer complex component.
Collapse
Affiliation(s)
- Amy H. Ponsford
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Thomas A. Ryan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and the Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Susanne A. Wycislo
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Osnabrück, Germany
- Centre of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Osnabrück, Germany
| | - Laura E. Swan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Massimiliano Stagi
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
26
|
LAMP2 deficiency attenuates the neurodegeneration markers induced by HSV-1 infection. Neurochem Int 2021; 146:105032. [PMID: 33781848 DOI: 10.1016/j.neuint.2021.105032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Mounting evidence suggests a major role of infectious agents in the pathogenesis of sporadic Alzheimer's disease (AD). Among them, herpes simplex virus type 1 (HSV-1) infection has emerged as a major factor in the etiology of AD. HSV-1 is able to induce some of the main alterations of the disease such as hyperphosphorylation of tau protein and accumulation of amyloid-β peptide. Functional genomic analysis of a cell model of HSV-1 infection and oxidative stress developed in our laboratory revealed lysosomal system to be the main pathway altered, and the lysosome-associated membrane protein 2 (LAMP2) gene one of the most strongly modulated genes. The aim of this work is to study LAMP2 as an AD candidate gene and to investigate its role in the neurodegeneration induced by HSV-1 using a LAMP2 knockdown cell model. LAMP2 deficiency led to a significant reduction of viral DNA replication and formation of infectious particles. In addition, tau hyperphosphorylation and inhibition of Aβ secretion induced by the virus were attenuated by the absence of LAMP2. Finally, genetic association studies revealed LAMP2 genetic variants to be associated with AD risk. In summary, our data indicate that LAMP2 could be a suitable candidate to mediate the AD-like phenotype caused by HSV-1.
Collapse
|
27
|
Onofre TS, Rodrigues JPF, Shio MT, Macedo S, Juliano MA, Yoshida N. Interaction of Trypanosoma cruzi Gp82 With Host Cell LAMP2 Induces Protein Kinase C Activation and Promotes Invasion. Front Cell Infect Microbiol 2021; 11:627888. [PMID: 33777840 PMCID: PMC7996063 DOI: 10.3389/fcimb.2021.627888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
The surface molecule gp82 of metacyclic trypomastigote (MT) forms of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, mediates the host cell invasion, a process critical for the establishment of infection. Gp82 is known to bind to the target cell in a receptor-dependent manner, triggering Ca2+ signal, actin cytoskeleton rearrangement and lysosome spreading. The host cell receptor for gp82 was recently identified as LAMP2, the major lysosome membrane-associated protein. To further clarify the mechanisms of MT invasion, we aimed in this study at identifying the LAMP2 domain that interacts with gp82 and investigated whether target cell PKC and ERK1/2, previously suggested to be implicated in MT invasion, are activated by gp82. Interaction of MT, or the recombinant gp82 (r-gp82), with human epithelial HeLa cells induced the activation of Ca2+-dependent PKC and ERK1/2. The LAMP2 sequence predicted to bind gp82 was mapped and the synthetic peptide based on that sequence inhibited MT invasion, impaired the binding of r-gp82 to HeLa cells, and blocked the PKC and ERK1/2 activation induced by r-gp82. Treatment of HeLa cells with specific inhibitor of focal adhesion kinase resulted in inhibition of r-gp82-induced PKC and ERK1/2 activation, as well as in alteration of the actin cytoskeleton architecture. PKC activation by r-gp82 was also impaired by treatment of HeLa cells with inhibitor of phospholipase C, which mediates the production of diacylglycerol, which activates PKC, and inositol 1,4,5-triphosphate that releases Ca2+ from intracellular stores. Taken together, our results indicate that recognition of MT gp82 by LAMP2 induces in the host cell the activation of phosholipase C, with generation of products that contribute for PKC activation and the downstream ERK1/2. This chain of events leads to the actin cytoskeleton disruption and lysosome spreading, promoting MT internalization.
Collapse
Affiliation(s)
- Thiago Souza Onofre
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Paulo Ferreira Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marina Tiemi Shio
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Silene Macedo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
DIM-C-pPhtBu induces lysosomal dysfunction and unfolded protein response - mediated cell death via excessive mitophagy. Cancer Lett 2021; 504:23-36. [PMID: 33556544 DOI: 10.1016/j.canlet.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Despite technological advances in cancer treatment, the survival rate of patients with head and neck cancer (HNC) has not improved significantly. Many studies have shown that endoplasmic reticulum (ER) stress-related signals are associated with mitochondrial damage and that these signals determine whether cells maintain homeostasis or activate cell death programs. The unfolded protein response (UPR) is regulated by ER membrane proteins such as double-stranded RNA-activated protein kinase R(PKR)-like ER kinase (PERK), which directly activate transcription of chaperones or genes that function in redox homeostasis, protein secretion, or cell death programs. In this study, we focused on the role of mitophagy and ER stress-mediated cell death induced by DIM-C-pPhtBu in HNC cancer. We found that DIM-C-pPhtBu, a compound that activates ER stress in many cancers, induced lysosomal dysfunction, excessive mitophagy, and cell death in HNC cells. Moreover, DIM-C-pPhtBu strongly inhibited HNC progression in a xenograft model by altering mitophagy related protein expression. Taken together, the results demonstrate that DIM-C-pPhtBu induces excessive mitophagy and eventually UPR-mediated cell death in HNC cells, suggesting that new anti-cancer drugs could be developed based on the connection between mitophagy and cancer cell death.
Collapse
|
29
|
Meneses-Salas E, García-Melero A, Blanco-Muñoz P, Jose J, Brenner MS, Lu A, Tebar F, Grewal T, Rentero C, Enrich C. Selective Degradation Permits a Feedback Loop Controlling Annexin A6 and Cholesterol Levels in Endolysosomes of NPC1 Mutant Cells. Cells 2020; 9:cells9051152. [PMID: 32392809 PMCID: PMC7291204 DOI: 10.3390/cells9051152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
We recently identified elevated annexin A6 (AnxA6) protein levels in Niemann–Pick-type C1 (NPC1) mutant cells. In these cells, AnxA6 depletion rescued the cholesterol accumulation associated with NPC1 deficiency. Here, we demonstrate that elevated AnxA6 protein levels in NPC1 mutants or upon pharmacological NPC1 inhibition, using U18666A, were not due to upregulated AnxA6 mRNA expression, but caused by defects in AnxA6 protein degradation. Two KFERQ-motifs are believed to target AnxA6 to lysosomes for chaperone-mediated autophagy (CMA), and we hypothesized that the cholesterol accumulation in endolysosomes (LE/Lys) triggered by the NPC1 inhibition could interfere with the CMA pathway. Therefore, AnxA6 protein amounts and cholesterol levels in the LE/Lys (LE-Chol) compartment were analyzed in NPC1 mutant cells ectopically expressing lysosome-associated membrane protein 2A (Lamp2A), which is well known to induce the CMA pathway. Strikingly, AnxA6 protein amounts were strongly decreased and coincided with significantly reduced LE-Chol levels in NPC1 mutant cells upon Lamp2A overexpression. Therefore, these findings suggest Lamp2A-mediated restoration of CMA in NPC1 mutant cells to lower LE-Chol levels with concomitant lysosomal AnxA6 degradation. Collectively, we propose CMA to permit a feedback loop between AnxA6 and cholesterol levels in LE/Lys, encompassing a novel mechanism for regulating cholesterol homeostasis in NPC1 disease.
Collapse
Affiliation(s)
- Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Ana García-Melero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney 2006, NSW, Australia; (J.J.); (M.-S.B.)
| | - Marie-Sophie Brenner
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney 2006, NSW, Australia; (J.J.); (M.-S.B.)
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney 2006, NSW, Australia; (J.J.); (M.-S.B.)
- Correspondence: (T.G.); (C.R.); (C.E.); Tel.: +34-934021908 (C.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
- Correspondence: (T.G.); (C.R.); (C.E.); Tel.: +34-934021908 (C.R.)
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (E.M.-S.); (A.G.-M.); (P.B.-M.); (F.T.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036-Barcelona, Spain
- Correspondence: (T.G.); (C.R.); (C.E.); Tel.: +34-934021908 (C.R.)
| |
Collapse
|
30
|
Zhang Y, Li Z, Kholodkevich S, Sharov A, Feng Y, Ren N, Sun K. Microcystin-LR-induced changes of hepatopancreatic transcriptome, intestinal microbiota, and histopathology of freshwater crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134549. [PMID: 31810700 DOI: 10.1016/j.scitotenv.2019.134549] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
As a hepatotoxin, microcystin-LR (MC-LR) poses a great threat to aquatic organisms. In this research, the hepatopancreatic transcriptome, intestinal microbiota, and histopathology of Procambarus clarkii (P. clarkii) in response to acute MC-LR exposure were studied. RNA-seq analysis of hepatopancreas identified 372 and 781 differentially expressed genes (DEGs) after treatment with 10 and 40 μg/L MC-LR, respectively. Among the DEGs, 23 genes were immune-related and 21 genes were redox-related. GO functional enrichment analysis revealed that MC-LR could impact nuclear-transcribed mRNA catabolic process, cobalamin- and heme-related processes, and sirohydrochlorin cobaltochelatase activity of P. clarkii. In addition, the only significantly enriched KEGG pathway induced by MC-LR was galactose metabolism pathway. Meanwhile, sequencing of the bacterial 16S rRNA gene demonstrated that MC-LR decreased bacterial richness and diversity, and altered the intestinal microbiota composition. At the phylum level, after 96 h, the abundance of Verrucomicrobia decreased after treatment with 10 and 40 μg/L MC-LR, while Firmicutes increased in the 40 μg/L MC-LR-treated group. At the genus level, the abundances of 15 genera were significantly altered after exposure to MC-LR. Our research demonstrated that MC-LR exposure caused histological alterations such as structural damage of hepatopancreas and intestines. This research provides an insight into the mechanisms associated with MC-LR toxicity in aquatic crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zheyu Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sergey Kholodkevich
- Institute of Earth Sciences, Saint-Petersburg State University, Saint-Petersburg 199034, Russia; Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia
| | - Andrey Sharov
- Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia; Papanin Institute for Biology of the Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| | - Yujie Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
31
|
Meng Y, Heybrock S, Neculai D, Saftig P. Cholesterol Handling in Lysosomes and Beyond. Trends Cell Biol 2020; 30:452-466. [PMID: 32413315 DOI: 10.1016/j.tcb.2020.02.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023]
Abstract
Lysosomes are of major importance for the regulation of cellular cholesterol homeostasis. Food-derived cholesterol and cholesterol esters contained within lipoproteins are delivered to lysosomes by endocytosis. From the lysosomal lumen, cholesterol is transported to the inner surface of the lysosomal membrane through the glycocalyx; this shuttling requires Niemann-Pick C (NPC) 1 and NPC2 proteins. The lysosomal membrane proteins lysosomal-associated membrane protein (LAMP)-2 and lysosomal integral membrane protein (LIMP)-2/SCARB2 also bind cholesterol. LAMP-2 may serve as a cholesterol reservoir, whereas LIMP-2, like NPC1, is able to transport cholesterol through a transglycocalyx tunnel. Contact sites and fusion events between lysosomes and other organelles mediate the distribution of cholesterol. Lysosomal cholesterol content is sensed thereby regulating mammalian target of rapamycin complex (mTORC)-dependent signaling. This review summarizes our understanding of the major steps in cholesterol handling from the moment it enters the lysosome until it leaves this compartment.
Collapse
Affiliation(s)
- Ying Meng
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Saskia Heybrock
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Dante Neculai
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Paul Saftig
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| |
Collapse
|
32
|
Heybrock S, Kanerva K, Meng Y, Ing C, Liang A, Xiong ZJ, Weng X, Ah Kim Y, Collins R, Trimble W, Pomès R, Privé GG, Annaert W, Schwake M, Heeren J, Lüllmann-Rauch R, Grinstein S, Ikonen E, Saftig P, Neculai D. Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Nat Commun 2019; 10:3521. [PMID: 31387993 PMCID: PMC6684646 DOI: 10.1038/s41467-019-11425-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterol-like inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.
Collapse
Affiliation(s)
- Saskia Heybrock
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Kristiina Kanerva
- Faculty of Medicine, Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ying Meng
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Chris Ing
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Anna Liang
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Zi-Jian Xiong
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xialian Weng
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Young Ah Kim
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York, USA
| | - Richard Collins
- Cell Biology Program, Hospital for Sick Children, Toronto, M5G 1X8, Canada
| | - William Trimble
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Régis Pomès
- Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Gilbert G Privé
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
- Princes Margaret Cancer Centre, Toronto, ON, Canada
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Michael Schwake
- Faculty of Chemistry, Biochemistry III, University of Bielefeld, 33615, Bielefeld, Germany
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joerg Heeren
- Institut für Biochemie und Molekulare Zellbiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg-Eppendorf, Germany
| | | | - Sergio Grinstein
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada.
- Cell Biology Program, Hospital for Sick Children, Toronto, M5G 1X8, Canada.
| | - Elina Ikonen
- Faculty of Medicine, Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Paul Saftig
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Dante Neculai
- Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
33
|
Singhal A, Szente L, Hildreth JEK, Song B. Hydroxypropyl-beta and -gamma cyclodextrins rescue cholesterol accumulation in Niemann-Pick C1 mutant cell via lysosome-associated membrane protein 1. Cell Death Dis 2018; 9:1019. [PMID: 30282967 PMCID: PMC6170477 DOI: 10.1038/s41419-018-1056-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022]
Abstract
Niemann-Pick type C (NPC) disease is a fatal hereditary neurodegenerative disorder characterized by a massive accumulation of cholesterol in lysosomes and late endosomes due to a defect in intracellular cholesterol trafficking. Dysfunction in intracellular cholesterol trafficking is responsible for about 50 rare inherited lysosomal storage disorders including NPC. The lysosomal proteins NPC1 and NPC2 play a crucial role in trafficking of cholesterol from late endosomes and lysosomes to other cellular compartments. However, the detailed mechanisms of cholesterol trafficking at the late endosomes/lysosomes (LE/LY) are poorly understood. Studies showed that 2-hydroxypropyl-β-cyclodextrin (HPβCD) alleviates the cholesterol accumulation defect in animal model and has been approved for a phase 2b/3 clinical trial for NPC. HPβCD is known to bind cholesterol; however, the mechanisms how HPβCD mediates the exit of cholesterol from the LE/LY compartments are still unknown. Further, another cyclodextrin (CD) derivative, 2-hydroxypropyl-γ-cyclodextrin (HPγCD), was shown to reduce intracellular cholesterol accumulation in NPC patient cells and NPC mice model. Herein, we identified a number of candidate proteins differentially expressed in NPC patient-derived cells compared to cells derived from a healthy donor using a proteomic approach. Interestingly, both HPβCD and HPγCD treatments modulated the expression of most of these NPC-specific proteins. Data showed that treatment with both CDs induces the expression of the lysosome-associated membrane protein 1 (LAMP-1) in NPC patient-derived cells. Remarkably, LAMP-1 overexpression in HeLa cells rescued U18666A-induced cholesterol accumulation suggesting a role of LAMP-1 in cholesterol trafficking. We propose that HPβCD and HPγCD facilitate cholesterol export from the LE/LY compartments via the LAMP-1 protein, which may play a crucial role in cholesterol trafficking at the LE/LY compartments when there is no functional NPC1 protein. Together, this study uncovers new cellular mechanisms for cholesterol trafficking, which will contribute to development of novel therapeutic approaches for lysosomal storage diseases.
Collapse
Affiliation(s)
- Ashutosh Singhal
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Lajos Szente
- Cyclolab Cyclodextrin Research and Development Laboratory Ltd., H-1097, Budapest, Hungary
| | - James E K Hildreth
- Department of Internal Medicine, Meharry Medical College, Nashville, TN, 37208, USA
| | - Byeongwoon Song
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA.
| |
Collapse
|
34
|
Rentero C, Blanco-Muñoz P, Meneses-Salas E, Grewal T, Enrich C. Annexins-Coordinators of Cholesterol Homeostasis in Endocytic Pathways. Int J Mol Sci 2018; 19:E1444. [PMID: 29757220 PMCID: PMC5983649 DOI: 10.3390/ijms19051444] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
The spatiotemporal regulation of calcium (Ca2+) storage in late endosomes (LE) and lysosomes (Lys) is increasingly recognized to influence a variety of membrane trafficking events, including endocytosis, exocytosis, and autophagy. Alterations in Ca2+ homeostasis within the LE/Lys compartment are implicated in human diseases, ranging from lysosomal storage diseases (LSDs) to neurodegeneration and cancer, and they correlate with changes in the membrane binding behaviour of Ca2+-binding proteins. This also includes Annexins (AnxA), which is a family of Ca2+-binding proteins participating in membrane traffic and tethering, microdomain organization, cytoskeleton interactions, Ca2+ signalling, and LE/Lys positioning. Although our knowledge regarding the way Annexins contribute to LE/Lys functions is still incomplete, recruitment of Annexins to LE/Lys is greatly influenced by the availability of Annexin bindings sites, including acidic phospholipids, such as phosphatidylserine (PS) and phosphatidic acid (PA), cholesterol, and phosphatidylinositol (4,5)-bisphosphate (PIP2). Moreover, the cytosolic portion of LE/Lys membrane proteins may also, directly or indirectly, determine the recruitment of Annexins to LE. Strikingly, within LE/Lys, AnxA1, A2, A6, and A8 differentially contribute to cholesterol transport along the endocytic route, in particular, cholesterol transfer between LE and other compartments, positioning Annexins at the centre of major pathways mediating cellular cholesterol homeostasis. Underlying mechanisms include the formation of membrane contact sites (MCS) and intraluminal vesicles (ILV), as well as the modulation of LE-cholesterol transporter activity. In this review, we will summarize the current understanding how Annexins contribute to influence LE/Lys membrane transport and associated functions.
Collapse
Affiliation(s)
- Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
35
|
Ma S, Zhang M, Zhang S, Wang J, Zhou X, Guo G, Wang L, Wang M, Peng Z, Guo C, Zheng X, Zhou X, Wang J, Han Y. Characterisation of Lamp2-deficient rats for potential new animal model of Danon disease. Sci Rep 2018; 8:6932. [PMID: 29720683 PMCID: PMC5932014 DOI: 10.1038/s41598-018-24351-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Danon disease (DD) is caused by the absence or malfunction of lysosomal-associated membrane protein 2 (LAMP2). Although Lamp2-deficient mice and DD patients have similar characteristics, these mice have clear limitations and are clinically inconsistent. The aim of our paper is to outline the characteristics of Lamp2-deficient rats and to contrast this model with currently available DD mouse models. The baseline levels of some serum enzymes were elevated in Lamp2y/- rats along with hypercholesterolemia and hyperglycaemia at 8 weeks. Echocardiography showed that IVSd (1.500 ± 0.071 vs. 2.200 ± 1.147, P < 0.01) and LVPWd (1.575 ± 0.063 vs. 1.850 ± 0.029, P < 0.01) were significantly increased, and GCS (-13.20 ± 0.4814 vs. -6.954 ± 0.665) and GRS (21.42 ± 1.807 vs. 7.788 ± 1.140) were sharply decreased. Meanwhile, substantial myocyte disruption, hypertrophic muscle fibres, interstitial fibrosis and microvascular hyperplasia could be observed in the heart tissue. Lamp2y/- rats also displayed abnormal behaviours in the open field and fear conditioning tests. Notably, Lamp2y/- rats manifested other system dysfunctions, such as retinopathy, chronic kidney injury and sterility. Based on these results, Lamp2-deficient rats exhibited greater similarity to DD patients in terms of onset and multisystem lesions than did mouse models, and these rats could be used as a valuable animal model for DD.
Collapse
Affiliation(s)
- Shuoyi Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Shuai Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Division of Ultrasonography, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Guanya Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Lu Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Min Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Zhengwu Peng
- Division of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Changcun Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaohong Zheng
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Jingbo Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Centre for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
36
|
Li L, Wang W, Zhang R, Liu J, Yu J, Wu X, Xu Y, Ma M, Huang J. High expression of LAMP2 predicts poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Biomark 2018; 19:305-311. [PMID: 28453465 DOI: 10.3233/cbm-160469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND LAMP2 is one of the major protein components of lysosome. In addition to the expression on the lysosomal membrane, LAMP2 has also been found relocalizing to the cell surface of some highly metastatic tumor cells. OBJECTIVE The aim of this study was to detect the expression levels of LAMP2 and discuss its roles in esophageal squamous cell carcinoma (ESCC). METHODS Six hundred and ten tissue samples of ESCC were collected to construct tissue microarrays, which were stained by immunohistochemistry. RESULTS After immunohistochemical staining, 596 patients including 460 men and 136 women were analyzed. The LAMP2 expression levels were significantly different based on degrees of histological differentiation (χ2= 108.906, P< 0.001). The similar results were also observed in TNM stages (χ2= 23.835, P< 0.01). LAMP2 expression levels negatively correlated with degrees of histological differentiation (P< 0.01). Logistic regression analysis showed that the LAMP2 expression levels were correlated with the degrees of histological differentiation (OR=𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛 0.452, P< 0.001) and TNM stages (OR=𝑇𝑁𝑀 1.482, P= 0.42). Besides, Kaplan-Meier survival curves indicated that patients with higher expression of LAMP2 exhibited poor prognosis (P< 0.05). CONCLUSIONS Our results demonstrated that LAMP2 expression levels correlated with tumor histological differentiation and TNM stages. High expression of LAMP2 predicts poor prognosis in patients with ESCC.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Renya Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Jianli Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Juan Yu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xiaoxiao Wu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ying Xu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ming Ma
- Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Jian Huang
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
37
|
Wang L, Wang J, Cai W, Shi Y, Zhou X, Guo G, Guo C, Huang X, Han Z, Zhang S, Ma S, Zhou X, Fan D, Gershwin ME, Han Y. A Critical Evaluation of Liver Pathology in Humans with Danon Disease and Experimental Correlates in a Rat Model of LAMP-2 Deficiency. Clin Rev Allergy Immunol 2018; 53:105-116. [PMID: 28124283 DOI: 10.1007/s12016-017-8598-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Danon disease is a genetic deficiency in lysosome-associated membrane protein 2 (LAMP-2), a highly glycosylated constituent of the lysosomal membrane and characterized by a cardiomyopathy, skeletal muscle myopathy, and cognitive impairment. Patients, however, often manifest hepatic abnormalities, but liver function has not been well evaluated and the syndrome is relatively uncommon. Hence, we have taken advantage of a rat that has been deleted of LAMP-2 to study the relative role of LAMP-2 on liver function. Interestingly, rats deficient in LAMP-2 develop a striking increase in serum alkaline phosphatase (ALP) and a decrease in bile flow compared with wild-type littermates. Importantly and by ultrastructural analysis, deficient rats manifest dilated canaliculi that lack microvilli with evidence of bile-containing bodies. Moreover, following bile duct ligation, LAMP-2-deficient rats develop rapid and severe evidence of advanced cholestasis, with an increase in serum bilirubin, as early as 6 h later. In wild-type control rats, multidrug resistance-associated protein 2 (Mrp2) normally concentrates at the bile canalicular membranes to secrete conjugated bilirubin into bile. However, in LAMP-2y/- rats, Mrp2 was detected in hepatocytes compared with other canalicular proteins including P-glycoproteins, dipeptidyl peptidase IV (CD26), and aminopeptidase (CD13). Our data further suggest that LAMP-2 interacts with the membrane cytoskeletal proteins radixin and F-actin in determining the localization of integral membrane proteins.
Collapse
Affiliation(s)
- Lu Wang
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Jingbo Wang
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Weile Cai
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Yongquan Shi
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Xinmin Zhou
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Guanya Guo
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Changcun Guo
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Xiaofeng Huang
- Center of Electron Microscope, The Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Zheyi Han
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Shuai Zhang
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Shuoyi Ma
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Xia Zhou
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - Daiming Fan
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA.
| | - Ying Han
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
38
|
Couto NF, Pedersane D, Rezende L, Dias PP, Corbani TL, Bentini LC, Oliveira ACS, Kelles LF, Castro-Gomes T, Andrade LO. LAMP-2 absence interferes with plasma membrane repair and decreases T. cruzi host cell invasion. PLoS Negl Trop Dis 2017; 11:e0005657. [PMID: 28586379 PMCID: PMC5473579 DOI: 10.1371/journal.pntd.0005657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 06/16/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
Abstract
Trypanosoma cruzi enters host cells by subverting the mechanism of cell membrane repair. In this process, the parasite induces small injuries in the host cell membrane leading to calcium entry and lysosomal exocytosis, which are followed by compensatory endocytosis events that drive parasites into host cells. We have previously shown that absence of both LAMP-1 and 2, major components of lysosomal membranes, decreases invasion of T. cruzi into host cells, but the mechanism by which they interfere with parasite invasion has not been described. Here we investigated the role of these proteins in parasitophorous vacuole morphology, host cell lysosomal exocytosis, and membrane repair ability. First, we showed that cells lacking only LAMP-2 present the same invasion phenotype as LAMP1/2-/- cells, indicating that LAMP-2 is an important player during T. cruzi invasion process. Second, neither vacuole morphology nor lysosomal exocytosis was altered in LAMP-2 lacking cells (LAMP2-/- and LAMP1/2-/- cells). We then investigated the ability of LAMP-2 deficient cells to perform compensatory endocytosis upon lysosomal secretion, the mechanism by which cells repair their membrane and T. cruzi ultimately enters cells. We observed that these cells perform less endocytosis upon injury when compared to WT cells. This was a consequence of impaired cholesterol traffic in cells lacking LAMP-2 and its influence in the distribution of caveolin-1 at the cell plasma membrane, which is crucial for plasma membrane repair. The results presented here show the major role of LAMP-2 in caveolin traffic and membrane repair and consequently in T. cruzi invasion.
Collapse
Affiliation(s)
| | - Dina Pedersane
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luisa Rezende
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Patrícia P. Dias
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tayanne L. Corbani
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lívia C. Bentini
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anny C. S. Oliveira
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila F. Kelles
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago Castro-Gomes
- Department of Biochemistry and Immunology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana O. Andrade
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
39
|
Petersen W, Stenzel W, Silvie O, Blanz J, Saftig P, Matuschewski K, Ingmundson A. Sequestration of cholesterol within the host late endocytic pathway restricts liver-stage Plasmodium development. Mol Biol Cell 2017; 28:726-735. [PMID: 28122820 PMCID: PMC5349780 DOI: 10.1091/mbc.e16-07-0531] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
While lysosomes are degradative compartments and one of the defenses against invading pathogens, they are also hubs of metabolic activity. Late endocytic compartments accumulate around Plasmodium berghei liver-stage parasites during development, and whether this is a host defense strategy or active recruitment by the parasites is unknown. In support of the latter hypothesis, we observed that the recruitment of host late endosomes (LEs) and lysosomes is reduced in uis4- parasites, which lack a parasitophorous vacuole membrane protein and arrest during liver-stage development. Analysis of parasite development in host cells deficient for late endosomal or lysosomal proteins revealed that the Niemann-Pick type C (NPC) proteins, which are involved in cholesterol export from LEs, and the lysosome-associated membrane proteins (LAMP) 1 and 2 are important for robust liver-stage P. berghei growth. Using the compound U18666A, which leads to cholesterol sequestration in LEs similar to that seen in NPC- and LAMP-deficient cells, we show that the restriction of parasite growth depends on cholesterol sequestration and that targeting this process can reduce parasite burden in vivo. Taken together, these data reveal that proper LE and lysosome function positively contributes to liver-stage Plasmodium development.
Collapse
Affiliation(s)
- Wiebke Petersen
- Molecular Parasitology, Humboldt University, 10115 Berlin, Germany
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Werner Stenzel
- Institute for Neuropathology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Olivier Silvie
- Institut National de la Santé et de la Recherche Médicale, U1135, Centre d'Immunologie et des Maladies Infectieuses, F-75013 Paris, France
| | - Judith Blanz
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany
| | - Kai Matuschewski
- Molecular Parasitology, Humboldt University, 10115 Berlin, Germany
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Alyssa Ingmundson
- Molecular Parasitology, Humboldt University, 10115 Berlin, Germany
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| |
Collapse
|
40
|
Eriksson I, Nath S, Bornefall P, Giraldo AMV, Öllinger K. Impact of high cholesterol in a Parkinson's disease model: Prevention of lysosomal leakage versus stimulation of α-synuclein aggregation. Eur J Cell Biol 2017; 96:99-109. [PMID: 28109635 DOI: 10.1016/j.ejcb.2017.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease is characterized by accumulation of intraneuronal cytoplasmic inclusions, Lewy bodies, which mainly consist of aggregated α-synuclein. Controversies exist as to whether high blood cholesterol is a risk factor for the development of the disease and whether statin treatment could have a protective effect. Using a model system of BE(2)-M17 neuroblastoma cells treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), we found that MPP+-induced cell death was accompanied by cholesterol accumulation in a lysosomal-like pattern in pre-apoptotic cells. To study the effects of lysosomal cholesterol accumulation, we increased lysosomal cholesterol through pre-treatment with U18666A and found delayed leakage of lysosomal contents into the cytosol, which reduced cell death. This suggests that increased lysosomal cholesterol is a stress response mechanism to protect lysosomal membrane integrity in response to early apoptotic stress. However, high cholesterol also stimulated the accumulation of α-synuclein. Treatment with the cholesterol-lowering drug lovastatin reduced MPP+-induced cell death by inhibiting the production of reactive oxygen species, but did not prevent lysosomal cholesterol increase nor affect α-synuclein accumulation. Our study indicates a dual role of high cholesterol in Parkinson's disease, in which it acts both as a protector against lysosomal membrane permeabilization and as a stimulator of α-synuclein accumulation.
Collapse
Affiliation(s)
- Ida Eriksson
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Sangeeta Nath
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Per Bornefall
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Ana Maria Villamil Giraldo
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Karin Öllinger
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
41
|
Terasawa K, Tomabechi Y, Ikeda M, Ehara H, Kukimoto-Niino M, Wakiyama M, Podyma-Inoue KA, Rajapakshe AR, Watabe T, Shirouzu M, Hara-Yokoyama M. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) assemble via distinct modes. Biochem Biophys Res Commun 2016; 479:489-495. [PMID: 27663661 DOI: 10.1016/j.bbrc.2016.09.093] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
Abstract
Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) have a large, heavily glycosylated luminal domain composed of two subdomains, and are the most abundant protein components in lysosome membranes. LAMP-1 and LAMP-2 have distinct functions, and the presence of both proteins together is required for the essential regulation of autophagy to avoid embryonic lethality. However, the structural aspects of LAMP-1 and LAMP-2 have not been elucidated. In the present study, we demonstrated that the subdomains of LAMP-1 and LAMP-2 adopt the unique β-prism fold, similar to the domain structure of the dendritic cell-specific-LAMP (DC-LAMP, LAMP-3), confirming the conserved aspect of this family of lysosome-associated membrane proteins. Furthermore, we evaluated the effects of the N-domain truncation of LAMP-1 or LAMP-2 on the assembly of LAMPs, based on immunoprecipitation experiments. We found that the N-domain of LAMP-1 is necessary, whereas that of LAMP-2 is repressive, for the organization of a multimeric assembly of LAMPs. Accordingly, the present study suggests for the first time that the assembly modes of LAMP-1 and LAMP-2 are different, which may underlie their distinct functions.
Collapse
Affiliation(s)
- Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Yuri Tomabechi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mariko Ikeda
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mutsuko Kukimoto-Niino
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Motoaki Wakiyama
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Anupama R Rajapakshe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Miki Hara-Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan.
| |
Collapse
|
42
|
Hubert V, Peschel A, Langer B, Gröger M, Rees A, Kain R. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol Open 2016; 5:1516-1529. [PMID: 27628032 PMCID: PMC5087675 DOI: 10.1242/bio.018648] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an evolutionarily conserved process used for removing surplus and damaged proteins and organelles from the cytoplasm. The unwanted material is incorporated into autophagosomes that eventually fuse with lysosomes, leading to the degradation of their cargo. The fusion event is mediated by the interaction between the Qa-SNARE syntaxin-17 (STX17) on autophagosomes and the R-SNARE VAMP8 on lysosomes. Cells deficient in lysosome membrane-associated protein-2 (LAMP-2) have increased numbers of autophagosomes but the underlying mechanism is poorly understood. By transfecting LAMP-2-deficient and LAMP-1/2-double-deficient mouse embryonic fibroblasts (MEFs) with a tandem fluorescent-tagged LC3 we observed a failure of fusion between the autophagosomes and the lysosomes that could be rescued by complementation with LAMP-2A. Although we observed no change in expression and localization of VAMP8, its interacting partner STX17 was absent from autophagosomes of LAMP-2-deficient cells. Thus, LAMP-2 is essential for STX17 expression by the autophagosomes and this absence is sufficient to explain their failure to fuse with lysosomes. The results have clear implications for situations associated with a reduction of LAMP-2 expression. Summary: LAMP-2 is required for autophagosome-lysosome fusion. Its absence does not affect the lysosomal SNARE VAMP8 while its interacting partner STX17 is absent from the autophagosomes providing a molecular explanation for this fusion failure.
Collapse
Affiliation(s)
- Virginie Hubert
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria
| | - Andrea Peschel
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria
| | - Brigitte Langer
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria
| | - Marion Gröger
- Core Facilities, Medical University of Vienna, Vienna 1090, Austria
| | - Andrew Rees
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria
| | - Renate Kain
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
43
|
Li J, Pfeffer SR. Lysosomal membrane glycoproteins bind cholesterol and contribute to lysosomal cholesterol export. eLife 2016; 5:e21635. [PMID: 27664420 PMCID: PMC5068966 DOI: 10.7554/elife.21635] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 01/09/2023] Open
Abstract
LAMP1 and LAMP2 proteins are highly abundant, ubiquitous, mammalian proteins that line the lysosome limiting membrane, and protect it from lysosomal hydrolase action. LAMP2 deficiency causes Danon's disease, an X-linked hypertrophic cardiomyopathy. LAMP2 is needed for chaperone-mediated autophagy, and its expression improves tissue function in models of aging. We show here that human LAMP1 and LAMP2 bind cholesterol in a manner that buries the cholesterol 3β-hydroxyl group; they also bind tightly to NPC1 and NPC2 proteins that export cholesterol from lysosomes. Quantitation of cellular LAMP2 and NPC1 protein levels suggest that LAMP proteins represent a significant cholesterol binding site at the lysosome limiting membrane, and may signal cholesterol availability. Functional rescue experiments show that the ability of human LAMP2 to facilitate cholesterol export from lysosomes relies on its ability to bind cholesterol directly.
Collapse
Affiliation(s)
- Jian Li
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
44
|
Hosseni B, Shabani M, Mohammadi A, Naseri F, Soltanmohammadi E, Piran S, Najafi M. Plasma PCSK9 level affects passively LAMP-2 expression; an evidence of transcription network. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Abstract
PURPOSE OF REVIEW In this article, we summarize the present information related to the export of LDL-derived cholesterol from late endosomes, with a focus on Nieman-Pick disease, type C1 (NPC1) cholesterol delivery toward the endoplasmic reticulum (ER). We review data suggesting that several pathways may operate in parallel, including membrane transport routes and membrane contact sites (MCSs). RECENT FINDINGS There is increasing appreciation that MCSs provide an important mechanism for intermembrane lipid transfer. In late endosome-ER contacts, three protein bridges involving oxysterol binding protein related protein (ORP)1L-vesicle associated membrane protein-associated protein (VAP), steroidogenic acute regulatory protein (StAR)D3-VAP and ORP5-NPC1 proteins have been reported. How much they contribute to the flux of LDL-cholesterol to the ER is currently open. Studies for lipid transfer via MCSs have been most advanced in Saccharomyces cerevisiae. Recently, a new sterol-binding protein family conserved between yeast and man was identified. Its members localize at MCSs and were named lipid transfer protein anchored at membrane contact sites (Lam) proteins. In yeast, sterol transfer between the ER and the yeast lysosome may be facilitated by a Lam protein. SUMMARY Increasing insights into the role of MCSs in directional sterol delivery between membranes propose that they might provide routes for LDL-cholesterol transfer to the ER. Future work should reveal which specific contacts may operate for this, and how they are controlled by cholesterol homeostatic machineries.
Collapse
Affiliation(s)
- Simon G Pfisterer
- Department of Anatomy and Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland and Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | | |
Collapse
|
46
|
Rowland TJ, Sweet ME, Mestroni L, Taylor MRG. Danon disease - dysregulation of autophagy in a multisystem disorder with cardiomyopathy. J Cell Sci 2016; 129:2135-43. [PMID: 27165304 PMCID: PMC4920246 DOI: 10.1242/jcs.184770] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Danon disease is a rare, severe X-linked form of cardiomyopathy caused by deficiency of lysosome-associated membrane protein 2 (LAMP-2). Other clinical manifestations include skeletal myopathy, cognitive defects and visual problems. Although individuals with Danon disease have been clinically described since the early 1980s, the underlying molecular mechanisms involved in pathological progression remain poorly understood. LAMP-2 is known to be involved in autophagy, and a characteristic accumulation of autophagic vacuoles in the affected tissues further supports the idea that autophagy is disrupted in this disease. The LAMP2 gene is alternatively spliced to form three splice isoforms, which are thought to play different autophagy-related cellular roles. This Commentary explores findings from genetic, histological, functional and tissue expression studies that suggest that the specific loss of the LAMP-2B isoform, which is likely to be involved in macroautophagy, plays a crucial role in causing the Danon phenotype. We also compare findings from mouse and cellular models, which have allowed for further molecular characterization but have also shown phenotypic differences that warrant attention. Overall, there is a need to better functionally characterize the LAMP-2B isoform in order to rationally explore more effective therapeutic options for individuals with Danon disease.
Collapse
Affiliation(s)
- Teisha J Rowland
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO 80045, USA
| | - Mary E Sweet
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO 80045, USA
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO 80045, USA
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
47
|
Nawaratna SSK, Gobert GN, Willis C, Mulvenna J, Hofmann A, McManus DP, Jones MK. Lysosome-associated membrane glycoprotein (LAMP)--preliminary study on a hidden antigen target for vaccination against schistosomiasis. Sci Rep 2015; 5:15069. [PMID: 26472258 PMCID: PMC4607944 DOI: 10.1038/srep15069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022] Open
Abstract
Our previously reported gene atlasing of schistosome tissues revealed transcripts that were highly enriched in the digestive tract of Schistosoma mansoni. From these, we selected two candidates, Sm-LAMP and Sm-NPC2 for testing as vaccine targets. The two molecules were selected on the basis of relatively high expression in the gastrodermis, their potentially important biological function, divergence from homologous molecules of the host and possible apical membrane expression in the gastrodermis. Bacterially expressed recombinant peptides corresponding to regions excluding trans-membrane domains of the selected vaccine targets were used in blinded vaccine trials in CBA mice using alum-CpG as adjuvant. Vaccine trials using the recombinant insoluble Sm-LAMP protein showed 16-25% significant reduction in total worm burden. Faecal egg count reduction was 52% and 60% in two trials, respectively, with similar results for the solubly expressed protein. Liver egg burden was reduced significantly (20% and 38%) with an insoluble recombinant Sm-LAMP in two trials, but not with the soluble recombinant form. Parasite fecundity was not affected by either Sm-LAMP protein preparations in the trials. It is concluded that Sm-LAMP may provide limited protection towards S. mansoni infections but could be used in combination with other vaccine candidates, to provide more comprehensive protection.
Collapse
Affiliation(s)
- Sujeevi S. K. Nawaratna
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton Qld, 4343, Australia
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Geoffrey N. Gobert
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Charlene Willis
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Qld 4111, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Malcolm K. Jones
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton Qld, 4343, Australia
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| |
Collapse
|
48
|
Ju X, Yan Y, Liu Q, Li N, Sheng M, Zhang L, Li X, Liang Z, Huang F, Liu K, Zhao Y, Zhang Y, Zou Z, Du J, Zhong Y, Zhou H, Yang P, Lu H, Tian M, Li D, Zhang J, Jin N, Jiang C. Neuraminidase of Influenza A Virus Binds Lysosome-Associated Membrane Proteins Directly and Induces Lysosome Rupture. J Virol 2015; 89:10347-58. [PMID: 26246576 PMCID: PMC4580162 DOI: 10.1128/jvi.01411-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/17/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED As a recycling center, lysosomes are filled with numerous acid hydrolase enzymes that break down waste materials and invading pathogens. Recently, lysosomal cell death has been defined as "lysosomal membrane permeabilization and the consequent leakage of lysosome contents into cytosol." Here, we show that the neuraminidase (NA) of H5N1 influenza A virus markedly deglycosylates and degrades lysosome-associated membrane proteins (LAMPs; the most abundant membrane proteins of lysosome), which induces lysosomal rupture, and finally leads to cell death of alveolar epithelial carcinoma A549 cells and human tracheal epithelial cells. The NA inhibitors peramivir and zanamivir could effectively block the deglycosylation of LAMPs, inhibit the virus cell entry, and prevent cell death induced by the H5N1 influenza virus. The NA of seasonal H1N1 virus, however, does not share these characteristics. Our findings not only reveal a novel role of NA in the early stage of the H5N1 influenza virus life cycle but also elucidate the molecular mechanism of lysosomal rupture crucial for influenza virus induced cell death. IMPORTANCE The integrity of lysosomes is vital for maintaining cell homeostasis, cellular defense and clearance of invading pathogens. This study shows that the H5N1 influenza virus could induce lysosomal rupture through deglycosylating lysosome-associated membrane proteins (LAMPs) mediated by the neuraminidase activity of NA protein. NA inhibitors such as peramivir and zanamivir could inhibit the deglycosylation of LAMPs and protect lysosomes, which also further interferes with the H5N1 influenza virus infection at early stage of life cycle. This work is significant because it presents new concepts for NA's function, as well as for influenza inhibitors' mechanism of action, and could partially explain the high mortality and high viral load after H5N1 virus infection in human beings and why NA inhibitors have more potent therapeutic effects for lethal avian influenza virus infections at early stage.
Collapse
Affiliation(s)
- Xiangwu Ju
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Yiwu Yan
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Qiang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Ning Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Miaomiao Sheng
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Lifang Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Xiao Li
- Genetic Engineering Laboratory, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Zhu Liang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Fengming Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Kangtai Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Yanxu Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Jianchao Du
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Ying Zhong
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Huandi Zhou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Peng Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Huijun Lu
- Genetic Engineering Laboratory, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Mingyao Tian
- Genetic Engineering Laboratory, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Dangsheng Li
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianming Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, State Key Laboratory of Medical Molecular Biology, and Department of Immunology, Peking Union Medical College, Tsinghua University, Beijing, China
| | - Ningyi Jin
- Genetic Engineering Laboratory, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, and Department of Biochemistry and Molecular Biology, Peking Union Medical College, Tsinghua University, Beijing, China State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Furuta A, Kikuchi H, Fujita H, Yamada D, Fujiwara Y, Kabuta T, Nishino I, Wada K, Uchiyama Y. Property of Lysosomal Storage Disease Associated with Midbrain Pathology in the Central Nervous System of Lamp-2–Deficient Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1713-23. [DOI: 10.1016/j.ajpath.2015.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/15/2015] [Accepted: 02/12/2015] [Indexed: 11/27/2022]
|
50
|
A decline of LAMP- 2 predicts ursodeoxycholic acid response in primary biliary cirrhosis. Sci Rep 2015; 5:9772. [PMID: 25894308 PMCID: PMC4403591 DOI: 10.1038/srep09772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/18/2015] [Indexed: 12/25/2022] Open
Abstract
Biochemical response to ursodeoxycholic acid (UDCA) in patients with primary biliary cirrhosis (PBC) is variable. We have previously reported that augmented expression of lysosome-associated membrane protein 2 (LAMP-2) was correlated with the severity of PBC. This study aimed to determine whether serum LAMP-2 could serve as a predictor of biochemical response to UDCA. The efficiency of serum LAMP-2 to predict biochemical response was assessed after 1 year of UDCA treatment in PBC patients by a retrospective analysis. We found that the basal serum LAMP-2 level was increased in PBC, especially in patients with stage III-IV (p = 0.010) or TBIL > 1 mg/dL (p = 0.014). Baseline serum LAMP-2 was higher in non-responders than that in responders, but the difference was statistically insignificant. However, after UDCA treatment, serum LAMP-2 level decreased prominently in the first 3 months, which was more obvious in responders. Further studies showed that the 35% decline of LAMP-2 after treatment for 3 months could be stated as an indicator of UDCA response with the sensitivity of 62.9% and specificity of 75.0% by Paris criteria. Meanwhile the specificity and sensitivity were identified as 63.5% and 64.1% by Barcelona criteria. Together, a decline in LAMP-2 might help to predict the response to UDCA.
Collapse
|