1
|
Ibarrola J, Jaffe IZ. The Mineralocorticoid Receptor in the Vasculature: Friend or Foe? Annu Rev Physiol 2024; 86:49-70. [PMID: 37788489 DOI: 10.1146/annurev-physiol-042022-015223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Originally described as the renal aldosterone receptor that regulates sodium homeostasis, it is now clear that mineralocorticoid receptors (MRs) are widely expressed, including in vascular endothelial and smooth muscle cells. Ample data demonstrate that endothelial and smooth muscle cell MRs contribute to cardiovascular disease in response to risk factors (aging, obesity, hypertension, atherosclerosis) by inducing vasoconstriction, vascular remodeling, inflammation, and oxidative stress. Extrapolating from its role in disease, evidence supports beneficial roles of vascular MRs in the context of hypotension by promoting inflammation, wound healing, and vasoconstriction to enhance survival from bleeding or sepsis. Advances in understanding how vascular MRs become activated are also reviewed, describing transcriptional, ligand-dependent, and ligand-independent mechanisms. By synthesizing evidence describing how vascular MRs convert cardiovascular risk factors into disease (the vascular MR as a foe), we postulate that the teleological role of the MR is to coordinate responses to hypotension (the MR as a friend).
Collapse
Affiliation(s)
- Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA;
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA;
| |
Collapse
|
2
|
Slominski AT, Slominski RM, Raman C, Chen JY, Athar M, Elmets C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am J Physiol Cell Physiol 2022; 323:C1757-C1776. [PMID: 36317800 PMCID: PMC9744652 DOI: 10.1152/ajpcell.00147.2022] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
The skin, which is comprised of the epidermis, dermis, and subcutaneous tissue, is the largest organ in the human body and it plays a crucial role in the regulation of the body's homeostasis. These functions are regulated by local neuroendocrine and immune systems with a plethora of signaling molecules produced by resident and immune cells. In addition, neurotransmitters, endocrine factors, neuropeptides, and cytokines released from nerve endings play a central role in the skin's responses to stress. These molecules act on the corresponding receptors in an intra-, juxta-, para-, or autocrine fashion. The epidermis as the outer most component of skin forms a barrier directly protecting against environmental stressors. This protection is assured by an intrinsic keratinocyte differentiation program, pigmentary system, and local nervous, immune, endocrine, and microbiome elements. These constituents communicate cross-functionally among themselves and with corresponding systems in the dermis and hypodermis to secure the basic epidermal functions to maintain local (skin) and global (systemic) homeostasis. The neurohormonal mediators and cytokines used in these communications regulate physiological skin functions separately or in concert. Disturbances in the functions in these systems lead to cutaneous pathology that includes inflammatory (i.e., psoriasis, allergic, or atopic dermatitis, etc.) and keratinocytic hyperproliferative disorders (i.e., seborrheic and solar keratoses), dysfunction of adnexal structure (i.e., hair follicles, eccrine, and sebaceous glands), hypersensitivity reactions, pigmentary disorders (vitiligo, melasma, and hypo- or hyperpigmentary responses), premature aging, and malignancies (melanoma and nonmelanoma skin cancers). These cellular, molecular, and neural components preserve skin integrity and protect against skin pathologies and can act as "messengers of the skin" to the central organs, all to preserve organismal survival.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jake Y Chen
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| | - Craig Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| |
Collapse
|
3
|
Pérez P. The mineralocorticoid receptor in skin disease. Br J Pharmacol 2021; 179:3178-3189. [PMID: 34788475 DOI: 10.1111/bph.15736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022] Open
Abstract
The Mineralocorticoid Receptor (MR or NR3C2) is expressed in all cell types of the different skin compartments and can be bound and activated by glucocorticoids (GCs) with higher affinity than its closely related glucocorticoid (GC) receptor (GR or NR3C1). As both corticosteroid receptors co-express in skin, and considering the therapeutic relevance of GCs to combat skin inflammatory diseases, it was proposed that several of the major side-effects of topical GCs such as skin atrophy and delayed wound healing were due to unintended activation of the MR. Indeed, cutaneous MR blockade using genetic and pharmacological approaches in mice and human reduced the GC-associated skin atrophy in conditions of endogenous and pharmacological GC excess. While data support the safety of topical MR antagonists combined with GCs, it is crucial to address the efficacy of treatment in skin inflammatory conditions and its impact on the overall metabolism.
Collapse
Affiliation(s)
- Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, Spain
| |
Collapse
|
4
|
A novel mineralocorticoid receptor antagonist, 7,3',4'-trihydroxyisoflavone improves skin barrier function impaired by endogenous or exogenous glucocorticoids. Sci Rep 2021; 11:11920. [PMID: 34099793 PMCID: PMC8184959 DOI: 10.1038/s41598-021-91450-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Abstract
Excess glucocorticoids (GCs) with either endogenous or exogenous origins deteriorate skin barrier function. GCs bind to mineralocorticoid and GC receptors (MRs and GRs) in normal human epidermal keratinocytes (NHEKs). Inappropriate MR activation by GCs mediates various GC-induced cutaneous adverse events. We examined whether MR antagonists can ameliorate GC-mediated skin barrier dysfunction in NHEKs, reconstructed human epidermis (RHE), and subjects under psychological stress (PS). In a preliminary clinical investigation, topical MR antagonists improved skin barrier function in topical GC-treated subjects. In NHEKs, cortisol induced nuclear translocation of GR and MR, and GR and MR antagonists inhibited cortisol-induced reductions of keratinocyte differentiation. We identified 7,3',4'-trihydroxyisoflavone (7,3',4'-THIF) as a novel compound that inhibits MR transcriptional activity by screening 30 cosmetic compounds. 7,3',4'-THIF ameliorated the cortisol effect which decreases keratinocyte differentiation in NHEKs and RHE. In a clinical study on PS subjects, 7,3',4'-THIF (0.1%)-containing cream improved skin barrier function, including skin surface pH, barrier recovery rate, and stratum corneum lipids. In conclusion, skin barrier dysfunction owing to excess GC is mediated by MR and GR; thus, it could be prevented by treatment with MR antagonists. Therefore, topical MR antagonists are a promising therapeutic option for skin barrier dysfunction after topical GC treatment or PS.
Collapse
|
5
|
Polymeric micelle mediated follicular delivery of spironolactone: Targeting the mineralocorticoid receptor to prevent glucocorticoid-induced activation and delayed cutaneous wound healing. Int J Pharm 2021; 604:120773. [PMID: 34090990 DOI: 10.1016/j.ijpharm.2021.120773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Impaired wound healing in patients receiving glucocorticoid therapy is a serious clinical concern: mineralocorticoid receptor (MR) antagonists can counter glucocorticoid-induced off-target activation of MR receptors. The aim of this study was to investigate the cutaneous delivery of the potent MR antagonist, spironolactone (SPL), from polymeric micelle nanocarriers, prepared using a biodegradable copolymer, methoxy-poly(ethylene glycol)-di-hexyl-substituted-poly(lactic acid). Immunofluorescent labelling of the MR showed that it was principally located in the pilosebaceous unit (PSU), justifying the study rationale since polymeric micelles accumulate preferentially in appendageal structures. Cutaneous biodistribution studies under infinite and finite dose conditions, demonstrated delivery of pharmacologically relevant amounts of SPL to the epidermis and upper dermis. Preferential PSU targeting was confirmed by comparing amounts of SPL in PSU-containing and PSU-free skin biopsies: SPL nanomicelles showed 5-fold higher delivery of SPL in the PSU-containing biopsies, 0.54 ± 0.18 ng/mm2vs. 0.10 ± 0.03 ng/mm2, after application of a hydrogel in finite conditions. Canrenone, an active metabolite of SPL, was also quantified in skin samples. In addition to being used for the treatment of delayed cutaneous wound healing by site-specific antagonism of the MR, the formulation might also be used to treat pilosebaceous androgen-related skin diseases, e.g. acne vulgaris, since SPL is a potent androgen receptor antagonist.
Collapse
|
6
|
Chae M, Bae IH, Lim S, Jung K, Roh J, Kim W. AP Collagen Peptides Prevent Cortisol-Induced Decrease of Collagen Type I in Human Dermal Fibroblasts. Int J Mol Sci 2021; 22:ijms22094788. [PMID: 33946465 PMCID: PMC8125628 DOI: 10.3390/ijms22094788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Cortisol is an endogenous glucocorticoid (GC) and primary stress hormone that regulates a wide range of stress responses in humans. The adverse effects of cortisol on the skin have been extensively documented but the underlying mechanism of cortisol-induced signaling is still unclear. In the present study, we investigate the effect of cortisol on collagen type I expression and the effect of AP collagen peptides, collagen tripeptide-rich hydrolysates containing 3% glycine-proline- hydroxyproline (Gly-Pro-Hyp, GPH) from the fish skin, on the cortisol-mediated inhibition of collagen type I and the cortisol-induced signaling that regulates collagen type I production in human dermal fibroblasts (HDFs). We determine that cortisol downregulates the expression of collagen type I. AP collagen peptides or GC receptor (GR) inhibitors recover the cortisol-mediated inhibition of collagen type I and GR activation. AP collagen peptides or GR inhibitors also prevent the cortisol-dependent inhibition of transforming growth factor (TGF)-β signaling. AP collagen peptides or GR inhibitors are effective in the prevention of collagen type I inhibition mediated by cortisol in senescent HDFs and reconstituted human skin models. Taken together, GR signaling might be responsible for the cortisol-mediated inhibition of TGF-β. AP collagen peptides act as GR-mediated signaling blockers, preventing the cortisol-dependent inhibition of collagen type I. Therefore, AP collagen peptides have the potential to improve skin health.
Collapse
|
7
|
Gomez-Sanchez EP, Gomez-Sanchez CE. 11β-hydroxysteroid dehydrogenases: A growing multi-tasking family. Mol Cell Endocrinol 2021; 526:111210. [PMID: 33607268 PMCID: PMC8108011 DOI: 10.1016/j.mce.2021.111210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
This review briefly addresses the history of the discovery and elucidation of the three cloned 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes in the human, 11βHSD1, 11βHSD2 and 11βHSD3, an NADP+-dependent dehydrogenase also called the 11βHSD1-like dehydrogenase (11βHSD1L), as well as evidence for yet identified 11βHSDs. Attention is devoted to more recently described aspects of this multi-functional family. The importance of 11βHSD substrates other than glucocorticoids including bile acids, 7-keto sterols, neurosteroids, and xenobiotics is discussed, along with examples of pathology when functions of these multi-tasking enzymes are disrupted. 11βHSDs modulate the intracellular concentration of glucocorticoids, thereby regulating the activation of the glucocorticoid and mineralocorticoid receptors, and 7β-27-hydroxycholesterol, an agonist of the retinoid-related orphan receptor gamma (RORγ). Key functions of this nuclear transcription factor include regulation of immune cell differentiation, cytokine production and inflammation at the cell level. 11βHSD1 expression and/or glucocorticoid reductase activity are inappropriately increased with age and in obesity and metabolic syndrome (MetS). Potential causes for disappointing results of the clinical trials of selective inhibitors of 11βHSD1 in the treatment of these disorders are discussed, as well as the potential for more targeted use of inhibitors of 11βHSD1 and 11βHSD2.
Collapse
Affiliation(s)
| | - Celso E Gomez-Sanchez
- Department of Pharmacology and Toxicology, Jackson, MS, USA; Medicine (Endocrinology), Jackson, MS, USA; University of Mississippi Medical Center and G.V. (Sonny) Montgomery VA Medical Center(3), Jackson, MS, USA
| |
Collapse
|
8
|
Wang X, Ronsin O, Gravez B, Farman N, Baumberger T, Jaisser F, Coradin T, Hélary C. Nanostructured Dense Collagen-Polyester Composite Hydrogels as Amphiphilic Platforms for Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004213. [PMID: 33854901 PMCID: PMC8025010 DOI: 10.1002/advs.202004213] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 05/15/2023]
Abstract
Associating collagen with biodegradable hydrophobic polyesters constitutes a promising method for the design of medicated biomaterials. Current collagen-polyester composite hydrogels consisting of pre-formed polymeric particles encapsulated within a low concentrated collagen hydrogel suffer from poor physical properties and low drug loading. Herein, an amphiphilic composite platform associating dense collagen hydrogels and up to 50 wt% polyesters with different hydrophobicity and chain length is developed. An original method of fabrication is disclosed based on in situ nanoprecipitation of polyesters impregnated in a pre-formed 3D dense collagen network. Composites made of poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) but not polycaprolactone (PCL) exhibit improved mechanical properties compared to those of pure collagen dense hydrogels while keeping a high degree of hydration. Release kinetics of spironolactone, a lipophilic steroid used as a drug model, can be tuned over one month. No cytotoxicity of the composites is observed on fibroblasts and keratinocytes. Unlike the incorporation of pre-formed particles, the new process allows for both improved physical properties of collagen hydrogels and controlled drug delivery. The ease of fabrication, wide range of accessible compositions, and positive preliminary safety evaluations of these collagen-polyesters will favor their translation into clinics in wide areas such as drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacao999078China
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| | - Olivier Ronsin
- Sorbonne UniversitéCNRSInstitut des NanoSciences de ParisINSPParisF‐75005France
- Université de ParisParisF‐75006France
| | - Basile Gravez
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Nicolette Farman
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Tristan Baumberger
- Sorbonne UniversitéCNRSInstitut des NanoSciences de ParisINSPParisF‐75005France
- Université de ParisParisF‐75006France
| | - Frédéric Jaisser
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Thibaud Coradin
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| | - Christophe Hélary
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| |
Collapse
|
9
|
Hundt JE, Sass S, Funk W, Bíró T, Farman N, Langan EA, Paus R. Mineralocorticoid Receptor Antagonists Stimulate Human Hair Growth ex vivo. Skin Pharmacol Physiol 2019; 32:344-348. [PMID: 31522177 DOI: 10.1159/000501729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/25/2019] [Indexed: 11/19/2022]
Abstract
Whilst topical steroids represent one of the most frequently administered treatments for skin and hair diseases, predominantly based on their glucocorticoid receptor-mediated anti-inflammatory effects, the mineralocorticoid effects of topical steroids have received surprisingly little attention. However, the role of mineralocorticoid receptor (MR) signaling is now known to extend beyond the kidney, with human skin, including the hair follicle (HF), expressing the MR. Using microdissected female HFs treated ex vivo with MR agonists and antagonists, we sought to determine the effects of MR-mediated signaling in the cutaneous context. Indeed, not only did the skin and HF epithelium express the MR at both the gene and protein level, but its expression was hair cycle dependent. Moreover, the selective MR antagonist eplerenone promoted hair shaft elongation and hair matrix keratinocyte proliferation whilst delaying catagen (HF regression). These novel observations suggest that the female human HF is sensitive to the inhibition of MR signaling and provide the first evidence that sustained MR signaling may even be required to maintain the growth phase (anagen) of human scalp HFs. Indeed, these data encourage the systematic evaluation of MR agonists and antagonists in human hair growth control so as to identify much-needed, novel anti-hirsutism and/or hair growth-promoting agents, respectively.
Collapse
Affiliation(s)
- Jennifer E Hundt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Stephanie Sass
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Tamás Bíró
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Nicolette Farman
- Centre de Recherches des Cordeliers, INSERM U1138, Paris, France
| | - Ewan A Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom, E-Mail .,Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA, E-Mail
| |
Collapse
|
10
|
Nguyen VT, Farman N, Palacios-Ramirez R, Sbeih M, Behar-Cohen F, Aractingi S, Jaisser F. Cutaneous Wound Healing in Diabetic Mice Is Improved by Topical Mineralocorticoid Receptor Blockade. J Invest Dermatol 2019; 140:223-234.e7. [PMID: 31278904 DOI: 10.1016/j.jid.2019.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
Abstract
Skin ulcers resulting from impaired wound healing are a serious complication of diabetes. Unresolved inflammation, associated with the dysregulation of both the phenotype and function of macrophages, is involved in the poor healing of diabetic wounds. Here, we report that topical pharmacological inhibition of the mineralocorticoid receptor (MR) by canrenoate or MR small interfering RNA can resolve inflammation to improve delayed skin wound healing in diabetic mouse models; importantly, wounds from normal mice are unaffected. The beneficial effect of canrenoate is associated with an increased ratio of anti-inflammatory M2 macrophages to proinflammatory M1 macrophages in diabetic wounds. Furthermore, we show that MR blockade leads to downregulation of the MR target, LCN2, which may facilitate macrophage polarization toward the M2 phenotype and improve impaired angiogenesis in diabetic wounds. Indeed, diabetic LCN2-deficient mice showed improved wound healing associated with macrophage M2 polarization and angiogenesis. In addition, recombinant LCN2 protein prevented IL-4-induced macrophage switch from M1 to M2 phenotype. In conclusion, topical MR blockade accelerates skin wound healing in diabetic mice via LCN2 reduction, M2 macrophage polarization, prevention of inflammation, and induction of angiogenesis.
Collapse
Affiliation(s)
- Van Tuan Nguyen
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France; Laboratory of progenitors and endothelial cells during and after pregnancy, INSERM UMR 938, Centre de Recherche St Antoine, Sorbonne Université, Paris, France; Department of Basic Science, Thai Nguyen University of Agriculture and Forestry, Thainguyen, Vietnam
| | - Nicolette Farman
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Roberto Palacios-Ramirez
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Maria Sbeih
- Laboratory of progenitors and endothelial cells during and after pregnancy, INSERM UMR 938, Centre de Recherche St Antoine, Sorbonne Université, Paris, France
| | - Francine Behar-Cohen
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France; Faculty of Medicine, Université Paris Descartes, Paris, France
| | - Sélim Aractingi
- Laboratory of progenitors and endothelial cells during and after pregnancy, INSERM UMR 938, Centre de Recherche St Antoine, Sorbonne Université, Paris, France; Faculty of Medicine, Université Paris Descartes, Paris, France; Department of Dermatology, Hôpital Cochin-Tarnier, Paris, France
| | - Frederic Jaisser
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France; INSERM, Clinical Investigation Centre 1433, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
11
|
Sevilla LM, Pérez P. Roles of the Glucocorticoid and Mineralocorticoid Receptors in Skin Pathophysiology. Int J Mol Sci 2018; 19:ijms19071906. [PMID: 29966221 PMCID: PMC6073661 DOI: 10.3390/ijms19071906] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
The nuclear hormone receptor (NR) superfamily comprises approximately 50 evolutionarily conserved proteins that play major roles in gene regulation by prototypically acting as ligand-dependent transcription factors. Besides their central role in physiology, NRs have been largely used as therapeutic drug targets in many chronic inflammatory conditions and derivatives of their specific ligands, alone or in combination, are frequently prescribed for the treatment of skin diseases. In particular, glucocorticoids (GCs) are the most commonly used compounds for treating prevalent skin diseases such as psoriasis due to their anti-proliferative and anti-inflammatory actions. However, and despite their therapeutic efficacy, the long-term use of GCs is limited because of the cutaneous adverse effects including atrophy, delayed wound healing, and increased susceptibility to stress and infections. The GC receptor (GR/NR3C1) and the mineralocorticoid receptor (MR/NR3C2) are members of the NR subclass NR3C that are highly related, both structurally and functionally. While the GR is ubiquitously expressed and is almost exclusively activated by GCs; an MR has a more restricted tissue expression pattern and can bind GCs and the mineralocorticoid aldosterone with similar high affinity. As these receptors share 95% identity in their DNA binding domains; both can recognize the same hormone response elements; theoretically resulting in transcriptional regulation of the same target genes. However, a major mechanism for specific activation of GRs and/or MRs is at the pre-receptor level by modulating the local availability of active GCs. Furthermore, the selective interactions of each receptor with spatio-temporally regulated transcription factors and co-regulators are crucial for the final transcriptional outcome. While there are abundant genome wide studies identifying GR transcriptional targets in a variety of tissue and cell types; including keratinocytes; the data for MR is more limited thus far. Our group and others have studied the role of GRs and MRs in skin development and disease by generating and characterizing mouse and cellular models with gain- and loss-of-function for each receptor. Both NRs are required for skin barrier competence during mouse development and also play a role in adult skin homeostasis. Moreover, the combined loss of epidermal GRs and MRs caused a more severe skin phenotype relative to single knock-outs (KOs) in developing skin and in acute inflammation and psoriasis, indicating that these corticosteroid receptors play cooperative roles. Understanding GR- and MR-mediated signaling in skin should contribute to deciphering their tissue-specific relative roles and ultimately help to improve GC-based therapies.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| |
Collapse
|
12
|
Dahmana N, Gabriel D, Gurny R, Kalia YN. Development and validation of a fast and sensitive UHPLC-ESI-MS method for the simultaneous quantification of spironolactone and its metabolites in ocular tissues. Biomed Chromatogr 2018; 32:e4287. [PMID: 29767448 DOI: 10.1002/bmc.4287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/20/2018] [Accepted: 05/04/2018] [Indexed: 11/09/2022]
Abstract
Glucocorticoids are a mainstay for the treatment of immune-mediated conditions and inflammatory diseases. However, their chronic use causes numerous side-effects including delays in corneal and cutaneous wound healing. This is attributed to off-target agonism of the mineralocorticoid receptor, which can be reduced by co-administration of a mineralocorticoid receptor antagonist such as spironolactone. The aim of this study was to develop a fast, selective and sensitive UHPLC-ESI-MS method for the simultaneous quantification of spironolactone, its active metabolites (7α-thiomethylspironolactone and canrenone), the latter's water-soluble prodrug potassium canrenoate and the synthetic glucocorticoid, dexamethasone, in corneal samples (17α-methyltestosterone served as an internal standard). A one-step extraction procedure using MeOH-H2 O (1:1) was validated and employed to recover the analytes from the corneal tissue. Extracts were centrifuged and the supernatant analyzed under isocratic conditions. Compounds were detected using selected ion recording mode. The method satisfied US Food and Drug Administration guidelines with respect to selectivity, precision and accuracy and displayed linearity from 5 to 1000 ng/mL for all of the analytes. The lower limit of quantitation of the method was 5 ng/mL, making it sufficiently sensitive for quantification of the analytes in samples from in vivo studies.
Collapse
Affiliation(s)
- Naoual Dahmana
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | | | - Robert Gurny
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland.,Apidel SA, Geneva, Switzerland
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Zhao M, Rodríguez-Villagra E, Kowalczuk L, Le Normand M, Berdugo M, Levy-Boukris R, El Zaoui I, Kaufmann B, Gurny R, Bravo-Osuna I, Molina-Martínez IT, Herrero-Vanrell R, Behar-Cohen F. Tolerance of high and low amounts of PLGA microspheres loaded with mineralocorticoid receptor antagonist in retinal target site. J Control Release 2017; 266:187-197. [PMID: 28947395 DOI: 10.1016/j.jconrel.2017.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022]
Abstract
Mineralocorticoid receptor (MR) contributes to retinal/choroidal homeostasis. Excess MR activation has been shown to be involved in pathogenesis of central serous chorioretinopathy (CSCR). Systemic administration of MR antagonist (MRA) reduces subretinal fluid and choroidal vasodilation, and improves the visual acuity in CSCR patients. To achieve long term beneficial effects in the eye while avoiding systemic side-effects, we propose the use of biodegradable spironolactone-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (MSs). In this work we have evaluated the ocular tolerance of MSs containing spironolactone in rat' eyes. As previous step, we have also studied the tolerance of the commercial solution of canrenoate salt, active metabolite of spironolactone. PLGA MSs allowed in vitro sustained release of spironolactone for 30days. Rat eyes injected with high intravitreous concentration of PLGA MSs (10mg/mL) unloaded and loaded with spironolactone maintained intact retinal lamination at 1month. However enhanced glial fibrillary acidic protein immunostaining and activated microglia/macrophages witness retinal stress were observed. ERG also showed impaired photoreceptor function. Intravitreous PLGA MSs concentration of 2mg/mL unloaded and loaded with spironolactone resulted well tolerated. We observed reduced microglial/macrophage activation in rat retina compared to high concentration of MSs with normal retinal function according to ERG. Spironolactone released from low concentration of MSs was active in the rat retina. Low concentration of spironolactone-loaded PLGA MSs could be a safe therapeutic choice for chorioretinal disorders in which illicit MR activation could be pathogenic.
Collapse
Affiliation(s)
- Min Zhao
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Esther Rodríguez-Villagra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain
| | | | - Manon Le Normand
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marianne Berdugo
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Rinath Levy-Boukris
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Ikram El Zaoui
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Béatrice Kaufmann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Robert Gurny
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Irene Bravo-Osuna
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain
| | - Irene T Molina-Martínez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; PharmaceuticalInnovation in Ophthalmology (Research Group), Fundación para la Investigación-HCSC, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Madrid, Spain.
| | - Francine Behar-Cohen
- Inserm UMR_S 1138, Team 17: From Physiopathology of Retinal Diseases to Clinical Advances, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; University of Lausanne, Switzerland
| |
Collapse
|
14
|
Nagarajan S, Vohra T, Loffing J, Faresse N. Protein Phosphatase 1α enhances renal aldosterone signaling via mineralocorticoid receptor stabilization. Mol Cell Endocrinol 2017; 450:74-82. [PMID: 28454724 DOI: 10.1016/j.mce.2017.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 01/21/2023]
Abstract
Stimulation of the mineralocorticoid receptor (MR) by aldosterone controls several physiological parameters including blood pressure, inflammation or metabolism. We previously showed that MR turnover constitutes a crucial regulatory step in the responses of renal epithelial cells to aldosterone. Here, we identified Protein Phosphatase 1 alpha (PP1α), as a novel cytoplasmic binding partner of MR that promotes the receptor activity. The RT-PCR expression mapping of PP1α reveals a high expression in the kidney, particularly in the distal part of the nephron. At the molecular level, we demonstrate that PP1α inhibits the ubiquitin ligase Mdm2 by dephosphorylation, preventing its interaction with MR. This results in the accumulation of the receptor due to reduction of its proteasomal degradation and consequently a greater aldosterone-induced Na+ uptake by renal cells. Thus, our findings describe an original mechanism involving a phosphatase in the regulation of aldosterone signaling and provide new and important insights into the molecular mechanism underlying the MR turnover.
Collapse
Affiliation(s)
- Shunmugam Nagarajan
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Switzerland
| | - Twinkle Vohra
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Switzerland
| | - Nourdine Faresse
- Institute of Anatomy, University of Zurich, 8057 Zurich, Switzerland; National Center of Competence in Research "Kidney.CH", Switzerland.
| |
Collapse
|
15
|
Hanukoglu I, Boggula VR, Vaknine H, Sharma S, Kleyman T, Hanukoglu A. Expression of epithelial sodium channel (ENaC) and CFTR in the human epidermis and epidermal appendages. Histochem Cell Biol 2017; 147:733-748. [PMID: 28130590 DOI: 10.1007/s00418-016-1535-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
A major function of the skin is the regulation of body temperature by sweat secretions. Sweat glands secrete water and salt, especially NaCl. Excreted water evaporates, cooling the skin surface, and Na+ ions are reabsorbed by the epithelial sodium channels (ENaC). Mutations in ENaC subunit genes lead to a severe multi-system (systemic) form of pseudohypoaldosteronism (PHA) type I, characterized by salt loss from aldosterone target organs, including sweat glands in the skin. In this study, we mapped the sites of localization of ENaC in the human skin by confocal microscopy using polyclonal antibodies generated against human αENaC. Our results reveal that ENaC is expressed strongly in all epidermal layers except stratum corneum, and also in the sebaceous glands, eccrine glands, arrector pili smooth muscle cells, and intra-dermal adipocytes. In smooth muscle cells and adipocytes, ENaC is co-localized with F-actin. No expression of ENaC was detected in the dermis. CFTR is strongly expressed in sebaceous glands. In epidermal appendages noted, except the eccrine sweat glands, ENaC is mainly located in the cytoplasm. In the eccrine glands and ducts, ENaC and CFTR are located on the apical side of the membrane. This localization of ENaC is compatible with ENaC's role in salt reabsorption. PHA patients may develop folliculitis, miliaria rubra, and atopic dermatitis-like skin lesions, due to sweat gland duct occlusion and inflammation of eccrine glands as a result of salt accumulation.
Collapse
Affiliation(s)
- Israel Hanukoglu
- Laboratory of Cell Biology, Ariel University, Ariel, 40700, Israel.
| | - Vijay R Boggula
- Laboratory of Cell Biology, Ariel University, Ariel, 40700, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Hananya Vaknine
- Division of Pathology, E. Wolfson Medical Center, Holon, Israel
| | - Sachin Sharma
- Laboratory of Cell Biology, Ariel University, Ariel, 40700, Israel
| | - Thomas Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron Hanukoglu
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel
| |
Collapse
|
16
|
Epidermal Mineralocorticoid Receptor Plays Beneficial and Adverse Effects in Skin and Mediates Glucocorticoid Responses. J Invest Dermatol 2016; 136:2417-2426. [PMID: 27464843 DOI: 10.1016/j.jid.2016.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) regulate skin homeostasis and combat cutaneous inflammatory diseases; however, adverse effects of chronic GC treatments limit their therapeutic use. GCs bind and activate the GC receptor and the mineralocorticoid receptor (MR), transcription factors that recognize identical hormone responsive elements. Whether epidermal MR mediates beneficial or deleterious GC effects is of great interest for improving GC-based skin therapies. MR epidermal knockout mice exhibited increased keratinocyte proliferation and differentiation and showed resistance to GC-induced epidermal thinning. However, crucially, loss of epidermal MR rendered mice more sensitive to inflammatory stimuli and skin damage. MR epidermal knockout mice showed increased susceptibility to phorbol 12-myristate 13-acetate-induced inflammation with higher cytokine induction. Likewise, cultured MR epidermal knockout keratinocytes had increased phorbol 12-myristate 13-acetate-induced NF-κB activation, highlighting an anti-inflammatory function for MR. GC-induced transcription was reduced in MR epidermal knockout keratinocytes, at least partially due to decreased recruitment of GC receptor to hormone responsive element-containing sequences. Our results support a role for epidermal MR in adult skin homeostasis and demonstrate nonredundant roles for MR and GC receptor in mediating GC actions.
Collapse
|
17
|
Jiménez-Canino R, Lorenzo-Díaz F, Jaisser F, Farman N, Giraldez T, Alvarez de la Rosa D. Histone Deacetylase 6-Controlled Hsp90 Acetylation Significantly Alters Mineralocorticoid Receptor Subcellular Dynamics But Not its Transcriptional Activity. Endocrinology 2016; 157:2515-32. [PMID: 27100623 DOI: 10.1210/en.2015-2055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily that transduces the biological effects of corticosteroids. Its best-characterized role is to enhance transepithelial sodium reabsorption in response to increased aldosterone levels. In addition, MR participates in other aldosterone- or glucocorticoid-controlled processes such as cardiovascular homeostasis, adipocyte differentiation or neurogenesis, and regulation of neuronal activity in the hippocampus. Like other steroid receptors, MR forms cytosolic heterocomplexes with heat shock protein (Hsp) 90), Hsp70, and other proteins such as immunophilins. Interaction with Hsp90 is thought to maintain MR in a ligand-binding competent conformation and to regulate ligand-dependent and -independent nucleocytoplasmatic shuttling. It has previously been shown that acetylation of residue K295 in Hsp90 regulates its interaction with the androgen receptor and glucocorticoid receptor (GR). In this work we hypothesized that Hsp90 acetylation provides a regulatory step to modulate MR cellular dynamics and activity. We used Hsp90 acetylation mimic mutant K295Q or nonacetylatable mutant K295R to examine whether MR nucleocytoplasmatic shuttling and gene transactivation are affected. Furthermore, we manipulated endogenous Hsp90 acetylation levels by controlling expression or activity of histone deacetylase 6 (HDAC6), the enzyme responsible for deacetylation of Hsp90-K295. Our data demonstrates that HDAC6-mediated Hsp90 acetylation regulates MR cellular dynamics but it does not alter its function. This stands in contrast with the down-regulation of GR by HDAC6, suggesting that Hsp90 acetylation may play a role in balancing relative MR and GR activity when both factors are co-expressed in the same cell.
Collapse
Affiliation(s)
- Rubén Jiménez-Canino
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Fabián Lorenzo-Díaz
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Frederic Jaisser
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Nicolette Farman
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Teresa Giraldez
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Diego Alvarez de la Rosa
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| |
Collapse
|
18
|
Re-Epithelialization of Pathological Cutaneous Wounds Is Improved by Local Mineralocorticoid Receptor Antagonism. J Invest Dermatol 2016; 136:2080-2089. [PMID: 27262545 DOI: 10.1016/j.jid.2016.05.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/02/2016] [Accepted: 05/11/2016] [Indexed: 11/24/2022]
Abstract
Impaired cutaneous wound healing is a social burden. It occurs as a consequence of glucocorticoid treatment in several pathologies. Glucocorticoids (GC) bind not only to the glucocorticoid receptor but also to the mineralocorticoid receptor (MR), both expressed by keratinocytes. In addition to its beneficial effects through the glucocorticoid receptor, GC exposure may lead to inappropriate MR occupancy. We hypothesized that dermatological use of MR antagonists (MRA) might be beneficial by overcoming the negative impact of GC treatment on pathological wounds. The potent GC clobetasol, applied as an ointment to mouse skin, or added to cultured human skin explants, induced delayed wound closure and outgrowth of epidermis with reduced proliferation of keratinocytes. Delayed wound re-epithelialization was rescued by local MRA application. Normal skin was unaffected by MRA. The benefit of MR blockade is explained by the increased expression of MR in clobetasol-treated mouse skin. Blockade of the epithelial sodium channel by phenamil also rescued cultured human skin explants from GC-impaired growth of the epidermis. MRA application over post-biopsy wounds of clobetasol-treated skin zones of healthy volunteers (from the Interest of Topical Spironolactone's Administration to Prevent Corticoid-induced Epidermal Atrophy clinical trial) also accelerated wound closure. In conclusion, we propose repositioning MRA for cutaneous application to improve delayed wound closure occurring in pathology.
Collapse
|
19
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|
20
|
Farman N, Nguyen VT. A novel actor in skin biology: the mineralocorticoid receptor. Exp Dermatol 2015; 25:24-5. [PMID: 26519358 DOI: 10.1111/exd.12888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Nicolette Farman
- INSERM UMR-S 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France
| | - Van Tuan Nguyen
- INSERM UMR-S 938, Centre de Recherche St Antoine, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
21
|
Langan EA, Philpott MP, Kloepper JE, Paus R. Human hair follicle organ culture: theory, application and perspectives. Exp Dermatol 2015; 24:903-11. [DOI: 10.1111/exd.12836] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Ewan A. Langan
- Department of Dermatology; University of Luebeck; Luebeck Germany
- Centre for Cutaneous Research; Blizard Institute; Queen Mary University; London UK
| | - Michael P. Philpott
- Centre for Cutaneous Research; Blizard Institute; Queen Mary University; London UK
| | | | - Ralf Paus
- Dermatology Research Centre; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- Department of Dermatology; University of Muenster; Muenster Germany
| |
Collapse
|
22
|
Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N, Jaisser F, Behar-Cohen F. Central serous chorioretinopathy: Recent findings and new physiopathology hypothesis. Prog Retin Eye Res 2015; 48:82-118. [DOI: 10.1016/j.preteyeres.2015.05.003] [Citation(s) in RCA: 425] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 02/08/2023]
|
23
|
Topical Mineralocorticoid Receptor Blockade Limits Glucocorticoid-Induced Epidermal Atrophy in Human Skin. J Invest Dermatol 2015; 135:1781-1789. [DOI: 10.1038/jid.2015.44] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 12/14/2022]
|
24
|
Lattin CR, DuRant SE, Romero LM. Wounding alters blood chemistry parameters and skin mineralocorticoid receptors in house sparrows (Passer domesticus). ACTA ACUST UNITED AC 2015; 323:322-30. [DOI: 10.1002/jez.1921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/17/2015] [Accepted: 01/21/2015] [Indexed: 01/03/2023]
Affiliation(s)
| | - Sarah E. DuRant
- Department of Biology; Tufts University; Medford Massachusetts
- Department of Zoology; Oklahoma State University; Stillwater Oklahoma
| | | |
Collapse
|
25
|
Pérez P. Glucocorticoid receptors, epidermal homeostasis and hair follicle differentiation. DERMATO-ENDOCRINOLOGY 2014. [DOI: 10.4161/derm.15332] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Faresse N. Post-translational modifications of the mineralocorticoid receptor: How to dress the receptor according to the circumstances? J Steroid Biochem Mol Biol 2014; 143:334-42. [PMID: 24820770 DOI: 10.1016/j.jsbmb.2014.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/07/2014] [Accepted: 04/28/2014] [Indexed: 12/22/2022]
Abstract
Aldosterone or glucocorticoid stimulation of the mineralocorticoid receptor (MR) is involved in numerous physiological responses, including ions and water homeostasis, blood pressure control and metabolism. The understanding of MR signaling regulation in the patho/physiological context took a new direction the last few years with a focus on the post-translational modifications of MR. Depending on its environment, cellular expression, activity or its binding partners, the MR is submitted to several post-translational modifications such as phosphorylation, ubiquitylation, sumoylation and acetylation that regulate its localization, activity and/or stability. A complex interplay between all these modifications allows a fine tuning of MR signaling depending on the physiological context. This review reports recent knowledge about post-translational modifications of MR and describes the enzymes and the molecular mechanisms involved.
Collapse
Affiliation(s)
- Nourdine Faresse
- University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
27
|
Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle) 2014; 3:445-464. [PMID: 25032064 DOI: 10.1089/wound.2013.0473] [Citation(s) in RCA: 878] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022] Open
Abstract
Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Natalie C. Yin
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Horacio Ramirez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Aron G. Nusbaum
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew Sawaya
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shailee B. Patel
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Laiqua Khalid
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
28
|
Abstract
The glucocorticoid receptor (GR), a member of the nuclear hormone family of transcription factors, plays key physiological roles in many organs, including the skin. In this issue, Latorre et al. demonstrate that mice lacking GR in the epidermis exhibit increased vulnerability to chemical carcinogenesis. Evidence supporting an involvement of GR signaling in physiological and pathophysiological processes in skin is discussed.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, Georgia, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, USA; Department of Medicine (Dermatology), Medical College of Georgia at Georgia Regents University, Augusta, Georgia, USA; Department of Cellular Biology & Anatomy, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, USA; Department of Orthopaedic Surgery, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, USA; Institute of Regenerative and Reparative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, USA.
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, USA; Institute of Regenerative and Reparative Medicine, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, USA; Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, Georgia, USA
| |
Collapse
|
29
|
Collin M, Niemann F, Jaisser F. Mineralocorticoid receptor modulators: a patent review (2007 - 2012). Expert Opin Ther Pat 2013; 24:177-83. [PMID: 24215301 DOI: 10.1517/13543776.2014.854772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Considered for years as a 'renal hormone' leading to the control of renal excretion of minerals (explaining the term 'mineralocorticoid' used to describe this hormone), aldosterone is now recognized as a key factor in several diseases including hypertension, heart failure, arrhythmia, metabolic and kidney diseases, to cite only a few of them. AREAS COVERED In this review article, the authors aim to cover information provided by patents of the years 2007 through 2012. The rationale of writing this article is to cover the most important patents that can progress the field with new important discoveries. EXPERT OPINION The recognition of its proinflammatory and fibrogenic effects and the discovery of extrarenal sites of expression of its receptor (the mineralocorticoid receptor or MR) support a broader implication in diseases of MR activation than previously anticipated and the possible novel therapeutic indications of MR antagonists.
Collapse
Affiliation(s)
- Matthieu Collin
- Inserm-Transfert , Paris Biopark - 7 rue Watt - 75013 Paris , France
| | | | | |
Collapse
|
30
|
Dong F, He X. Pro-nociceptive role of the activation of mineralocorticoid receptor in the pathogenesis of painful diabetic neuropathy. Med Hypotheses 2013; 81:436-8. [PMID: 23830592 DOI: 10.1016/j.mehy.2013.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/15/2013] [Accepted: 06/11/2013] [Indexed: 01/01/2023]
Abstract
Patients with diabetic neuropathy may develop severe pain which persists over several years, resulting from impaired nerve endings in the skin, which originate the pain signals of diabetic neuropathy. Inflammatory processes have been implicated in the genesis and maintenance of chronic pain. The activation of the mineralocorticoid receptor (MR) is believed to promote classical inflammation features such as high levels of oxidative metabolites and proinflammatory cytokines, tissue destruction. Selectively blocking MR's can prevent the development of pain behaviors induced by neuroinflammation. Since proinflammatory cytokines and mediators were found to have increased in diabetic skin, we propose MR activation may play a pro-nociceptive role in diabetic neuropathy through local inflammation of the skin. Research methods examining MR overexpression in normal skin and selectively blocking MR in the diabetic skin are useful in identifying whether MR activation may bring cutaneous nerve insult and to explain whether MR activation is involved in the progression of painful diabetic neuropathy. If proven, this hypothesis would indicate the MR may potentially act as a novel target for pain therapeutics.
Collapse
Affiliation(s)
- Fei Dong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | | |
Collapse
|
31
|
Nagase T, Akase T, Sanada H, Minematsu T, Ibuki A, Huang L, Asada M, Yoshimura K, Nagase M, Shimada T, Aburada M, Nakagami G, Sugama J. Aging-like skin changes in metabolic syndrome model mice are mediated by mineralocorticoid receptor signaling. Aging Cell 2013; 12:50-7. [PMID: 23072361 DOI: 10.1111/acel.12017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2012] [Indexed: 01/14/2023] Open
Abstract
Aging is accelerated, at least in part, by pathological condition such as metabolic syndrome (MetS), and various molecular pathways such as oxidative stress are common mediators of aging and MetS. We previously developed the aging-like skin model by single ultraviolet (UV) irradiation on the MetS model mice. Recent studies revealed that mineralocorticoid receptor (MR) signaling plays a pivotal role for various tissue inflammation and damages in MetS. Although previous studies reported that MR is expressed in the skin and that overexpression of MR in the skin resulted in the skin atrophy, the physiological or pathological functions of MR in the skin are not fully elucidated. Here, we show the involvement of MR signaling in the aging-like skin changes in our own model. Elevations of oxidative stress and inflammation markers were observed in the MetS mice, and the UV-evoked aging-like skin damages were attenuated by topical antioxidant. MR expression was higher in the MetS mouse skin, and notably, expression of its effecter gene Sgk1 was significantly upregulated in the aging-like skin in the UV-irradiated MetS mice. Furthermore, topical application of MR antagonist spironolactone suppressed Sgk1 expression, oxidative stress, inflammation, and the aging-like changes in the skin. The 2-week UV onto the non-MetS mice, the more usual photoaging model, resulted in the skin damages mostly equivalent to the MetS mice with single UV, but they were not associated with upregulation of MR signaling. Our studies suggested an unexpected role of MR signaling in the skin aging in MetS status.
Collapse
Affiliation(s)
- Takashi Nagase
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine, The University of Tokyo; Tokyo; 113-0033; Japan
| | - Tomoko Akase
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine, The University of Tokyo; Tokyo; 113-0033; Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine, The University of Tokyo; Tokyo; 113-0033; Japan
| | - Takeo Minematsu
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine, The University of Tokyo; Tokyo; 113-0033; Japan
| | - Ai Ibuki
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine, The University of Tokyo; Tokyo; 113-0033; Japan
| | - Lijuan Huang
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine, The University of Tokyo; Tokyo; 113-0033; Japan
| | - Mayumi Asada
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine, The University of Tokyo; Tokyo; 113-0033; Japan
| | - Kotaro Yoshimura
- Department of Plastic and Reconstructive Surgery; Graduate School of Medicine, The University of Tokyo; Tokyo; 113-0033; Japan
| | - Miki Nagase
- Department of Chronic Kidney Diseases; Graduate School of Medicine, The University of Tokyo; Tokyo; 113-0033; Japan
| | - Tsutomu Shimada
- Research Institute of Pharmaceutical Science; Musashino University; Tokyo; 202-0023; Japan
| | - Masaki Aburada
- Faculty of Pharmacy; Musashino University; Tokyo; 202-0023; Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine, The University of Tokyo; Tokyo; 113-0033; Japan
| | - Junko Sugama
- Department of Nursing; Graduate School of Medicine, Kanazawa University; Kanazawa; 920-0942; Japan
| |
Collapse
|
32
|
Skobowiat C, Sayre RM, Dowdy JC, Slominski AT. Ultraviolet radiation regulates cortisol activity in a waveband-dependent manner in human skin ex vivo. Br J Dermatol 2013; 168:595-601. [PMID: 23363016 DOI: 10.1111/bjd.12096] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1), 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), and glucocorticoids (GC) and their receptor (GR) play a key role in tissue-specific regulation of GC action. OBJECTIVES To determine the expression of genes encoding 11β-HSD1 (HSD11B1), 11β-HSD2 (HSD11B2) and GR (GRα; also known as NC3R1) and their protein products, and levels of cortisol in human skin explants and/or cocultured keratinocytes/melanocytes after treatment with ultraviolet (UV) A, B or C wavebands. METHODS Skin from foreskins and/or cocultured human keratinocytes/melanocytes were irradiated with UVA, UVB or UVC (skin) and incubated for 12 and 24 h. Methods of reverse transcription-polymerase chain reaction, Western blotting, enzyme-linked immunosorbent assay and immunohistochemistry (IHC) were used to determine expression and localization of corresponding genes or antigens. RESULTS UVB enhanced the HSD11B1 gene and protein expression in a dose-dependent manner, while UVA had no effect. Similarly, UVC increased 11β-HSD1 protein product as measured by IHC. UVB and UVC enhanced cortisol production and decreased epidermal GR expression, while UVA had no detectable effects. Although both UVA and UVB stimulated HSD11B2 gene expression, only UVA increased 11β-HSD2 protein product levels with UVB and UVC having no effect. CONCLUSIONS We suggest that these differential, waveband-dependent effects of UV radiation on the expression of cutaneous HSD11B1, HSD11B2 and GRα genes and their corresponding protein products, and cortisol production are to protect and/or restore the epidermal barrier homeostasis against disruption caused by the elevated cortisol level induced by UVB and UVC.
Collapse
Affiliation(s)
- C Skobowiat
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
33
|
Martinerie L, Munier M, Le Menuet D, Meduri G, Viengchareun S, Lombès M. The mineralocorticoid signaling pathway throughout development: expression, regulation and pathophysiological implications. Biochimie 2012; 95:148-57. [PMID: 23026756 DOI: 10.1016/j.biochi.2012.09.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
Abstract
The mineralocorticoid signaling pathway has gained interest over the past few years, considering not only its implication in numerous pathologies but also its emerging role in physiological processes during kidney, brain, heart and lung development. This review aims at describing the setting and regulation of aldosterone biosynthesis and the expression of the mineralocorticoid receptor (MR), a nuclear receptor mediating aldosterone action in target tissues, during the perinatal period. Specificities concerning MR expression and regulation during the development of several major organs are highlighted. We provide evidence that MR expression is tightly controlled in a tissue-specific manner during development, which could have major pathophysiological implications in the neonatal period.
Collapse
|
34
|
Behar-Cohen F. [Retinal drug targets]. ANNALES PHARMACEUTIQUES FRANÇAISES 2011; 69:124-30. [PMID: 21440105 DOI: 10.1016/j.pharma.2011.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/20/2011] [Indexed: 12/14/2022]
Abstract
Retinal effects of systemically administered drugs are rare due to the hematoretinal barriers that protect the retina from circulating active principles. However, some compounds may have direct or indirect toxic effects on the retina through direct interaction with a specific receptor or due to their accumulation within pigment of uveal cells. In the latter case, toxicity is dose-dependent and may be observed years after cessation of medication, as observed with antimalarial drugs. Anti-infective and anti-inflammatory agents, particularly glucocorticoids, are currently injected peri- or intraocularly. The mechanisms and the exact toxicity of glucocorticoids on the retina remain poorly understood. More recently, anti-VEGF has been specifically developed for the treatment of retinal diseases. However, the long-term blockade of VEGF on normal retinal physiology should be determined taking into account VEGF and VEGF receptors expression in the normal and pathologic retina. Whilst enormous advances are made in the treatment of retinal diseases, basic research is still required to define more accurately the molecular targets of drugs to improve their benefits and reduce their potential side effects.
Collapse
Affiliation(s)
- F Behar-Cohen
- Inserm UMRS, Équipe physiopathologie oculaire : innovations thérapeutiques, centre de recherches des Cordeliers, Hôtel-dieu, université Paris-Descartes, France.
| |
Collapse
|
35
|
Pérez P. Glucocorticoid receptors, epidermal homeostasis and hair follicle differentiation. DERMATO-ENDOCRINOLOGY 2011; 3:166-74. [PMID: 22110775 DOI: 10.4161/derm.3.3.15332] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/08/2011] [Accepted: 02/28/2011] [Indexed: 01/21/2023]
Abstract
Glucocorticoids (GCs) exert their biological and therapeutical actions through the GC receptor (GR), a ligand-dependent transcription factor. Synthetic GC derivatives are widely prescribed for treating numerous cutaneous inflammatory and immune diseases due to their great efficacy. However, chronic treatment with GCs produces adverse side-effects including skin atrophy, delayed wound healing, and in certain cases, GC resistance. The mechanisms underlying the therapeutic actions of the GR in skin have been extensively studied; in contrast, the role of GR as a modulator of epidermal development and homeostasis has received less attention. The ubiquitous functional inactivation of GR results in defective epidermal formation although the underlying mechanisms have not been fully characterized. The use of transcriptomic approaches both in vitro and in vivo allowed the identification of genes that are regulated by GR in developing and adult skin. A main goal to understand the role of GR in skin biology is to identify primary transcriptional targets as well as the signaling pathways mediating GR action. Furthermore, it will be important to decipher the contribution of GR in the different cellular compartments of the skin, including keratinocytes of the interfollicular epidermis and hair follicles, and their respective stem cell progenitors. Additionally, recent findings indicating that the skin acts as a true peripheral endocrine organ implies greater complexity than originally thought. The local production of GCs and other steroid hormones should be considered as a modulator of skin function under homeostatic and diseased conditions. Finally, studying GR function in skin should take into account that the mineralocorticoid receptor may also mediate GC actions and/or regulate transcription either by itself or in combination with GR. Addressing these issues should help to elucidate the mechanisms by which Gr contributes to establishment of a competent epidermal barrier and may also have implications in the context of dermatological treatments based on GC-analogs.
Collapse
Affiliation(s)
- Paloma Pérez
- Instituto de Biomedicina de Valencia; Consejo Superior de Investigaciones Científicas (IBV-CSIC); Valencia, Spain
| |
Collapse
|
36
|
Zhao M, Valamanesh F, Celerier I, Savoldelli M, Jonet L, Jeanny J, Jaisser F, Farman N, Behar‐Cohen F. The neuroretina is a novel mineralocorticoid target: aldosterone up‐regulates ion and water channels in Müller glial cells. FASEB J 2010; 24:3405-15. [DOI: 10.1096/fj.09-154344] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Min Zhao
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 872Team 17Centre de Recherche des CordeliersUniversité René Descartes Paris France
| | - Fatemeh Valamanesh
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 872Team 17Centre de Recherche des CordeliersUniversité René Descartes Paris France
- Fondation A. de Rothschild Paris France
| | - Isabelle Celerier
- INSERM U 872Team 1Centre de Recherche des CordeliersUniversité Pierre et Marie Curie Paris France
| | | | - Laurent Jonet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 872Team 17Centre de Recherche des CordeliersUniversité René Descartes Paris France
| | - Jean‐Claude Jeanny
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 872Team 17Centre de Recherche des CordeliersUniversité René Descartes Paris France
| | - Frederic Jaisser
- INSERM U 872Team 1Centre de Recherche des CordeliersUniversité Pierre et Marie Curie Paris France
| | - Nicolette Farman
- INSERM U 872Team 1Centre de Recherche des CordeliersUniversité Pierre et Marie Curie Paris France
| | - Francine Behar‐Cohen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 872Team 17Centre de Recherche des CordeliersUniversité René Descartes Paris France
| |
Collapse
|