1
|
Can I, Akyurek FT. Evaluation of digit ratio (2D:4D) and its relationship with skin sebum level in patients with basal cell carcinoma. Arch Dermatol Res 2025; 317:707. [PMID: 40220166 DOI: 10.1007/s00403-025-04225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION The main factor in the development of basal cell carcinoma (BCC) is UV (ultraviolet) exposure. In most cases of BCC there is upregulation of the 'Sonic Hedgehog' (SHH) pathway components. Some recent studies have shown that overactivity of the SHH pathway leads to an increase in the number of sebocytes in the skin. Sex differences in tumor formation suggest a possible role of sex hormones in the development of skin cancers. OBJECTIVE We aimed to evaluate the 2D:4D ratio and its relationship with skin sebum level in patients with BCC. METHODS Finger length measurements were made using digital calipers. Skin sebum levels were measured using sebumeter. RESULTS The study included 64 patients with BCC(mean age 67) and 64 healthy subjects(mean age 71) aged 37-92 years. T score (average of sebum levels on forehead, nose and chin) and total sebum score (TSS) were higher in patients with BCC. U score (average of sebum levels of right and left cheeks) was similar in patients and control group. In male subjects, T score, U score and TSS were significantly higher in the patient group. In female subjects, there was no significant difference between the patient and control groups in T score, U score and TSS. The 2D:4D ratio in both hands was similar in the patient and control groups. When evaluated according to the localization of the lesions, the T score and the TSS were found to be higher in male subjects with BCC lesions in the T region than in the control group. In the female patient group, the T score was found to be significantly higher than in the control group. CONCLUSION There was no correlation between BCC and 2D:4D ratio. We found that skin sebum levels were higher in male patients with BCC compared to the control group. Defining the relationship between BCC and sebum levels may play an important role in the evaluation of the occurrence and prognosis of the disease.
Collapse
Affiliation(s)
- Ismail Can
- Konya Numune Hastanesi, Konya, Turkey.
- Selçuk Üniversitesi Tıp Fakültesi Hastanesi, Konya, Turkey.
| | | |
Collapse
|
2
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
3
|
Patel HV, Joshi JS, Shah FD. Implicating clinical utility of altered expression of PTCH1 & SMO in oral squamous cell carcinoma. J Mol Histol 2024; 55:379-389. [PMID: 38954185 DOI: 10.1007/s10735-024-10215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Oral cancer poses a significant burden on public health in India, with higher incidence and mortality rates. Despite advancements in treatment modalities, prognosis remains poor due to factors such as localized recurrence and lymph node metastasis, potentially influenced by cancer stem cells. Among signaling pathways implicated in CSC regulation, the Hedgehog pathway plays a crucial role in oral squamous cell carcinoma (OSCC). MATERIAL & METHODS 97 OSCC patients' tissue samples were collected and subjected to RNA isolation, cDNA synthesis and quantitative real-time PCR to analyze PTCH1 and SMO expression. Protein expression was assessed through immunohistochemistry. Clinicopathological parameters were correlated with gene and protein expression. Statistical analysis included Pearson chi-square tests, co-relation co-efficient tests, Kaplan-Meier survival analysis and ROC curve analysis. RESULTS PTCH1 expression correlated with lymphatic permeation (p = 0.002) and tumor stage (p = 0.002), while SMO expression correlated with lymph node status (p = 0.034) and tumor stage (p = 0.021). PTCH1 gene expression correlated with lymph node status (p = 0.024). High PTCH1 gene expression was associated with shorter survival in tongue cancer patients. ROC curve analysis indicated diagnostic potential for PTCH1 and SMO gene and cytoplasmic SMO expression in distinguishing malignant tissues from adjacent normal tissues. CONCLUSION PTCH1 and SMO play a crucial role in oral cancer progression, correlating with tumor stages and metastatic potential. Despite not directly influencing overall survival, PTCH1 expression at specific anatomical sites hints at its prognostic implications. PTCH1 and SMO exhibit diagnostic potential, suggesting their utility as molecular markers in oral cancer management and therapeutic strategies.
Collapse
Affiliation(s)
- Hitarth V Patel
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
- Gujarat University, Ahmedabad, Gujarat, India
| | - Jigna S Joshi
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky D Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
4
|
Patel HV, Joshi JS, Shah FD. A clinicopathological exploration of Hedgehog signaling: implications in oral carcinogenesis. J Cancer Res Clin Oncol 2023; 149:16525-16535. [PMID: 37712962 DOI: 10.1007/s00432-023-05383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Hedgehog Signaling, a basic cancer stem cell pathway, plays a major role during the embryonic development, is known to play a quiescent role in adults. However, aberrant activation of Hedgehog signaling in adults is known to play a role in cancer development. Hence, the aim of the study was to identify the role of Hedgehog signaling pathway in the Oral cancers. MATERIALS AND METHODS The expression of Hedgehog signaling pathway was evaluated in 124 patients through the quantitative real-time PCR. The association between the gene expression and clinico-pathological parameters were analyzed using the Pearson chi-square test and survival analysis was carried out using Kaplan-Meier analysis. RESULTS SHH and GLI1 was found to be significantly associated with the Lymph Node Status and SUFU was significantly associated with the Age. SMO and SUFU were found to have a worse prognosis in oral cancer patients. According to our findings, IHH plays a critical role in the activation of the HH signaling pathway in oral cancer. CONCLUSION These findings back up the use of the Hedgehog signaling pathway as a biomarker for early disease prediction in oral cancer, as well as its role in tumor aggressiveness and invasiveness.
Collapse
Affiliation(s)
- Hitarth V Patel
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Jigna S Joshi
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India
| | - Franky D Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, 380016, India.
| |
Collapse
|
5
|
Darade AR, Lapteva M, Ling V, Kalia YN. Polymeric micelles for cutaneous delivery of the hedgehog pathway inhibitor TAK-441: Formulation development and cutaneous biodistribution in porcine and human skin. Int J Pharm 2023; 644:123349. [PMID: 37633540 DOI: 10.1016/j.ijpharm.2023.123349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
TAK-441 is a potent inhibitor of the hedgehog pathway (IC50 4.4 nM) developed for the treatment of basal cell carcinoma that is active against the vismodegib-resistant Smoothened receptor D473H mutant. The objective of this study was to develop a micelle-based formulation of TAK-441 using D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) and to investigate its cutaneous delivery and biodistribution. The micelles were prepared using solvent evaporation and incorporation of TAK-441 in the TPGS micelles increased aqueous solubility ∼40-fold. The optimal formulation, a 3% HPMC hydrogel of TAK-441 loaded TPGS micelles, retained ∼92% of the initial TAK-441 content (2.5 mgTAK-441/g) after storage at 4 °C for 6 months. Finite dose experiments using human skin demonstrated that this formulation resulted in significantly greater cutaneous deposition of TAK-441 after 12 h than a non-micelle control formulation, (0.40 ± 0.11 µg/cm2 and 0.05 ± 0.02 µg/cm2, respectively) - no transdermal permeation was observed. The cutaneous biodistribution profile demonstrated that TAK-441 was predominantly delivered to the viable epidermis and upper dermis. Delivery from the HPMC hydrogel formulation resulted in TAK-441 epidermal concentrations that were several thousand-fold higher than the IC50, with almost negligible transdermal permeation, thereby decreasing the risk of systemic side effects in vivo.
Collapse
Affiliation(s)
- Aditya R Darade
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1 rue Michel-Servet, 1211, Geneva 4, Switzerland; Institute of Pharmaceutical Sciences Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Maria Lapteva
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1 rue Michel-Servet, 1211, Geneva 4, Switzerland; Institute of Pharmaceutical Sciences Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Vincent Ling
- Takeda Pharmaceuticals, Drug Delivery Technologies Search and Evaluation, 40 Landsdowne St, Cambridge MA 02139, United States
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1 rue Michel-Servet, 1211, Geneva 4, Switzerland; Institute of Pharmaceutical Sciences Western Switzerland, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
6
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
7
|
Xu Y, Xie YM, Sun WS, Zi R, Lu HQ, Xiao L, Gong KM, Guo SK. Exploration of an Prognostic Signature Related to Endoplasmic Reticulum Stress in Colorectal Adenocarcinoma and Their Response Targeting Immunotherapy. Technol Cancer Res Treat 2023; 22:15330338231212073. [PMID: 37920989 PMCID: PMC10623925 DOI: 10.1177/15330338231212073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Background: Endoplasmic reticulum (ER) stress plays a pro-apoptotic role in colorectal adenocarcinoma (COAD). This study aimed to develop a novel ER-stress-related prognostic risk model for COAD and provide support for COAD cohorts with different risk score responses to immune checkpoint inhibitor therapies. Methods: TCGA-COAD and GSE39582 were included in this prospective study. Univariate and multivariate Cox analyses were performed to identify prognostic ER stress-related genes (ERSGs). Accordingly, the immune infiltration landscape and immunotherapy response in different risk groups were assessed. Finally, the expression of prognostic genes in 10 normal and 10 COAD tissue samples was verified using reverse transcription-quantitative polymerase chain reaction. Results: Eight prognostic genes were selected to establish an ERSG-based signature in the training set of the TCGA-COAD cohort. The accuracy of this was confirmed using a testing set of TCGA-COAD and GSE39582 cohorts. Gene set variation analysis indicated that differential functionality in high-low-risk groups was related to immune-related pathways. Corresponding to this, CD36, TIMP1, and PTGIS were significantly associated with 19 immune cells with distinct proportions between the different risk groups, such as central memory CD4T cells and central memory CD8T cells. Moreover, the risk score was considered effective for predicting the clinical response to immunotherapy, and the immunotherapy response was significantly and negatively correlated with the risk score of individuals with COAD. Furthermore, the immune checkpoint inhibitor treatment was less effective in the high-risk group, where the expression levels of PD-L1 and tumor immune dysfunction and exclusion scores in the high-risk group were significantly increased. Finally, the experimental results demonstrated that the expression trends of prognostic genes in clinical samples were consistent with the results from public databases. Conclusion: Our study established a novel risk signature to predict the COAD prognosis of patients and provide theoretical support for the clinical treatment of COAD.
Collapse
Affiliation(s)
- Yu Xu
- Panzhihua Central Hospital, panzhihua, Sichuan Province, China
| | - Yang-Mei Xie
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Wen-Sha Sun
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, P.R. China
| | - Rong Zi
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Hong-Qiao Lu
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Le Xiao
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Kun-Mei Gong
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| | - Shi-Kui Guo
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
| |
Collapse
|
8
|
Swati K, Agrawal K, Raj S, Kumar R, Prakash A, Kumar D. Molecular mechanism(s) of regulations of cancer stem cell in brain cancer propagation. Med Res Rev 2022; 43:441-463. [PMID: 36205299 DOI: 10.1002/med.21930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/01/2022] [Accepted: 09/11/2022] [Indexed: 11/12/2022]
Abstract
Brain tumors are most often diagnosed with solid neoplasms and are the primary reason for cancer-related deaths in both children and adults worldwide. With recent developments in the progression of novel targeted chemotherapies, the prognosis of malignant glioma remains dismal. However, the high recurrence rate and high mortality rate remain unresolved and are closely linked to the biological features of cancer stem cells (CSCs). Research on tumor biology has reached a new age with more understanding of CSC features. CSCs, a subpopulation of whole tumor cells, are now regarded as candidate therapeutic targets. Therefore, in the diagnosis and treatment of tumors, recognizing the biological properties of CSCs is of considerable significance. Here, we have discussed the concept of CSCs and their significant role in brain cancer growth and propagation. We have also discussed personalized therapeutic development and immunotherapies for brain cancer by specifically targeting CSCs.
Collapse
Affiliation(s)
- Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Kirti Agrawal
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Sibi Raj
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Rajeev Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
9
|
Srivastava RK, Wang Y, Khan J, Muzaffar S, Lee MB, Weng Z, Croutch C, Agarwal A, Deshane J, Athar M. Role of hair follicles in the pathogenesis of arsenical-induced cutaneous damage. Ann N Y Acad Sci 2022; 1515:168-183. [PMID: 35678766 PMCID: PMC9531897 DOI: 10.1111/nyas.14809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arsenical vesicants cause skin inflammation, blistering, and pain. The lack of appropriate animal models causes difficulty in defining their molecular pathogenesis. Here, Ptch1+/- /C57BL/6 mice were employed to investigate the pathobiology of the arsenicals lewisite and phenylarsine oxide (PAO). Following lewisite or PAO challenge (24 h), the skin of animals becomes grayish-white, thick, leathery, and wrinkled with increased bi-fold thickness, Draize score, and necrotic patches. In histopathology, infiltrating leukocytes (macrophages and neutrophils), epidermal-dermal separation, edema, apoptotic cells, and disruption of tight and adherens junction proteins can be visualized. PCR arrays and nanoString analyses showed significant increases in cytokines/chemokines and other proinflammatory mediators. As hair follicles (HFs), which provide an immune-privileged environment, may affect immune cell trafficking and consequent inflammatory responses, we compared the pathogenesis of these chemicals in this model to that in Ptch1+/- /SKH-1 hairless mice. Ptch1+/- /SKH-1 mice have rudimentary, whereas Ptch1+/- /C57BL/6 mice have well-developed HFs. Although no significant differences were observed in qualitative inflammatory responses between the two strains, levels of cytokines/chemokines differed. Importantly, the mechanism of inflammation was identical; both reactive oxygen species induction and consequent activation of unfolded protein response signaling were similar. These data reveal that the acute molecular pathogenesis of arsenicals in these two murine models is similar.
Collapse
Affiliation(s)
- Ritesh K Srivastava
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yong Wang
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suhail Muzaffar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Madison B Lee
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhiping Weng
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Claire Croutch
- MRIGlobal Medical Countermeasures Division, Kansas City, Missouri, USA
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs, Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| | - Jessy Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Mani C, Tripathi K, Chaudhary S, Somasagara RR, Rocconi RP, Crasto C, Reedy M, Athar M, Palle K. Hedgehog/GLI1 Transcriptionally Regulates FANCD2 in Ovarian Tumor Cells: Its Inhibition Induces HR-Deficiency and Synergistic Lethality with PARP Inhibition. Neoplasia 2021; 23:1002-1015. [PMID: 34380074 PMCID: PMC8361230 DOI: 10.1016/j.neo.2021.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/04/2022]
Abstract
Ovarian cancer (OC) is one of the most lethal type of cancer in women due to a lack of effective targeted therapies and high rates of treatment resistance and disease recurrence. Recently Poly (ADP-ribose) polymerase inhibitors (PARPi) have shown promise as chemotherapeutic agents; however, their efficacy is limited to a small fraction of patients with BRCA mutations. Here we show a novel function for the Hedgehog (Hh) transcription factor Glioma associated protein 1 (GLI1) in regulation of key Fanconi anemia (FA) gene, FANCD2 in OC cells. GLI1 inhibition in HR-proficient OC cells induces HR deficiency (BRCAness), replication stress and synergistic lethality when combined with PARP inhibition. Treatment of OC cells with combination of GLI1 and PARP inhibitors shows enhanced DNA damage, synergy in cytotoxicity, and strong in vivo anticancer responses.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Al 36904, USA
| | - Sandeep Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | - Ranganatha R Somasagara
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Al 36904, USA
| | - Rodney P Rocconi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Al 36904, USA
| | - Chiquito Crasto
- Center for BioTechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Mark Reedy
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Al 35294, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
11
|
Troiani T, Napolitano S, Brancaccio G, Belli V, Nappi A, Miro C, Salvatore D, Dentice M, Caraglia M, Franco R, Giunta EF, De Falco V, Ciardiello D, Ciardiello F, Argenziano G. Treatment of Cutaneous Melanoma Harboring SMO p.Gln216Arg Mutation with Imiquimod: An Old Drug with New Results. J Pers Med 2021; 11:206. [PMID: 33799349 PMCID: PMC8000647 DOI: 10.3390/jpm11030206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer and its incidence is growing worldwide. In the last ten years, the therapeutic scenario of this disease has been revolutionized by the introduction of targeted therapies and immune-checkpoint inhibitors. However, in patients with many lesions and bulky tumors, in which surgery is no longer feasible, there is a need for new treatment options. Here we report, for the first time to our knowledge, a clinical case where a melanoma patient harboring the SMO p.Gln216Arg mutation has been treated with imiquimod, showing a complete and durable response. To better explain this outstanding response to the treatment, we transfected a melanoma cell line (MeWo) with the SMO p.Gln216Arg mutation in order to evaluate its role in response to the imiquimod treatment. Moreover, to better demonstrate that the antitumor activity of imiquimod was due to its role in suppressing the oncogenic SMO signaling pathway, independently of its immune modulating function, an in vivo experiment has been performed. This clinical case opens up a new scenario for the treatment of melanoma patients identifying a new potentially druggable target.
Collapse
Affiliation(s)
- Teresa Troiani
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Gabriella Brancaccio
- Dermatology Unit, Department of Mental and Physical Health and Prevention Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.B.); (G.A.)
| | - Valentina Belli
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (C.M.); (M.D.)
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (C.M.); (M.D.)
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (A.N.); (C.M.); (M.D.)
| | - Michele Caraglia
- Biochemistry Unit, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Prevention Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Vincenzo De Falco
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Davide Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (S.N.); (V.B.); (E.F.G.); (V.D.F.); (D.C.); (F.C.)
| | - Giuseppe Argenziano
- Dermatology Unit, Department of Mental and Physical Health and Prevention Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.B.); (G.A.)
| |
Collapse
|
12
|
Rozovski U, Harris DM, Li P, Liu Z, Jain P, Manshouri T, Veletic I, Ferrajoli A, Bose P, Thompson P, Jain N, Verstovsek S, Wierda W, Keating MJ, Estrov Z. STAT3 induces the expression of GLI1 in chronic lymphocytic leukemia cells. Oncotarget 2021; 12:401-411. [PMID: 33747356 PMCID: PMC7939524 DOI: 10.18632/oncotarget.27884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
The glioma associated oncogene-1 (GLI1), a downstream effector of the embryonic Hedgehog pathway, was detected in chronic lymphocytic leukemia (CLL), but not normal adult cells. GLI1 activating mutations were identified in 10% of patients with CLL. However, what induces GLI1 expression in GLI1-unmutated CLL cells is unknown. Because signal transducer and activator of transcription 3 (STAT3) is constitutively activated in CLL cells and sequence analysis detected putative STAT3-binding sites in the GLI1 gene promoter, we hypothesized that STAT3 induces the expression of GLI1. Western immunoblotting detected GLI1 in CLL cells from 7 of 7 patients, flow cytometry analysis confirmed that CD19+/CD5+ CLL cells co-express GLI1 and confocal microscopy showed co-localization of GLI1 and phosphorylated STAT3. Chromatin immunoprecipitation showed that STAT3 protein co-immunoprecipitated GLI1 as well as other STAT3-regulated genes. Transfection of CLL cells with STAT3-shRNA induced a mark decrease in GLI1 levels, suggesting that STAT3 binds to and induces the expression of GLI1 in CLL cells. An electromobility shift assay confirmed that STAT3 binds, and a luciferase assay showed that STAT3 activates the GLI1 gene. Transfection with GLI1-siRNA significantly increased the spontaneous apoptosis rate of CLL cells, suggesting that GLI1 inhibitors might provide therapeutic benefit to patients with CLL.
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petach Tiqva, and The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Phillip Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Dika E, Scarfì F, Ferracin M, Broseghini E, Marcelli E, Bortolani B, Campione E, Riefolo M, Ricci C, Lambertini M. Basal Cell Carcinoma: A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21155572. [PMID: 32759706 PMCID: PMC7432343 DOI: 10.3390/ijms21155572] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common type of carcinoma worldwide. BCC development is the result of a complex interaction between environmental, phenotypic and genetic factors. However, despite the progress in the field, BCC biology and mechanisms of resistance against systemic treatments have been poorly investigated. The aim of the present review is to provide a revision of BCC histological and molecular features, including microRNA (miRNA) dysregulation, with a specific focus on the molecular basis of BCC systemic therapies. Papers from the last ten years regarding BCC genetic and phenotypic alterations, as well as the mechanism of resistance against hedgehog pathway inhibitors vismodegib and sonidegib were included. The involvement of miRNAs in BCC resistance to systemic therapies is emerging as a new field of knowledge.
Collapse
Affiliation(s)
- Emi Dika
- Division of Dermatology, Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138 Bologna, Italia; (F.S.); (M.L.)
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-0512144849
| | - Federica Scarfì
- Division of Dermatology, Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138 Bologna, Italia; (F.S.); (M.L.)
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (M.F.); (E.B.); (M.R.)
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (M.F.); (E.B.); (M.R.)
| | - Emanuela Marcelli
- Laboratory of Bioengineering, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (E.M.); (B.B.)
| | - Barbara Bortolani
- Laboratory of Bioengineering, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (E.M.); (B.B.)
| | - Elena Campione
- Dermatology Clinic, University of Rome Tor Vergata Rome, 00133 Rome, Italy;
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy; (M.F.); (E.B.); (M.R.)
| | | | - Martina Lambertini
- Division of Dermatology, Azienda Ospedaliero-Universitaria di Bologna, via Massarenti 9, 40138 Bologna, Italia; (F.S.); (M.L.)
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
14
|
Yang Y, Liang YH, Zheng Y, Tang LJ, Zhou ST, Zhu JN. SHARPIN regulates cell proliferation of cutaneous basal cell carcinoma via inactivation of the transcriptional factors GLI2 and c‑JUN. Mol Med Rep 2020; 21:1799-1808. [PMID: 32319607 PMCID: PMC7057814 DOI: 10.3892/mmr.2020.10981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
SHANK‑associated RH domain‑interacting protein (SHARPIN) is a component of the linear ubiquitin chain assembly complex that can enhance the NF‑κB and JNK signaling pathways, acting as a tumor‑associated protein in a variety of cancer types. The present study investigated the role of SHARPIN in cutaneous basal cell carcinoma (BCC). Human BCC (n=26) and normal skin (n=5) tissues, and BCC (TE354.T) and normal skin (HaCaT) cell lines were used to evaluate SHARPIN expression level using immunohistochemistry and western blotting, respectively. A lentivirus carrying SHARPIN‑targeting or negative control short hairpin RNA was infected into TE354.T cells, and the infected stable cells were assayed to analyze tumor cell proliferation, cell cycle, apoptosis, migration and invasion by Cell Counting Kit‑8 and 5‑ethynyl‑2'‑deoxyuridine incorporation assays, flow cytometry and Transwell assays. Western blotting was performed to assess the protein expression levels of gene signaling in SHARPIN‑silenced BCC cells. SHARPIN protein expression levels were downregulated or absent in BCC cancer nests and precancerous lesions compared with normal skin samples. In addition, SHARPIN expression levels were lower in TE354.T cells compared with HaCaT cells. SHARPIN shRNA enhanced tumor cell proliferation and the S phase of the cell cycle, whereas BCC cell apoptotic rates, and migratory and invasive abilities were not significantly altered. The expression levels of cyclin D1, cyclin‑dependent kinase 4, phosphorylated‑c‑JUN and GLI family zinc finger 2 proteins were increased, whereas Patched 1 (PTCH1) and PTCH2 were decreased in the SHARPIN‑shRNA‑infected BCC cells. Therefore, the present results suggested that SHARPIN may act as a tumor suppressor during BCC development.
Collapse
Affiliation(s)
- Yao Yang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yan-Hua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Yan Zheng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Ling-Jie Tang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Si-Tong Zhou
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| | - Jing-Na Zhu
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518101, P.R. China
| |
Collapse
|
15
|
Abstract
Melanoma and keratinocyte skin cancer (KSC) are the most common types of cancer in White-skinned populations. Both tumor entities showed increasing incidence rates worldwide but stable or decreasing mortality rates. Rising incidence rates of cutaneous melanoma (CM) and KSC are largely attributed to increasing exposure to ultraviolet (UV) radiation, the main causal risk factor for skin cancer.Incidence rates of KSC, comprising of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), are much higher than that of melanoma. BCC development is mainly the cause of an intensive UV exposure in childhood and adolescence, while SCC development is related to chronic, cumulative UV exposure over decades. Although mortality is relatively low, KSC is an increasing problem for health care services causing significant morbidity.Cutaneous melanoma is rapidly increasing in White populations, with an estimated annual increase of around 3-7% over the past decades. In contrast to SCC, melanoma risk is associated with intermittent and chronic exposure to sunlight. The frequency of its occurrence is closely associated with the constitutive color of the skin and the geographical zone. Changes in outdoor activities and exposure to sunlight during the past 70 years are an important factor for the increasing incidence of melanoma. Mortality rates of melanoma show stabilization in the USA, Australia, and in European countries. In the USA even dropping numbers of death cases were recently reported, probably reflecting efficacy of the new systemic treatments.Among younger cohorts in some populations (e.g., Australia and New Zealand,), stabilizing or declining incidence rates of CM are observed, potentially caused by primary prevention campaigns aimed at reducing UV exposure. In contrast, incidence rates of CM are still rising in most European countries and in the USA. Ongoing trends towards thinner melanoma are largely ascribed to earlier detection.
Collapse
|
16
|
Molecular Biology of Basal and Squamous Cell Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1268:171-191. [PMID: 32918219 DOI: 10.1007/978-3-030-46227-7_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prevalent keratinocyte-derived neoplasms of the skin are basal cell carcinoma and squamous cell carcinoma. Both so-called non-melanoma skin cancers comprise the most common cancers in humans by far. Common risk factors for both tumor entities include sun exposure, DNA repair deficiencies leading to chromosomal instability, or immunosuppression. Yet, fundamental differences in the development of the two different entities have been and are currently unveiled. The constitutive activation of the sonic hedgehog signaling pathway by acquired mutations in the PTCH and SMO genes appears to represent the early basal cell carcinoma developmental determinant. Although other signaling pathways are also affected, small hedgehog inhibitory molecules evolve as the most promising basal cell carcinoma treatment options systemically as well as topically in current clinical trials. For squamous cell carcinoma development, mutations in the p53 gene, especially UV-induced mutations, have been identified as early events. Yet, other signaling pathways including epidermal growth factor receptor, RAS, Fyn, or p16INK4a signaling may play significant roles in squamous cell carcinoma development. The improved understanding of the molecular events leading to different tumor entities by de-differentiation of the same cell type has begun to pave the way for modulating new molecular targets therapeutically with small molecules.
Collapse
|
17
|
Gonzalez AC, Santos ET, Freire TFC, Sá MF, Andrade ZDA, Medrado ARAP. Participation of the Immune System and Hedgehog Signaling in Neoangiogenesis Under Laser Photobiomodulation. J Lasers Med Sci 2019; 10:310-316. [PMID: 31875124 DOI: 10.15171/jlms.2019.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: This study aimed to characterize immune and endothelial cells, myofibroblasts and pericytes, and positive cells for hedgehog proteins in late tissue repair of rats skin wounds treated with 670 nm photobiomodulation therapy (PBMT). Methods: A blind experimental study was conducted, in order to assess the effect of PBMT in later stages of healing, with emphasis on neoangiogenesis, immune cells and Hedgehog signaling. Forty Wistar rats were allocated randomly in two groups; control and treated with a diode GaAlAs laser (9 mW, 670 nm, 0.031 W/cm2, spot size of 0.28 cm2, fluence of 4 J/ cm2 applied every other day, until a total dose of 16 J/cm2 was achieved). Standardized skin wounds were performed and the animals were euthanized at 14, 21, 28 and 35 days. Tissue sections were subjected to hematoxylin-eosin and immunohistochemistry for CD31, NG2, smooth muscle alpha actin, CD8, CD68, Ptch, Gli-2 and Ihh. All histomorphometric data were statistically analyzed and significance level was at P<0.05. Results: At late stages of wound healing, neoangiogenesis persisted as revealed for the number of CD31+ cells (P = 0.016) and NG2+ and smooth muscle alpha actin positive pericytes (P = 0.025), for both experimental groups. By day 21, laser-treated group had decreased CD68+ cells (P = 0.032) and increased CD8+ (P = 0.038). At remodeling stage, there were positive cells for the hedgehog signaling pathway family which seemed to be activated. Conclusion: These data suggest that photobiomodulation therapy was able to modulate extracellular matrix remodelling even at the later stages of wound healing.
Collapse
Affiliation(s)
| | | | | | - Maíra Ferreira Sá
- Basic Sciences Department, Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
| | - Zilton de A Andrade
- Experimental Pathology Laboratory of Gonçalo Moniz Research Center - FIOCRUZ, Salvador, Bahia, Brazil
| | - Alena R A P Medrado
- Basic Sciences Department, Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
| |
Collapse
|
18
|
Phatak A, Athar M, Crowell JA, Leffel D, Herbert BS, Bale AE, Kopelovich L. Global gene expression of histologically normal primary skin cells from BCNS subjects reveals "single-hit" effects that are influenced by rapamycin. Oncotarget 2019; 10:1360-1387. [PMID: 30858923 PMCID: PMC6402716 DOI: 10.18632/oncotarget.26640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/11/2019] [Indexed: 02/05/2023] Open
Abstract
Studies of dominantly heritable cancers enabled insights about tumor progression. BCNS is a dominantly inherited disorder that is characterized by developmental abnormalities and postnatal neoplasms, principally BCCs. We performed an exploratory gene expression profiling of primary cell cultures derived from clinically unaffected skin biopsies of BCNS gene-carriers (PTCH1+/-) and normal individuals. PCA and HC of untreated keratinocytes or fibroblasts failed to clearly distinguish BCNS samples from controls. These results are presumably due to the common suppression of canonical HH signaling in vitro. We then used a relaxed threshold (p-value <0.05, no FDR cut-off; FC 1.3) that identified a total of 585 and 857 genes differentially expressed in BCNS keratinocytes and fibroblasts samples, respectively. A GSEA identified pancreatic β cell hallmark and mTOR signaling genes in BCNS keratinocytes, whereas analyses of BCNS fibroblasts identified gene signatures regulating pluripotency of stem cells, including WNT pathway. Significantly, rapamycin treatment (FDR<0.05), affected a total of 1411 and 4959 genes in BCNS keratinocytes and BCNS fibroblasts, respectively. In contrast, rapamycin treatment affected a total of 3214 and 4797 genes in normal keratinocytes and normal fibroblasts, respectively. The differential response of BCNS cells to rapamycin involved 599 and 1463 unique probe sets in keratinocytes and fibroblasts, respectively. An IPA of these genes in the presence of rapamycin pointed to hepatic fibrosis/stellate cell activation, and HIPPO signaling in BCNS keratinocytes, whereas mitochondrial dysfunction and AGRN expression were uniquely enriched in BCNS fibroblasts. The gene expression changes seen here are likely involved in the etiology of BCCs and they may represent biomarkers/targets for early intervention.
Collapse
Affiliation(s)
- Amruta Phatak
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David Leffel
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
19
|
Robson JP, Remke M, Kool M, Julian E, Korshunov A, Pfister SM, Osborne GW, Taylor MD, Wainwright B, Reynolds BA. Identification of CD24 as a marker of Patched1 deleted medulloblastoma-initiating neural progenitor cells. PLoS One 2019; 14:e0210665. [PMID: 30657775 PMCID: PMC6338368 DOI: 10.1371/journal.pone.0210665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022] Open
Abstract
High morbidity and mortality are common traits of malignant tumours and identification of the cells responsible is a focus of on-going research. Many studies are now reporting the use of antibodies specific to Clusters of Differentiation (CD) cell surface antigens to identify tumour-initiating cell (TIC) populations in neural tumours. Medulloblastoma is one of the most common malignant brain tumours in children and despite a considerable amount of research investigating this tumour, the identity of the TICs, and the means by which such cells can be targeted remain largely unknown. Current prognostication and stratification of medulloblastoma using clinical factors, histology and genetic profiling have classified this tumour into four main subgroups: WNT, Sonic hedgehog (SHH), Group 3 and Group 4. Of these subgroups, SHH remains one of the most studied tumour groups due to the ability to model medulloblastoma formation through targeted deletion of the Shh pathway inhibitor Patched1 (Ptch1). Here we sought to utilise CD antibody expression to identify and isolate TIC populations in Ptch1 deleted medulloblastoma, and determine if these antibodies can help classify the identity of human medulloblastoma subgroups. Using a fluorescence-activated cell sorted (FACS) CD antibody panel, we identified CD24 as a marker of TICs in Ptch1 deleted medulloblastoma. CD24 expression was not correlated with markers of astrocytes or oligodendrocytes, but co-labelled with markers of neural progenitor cells. In conjunction with CD15, proliferating CD24+/CD15+ granule cell precursors (GCPs) were identified as a TIC population in Ptch1 deleted medulloblastoma. On human medulloblastoma, CD24 was found to be highly expressed on Group 3, Group 4 and SHH subgroups compared with the WNT subgroup, which was predominantly positive for CD15, suggesting CD24 is an important marker of non-WNT medulloblastoma initiating cells and a potential therapeutic target in human medulloblastoma. This study reports the use of CD24 and CD15 to isolate a GCP-like TIC population in Ptch1 deleted medulloblastoma, and suggests CD24 expression as a marker to help stratify human WNT tumours from other medulloblastoma subgroups.
Collapse
Affiliation(s)
- Jonathan P. Robson
- Division of Molecular Genetics and Development, Institute for Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| | - Marc Remke
- Department of Pediatric Neuro-Oncogenomics, German Cancer Research Centre and the German Cancer Consortium, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Kool
- Hopp Children´s Cancer Center at the National Center for Tumor Diseases, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center, Heidelberg, Germany
| | - Elaine Julian
- Division of Molecular Genetics and Development, Institute for Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Andrey Korshunov
- Division of Clinical Cooperation Unit Neuropathology, German Cancer Research Centre, University of Heidelberg, Heidelberg, Germany
| | - Stefan M. Pfister
- Hopp Children´s Cancer Center at the National Center for Tumor Diseases, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Geoffrey W. Osborne
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Michael D. Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brandon Wainwright
- Division of Molecular Genetics and Development, Institute for Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Brent A. Reynolds
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
20
|
Milosevic M, Lazarevic M, Toljic B, Simonovic J, Trisic D, Nikolic N, Petrovic M, Milasin J. Characterization of stem-like cancer cells in basal cell carcinoma and its surgical margins. Exp Dermatol 2018; 27:1160-1165. [DOI: 10.1111/exd.13755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Maja Milosevic
- Department of Human Genetics; School of Dental Medicine; University of Belgrade; Belgrade Serbia
- Clinic of Maxillofacial Surgery; School of Dental Medicine; University of Belgrade; Belgrade Serbia
| | - Milos Lazarevic
- Department of Human Genetics; School of Dental Medicine; University of Belgrade; Belgrade Serbia
- Clinic of Maxillofacial Surgery; School of Dental Medicine; University of Belgrade; Belgrade Serbia
| | - Bosko Toljic
- Department of Human Genetics; School of Dental Medicine; University of Belgrade; Belgrade Serbia
| | - Jelena Simonovic
- Department of Human Genetics; School of Dental Medicine; University of Belgrade; Belgrade Serbia
| | - Dijana Trisic
- Department of Human Genetics; School of Dental Medicine; University of Belgrade; Belgrade Serbia
| | - Nađa Nikolic
- Department of Human Genetics; School of Dental Medicine; University of Belgrade; Belgrade Serbia
| | - Milan Petrovic
- Clinic of Maxillofacial Surgery; School of Dental Medicine; University of Belgrade; Belgrade Serbia
| | - Jelena Milasin
- Department of Human Genetics; School of Dental Medicine; University of Belgrade; Belgrade Serbia
| |
Collapse
|
21
|
Park EK, Lee HJ, Lee H, Kim JH, Hwang J, Koo JI, Kim SH. The Anti-Wrinkle Mechanism of Melatonin in UVB Treated HaCaT Keratinocytes and Hairless Mice via Inhibition of ROS and Sonic Hedgehog Mediated Inflammatory Proteins. Int J Mol Sci 2018; 19:ijms19071995. [PMID: 29986551 PMCID: PMC6073225 DOI: 10.3390/ijms19071995] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/05/2022] Open
Abstract
Though melatonin is known to improve ultraviolet B (UVB)-induced oxidative damage and inflammatory conditions via the blockade of the nuclear factor (NF)-κB, interleukin (IL)-6, there is no report on the anti-wrinkle effect of melatonin to date. Hence in the present study, the anti-wrinkle mechanism of melatonin was elucidated in UVB treated HaCaT keratinocytes and hairless mice. Herein melatonin protected against a radical initiator tert-Butyl hydroperoxide (t-BOOH) induced reactive oxygen species (ROS) production, matrix metalloprotease 1 (MMP-1), pro-collagen and cytotoxicity in HaCaT keratinocytes. Additionally, melatonin suppressed the expression of sonic hedgehog (SHH) and GLI1 for hedgehog signaling and p-NF-κB, cyclooxygenase (COX-2), phospho-extracellular signal-regulated kinase-1 (p-ERK) for inflammatory responses in UVB treated HaCaT keratinocytes. Furthermore, melatonin protected skin from wrinkle formation, transdermal water loss in hairless mice irradiated by UVB for 8 weeks. Notably, melatonin prevented against epidermal thickness and dermal collagen degradation in UVB irradiated hairless mice by Hematoxylin and Eosin and Masson’s trichrome staining. Taken together, these findings suggest that melatonin reduces wrinkle formation via inhibition of ROS/SHH and inflammatory proteins such as NF-κB/COX-2/ERK/MMP1.
Collapse
Affiliation(s)
- Eun Kyung Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyemin Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ju-Ha Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Jisung Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ja Il Koo
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
22
|
Zhao B, Chen Y, Mu L, Hu S, Wu X. Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus). WORLD RABBIT SCIENCE 2018. [DOI: 10.4995/wrs.2018.7058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Skin is an important trait for Rex rabbits and skin development is influenced by many processes, including hair follicle cycling, keratinocyte differentiation and formation of coat colour and skin morphogenesis. We identified differentially expressed microRNAs (miRNAs) between the back and belly skin in Rex rabbits. In total, 211 miRNAs (90 upregulated miRNAs and 121 downregulated miRNAs) were identified with a |log<sub>2</sub> (fold change)|>1 and <em>P</em>-value<0.05. Using target gene prediction for the miRNAs, differentially expressed predicted target genes were identified and the functional enrichment and signalling pathways of these target genes were processed to reveal their biological functions. A number of differentially expressed miRNAs were found to be involved in regulation of the cell cycle, skin epithelium differentiation, keratinocyte proliferation, hair follicle development and melanogenesis. In addition, target genes regulated by miRNAs play key roles in the activities of the Hedgehog signalling pathway, Wnt signalling pathway, Osteoclast differentiation and MAPK pathway, revealing mechanisms of skin development. Nine candidate miRNAs and 5 predicted target genes were selected for verification of their expression by quantitative reverse transcription polymerase chain reaction. A regulation network of miRNA and their target genes was constructed by analysing the GO enrichment and signalling pathways. Further studies should be carried out to validate the regulatory relationships between candidate miRNAs and their target genes.
Collapse
|
23
|
Amini-Nik S, Yousuf Y, Jeschke MG. Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Adv Drug Deliv Rev 2018; 123:135-154. [PMID: 28757325 PMCID: PMC5742037 DOI: 10.1016/j.addr.2017.07.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
In recent decades, there have been tremendous improvements in burn care that have allowed patients to survive severe burn injuries that were once fatal. However, a major limitation of burn care currently is the development of hypertrophic scars in approximately 70% of patients. This significantly decreases the quality of life for patients due to the physical and psychosocial symptoms associated with scarring. Current approaches to manage scarring include surgical techniques and non-surgical methods such as laser therapy, steroid injections, and compression therapy. These treatments are limited in their effectiveness and regularly fail to manage symptoms. As a result, the development of novel treatments that aim to improve outcomes and quality of life is imperative. Drug delivery that targets the molecular cascades of wound healing to attenuate or prevent hypertrophic scarring is a promising approach that has therapeutic potential. In this review, we discuss current treatments for scar management after burn injury, and how drug delivery targeting molecular signaling can lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada.
| | - Yusef Yousuf
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada; Ross-Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada.
| |
Collapse
|
24
|
Wiegering A, Rüther U, Gerhardt C. The Role of Hedgehog Signalling in the Formation of the Ventricular Septum. J Dev Biol 2017; 5:E17. [PMID: 29615572 PMCID: PMC5831794 DOI: 10.3390/jdb5040017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022] Open
Abstract
An incomplete septation of the ventricles in the vertebrate heart that disturbes the strict separation between the contents of the two ventricles is termed a ventricular septal defect (VSD). Together with bicuspid aortic valves, it is the most frequent congenital heart disease in humans. Until now, life-threatening VSDs are usually treated surgically. To avoid surgery and to develop an alternative therapy (e.g., a small molecule therapy), it is necessary to understand the molecular mechanisms underlying ventricular septum (VS) development. Consequently, various studies focus on the investigation of signalling pathways, which play essential roles in the formation of the VS. In the past decade, several reports found evidence for an involvement of Hedgehog (HH) signalling in VS development. In this review article, we will summarise the current knowledge about the association between HH signalling and VS formation and discuss the use of such knowledge to design treatment strategies against the development of VSDs.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ulrich Rüther
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
25
|
Dessinioti C, Antoniou C, Stratigos AJ. From basal cell carcinoma morphogenesis to the alopecia induced by hedgehog inhibitors: connecting the dots. Br J Dermatol 2017. [PMID: 28626889 DOI: 10.1111/bjd.15738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The deciphering of the hedgehog (Hh) signalling pathway implicated in the tumorigenesis of basal cell carcinoma (BCC) led to the development of targeted drug therapies, the Hh pathway inhibitors (HPIs) vismodegib and sonidegib. In the skin, physiological Hh signalling is activated in growing hair follicles (HFs), where it is required for proliferation of the epithelium of HFs during morphogenesis and for their postnatal growth. The effects of HPI treatment leading to the regression of BCC and the development of alopecia underpin the central role of the Hh pathway in BCC formation, as well as hair cycling. Given the fact that BCC is a follicular-driven tumour, it is a fine tuning of events that regulate hair cycling that may drive towards the formation of benign follicular hamartomas or malignant BCC neoplasms. Wnt/β-catenin signalling interacts with the Hh signalling during HF morphogenesis, normal hair cycling and BCC development. The aim of this review is to present how key molecular events implicated in Hh pathway crosstalk in the HF are also involved in BCC pathogenesis and result in the alopecia developed by HPI treatment.
Collapse
Affiliation(s)
- C Dessinioti
- Dermato-Oncology Unit, First Department of Dermatology, University of Athens, Andreas Syggros Hospital, Athens, Greece
| | - C Antoniou
- Dermato-Oncology Unit, First Department of Dermatology, University of Athens, Andreas Syggros Hospital, Athens, Greece
| | - A J Stratigos
- Dermato-Oncology Unit, First Department of Dermatology, University of Athens, Andreas Syggros Hospital, Athens, Greece
| |
Collapse
|
26
|
Bakshi A, Chaudhary SC, Rana M, Elmets CA, Athar M. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol Carcinog 2017; 56:2543-2557. [PMID: 28574612 DOI: 10.1002/mc.22690] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10-100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs.
Collapse
Affiliation(s)
- Anshika Bakshi
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Sandeep C Chaudhary
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mehtab Rana
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Craig A Elmets
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
27
|
Dixit R, Pandey M, Tripathi SK, Dwivedi AND, Shukla VK. Comparative Analysis of Mutational Profile of Sonic hedgehog Gene in Gallbladder Cancer. Dig Dis Sci 2017; 62:708-714. [PMID: 28058596 DOI: 10.1007/s10620-016-4438-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Gallbladder cancer has high incidence in northeastern India; mortality too is high as the disease is often diagnosed late. Numerous studies have shown the role of sonic hedgehog (shh) in different cancers, an important ligand of the hedgehog signaling pathway. AIM This study was carried out to evaluate the shh gene mutations in gallbladder cancer patients. METHODS PCR-SSCP was performed for shh gene in 50 samples each of gallbladder cancer, cholelithiasis, and control. The samples showing aberration in banding pattern were sequenced. RESULTS Variation in banding pattern was observed in 20% gallbladder cancer cases, 10% in cholelithiasis, and none of the control (χ 2 = 11.111; p < 0.05). Sequencing results revealed seven novel point mutations in GBC cases. These novel mutations were found to be associated with histopathology (p < 0.05) and stage (p < 0.05) of gallbladder cancer. CONCLUSION This study reveals several novel individual and repetitive mutations of shh gene in GBC and cholelithiasis samples that may be used as diagnostic markers for gallbladder carcinogenesis.
Collapse
Affiliation(s)
- Ruhi Dixit
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sunil Kumar Tripathi
- Department of Forensic Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Amit Nandan Dhar Dwivedi
- Department of Radio Diagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
28
|
Goyal A, Linskey KR, Kay J, Duncan LM, Nazarian RM. Differential Expression of Hedgehog and Snail in Cutaneous Fibrosing Disorders: Implications for Targeted Inhibition. Am J Clin Pathol 2016; 146:709-717. [PMID: 28077400 DOI: 10.1093/ajcp/aqw192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To examine Hedgehog signaling in cutaneous fibrosing disorders for which effective approved therapies are lacking, expand our knowledge of pathophysiology, and explore the rationale for targeted inhibition. METHODS Stain intensity and percentage of cells staining for Sonic hedgehog (Shh), Indian hedgehog (Ihh), Patched (Ptch), glycogen synthase kinase 3 β (GSK3-β), β-catenin, and Snail were evaluated in human skin biopsy specimens of keloid, hypertrophic scar (Hscar), scleroderma, nephrogenic systemic fibrosis (NSF), scar, and normal skin using a tissue microarray. RESULTS Ihh, but not Shh, was detected in a significantly larger proportion of cells for all case types. Ptch, GSK3-β, and β-catenin showed a gradient of expression: highest in NSF and keloid; moderate in normal skin, scar, and Hscar; and lowest in scleroderma. Snail expression was binary: low in normal skin but high in all fibrosing conditions studied. CONCLUSIONS Differential overexpression of Hedgehog and Snail in cutaneous fibrosing disorders demonstrates a role for targeted inhibition. Ptch, GSK3-β, and β-catenin can help differentiate scleroderma from NSF in histologically subtle cases. Differences in expression between keloid and hypertrophic scar support the concept that they are pathophysiologically distinct disorders. Our findings implicate Snail as a target for the prevention of fibrogenesis or fibrosis progression and may offer a means to assess response to therapy.
Collapse
Affiliation(s)
- Amrita Goyal
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Katy R Linskey
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jonathan Kay
- Division of Rheumatology, Department of Medicine, UMass Memorial Medical Center and University of Massachusetts Medical School, Worcester
| | - Lyn M Duncan
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Rosalynn M Nazarian
- From the Dermatopathology Unit, Pathology Service, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
29
|
Sakthivel KM, Sehgal P. A Novel Role of Lamins from Genetic Disease to Cancer Biomarkers. Oncol Rev 2016; 10:309. [PMID: 27994771 PMCID: PMC5136755 DOI: 10.4081/oncol.2016.309] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
Lamins are the key components of the nuclear lamina and by virtue of their interactions with chromatin and binding partners act as regulators of cell proliferation and differentiation. Of late, the diverse roles of lamins in cellular processes have made them the topic of intense debate for their role in cancer progression. The observations about aberrant localization or misexpression of the nuclear lamins in cancerous tissues have often led to the speculative role of lamins as a cancer risk biomarker. Here we discuss the involvement of lamins in several cancer subtypes and their potential role in predicting the tumor progression.
Collapse
Affiliation(s)
| | - Poonam Sehgal
- Chemical and Biomolecular Engineering, University of Illinois , Urbana-Champaign, IL, USA
| |
Collapse
|
30
|
Lichtenberger BM, Mastrogiannaki M, Watt FM. Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages. Nat Commun 2016; 7:10537. [PMID: 26837596 PMCID: PMC4742837 DOI: 10.1038/ncomms10537] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/23/2015] [Indexed: 01/06/2023] Open
Abstract
Sustained epidermal Wnt/β-catenin signalling expands the stem cell compartment and induces ectopic hair follicles (EFs). This is accompanied by extensive fibroblast proliferation and extracellular matrix (ECM) remodelling in the underlying dermis. Here we show that epidermal Hedgehog (Hh) and Transforming growth factor-beta (TGF-β) signalling mediate the dermal changes. Pharmacological inhibition or genetic deletion of these pathways prevents β-catenin-induced dermal reprogramming and EF formation. Epidermal Shh stimulates proliferation of the papillary fibroblast lineage, whereas TGF-β2 controls proliferation, differentiation and ECM production by reticular fibroblasts. Hh inhibitors do not affect TGF-β target gene expression in reticular fibroblasts, and TGF-β inhibition does not prevent Hh target gene induction in papillary fibroblasts. However, when Hh signalling is inhibited the reticular dermis does not respond to epidermal β-catenin activation. We conclude that the dermal response to epidermal Wnt/β-catenin signalling depends on distinct fibroblast lineages responding to different paracrine signals. The molecular mechanisms regulating skin dermal changes are unclear. Here, the authors show that deletion of Hedgehog (Hh) in the upper dermis alters the response to epidermal Wnt signalling, which, together with changes in extracellular matrix production, influences distinct fibroblast lineages differently.
Collapse
Affiliation(s)
- Beate M Lichtenberger
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.,Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Maria Mastrogiannaki
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
31
|
Vismodegib, itraconazole and sonidegib as hedgehog pathway inhibitors and their relative competencies in the treatment of basal cell carcinomas. Crit Rev Oncol Hematol 2016; 98:235-41. [DOI: 10.1016/j.critrevonc.2015.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/06/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
|
32
|
Aiello NM, Stanger BZ. Echoes of the embryo: using the developmental biology toolkit to study cancer. Dis Model Mech 2016; 9:105-14. [PMID: 26839398 PMCID: PMC4770149 DOI: 10.1242/dmm.023184] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hallmark of embryonic development is regulation - the tendency for cells to find their way into organized and 'well behaved' structures - whereas cancer is characterized by dysregulation and disorder. At face value, cancer biology and developmental biology would thus seem to have little to do with each other. But if one looks beneath the surface, embryos and cancers share a number of cellular and molecular features. Embryos arise from a single cell and undergo rapid growth involving cell migration and cell-cell interactions: features that are also seen in the context of cancer. Consequently, many of the experimental tools that have been used to study embryogenesis for over a century are well-suited to studying cancer. This article will review the similarities between embryogenesis and cancer progression and discuss how some of the concepts and techniques used to understand embryos are now being adapted to provide insight into tumorigenesis, from the origins of cancer cells to metastasis.
Collapse
Affiliation(s)
- Nicole M Aiello
- Departments of Medicine and Cell and Developmental Biology, Abramson Family Cancer Research Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Ben Z Stanger
- Departments of Medicine and Cell and Developmental Biology, Abramson Family Cancer Research Institute, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Arnhold V, Boos J, Lanvers-Kaminsky C. Targeting hedgehog signaling pathway in pediatric tumors: in vitro evaluation of SMO and GLI inhibitors. Cancer Chemother Pharmacol 2016; 77:495-505. [DOI: 10.1007/s00280-016-2962-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022]
|
34
|
Chaudhary SC, Tang X, Arumugam A, Li C, Srivastava RK, Weng Z, Xu J, Zhang X, Kim AL, McKay K, Elmets CA, Kopelovich L, Bickers DR, Athar M. Shh and p50/Bcl3 signaling crosstalk drives pathogenesis of BCCs in Gorlin syndrome. Oncotarget 2015; 6:36789-814. [PMID: 26413810 PMCID: PMC4742211 DOI: 10.18632/oncotarget.5103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder that is due, in large measure, to aberrant Shh signaling driven by mutations in the tumor suppressor gene Ptch1. Here, we describe the development of Ptch1+/-/ SKH-1 mice as a novel model of this disease. These animals manifest many features of NBCCS, including developmental anomalies and are remarkably sensitive to both ultraviolet (UVB) and ionizing radiation that drive the development of multiple BCCs. Just as in patients with NBCCS, Ptch1+/-/SKH-1 also spontaneously develops BCCs and other neoplasms such as rhabdomyomas/rhabdomyosarcomas. Administration of smoothened inhibitors (vismodegib/itraconazole/cyclopamine) or non-steroidal anti-inflammatory drug (sulindac/sulfasalazine) each result in partial resolution of BCCs in these animals. However, combined administration of these agents inhibits the growth of UVB-induced BCCs by >90%. Employing small molecule- and decoy-peptide-based approaches we further affirm that complete remission of BCCs could only be achieved by combined inhibition of p50-NFκB/Bcl3 and Shh signaling. We posit that Ptch1+/-/SKH-1 mice are a novel and relevant animal model for NBCCS. Understanding mechanisms that govern genetic predisposition to BCCs should facilitate our ability to identify and treat NBCCS gene carriers, including those at risk for sporadic BCCs while accelerating development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Sandeep C. Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiuwei Tang
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Ritesh K. Srivastava
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Jianmin Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiao Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Present address: Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Arianna L. Kim
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Kristopher McKay
- Division of Dermatopathology, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-4550, USA
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David R. Bickers
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| |
Collapse
|
35
|
Correia de Sá TR, Silva R, Lopes JM. Basal cell carcinoma of the skin (part 1): epidemiology, pathology and genetic syndromes. Future Oncol 2015; 11:3011-21. [PMID: 26449153 DOI: 10.2217/fon.15.246] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer worldwide with increasing incidence, but difficult to assess due to the current under registration practice. Despite the low mortality rate, BCC is a cause of great morbidity and an economic burden to health services. There are several risk factors that increase the risk of BCC and partly explain its incidence. Low-penetrance susceptibility alleles, as well as genetic alterations in signaling pathways, namely SHH pathway, also contribute to the carcinogenesis. BCC associate with several genetic syndromes, of which basal cell nevus syndrome is the most common.
Collapse
Affiliation(s)
| | - Roberto Silva
- Faculty of Medicine, Porto University, 4099-002 Porto, Portugal
| | | |
Collapse
|
36
|
Salem ML, El-Badawy AS, Li Z. Immunobiology and signaling pathways of cancer stem cells: implication for cancer therapy. Cytotechnology 2015; 67:749-759. [PMID: 25516358 PMCID: PMC4545436 DOI: 10.1007/s10616-014-9830-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) need to survive cancer treatments with a specific end goal to provide new, more differentiated, metastatic-prone cancerous cells. This happens through diverse signals delivered within the tumor microenvironment where ample evidence indicates that altered developmental signaling pathways play an essential role in maintaining CSCs and accordingly the survival and the progression of the tumor itself. This review summarizes findings on the immunobiological properties of CSCs as compared with cancerous non-stem cells involving the expression of immunological molecules, cytokines and tumor antigens as well as the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon CSCs. We concluded that if CSCs are the main driving force behind tumor support and growth then understanding the molecular mechanisms and the immunological properties directing these cells for immune tolerance is of great clinical significance. Such knowledge will contribute to designing better targeted therapies that could prevent tumor recurrence and accordingly significantly improve cancer treatments and patient survival.
Collapse
Affiliation(s)
- Mohamed L Salem
- Immunology and Biotechnology Division, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt,
| | | | | |
Collapse
|
37
|
Nowotarski SL, Feith DJ, Shantz LM. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines. CANCER GROWTH AND METASTASIS 2015; 8:17-27. [PMID: 26380554 PMCID: PMC4558889 DOI: 10.4137/cgm.s21219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/16/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies. Here we review the models designed to determine the role of the polyamines in NMSC development and maintenance. Elevated polyamines are absolutely required for tumor growth, and dysregulation of their biosynthetic and catabolic enzymes has been observed in NMSC. Studies using mice with genetic alterations in epidermal polyamines suggest that they play key roles in tumor promotion and epithelial cell survival pathways, and recent clinical trials indicate that pharmacological inhibitors of polyamine metabolism show promise in individuals at high risk for NMSC.
Collapse
Affiliation(s)
- Shannon L Nowotarski
- Department of Biochemistry, The Pennsylvania State University Berks College, Reading, PA, USA
| | - David J Feith
- University of Virginia Cancer Center and Department of Medicine, Hematology and Oncology, University of Virginia, Charlottesville, VA, USA
| | - Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
38
|
Tilley C, Deep G, Agarwal C, Wempe MF, Biedermann D, Valentová K, Kren V, Agarwal R. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol Carcinog 2014; 55:3-14. [PMID: 25492239 DOI: 10.1002/mc.22253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 01/08/2023]
Abstract
Basal cell carcinoma (BCC) is the most common cancer worldwide, and its current treatment options are insufficient and toxic. Surprisingly, unlike several other malignancies, chemopreventive efforts against BCC are almost lacking. Silibinin, a natural agent from milk thistle seeds, has shown strong efficacy against several cancers including ultraviolet radiation-induced skin (squamous) cancer; however, its potential activity against BCC is not yet examined. Herein, for the first time, we report the efficacy of silibinin and its oxidation product 2,3-dehydrosilibinin (DHS) against BCC both in vitro and in vivo using ASZ (p53 mutated) and BSZ (p53 deleted) cell lines derived from murine BCC tumors. Both silibinin and DHS significantly inhibited cell growth and clonogenicity while inducing apoptosis in a dose- and time-dependent manner, with DHS showing higher activity at lower concentrations. Both agents also inhibited the mitogenic signaling by reducing EGFR, ERK1/2, Akt, and STAT3 phosphorylation and suppressed the activation of transcription factors NF-κB and AP-1. More importantly, in an ectopic allograft model, oral administration of silibinin and DHS (200 mg/kg body weight) strongly inhibited the ASZ tumor growth by 44% and 71% (P < 0.05), respectively, and decreased the expression of proliferation biomarkers (PCNA and cyclin D1) as well as NF-κB p50 and c-Fos in the tumor tissues. Taken together, these results provide the first evidence for the efficacy and usefulness of silibinin and its derivative DHS against BCC, and suggest the need for additional studies with these agents in pre-clinical and clinical BCC chemoprevention and therapy models.
Collapse
Affiliation(s)
- Cynthia Tilley
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| | - David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská, Prague, Czech Republic
| | - Vladimir Kren
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská, Prague, Czech Republic
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
39
|
Athar M, Li C, Kim AL, Spiegelman VS, Bickers DR. Sonic hedgehog signaling in Basal cell nevus syndrome. Cancer Res 2014; 74:4967-75. [PMID: 25172843 DOI: 10.1158/0008-5472.can-14-1666] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The hedgehog (Hh) signaling pathway is considered to be a major signal transduction pathway during embryonic development, but it usually shuts down after birth. Aberrant Sonic hedgehog (Shh) activation during adulthood leads to neoplastic growth. Basal cell carcinoma (BCC) of the skin is driven by this pathway. Here, we summarize information related to the pathogenesis of this neoplasm, discuss pathways that crosstalk with Shh signaling, and the importance of the primary cilium in this neoplastic process. The identification of the basic/translational components of Shh signaling has led to the discovery of potential mechanism-driven druggable targets and subsequent clinical trials have confirmed their remarkable efficacy in treating BCCs, particularly in patients with nevoid BCC syndrome (NBCCS), an autosomal dominant disorder in which patients inherit a germline mutation in the tumor-suppressor gene Patched (Ptch). Patients with NBCCS develop dozens to hundreds of BCCs due to derepression of the downstream G-protein-coupled receptor Smoothened (SMO). Ptch mutations permit transposition of SMO to the primary cilium followed by enhanced expression of transcription factors Glis that drive cell proliferation and tumor growth. Clinical trials with the SMO inhibitor, vismodegib, showed remarkable efficacy in patients with NBCCS, which finally led to its FDA approval in 2012.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arianna L Kim
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| | | | - David R Bickers
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| |
Collapse
|
40
|
Paniz-Mondolfi A, Singh R, Jour G, Mahmoodi M, Diwan AH, Barkoh BA, Cason R, Huttenbach Y, Benaim G, Galbincea J, Luthra R. Cutaneous carcinosarcoma: further insights into its mutational landscape through massive parallel genome sequencing. Virchows Arch 2014; 465:339-50. [DOI: 10.1007/s00428-014-1628-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/17/2014] [Accepted: 07/02/2014] [Indexed: 01/06/2023]
|
41
|
Arnaboldi F, Menon A, Menegola E, Di Renzo F, Mirandola L, Grizzi F, Figueroa JA, Cobos E, Jenkins M, Barajon I, Chiriva-Internati M. Sperm protein 17 is an oncofetal antigen: a lesson from a murine model. Int Rev Immunol 2014; 33:367-74. [PMID: 24811209 DOI: 10.3109/08830185.2014.911856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sperm protein 17 (Sp17) was originally identified in the flagellum of spermatozoa and subsequently included in the subfamily of tumor-associated antigens known as cancer-testes antigens (CTA). Sp17 has been associated with the motility and migratory capacity in tumor cells, representing a link between gene expression patterns in germinal and tumor cells of different histological origins. Here we review the relevance of Sp17 expression in the mouse embryo and cancerous tissues, and present additional data demonstrating Sp17 complex expression pattern in this murine model. The expression of Sp17 in embryonic as well as adult neoplastic cells, but not normal tissues, suggests this protein should be considered an "oncofetal antigen." Further investigations are necessary to elucidate the mechanisms and functional significance of Sp17 aberrant expression in human adult cells and its implication in the pathobiology of cancer.
Collapse
Affiliation(s)
- F Arnaboldi
- 1Department of Human Morphology and Biomedical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hong Z, Bi A, Chen D, Gao L, Yin Z, Luo L. Activation of hedgehog signaling pathway in human non-small cell lung cancers. Pathol Oncol Res 2014; 20:917-22. [PMID: 24710823 DOI: 10.1007/s12253-014-9774-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/27/2014] [Indexed: 12/21/2022]
Abstract
The activation of the hedgehog pathway, which is an important signaling mechanism crucial in embryogenesis, has strong links to carcinogenesis. Aberrant regulation of this pathway can result in the development of tumors. The present study was designed to investigate Hh related protein expression in non-small cell lung cancers. Fifty five non-small cell lung cancers samples were used in the study. By reverse transcription-polymerase chain reaction (RT-PCR), the expression of Shh, Ptch-1, and Gli-1 in tumor and adjacent normal tissues was examined and associated to clinical pathologic features. The expression levels of Shh, Ptch-1, Gli-1 in non-small cell lung cancer tissues were 63.64, 69.09, 43.64 %, respectively, higher than that in the adjacent normal tissues. Survival analysis showed that both Ptch-1 and Gli-1 expression were associated with poor survival (both P <0.05, log-rank test). Shh and Ptch-1 expression were correlated with lymph node metastasis. These results suggest that dysregulation of Hh signaling pathway plays an important role in the development of human NSCLCs. The expression of Ptch-1 and Gli-1 is possibly involved in NSCLCs progression, which may be a useful prognostic indicator of NSCLCs.
Collapse
Affiliation(s)
- Zhuan Hong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, 22 Hankou Road, Nanjing, 210093, Poeple's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Xu J, Weng Z, Arumugam A, Tang X, Chaudhary SC, Li C, Christiano AM, Elmets CA, Bickers DR, Athar M. Hair follicle disruption facilitates pathogenesis to UVB-induced cutaneous inflammation and basal cell carcinoma development in Ptch(+/-) mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1529-40. [PMID: 24631180 DOI: 10.1016/j.ajpath.2014.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 12/23/2013] [Accepted: 01/23/2014] [Indexed: 01/01/2023]
Abstract
Hairless mice carrying homozygous mutations in hairless gene manifest rudimentary hair follicles (HFs), epidermal cysts, hairless phenotype, and enhanced susceptibility to squamous cell carcinomas. However, their susceptibility to basal cell carcinomas (BCCs), a neoplasm considered originated from HF-localized stem cells, is unknown. To demonstrate the role of HFs in BCC development, we bred Ptch(+/-)/C57BL6 with SKH-1 hairless mice, followed by brother-sister cross to get F2 homozygous mutant (hairless) or wild-type (haired) mice. UVB-induced inflammation was less pronounced in shaved haired than in hairless mice. In hairless mice, inflammatory infiltrate was found around the rudimentary HFs and epidermal cysts. Expression of epidermal IL1f6, S100a8, vitamin D receptor, repetin, and major histocompatibility complex II, biomarkers depicting susceptibility to cutaneous inflammation, was also higher. In these animals, HF disruption altered susceptibility to UVB-induced BCCs. Tumor onset in hairless mice was 10 weeks earlier than in haired littermates. The incidence of BCCs was significantly higher in hairless than in haired animals; however, the magnitude of sonic hedgehog signaling did not differ significantly. Overall, 100% of hairless mice developed >12 tumors per mouse after 32 weeks of UVB therapy, whereas haired mice developed fewer than three tumors per mouse after 44 weeks of long-term UVB irradiation. Tumors in hairless mice were more aggressive than in haired littermates and manifested decreased E-cadherin and enhanced mesenchymal proteins. These data provide novel evidence that disruption of HFs in Ptch(+/-) mice enhances cutaneous susceptibility to inflammation and BCCs.
Collapse
Affiliation(s)
- Jianmin Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiuwei Tang
- Department of Dermatology, Columbia University, New York, New York
| | - Sandeep C Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David R Bickers
- Department of Dermatology, Columbia University, New York, New York
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
44
|
Malaguarnera R, Belfiore A. The emerging role of insulin and insulin-like growth factor signaling in cancer stem cells. Front Endocrinol (Lausanne) 2014; 5:10. [PMID: 24550888 PMCID: PMC3912738 DOI: 10.3389/fendo.2014.00010] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/21/2014] [Indexed: 12/20/2022] Open
Abstract
Cancer cells frequently exploit the IGF signaling, a fundamental pathway mediating development, cell growth, and survival. As a consequence, several components of the IGF signaling are deregulated in cancer and sustain cancer progression. However, specific targeting of IGF-IR in humans has resulted efficacious only in small subsets of cancers, making researches wondering whether IGF system targeting is still worth pursuing in the clinical setting. Although no definite answer is yet available, it has become increasingly clear that other components of the IGF signaling pathway, such as IR-A, may substitute for the lack of IGF-IR, and induce cancer resistance and/or clonal selection. Moreover, accumulating evidence now indicates that IGF signaling is a central player in the induction/maintenance of epithelial mesenchymal transition (EMT) and cell stemness, two strictly related programs, which play a key role in metastatic spread and resistance to cancer treatments. Here we review the evidences indicating that IGF signaling enhances the expression of transcription factors implicated in the EMT program and has extensive cross-talk with specific pathways involved in cell pluripotency and stemness maintenance. In turn, EMT and cell stemness activate positive feed-back mechanisms causing up-regulation of various IGF signaling components. These findings may have novel translational implications.
Collapse
Affiliation(s)
- Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
45
|
Wittko-Schneider IM, Schneider FT, Plate KH. Cerebral angiogenesis during development: who is conducting the orchestra? Methods Mol Biol 2014; 1135:3-20. [PMID: 24510850 DOI: 10.1007/978-1-4939-0320-7_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Blood vessels provide the brain with the oxygen and the nutrients it requires to develop and function. Endothelial cells (ECs) are the principal cell type forming the vascular system and driving its development and remodeling. All vessels are lined by a single EC layer. Larger blood vessels are additionally enveloped by vascular smooth muscle cells (VSMCs) and pericytes, which increase their stability and regulate their perfusion and form the blood-brain barrier (BBB). The development of the vascular system occurs by two processes: (1) vasculogenesis, the de novo assembly of the first blood vessels, and (2) angiogenesis, the creation of new blood vessels from preexisting ones by sprouting from or by division of the original vessel. The walls of maturing vessels produce a basal lamina and recruit pericytes and vascular smooth muscle cells for structural support. Whereas the process of vasculogenesis seems to be genetically programmed, angiogenesis is induced mainly by hypoxia in development and disease. Both processes and the subsequent vessel maturation are further orchestrated by a complex interplay of inhibiting and stimulating growth factors and their respective receptors, many of which are hypoxia-inducible. This chapter intends to give an overview about the array of factors directing the development and maintenance of the brain vasculature and their interdependent actions.
Collapse
Affiliation(s)
- Ina M Wittko-Schneider
- Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany
| | | | | |
Collapse
|
46
|
Abstract
The skin is the first line of defense against dehydration and external environmental aggressions. It constantly renews itself throughout adult life mainly due to the activity of tissue-specific stem cells. In this review, we discuss fundamental characteristics of different stem cell populations within the skin and how they are able to contribute to normal skin homeostasis. We also examine the most recent results regarding the cell-intrinsic and -extrinsic components of the stem cell niche within the adult skin epithelium. Finally, we address the recent efforts to understand how abnormal regulation of stem cell activity contributes to the initiation and progression of skin-associated cancers.
Collapse
Affiliation(s)
| | - Valerie Horsley
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
47
|
Huang S, Zhang Z, Zhang C, Lv X, Zheng X, Chen Z, Sun L, Wang H, Zhu Y, Zhang J, Yang S, Lu Y, Sun Q, Tao Y, Liu F, Zhao Y, Chen D. Activation of Smurf E3 ligase promoted by smoothened regulates hedgehog signaling through targeting patched turnover. PLoS Biol 2013; 11:e1001721. [PMID: 24302888 PMCID: PMC3841102 DOI: 10.1371/journal.pbio.1001721] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 10/18/2013] [Indexed: 12/26/2022] Open
Abstract
Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development.
Collapse
Affiliation(s)
- Shoujun Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhao Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunxia Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Lv
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiudeng Zheng
- Centre for Computational and Evolutionary Biology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Animal Ecology, Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhenping Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liwei Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuanxiang Zhu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Shuyan Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qinmiao Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Yi Tao
- Key Laboratory of Animal Ecology, Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dahua Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Hinde E, Haslam IS, Schneider MR, Langan EA, Kloepper JE, Schramm C, Zouboulis CC, Paus R. A practical guide for the study of human and murine sebaceous glandsin situ. Exp Dermatol 2013; 22:631-7. [DOI: 10.1111/exd.12207] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Eleanor Hinde
- Institute of Inflammation and Repair; University of Manchester; Manchester; UK
| | - Iain S. Haslam
- Institute of Inflammation and Repair; University of Manchester; Manchester; UK
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and Biotechnology; Gene Center; LMU Munich; Munich; Germany
| | | | | | | | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Dessau; Germany
| | | |
Collapse
|
49
|
Desmoplastic/nodular medulloblastoma associated with anhidrotic ectodermal dysplasia. Int Cancer Conf J 2013. [DOI: 10.1007/s13691-013-0086-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
50
|
Makinodan E, Marneros AG. Protein kinase A activation inhibits oncogenic Sonic hedgehog signalling and suppresses basal cell carcinoma of the skin. Exp Dermatol 2013; 21:847-52. [PMID: 23163650 DOI: 10.1111/exd.12016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Basal cell carcinoma of the skin (BCC) is caused by constitutive activation of the Sonic hedgehog (Shh) pathway, mainly through mutations either in the Shh receptor Patched (PTCH) or in its co-receptor Smoothened (Smo). Inhibitors of this pathway that are currently in clinical trials inhibit Smo. However, mutations in Smo can result in resistance to these inhibitors. To target most BCCs and avoid acquired resistance because of Smo mutations, inhibiting the Shh-pathway downstream of Smo is critical. Attractive downstream targets would be at the level of Gli proteins, the transcriptional activators of this pathway in BCCs. Previously it has been shown that Gli1 and Gli2, when phosphorylated by protein kinase A (PKA), are targeted for proteosomal degradation. Here we show that PKA activation via the cAMP agonist forskolin is sufficient to completely abolish oncogenic Smo activity in vitro. In an inducible BCC mouse model due to a Smo mutation that confers resistance to current Smo inhibitors, topical forskolin treatment significantly reduced Gli1 mRNA levels and resulted in strongly suppressed BCC tumor growth. Our data show that forskolin inhibits the growth of even those BCCs that are resistant to Smo inhibitors and provide a proof-of-principle framework for the development of topically applied human skin-permeable novel pharmacologic inhibitors of oncogenic Shh-signaling through PKA activation.
Collapse
Affiliation(s)
- Eri Makinodan
- Department of Dermatology, Harvard Medical School, Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | |
Collapse
|