1
|
You J, Jang Y, Sim J, Ryu D, Cho E, Park D, Jung E. Anti-Hair Loss Effect of Veratric Acid on Dermal Papilla Cells. Int J Mol Sci 2025; 26:2240. [PMID: 40076862 PMCID: PMC11900597 DOI: 10.3390/ijms26052240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
The activation of hair follicle dermal papilla cells (HFDPCs), a critical target of hair loss relief, can be achieved through the upregulation of proliferation, the stimulation of hair inducibility, and the inhibition of cellular senescence. Veratric acid (VA) is a major benzoic acid found in fruits and vegetables. The biological activity of VA on HFDPCs remains to be elucidated. In this study, we investigated the capacity of VA for hair loss mitigation. An MTT assay, Ki67 staining, quantitative RT-PCR (qRT-PCR), and a Western blot analysis were performed to confirm the proliferative effect of VA. Hair inductivity was determined through a cell aggregation assay and ALP staining. Annexin V/PI staining was performed to confirm the anti-apoptotic effect of VA. The inhibitory effect of VA on cellular senescence was confirmed by a β-galactosidase (β-gal) assay and qRT-PCR using replicative senescence and oxidative stress-induced senescence models. As a result, VA dose-dependently upregulated the proliferation of HFDPCs, the expression of growth factors, and β-catenin protein levels. VA also dose-dependently increased ALP activity and cell aggregation and decreased apoptotic cells through the regulation of BCL2 and BAX expression. Moreover, VA reduced β-gal activity and the senescence-associated secretory phenotype (SASP) in a dose-dependent manner in senescent HFDPCs. These findings suggest that VA may serve as a potential therapeutic agent for alleviating hair loss by targeting multiple pathways involved in HFDPC activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eunsun Jung
- Biospectrum Life Science Institute, Sinsu-ro, Suji-gu, Yongin-City 16827, Gyeonggi-Do, Republic of Korea; (J.Y.); (Y.J.); (J.S.); (D.R.); (E.C.); (D.P.)
| |
Collapse
|
2
|
Chu X, Zhou Z, Qian X, Shen H, Cheng H, Zhang J. Functional regeneration strategies of hair follicles: advances and challenges. Stem Cell Res Ther 2025; 16:77. [PMID: 39985119 PMCID: PMC11846195 DOI: 10.1186/s13287-025-04210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
Hair follicles are essential appendages of human skin that function in protection, sensation, thermoregulation and social interactions. The multicellular components, particularly the dermal papilla, matrix and bulge housing stem cells, enable cyclic hair growth postnatally. However, miniaturization and loss of hair follicles can occur in the context of ageing, trauma and various alopecia-related diseases. Conventional treatments involve the redistribution of existing follicles, which may not be viable in patients lacking follicular resources. Recent progress in the comprehension of morphogenesis and the development of biomaterials has significantly advanced follicle reconstruction, incorporating organ germ assembling, stem cell induction and bioprinting techniques. Despite these advancements, fully restoring hair follicles remains challenging due to the complexities of replicating embryonic signals and sustaining growth cycles. Identifying suitable cell sources for clinical applications also presents a hurdle. Here, we retrospect the progress made in the field of hair follicle regeneration, aiming to offer an exhaustive analysis on the benefits and limitations of these methods, and to foster the development of innovative solutions.
Collapse
Affiliation(s)
- Xi Chu
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Zhentao Zhou
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Xifei Qian
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang, China
| | - Haiyan Shen
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Hanxiao Cheng
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China
| | - Jufang Zhang
- Department of Plastic and Cosmetic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
3
|
Hamida OB, Kim MK, Sung YK, Kim MK, Kwack MH. Hair Regeneration Methods Using Cells Derived from Human Hair Follicles and Challenges to Overcome. Cells 2024; 14:7. [PMID: 39791708 PMCID: PMC11720663 DOI: 10.3390/cells14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI). Many studies have developed and focused on various methods to optimize the EMI through in vivo and in vitro approaches for hair regeneration. The culturing of human hair mesenchymal cells resulted in the loss of trichogenicity and inductive properties of DP cells, limiting their potential application in de novo hair follicle generation in vivo. Epithelial stem cells derived from human hair follicles are challenging to isolate and culture, making it difficult to obtain enough cells for hair regeneration purposes. Mesenchymal stem cells and epithelial stem cells derived from human hair follicles lose their ability to form hair follicles during culture, limiting the study of hair follicle formation in vivo. Therefore, many attempts and methods have been developed to overcome these limitations. Here, we review the possible and necessary cell methods and techniques used for human hair follicle regeneration and the restoration of hair follicle cell inductivity in culture.
Collapse
Affiliation(s)
- Ons Ben Hamida
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
- Hair Transplantation Center, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| | - Min Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (O.B.H.); (M.K.K.); (Y.K.S.); (M.K.K.)
| |
Collapse
|
4
|
Kim HR, Park JU, Lee SH, Park JY, Lee W, Choi KM, Kim SY, Park MH. Hair Growth Effect and the Mechanisms of Rosa rugosa Extract in DHT-Induced Alopecia Mice Model. Int J Mol Sci 2024; 25:11362. [PMID: 39518915 PMCID: PMC11545796 DOI: 10.3390/ijms252111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Rosa rugosa is a medicinal plant known for its potential anti-inflammatory, antioxidant, anti-cancer, and antimicrobial benefits. The pharmacological effects of Rosa rugosa extract on hair loss have not yet been documented. This research sought to assess the inhibitory effects and mechanisms of action of Rosa rugosa water extract (RWE) in a mouse model of dihydrotestosterone (DHT)-induced alopecia. The study was conducted using C57BL/6 mice, which were assigned to five groups: control, DHT-treated, Rosa rugosa water extract (RWE) at doses of 25 mg/kg and 100 mg/kg body weight, and bicalutamide-treated. To induce hair loss, dihydrotestosterone (1 mg/day per body weight) was administered via intraperitoneal injections, and dorsal hair removal was timed to align with the telogen phase. Each group received oral treatments for a period of 23 days. In this study, we assessed hair growth activity, examined histological changes, and performed immunoblot analysis. We noted improvements in hair length and thickness. Additionally, the protein expression of growth factors associated with hair growth, including vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and insulin-like growth factor-1 (IGF-1), showed significant increases in the group treated with RWE. Additionally, treatment with RWE suppressed the protein expression of hair growth inhibitory factors, including dickkopf WNT signaling pathway inhibitor 1 (DKK1) and interleukin (IL)-6. Moreover, hair growth regulatory pathway related factors, including ERK, AKT, and GSK-3β, were activated. These findings indicate that RWE could serve as a promising natural therapy for preventing hair loss by enhancing the production of factors that promote hair growth while inhibiting those that suppress it.
Collapse
Affiliation(s)
- Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Jung Up Park
- Division of Practical Research, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea; (J.U.P.); (W.L.); (K.-M.C.)
- Advanced Research Center for Island Wildlife Biomaterials, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea
| | - Seung-Hyeon Lee
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Jae Young Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Wonwoo Lee
- Division of Practical Research, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea; (J.U.P.); (W.L.); (K.-M.C.)
- Advanced Research Center for Island Wildlife Biomaterials, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea
| | - Kyung-Min Choi
- Division of Practical Research, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea; (J.U.P.); (W.L.); (K.-M.C.)
- Advanced Research Center for Island Wildlife Biomaterials, Honam National Institute of Biological Resources, 99, Gohadoan-gil, Mokpo-si 58762, Jeollanam-do, Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| | - Mi Hee Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeonbuk-do, Republic of Korea; (H.-R.K.); (S.-H.L.); (J.Y.P.)
| |
Collapse
|
5
|
Kim YN, Park MG, Kim YJ, Lee JS, Kwon BO, Rho JR, Jeong EJ. Chemical Constituents of Halophyte Suaeda glauca and Their Therapeutic Potential for Hair Loss. Molecules 2024; 29:298. [PMID: 38257211 PMCID: PMC10819854 DOI: 10.3390/molecules29020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Suaeda glauca, a halophyte in the Amaranthaceae family, exhibits remarkable resilience to high salt and alkali stresses despite the absence of salt glands or vesicles in its leaves. While there is growing pharmacological interest in S. glauca, research on its secondary metabolites remains limited. In this study, chemical constituents of the aerial parts of S. glauca were identified using 1D- and 2D-NMR experiments, and its biological activity concerning hair loss was newly reported. Eight compounds, including alkaloids (1~3), flavonoids (4~6), and phenolics (7 and 8), were isolated. The compounds, except the flavonoids, were isolated for the first time from S. glauca. In the HPLC chromatogram, quercetin-3-O-β-d-glucoside, kaempferol-3-O-β-d-glucoside, and kaempferol were identified as major constituents in the extract of S. glauca. Additionally, the therapeutic potential of the extract of S. glauca and the isolated compounds 1~8 on the expressions of VEGF and IGF-1, as well as the regulation of Wnt/β-catenin signaling, were evaluated in human follicle dermal papilla cells (HFDPCs) and human umbilical vein endothelial cells (HUVECs). Among the eight compounds, compound 4 was the most potent in terms of increasing the expression of VEGF and IGF-1 and the regulation of Wnt/β-catenin. These findings suggest that S. glauca extract and its compounds are potential new candidates for preventing or treating hair loss.
Collapse
Affiliation(s)
- Yun-Na Kim
- Department of Oceanography, Kunsan National University, Gunsan 54150, Republic of Korea; (Y.-N.K.); (B.-O.K.)
| | - Min-Gyu Park
- Department of Green Bio Science, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Yu-Jung Kim
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea; (Y.-J.K.); (J.-S.L.)
| | - Jae-Sun Lee
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea; (Y.-J.K.); (J.-S.L.)
| | - Bong-Oh Kwon
- Department of Oceanography, Kunsan National University, Gunsan 54150, Republic of Korea; (Y.-N.K.); (B.-O.K.)
| | - Jung-Rae Rho
- Department of Oceanography, Kunsan National University, Gunsan 54150, Republic of Korea; (Y.-N.K.); (B.-O.K.)
| | - Eun-Ju Jeong
- Department of Green Bio Science, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Republic of Korea; (Y.-J.K.); (J.-S.L.)
| |
Collapse
|
6
|
Zhu N, Yan J, Gu W, Yang Q, Lin E, Lu S, Cai B, Xia B, Liu X, Lin C. Dermal papilla cell-secreted biglycan regulates hair follicle phase transit and regeneration by activating Wnt/β-catenin. Exp Dermatol 2024; 33:e14969. [PMID: 37967213 DOI: 10.1111/exd.14969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
Alopecia is a prevalent problem of cutaneous appendages and lacks effective therapy. Recently, researchers have been focusing on mesenchymal components of the hair follicle, i.e. dermal papilla cells, and we previously identified biglycan secreted by dermal papilla cells as the key factor responsible for hair follicle-inducing ability. In this research, we hypothesized biglycan played an important role in hair follicle cycle and regeneration through regulating the Wnt signalling pathway. To characterize the hair follicle cycle and the expression pattern of biglycan, we observed hair follicle morphology in C57BL/6 mice on Days 0, 3, 5, 12 and 18 post-depilation and found that biglycan is highly expressed at both mRNA and protein levels throughout anagen in HFs. To explore the role of biglycan during the phase transit process and regeneration, local injections were administered in C57BL/6 and nude mice. Results showed that local injection of biglycan in anagen HFs delayed catagen progression and involve activating the Wnt/β-catenin signalling pathway. Furthermore, local injection of biglycan induced HF regeneration and up-regulated expression of key Wnt factors in nude mice. In addition, cell analyses exhibited biglycan knockdown inactivated the Wnt signalling pathway in early-passage dermal papilla cell, whereas biglycan overexpression or incubation activated the Wnt signalling pathway in late-passage dermal papilla cells. These results indicate that biglycan plays a critical role in regulating HF cycle transit and regeneration in a paracrine and autocrine fashion by activating the Wnt/β-catenin signalling pathway and could be a potential treatment target for hair loss diseases.
Collapse
Affiliation(s)
- Ningxia Zhu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Junping Yan
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Weifan Gu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Qilin Yang
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - En Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, People's Republic of China
| | - Siyue Lu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Bozhi Cai
- Tissue Engineering Laboratory, First Affiliated Hospital, Shantou University Medical College, Shantou, People's Republic of China
| | - Bin Xia
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Xin Liu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, People's Republic of China
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
7
|
Ma S, Ji D, Wang X, Yang Y, Shi Y, Chen Y. Transcriptomic Analysis Reveals Candidate Ligand-Receptor Pairs and Signaling Networks Mediating Intercellular Communication between Hair Matrix Cells and Dermal Papilla Cells from Cashmere Goats. Cells 2023; 12:1645. [PMID: 37371115 DOI: 10.3390/cells12121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Hair fiber growth is determined by the spatiotemporally controlled proliferation, differentiation, and apoptosis of hair matrix cells (HMCs) inside the hair follicle (HF); however, dermal papilla cells (DPCs), the cell population surrounded by HMCs, manipulate the above processes via intercellular crosstalk with HMCs. Therefore, exploring how the mutual commutations between the cells are molecularly achieved is vital to understanding the mechanisms underlying hair growth. Here, based on our previous successes in cultivating HMCs and DPCs from cashmere goats, we combined a series of techniques, including in vitro cell coculture, transcriptome sequencing, and bioinformatic analysis, to uncover ligand-receptor pairs and signaling networks mediating intercellular crosstalk. Firstly, we found that direct cellular interaction significantly alters cell cycle distribution patterns and changes the gene expression profiles of both cells at the global level. Next, we constructed the networks of ligand-receptor pairs mediating intercellular autocrine or paracrine crosstalk between the cells. A few pairs, such as LEP-LEPR, IL6-EGFR, RSPO1-LRP6, and ADM-CALCRL, are found to have known or potential roles in hair growth by acting as bridges linking cells. Further, we inferred the signaling axis connecting the cells from transcriptomic data with the advantage of CCCExplorer. Certain pathways, including INHBA-ACVR2A/ACVR2B-ACVR1/ACVR1B-SMAD3, were predicted as the axis mediating the promotive effect of INHBA on hair growth via paracrine crosstalk between DPCs and HMCs. Finally, we verified that LEP-LEPR and IL1A-IL1R1 are pivotal ligand-receptor pairs involved in autocrine and paracrine communication of DPCs and HMCs to DPCs, respectively. Our study provides a comprehensive landscape of intercellular crosstalk between key cell types inside HF at the molecular level, which is helpful for an in-depth understanding of the mechanisms related to hair growth.
Collapse
Affiliation(s)
- Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Engineering Research Center for Forage, Zhengzhou 450002, China
| | - Dejun Ji
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Engineering Research Center for Forage, Zhengzhou 450002, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
8
|
Lee E, Seo HD, Kim D, Park SH, Kim SR, Hyun C, Hahm JH, Ha TY, Ahn J, Jung CH. Millet seed oil activates β-catenin signaling and promotes hair growth. Front Pharmacol 2023; 14:1172084. [PMID: 37229245 PMCID: PMC10203242 DOI: 10.3389/fphar.2023.1172084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Alopecia, regardless of gender, exacerbates psychological stress in those affected. The rising prevalence of alopecia has fueled a research interest in preventing hair loss. This study investigates the potential of millet seed oil (MSO) in promoting the proliferation of hair follicle dermal papilla cells (HFDPC) and stimulating hair growth in animals with testosterone-dependent hair growth inhibition as part of a study on dietary treatments to improve hair growth. MSO-treated HFDPC significantly increased cell proliferation and phosphorylation of AKT, S6K1, and GSK3β proteins. This induces β-catenin, a downstream transcription factor, to translocate to the nucleus and increase the expression of factors related to cell growth. In a C57BL/6 mice model in which hair growth was inhibited by subcutaneous testosterone injection after shaving the dorsal skin, oral administration of MSO stimulated hair growth in the subject mice by increasing the size and number of hair follicles. These results suggest that MSO is a potent agent that may help prevent or treat androgenetic alopecia by promoting hair growth.
Collapse
Affiliation(s)
- Eunyoung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
| | - Daedong Kim
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-Gun, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-Gun, Republic of Korea
| | - Soo Ro Kim
- Suheung Research Center, Seongnam-si, Republic of Korea
| | | | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
| | - Tae-Youl Ha
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-Gun, Republic of Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-Gun, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-Gun, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Wanju-Gun, Republic of Korea
| |
Collapse
|
9
|
Wang S, Hu T, He M, Gu Y, Cao X, Yuan Z, Lv X, Getachew T, Quan K, Sun W. Defining ovine dermal papilla cell markers and identifying key signaling pathways regulating its intrinsic properties. Front Vet Sci 2023; 10:1127501. [PMID: 36923053 PMCID: PMC10009177 DOI: 10.3389/fvets.2023.1127501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Dermal papilla cell (DPC), one of the key cell types during hair follicle development and regeneration, specifies hair size, shape and cycling. It is also an important in vitro screening model for hair growth. Although some characteristics of DPCs, such as agglutinative growth and marker genes, have been studied in mice and humans, the intrinsic properties of ovine DPCs and the regulatory mechanism of the intrinsic properties during continued culture in vitro remained unknown. In this study, based on our previous single-cell transcriptome sequencing on sheep lambskin, we verified SOX18 and PDGFRA as the novel marker genes of ovine DPCs through immunofluorescence staining on skin sections and cultured DPCs. Using continued cell culture and alkaline phosphatase staining, we found that different from mice and humans, ovine DPCs exhibit particularly robust and stable aggregation with unbated alkaline phosphatase activity till 30 passages during continued culture in vitro. Also, we found that the expression of some marker genes and the activity of Wnt/β-catenin signaling differ between early passaged DPCs and multiple passaged DPCs. Further, using Wnt/β-catenin agonist and antagonist, we demonstrated that Wnt/β-catenin signaling could regulate cell aggregation and alkaline phosphatase activity of ovine DPCs through regulating FGF and IGF signaling. This study provides the basis for isolating ovine DPCs and defines their intrinsic properties, which contribute to improving wool performance and medicine of hair regeneration.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China.,"Innovative China" "Belt and Road" International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou, China
| |
Collapse
|
10
|
The Molecular Mechanism of Natural Products Activating Wnt/β-Catenin Signaling Pathway for Improving Hair Loss. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111856. [PMID: 36430990 PMCID: PMC9693075 DOI: 10.3390/life12111856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Hair loss, or alopecia, is a dermatological disorder that causes psychological stress and poor quality of life. Drug-based therapeutics such as finasteride and minoxidil have been clinically used to treat hair loss, but they have limitations due to their several side effects in patients. To solve this problem, there has been meaningful progress in elucidating the molecular mechanisms of hair growth and finding novel targets to develop therapeutics to treat it. Among various signaling pathways, Wnt/β-catenin plays an essential role in hair follicle development, the hair cycle, and regeneration. Thus, much research has demonstrated that various natural products worldwide promote hair growth by stimulating Wnt/β-catenin signaling. This review discusses the functional role of the Wnt/β-catenin pathway and its related signaling molecules. We also review the molecular mechanism of the natural products or compounds that activate Wnt/β-catenin signaling and provide insights into developing therapeutics or cosmeceuticals that treat hair loss.
Collapse
|
11
|
Bae S, Yoon YG, Kim JY, Park IC, An S, Lee JH, Bae S. Melatonin increases growth properties in human dermal papilla spheroids by activating AKT/GSK3β/β-Catenin signaling pathway. PeerJ 2022; 10:e13461. [PMID: 35607451 PMCID: PMC9123888 DOI: 10.7717/peerj.13461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background Melatonin, a neurohormone, maybe involved in physiological processes, such as antioxidation, anti-inflammation, and hair growth. In the present study, we investigated the effects of melatonin on proliferation and intracellular signaling in DP cells using a three-dimensional (3D) spheroid culture system that mimics the in vivo hair follicle system. Methods DP cells were incubated in monolayer (2D) and 3D spheroid culture systems. The expression levels of melatonin receptors in DP cells were analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting. The effect of melatonin on the hair-inductive property of DP cells was analyzed using a WST-1-based proliferation assay, determination of DP spheroid size, expression analysis of DP signature genes, and determination of β-catenin stabilization in DP cells. The AKT/GSK3β/β-catenin signaling pathway associated with melatonin-induced β-catenin stabilization in DP cells was investigated by analyzing changes in upstream regulator proteins, including AKT, GSK3β, and their phosphorylated forms. Results The expression levels of the melatonin receptors were higher in human DP cells than in human epidermal keratinocytes and human dermal fibroblast cells. Comparing the expression level according to the human DP cell culture condition, melatonin receptor expression was upregulated in the 3D culture system compared to the traditional two-dimensional monolayer culture system. Cell viability analysis showed that melatonin concentrations up to 1 mM did not affect cell viability. Moreover, melatonin increased the diameter of DP cell 3D spheroids in a dose-dependent manner. Immunoblotting and qRT-PCR analysis revealed that melatonin upregulated the expression of hair growth-related genes, including alkaline phosphatase, bone morphogenetic protein 2, versican, and wingless-int 5A, in a melatonin receptor-dependent manner. Cell fractionation analysis showed that melatonin increased the nuclear localization of β-catenin. This result correlated with the increased transcriptional activation of T-cell factor/lymphoid enhancer factor-responsive luciferase induced by melatonin treatment. Interestingly, melatonin induced the phosphorylation of protein kinase B/AKT at serine 473 residue and GSK-3β at serine 9 residue. To determine whether AKT phosphorylation at serine 473 induced β-catenin nuclear translocation through GSK3β phosphorylation at serine 9, the PI3K/AKT inhibitor LY294002 was cotreated with melatonin. Immunoblotting showed that LY294002 inhibited melatonin-induced phosphorylation of GSK3β at serine 9 residue and β-catenin activation. Conclusion Collectively, this report suggests that melatonin promotes growth properties by activating the AKT/GSK3β/β-catenin signaling pathway through melatonin receptors.
Collapse
Affiliation(s)
- Sowon Bae
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yoo Gyeong Yoon
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea,R&D Planning Dept., Dermalab Co., Ltd, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Ji Yea Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Sungkwan An
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jae Ho Lee
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Seunghee Bae
- Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
12
|
TERT/BMI1-transgenic human dermal papilla cells enhance murine hair follicle formation in vivo. J Dermatol Sci 2022; 106:78-85. [DOI: 10.1016/j.jdermsci.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022]
|
13
|
Park S, Lee J. Modulation of Hair Growth Promoting Effect by Natural Products. Pharmaceutics 2021; 13:pharmaceutics13122163. [PMID: 34959442 PMCID: PMC8706577 DOI: 10.3390/pharmaceutics13122163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
A large number of people suffer from alopecia or hair loss worldwide. Drug-based therapies using minoxidil and finasteride for the treatment of alopecia are available, but they have shown various side effects in patients. Thus, the use of new therapeutic approaches using bioactive products to reduce the risk of anti-hair-loss medications has been emphasized. Natural products have been used since ancient times and have been proven safe, with few side effects. Several studies have demonstrated the use of plants and their extracts to promote hair growth. Moreover, commercial products based on these natural ingredients have been developed for the treatment of alopecia. Several clinical, animal, and cell-based studies have been conducted to determine the anti-alopecia effects of plant-derived biochemicals. This review is a collective study of phytochemicals with anti-alopecia effects, focusing mainly on the mechanisms underlying their hair-growth-promoting effects.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Applied Chemistry, Dongduk Women’s University, Seoul 02748, Korea;
| | - Joomin Lee
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-230-7722
| |
Collapse
|
14
|
Truong VL, Jeong WS. Hair Growth-Promoting Mechanisms of Red Ginseng Extract through Stimulating Dermal Papilla Cell Proliferation and Enhancing Skin Health. Prev Nutr Food Sci 2021; 26:275-284. [PMID: 34737988 PMCID: PMC8531430 DOI: 10.3746/pnf.2021.26.3.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate the underlying mechanisms of red ginseng extract (RGE) on regulating hair growth and hair follicle development. Results from in vitro studies showed that RGE treatment simultaneously enhanced viability and inhibited apoptosis in human hair dermal papilla cells. Moreover, RGE administration promoted telogen-to-anagen transition, prolonged anagen in hair follicular cycling, and increased the size of hair follicles and skin thickness in a C57BL/6 mouse model. Furthermore, RGE treatment significantly upregulated the expression of β-catenin, phospho-glycogen synthase kinase 3β, cyclin D1, cyclin E, and Bcl-2, phospho-extracellular signal-regulated protein kinase, and phospho-Akt, which are associated with promoting hair growth. In addition, RGE enhanced skin health by activation of antiox-idant defense systems. Our data demonstrates that hair regenerative mechanisms of RGE may be mediated by stimulating dermal papilla cell proliferation and enhancing skin functions.
Collapse
Affiliation(s)
- Van-Long Truong
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Woo-Sik Jeong
- Food and Bio-industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
15
|
Fukuyama M, Tsukashima A, Kimishima M, Yamazaki Y, Okano H, Ohyama M. Human iPS Cell-Derived Cell Aggregates Exhibited Dermal Papilla Cell Properties in in vitro Three-Dimensional Assemblage Mimicking Hair Follicle Structures. Front Cell Dev Biol 2021; 9:590333. [PMID: 34409023 PMCID: PMC8365839 DOI: 10.3389/fcell.2021.590333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Current approaches for human hair follicle (HF) regeneration mostly adopt cell-autonomous tissue reassembly in a permissive murine intracorporeal environment. This, together with the limitation in human-derived trichogenic starting materials, potentially hinders the bioengineering of human HF structures, especially for the drug discovery and treatment of hair loss disorders. In this study, we attempted to reproduce the anatomical relationship between an epithelial main body and the dermal papilla (DP) within HF in vitro by three-dimensionally assembling columnarly molded human keratinocytes (KCs) and the aggregates of DP cells and evaluated how HF characteristics were reproduced in the constructs. The replaceability of human-induced pluripotent stem cell (hiPSC)-derived DP substitutes was assessed using the aforementioned reconstruction assay. Human DP cell aggregates were embedded into Matrigel as a cluster. Subsequently, highly condensed human KCs were cylindrically injected onto DP spheroids. After 2-week culture, the structures visually mimicking HFs were obtained. KC-DP constructs partially reproduced HF microanatomy and demonstrated differential keratin (KRT) expression pattern in HFs: KRT14 in the outermost part and KRT13, KRT17, and KRT40, respectively, in the inner portion of the main body. KC-DP constructs tended to upregulate HF-related genes, KRT25, KRT33A, KRT82, WNT5A, and LEF1. Next, DP substitutes were prepared by exposing hiPSC-derived mesenchymal cells to retinoic acid and subsequently to WNT, BMP, and FGF signal activators, followed by cell aggregation. The resultant hiPSC-derived DP substitutes (iDPs) were combined with KCs in the invented assay. KC-iDP constructs morphologically resemble KC-DP constructs and analogously mimicked KRT expression pattern in HF. iDP in the constructs expressed DP-related markers, such as vimentin and versican. Intriguingly, KC-iDP constructs more intensely expressed KRT33A, KRT82, and LEF1, which were stepwisely upregulated by the addition of WNT ligand and the mixture of WNT, SHH, and EDA signaling activators, supporting the idea that iDP exhibited biological properties analogous to DP cell aggregates in the constructs in vitro. These preliminary findings suggested the possibility of regenerating DP equivalents with in vitro hair-inductive capacity using hiPSC-derived cell composites, which potentially reduce the necessity of human tissue-derived trichogenic cell subset and eventually allow xeno-free bioengineering of human HFs.
Collapse
Affiliation(s)
- Masahiro Fukuyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Aki Tsukashima
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Momoko Kimishima
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Yoshimi Yamazaki
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Suwanprakorn N, Chanvorachote P, Tongyen T, Sritularak B, Suvanprakorn P. Scoparone Induces Expression of Pluripotency Transcription Factors SOX2 and NANOG in Dermal Papilla Cells. In Vivo 2021; 35:2589-2597. [PMID: 34410946 DOI: 10.21873/invivo.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIM Dermal papilla cells (DPCs) regulate hair follicle development. We aimed to investigate the effect of scoparone from Dendrobium densiflorum on DPCs in the induction of stem cell properties and pluripotency-related proteins. MATERIALS AND METHODS DPC viability was evaluated by the MTT assay. Apoptosis or necrosis of DPCs was determined by Hoecsht33342/PI nuclear staining analysis. Expression of OCT4, NANOG and SOX2 genes was determined using Real-Time Polymerase Chain Reaction (PCR). Immunocytochemistry and western blot analysis were performed to determine pluripotency related proteins. RESULTS Scoparone increased the expression of pluripotency related transcription factors SOX2 and NANOG, while it had minimal effects on OCT4 levels. Scoparone exerted its stemness-enhancing activity through the up-regulation of Akt-dependent inhibition of GSK3β, resulting in increased cellular levels of β-catenin. CONCLUSION Our results show a potential novel activity and mechanism of action of scoparone on human DPCs that could facilitate the development of hair enrichment approaches.
Collapse
Affiliation(s)
- Nattha Suwanprakorn
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand.,Pan Rajdhevee Group Public Co., Ltd., Pathum Thani, Thailand
| | - Pithi Chanvorachote
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; .,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pichit Suvanprakorn
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand.,Pan Rajdhevee Group Public Co., Ltd., Pathum Thani, Thailand
| |
Collapse
|
17
|
Sun D, Huang Z, Xu J, Wang Y, Chen L, Hou Y, Chi G. HaCaT‑conditioned medium supplemented with the small molecule inhibitors SB431542 and CHIR99021 and the growth factor PDGF‑AA prevents the dedifferentiation of dermal papilla cells in vitro. Mol Med Rep 2021; 23:326. [PMID: 33760132 PMCID: PMC7974413 DOI: 10.3892/mmr.2021.11965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Hair loss, including alopecia, is a common and distressing problem for men and women, and as a result, there is considerable interest in developing treatments that can prevent or reverse hair loss. Dermal papillae closely interact with epidermal cells and play a key role during hair follicle induction and hair morphogenesis. As dermal papilla cells (DPCs) lose their hair‑inducing ability in monolayer cultures in vitro, it is difficult to obtain de novo hair follicle structures following DPC transplantation in vivo. The present study aimed to explore culture conditions to maintain DPC characteristics using conditioned media (CM) from the supernatant of cultured HaCaT keratinocyte cells supplemented with other components. Initially, it was observed that during passaging of in vitro monolayer DPC cultures, the Wnt/β‑catenin pathway was repressed, while the TGF‑β/Smad pathway was activated, and that HaCaT cells cultivated in 1% fetal bovine serum had higher levels of expression of Wnt3a and Wnt10b compared with normal keratinocytes. Culturing of high‑passage (P7) DPCs in CM from HaCaT cells (HaCaT‑CM) actively stimulated cell proliferation and maintained Sox2 and Versican expression levels. Supplementation of HaCaT‑CM with SB431542 (SB, a TGF‑β receptor inhibitor), CHIR99021, (CHIR, a GSK3α/β inhibitor and activator of Wnt signaling) and platelet‑derived growth factor (PDGF)‑AA further increased the expression levels of Sox2, Versican and alkaline phosphatase (ALP) in P7 DPCs. Three‑dimensional culture of P7 DPCs using hanging drop cultures in HaCaT‑CM supplemented with SB, CHIR and PDGF‑AA resulted in larger cell aggregates and a further significant upregulation of Sox2, ALP and Versican expression levels. Taken together, these findings demonstrated that HaCaT‑CM supplemented with SB, CHIR and PDGF‑AA may preserve the hair‑inducing ability of high‑passage DPCs and may therefore be useful in reconstructing new hair follicles in vivo.
Collapse
Affiliation(s)
- Dongjie Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Zhehao Huang
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yiqing Wang
- Department of Genetics, Basic Medical College of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Lin Chen
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yi Hou
- Department of Regeneration Medicine, School of Pharmaceutical Science of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
18
|
Honda Igarashi M, da Silva SG, Mercuri M, Zuardi FMDON, Facchini G, da Silva GH, Lucia Tabarini Alves Pinheiro A, Eberlin S. Novel complex of cosmetic ingredients with promising action in preventing hair loss and follicular aging through mechanism involving enrichment of WNT/signaling, mitochondrial activity, and stem cells maintenance. J Cosmet Dermatol 2020; 20:2179-2189. [PMID: 33179848 DOI: 10.1111/jocd.13815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mechanisms involved in hair metabolism are diverse, and the availability of ingredients that normalize dysfunctions or mitigate the effects of extrinsic stress suffered daily is greatly desired by consumers to improve the aesthetic appearance of hair. AIMS In this work, we carried out a preclinical exploratory approach to evaluate the effects of a complex of nanoencapsulated active ingredients (AcPi), as well as a cosmetic formulation containing AcPi (ShPi and HtPi) in mechanisms involving hair loss and follicular aging. METHODS Human hair follicle dermal papilla cells and human scalp culture were treated with AcPi, ShPi, or HtPi and stimulated with UV radiation or testosterone for further measurement of mitochondrial biogenesis, reactive oxygen species (ROS), β-catenin, dyhidrotestosterone (DHT), collagen XVIIα1 (COL17A1), and cutaneous permeation. RESULTS Our results demonstrated that AcPi prevents oxidative stress and balances mitochondial activity disturbed by exposure to UV radiation. AcPi also promoted an enrichment of WNT/β-catenin signaling pathway, stimulating hair growth, and lengthening the anagen phase of hair cycle. ShPi and HtPi were able to prevent hair aging, minimizing the excessive degradation of COL17A1 in hair follicle exposed to UV radiation, in addition to controlling androgenic metabolism by reducing DHT production. CONCLUSION The integral effects of AcPi have not been completely elucidated; however, these results, associated with clinical evidences, allow us to infer that this ingredient prevents follicular aging, miniaturization, and consequently hair loss by mechanisms involving energetic homeostasis maintenance, antioxidant, and anti-androgenic actions.
Collapse
Affiliation(s)
- Mamy Honda Igarashi
- Hypera Pharma - Mantecorp Skincare, Hynova, Alphaville, São Paulo-SP, Brazil
| | | | - Maurizio Mercuri
- Hypera Pharma - Mantecorp Skincare, Hynova, Alphaville, São Paulo-SP, Brazil
| | | | | | | | | | - Samara Eberlin
- Kosmoscience Group, Rua Sandoval Meirelles, Campinas-SP, Brazil
| |
Collapse
|
19
|
Advanced Medical Therapies in the Management of Non-Scarring Alopecia: Areata and Androgenic Alopecia. Int J Mol Sci 2020; 21:ijms21218390. [PMID: 33182308 PMCID: PMC7664905 DOI: 10.3390/ijms21218390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022] Open
Abstract
Alopecia is a challenging condition for both physicians and patients. Several topical, intralesional, oral, and surgical treatments have been developed in recent decades, but some of those therapies only provide partial improvement. Advanced medical therapies are medical products based on genes, cells, and/or tissue engineering products that have properties in regenerating, repairing, or replacing human tissue. In recent years, numerous applications have been described for advanced medical therapies. With this background, those therapies may have a role in the treatment of various types of alopecia such as alopecia areata and androgenic alopecia. The aim of this review is to provide dermatologists an overview of the different advanced medical therapies that have been applied in the treatment of alopecia, by reviewing clinical and basic research studies as well as ongoing clinical trials.
Collapse
|
20
|
Taghiabadi E, Nilforoushzadeh MA, Aghdami N. Maintaining Hair Inductivity in Human Dermal Papilla Cells: A Review of Effective Methods. Skin Pharmacol Physiol 2020; 33:280-292. [PMID: 33053562 DOI: 10.1159/000510152] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/14/2020] [Indexed: 12/29/2022]
Abstract
The dermal papilla comprises mesenchymal cells in hair follicles, which play the main role in regulating hair growth. Maintaining the potential hair inductivity of dermal papilla cells (DPCs) and dermal sheath cells during cell culture is the main factor in in vitro morphogenesis and regeneration of hair follicles. Using common methods for the cultivation of human dermal papilla reduces the maintenance requirements of the inductive capacity of the dermal papilla and the expression of specific dermal papilla biomarkers. Optimizing culture conditions is therefore crucial for DPCs. Moreover, exosomes appear to play a key role in regulating the hair follicle growth through a paracrine mechanism and provide a functional method for treating hair loss. The present review investigated the biology of DPCs, the molecular and cell signaling mechanisms contributing to hair follicle growth in humans, the properties of the dermal papilla, and the effective techniques in maintaining hair inductivity in DPC cultures in humans as well as hair follicle bioengineering.
Collapse
Affiliation(s)
- Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nasser Aghdami
- Department of Regenerative medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
21
|
Chen P, Miao Y, Zhang F, Huang J, Chen Y, Fan Z, Yang L, Wang J, Hu Z. Nanoscale microenvironment engineering based on layer-by-layer self-assembly to regulate hair follicle stem cell fate for regenerative medicine. Am J Cancer Res 2020; 10:11673-11689. [PMID: 33052240 PMCID: PMC7545990 DOI: 10.7150/thno.48723] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/09/2020] [Indexed: 01/27/2023] Open
Abstract
Hair regenerative medicine, a promising strategy for the treatment of hair loss, will likely involve the transplantation of autologous hair follicular stem cells (HFSCs) and dermal papilla cells (DPCs) into regions of hair loss. Cyclic hair regeneration results from the periodic partial activation of HFSCs. However, previous studies have not successfully achieved large-scale HFSC expansion in vitro without the use of feeder cells, with a lack of research focused on regulating HFSC fate for hair follicular (HF) regeneration. Hence, an emerging focus in regenerative medicine is the reconstruction of natural extracellular matrix (ECM) regulatory characteristics using biomaterials to generate cellular microenvironments for expanding stem cells and directing their fate for tissue regeneration. Methods: HFSCs were coated with gelatin and alginate using layer-by-layer (LbL) self-assembly technology to construct biomimetic ECM for HFSCs; after which transforming growth factor (TGF)-β2 was loaded into the coating layer, which served as a sustained-release signal molecule to regulate the fate of HFSCs both in vitro and in vivo. In vitro experiments (cell culture and siRNA) were employed to investigate the molecular mechanisms involved and in vivo implantation was carried out to evaluate hair induction efficiency. Results: Nanoscale biomimetic ECM was constructed for individual HFSCs, which allowed for the stable amplification of HFSCs and maintenance of their stem cell properties. TGF-β2 loading into the coating layer induced transformation of CD34+ stem cells into highly proliferating Lgr5+ stem cells, similar to the partial activation of HFSCs in HF regeneration. Thus, LbL coating and TGF-β2 loading partially reconstructed the quiescent and activated states, respectively, of stem cells during HF regeneration, thereby mimicking the microenvironment that regulates stem cell fate for tissue regeneration during HF cycling. Improved HF regeneration was achieved when the two HFSC states were co-transplanted with neonatal mouse dermal cells into nude mice. Conclusion: This study provides novel methods for the construction of stem cell microenvironments and experimental models of HF regeneration for the treatment of hair loss.
Collapse
|
22
|
Zhu N, Lin E, Zhang H, Liu Y, Cao G, Fu C, Chen L, Zeng Y, Cai B, Yuan Y, Xia B, Huang K, Lin C. LncRNA H19 Overexpression Activates Wnt Signaling to Maintain the Hair Follicle Regeneration Potential of Dermal Papilla Cells. Front Genet 2020; 11:694. [PMID: 32849769 PMCID: PMC7417632 DOI: 10.3389/fgene.2020.00694] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023] Open
Abstract
Androgenetic alopecia (AGA) is a common hair loss disorder resulting in seriously abnormal social interaction and psychological disorders. Transplantation with autologous dermal papilla cells represents a prospective therapy. However, the ability of dermal papilla cells to induce hair follicle development is lost upon cell culturing. Long non-coding RNAs (lncRNAs) are an important class of genes involved in various biological functions, are aberrantly expressed in disease and may play roles in the regulation of Wnt signaling, a critical pathway in maintaining the hair follicle-inducing capability of dermal papilla cells. Examination of dermal papilla cells by lncRNA microarray revealed that H19 was highly expressed in early passage dermal papilla cells compared with late-passage dermal papilla cells. In this study, we constructed H19-overexpressing dermal papilla cells to examine the role of H19 on hair follicle inductivity. Dermal papilla cells infected with lentivirus encoding H19 maintained their cell shape, and continued to display both multiple-layer aggregation and hair follicle-inducing ability upon prolonged culture. H19 exerted these effects through inducing miR-29a to activate Wnt signaling by directly downregulating the expression of Wnt suppressors, including DKK1, Kremen2, and sFRP2, thereby forming a novel regulatory feedback loop between H19 and miR-29a to maintain hair follicle- inducing potential. These results suggest that lncRNA H19 maintains the hair follicle-inducing ability of dermal papilla cells through activation of the Wnt pathway and could be a target for treatment of androgenetic alopecia.
Collapse
Affiliation(s)
- Ningxia Zhu
- Department of Pathophysiology, Guilin Medical University, Guilin, China
| | - En Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China.,Department of Reproductive Center, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Huan Zhang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Yang Liu
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Guiyuan Cao
- Department of Pathophysiology, Guilin Medical University, Guilin, China
| | - Congcong Fu
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Le Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Yang Zeng
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Bozhi Cai
- Tissue Engineering Laboratory, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yanping Yuan
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Bin Xia
- Department of Pathophysiology, Guilin Medical University, Guilin, China
| | - Keng Huang
- Department of Emergency, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| |
Collapse
|
23
|
Kim JE, Lee YJ, Park HR, Lee DG, Jeong KH, Kang H. The Effect of JAK Inhibitor on the Survival, Anagen Re-Entry, and Hair Follicle Immune Privilege Restoration in Human Dermal Papilla Cells. Int J Mol Sci 2020; 21:ijms21145137. [PMID: 32698510 PMCID: PMC7404120 DOI: 10.3390/ijms21145137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Topical or systemic administration of JAK inhibitors has been shown to be a new treatment modality for severe alopecia areata (AA). Some patients show a good response to JAK inhibitors, but frequently relapse after cessation of the treatment. There have been no guidelines about the indications and use of JAK inhibitors in treating AA. The basic pathomechanism of AA and the relevant role of JAK inhibitors should support how to efficiently use JAK inhibitors. We sought to investigate the effect of JAK1/2 inhibitor on an in vitro model of AA and to examine the possible mechanisms. We used interferon gamma-pretreated human dermal papilla cells (hDPCs) as an in vitro model of AA. Ruxolitinib was administered to the hDPCs, and cell viability was assessed. The change of expression of the Wnt/β-catenin pathway, molecules related to the JAK-STAT pathway, and growth factors in ruxolitinib-treated hDPCs was also examined by reverse transcription PCR and Western blot assay. We examined immune-privilege-related molecules by immunohistochemistry in hair-follicle culture models. Ruxolitinib did not affect the cell viability of the hDPCs. Ruxolitinib activated several molecules in the Wnt/β-catenin signaling pathway, including Lef1 and β-catenin, and suppressed the transcription of DKK1 in hDPCs, but not its translation. Ruxolitinib reverted IFN-γ-induced expression of caspase-1, IL-1β, IL-15, and IL-18, and stimulated several growth factors, such as FGF7. Ruxolitinib suppressed the phosphorylation of JAK1, JAK2 and JAK3, and STAT1 and 3 compared to IFN-γ pretreated hDPCs. Ruxolitinib pretreatment showed a protective effect on IFN-γ-induced expression of MHC-class II molecules in cultured hair follicles. In conclusion, ruxolitinib modulated and reverted the interferon-induced inflammatory changes by blocking the JAK-STAT pathway in hDPCs under an AA-like environment. Ruxolitinib directly stimulated anagen-re-entry signals in hDPCs by affecting the Wnt/β-catenin pathway and promoting growth factors in hDPCs. Ruxolitinib treatment prevented IFN-γ-induced collapse of hair-follicle immune privilege.
Collapse
Affiliation(s)
- Jung Eun Kim
- Correspondence: (J.E.K.); (H.K.); Tel.: +82-02-2030-2846 (J.E.K.); +82-02-2030-2845 (H.K.)
| | | | | | | | | | - Hoon Kang
- Correspondence: (J.E.K.); (H.K.); Tel.: +82-02-2030-2846 (J.E.K.); +82-02-2030-2845 (H.K.)
| |
Collapse
|
24
|
Kanayama K, Takada H, Saito N, Kato H, Kinoshita K, Shirado T, Mashiko T, Asahi R, Mori M, Tashiro K, Sunaga A, Kurisaki A, Yoshizato K, Yoshimura K. Hair Regeneration Potential of Human Dermal Sheath Cells Cultured Under Physiological Oxygen. Tissue Eng Part A 2020; 26:1147-1157. [PMID: 32408803 DOI: 10.1089/ten.tea.2019.0329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We investigated the effect of oxygen tension on the proliferation and hair-inductive capacity of human dermal papilla cells (DPCs) and dermal sheath cells (DSCs). DPCs and DSCs were separately obtained from human hair follicles and each cultured under atmospheric/hyperoxic (20% O2), physiological/normoxic (6% O2), or hypoxic (1% O2) conditions. Proliferation of DPCs and DSCs was highest under normoxia. Compared with hyperoxia, hypoxia inhibited proliferation of DPCs, but enhanced that of DSCs. In DPCs, hypoxia downregulated the expression of hair-inductive capacity-related genes, including BMP4, LEF1, SOX2, and VCAN. In DSCs, both normoxia and hypoxia upregulated SOX2 expression, whereas hypoxia downregulated BMP4 expression. Microarray analysis revealed that normoxia increased the expression of pluripotency-related genes, including SPRY, NR0B1, MSX2, IFITM1, and DAZL, compared with hyperoxia. In an in vivo hair follicle reconstitution assay, cultured DPCs and DSCs were transplanted with newborn mouse epidermal keratinocytes into nude mice using a chamber method. In this experiment, normoxia resulted in the most efficient induction of DPC hair follicles, whereas hypoxia caused the most efficient induction and maturation of DSC hair follicles. These results suggest that application of physiological/hypoxic oxygen tension to cultured human DSCs enhances proliferation and maintenance of hair inductivity for skin engineering and clinical applications. Impact statement Dermal sheath cells (DSCs) and dermal papilla cells (DPCs) are useful cell sources for cell-based regenerative therapy. This is the first report to describe that low-oxygen conditions are better for DSCs. Normoxic and hypoxic culture of DSCs is beneficial for expanding these hair follicular cells and advancing development of cell-based therapy for both wound healing and hair regeneration. The current study supports that optimized oxygen tension can be applied to use expanded human DPCs and DSCs for skin engineering and clinical applications.
Collapse
Affiliation(s)
- Koji Kanayama
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan.,Department of Plastic Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Hitomi Takada
- Laboratory of Stem Cell Technology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma City, Japan
| | - Natsumi Saito
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Harunosuke Kato
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Kahori Kinoshita
- Department of Plastic Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Takako Shirado
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Takanobu Mashiko
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan.,Department of Plastic Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Rintaro Asahi
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Masanori Mori
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Kensuke Tashiro
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Ataru Sunaga
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| | - Akira Kurisaki
- Laboratory of Stem Cell Technology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma City, Japan
| | - Katsutoshi Yoshizato
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan.,Synthetic Biology Laboratory, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kotaro Yoshimura
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke City, Japan
| |
Collapse
|
25
|
Su Y, Wen J, Zhu J, Xie Z, Liu C, Ma C, Zhang Q, Xu X, Wu X. Pre-aggregation of scalp progenitor dermal and epidermal stem cells activates the WNT pathway and promotes hair follicle formation in in vitro and in vivo systems. Stem Cell Res Ther 2019; 10:403. [PMID: 31856904 PMCID: PMC6921573 DOI: 10.1186/s13287-019-1504-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Billions of dollars are invested annually by pharmaceutical companies in search of new options for treating hair loss conditions; nevertheless, the challenge remains. One major limitation to hair follicle research is the lack of effective and efficient drug screening systems using human cells. Organoids, three-dimensional in vitro structures derived from stem cells, provide new opportunities for studying organ development, tissue regeneration, and disease pathogenesis. The present study focuses on the formation of human hair follicle organoids. METHODS Scalp-derived dermal progenitor cells mixed with foreskin-derived epidermal stem cells at a 2:1 ratio aggregated in suspension to form hair follicle-like organoids, which were confirmed by immunostaining of hair follicle markers and by molecular dye labeling assays to analyze dermal and epidermal cell organization in those organoids. The hair-forming potential of organoids was examined using an in vivo transplantation assay. RESULTS Pre-aggregation of dermal and epidermal cells enhanced hair follicle formation in vivo. In vitro pre-aggregation initiated the interactions of epidermal and dermal progenitor cells resulting in activation of the WNT pathway and the formation of pear-shape structures, named type I aggregates. Cell-tracing analysis showed that the dermal and epidermal cells self-assembled into distinct epidermal and dermal compartments. Histologically, the type I aggregates expressed early hair follicle markers, suggesting the hair peg-like phase of hair follicle morphogenesis. The addition of recombinant WNT3a protein to the medium enhanced the formation of these aggregates, and the Wnt effect could be blocked by the WNT inhibitor, IWP2. CONCLUSIONS In summary, our system supports the rapid formation of a large number of hair follicle organoids (type I aggregates). This system provides a platform for studying epithelial-mesenchymal interactions, for assessing inductive hair stem cells and for screening compounds that support hair follicle regeneration.
Collapse
Affiliation(s)
- Yiqun Su
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Jinan, China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Junrong Zhu
- Women and Children's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Zhiwei Xie
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chuan Ma
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qun Zhang
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
- Department of Implantology, School and Hospital of Stomatology, Shandong University, Jinan, China.
- School of Stomatology, Shandong University, 44-1 Wenhua West Road, Jinan, 250014, Shandong, China.
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, China.
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
- School of Stomatology, Shandong University, 44-1 Wenhua West Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
26
|
Zhou Q, Song Y, Zheng Q, Han R, Cheng H. Expression profile analysis of dermal papilla cells mRNA in response to WNT10B treatment. Exp Ther Med 2019; 19:1017-1023. [PMID: 32010264 PMCID: PMC6966109 DOI: 10.3892/etm.2019.8287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Dermal papilla cells (DPCs) are associated with the development of hair follicles (HFs) and the regulation of the hair growth cycle. Previous studies have shown that Wnt family member 10B (WNT10B) plays an important role in the proliferation and survival of DPCs in vitro, and promotes the growth of HFs. However, the underlying mechanisms have not been fully elucidated. The present study evaluated the role of WNT10B in regulating HF morphogenesis by characterizing the differential gene expression profiles between WNT10B-treated DPCs and control DPCs using RNA-sequencing (RNA-seq). A total of 1,073 and 451 genes were upregulated and downregulated, respectively. The RNA-seq data was subsequently validated by reverse-transcription quantitative PCR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 442 GO terms and 21 KEGG pathways were significantly enriched. Further functional analysis revealed that WNT10B decreased translation initiation, elongation and termination, and RNA metabolic processes in cultured DPCs compared with controls in vitro. Human signaling networks were compared using pathway analysis, and treatment of DPCs with WNT10B was revealed to downregulate the ribosome biogenesis pathway and decrease protein synthesis in vitro. KEGG pathway analysis showed that WNT10B upregulated the phosphoinositide 3-kinase/protein kinase B signaling pathway. The present study analyzed the expression of mRNA in WNT10B-treated DPCs using next-generation sequencing and uncovered mechanisms regulating the induction of HFs.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yinjing Song
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Qiaoli Zheng
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Rui Han
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
27
|
Wnt activator CHIR99021-stimulated human dermal papilla spheroids contribute to hair follicle formation and production of reconstituted follicle-enriched human skin. Biochem Biophys Res Commun 2019; 516:599-605. [DOI: 10.1016/j.bbrc.2019.06.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
|
28
|
Lee HJ, Kwon HK, Kim HS, Kim MI, Park HJ. Hair Growth Promoting Effect of 4HGF Encapsulated with PGA Nanoparticles (PGA-4HGF) by β-Catenin Activation and Its Related Cell Cycle Molecules. Int J Mol Sci 2019; 20:E3447. [PMID: 31337050 PMCID: PMC6678797 DOI: 10.3390/ijms20143447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Poly-γ-glutamic acid (γ-PGA)-based nanoparticles draw remarkable attention as drug delivery agents due to their controlled release characteristics, low toxicity, and biocompatibility. 4HGF is an herbal mixture of Phellinus linteus grown on germinated brown rice, Cordyceps militaris grown on germinated soybeans, Polygonum multiflorum, Ficus carica, and Cocos nucifera oil. Here, we encapsulated 4HGF within PGA-based hydrogel nanoparticles, prepared by simple ionic gelation with chitosan, to facilitate its penetration into hair follicles (HFs). In this study, we report the hair promoting activity of 4HGF encapsulated with PGA nanoparticles (PGA-4HGF) and their mechanism, compared to 4HGF alone. The average size of spherical nanoparticles was ~400 nm in diameter. Continuous release of PGA-4HGF was observed in a simulated physiological condition. As expected, PGA-4HGF treatment increased hair length, induced earlier anagen initiation, and elongated the duration of the anagen phase in C57BL/6N mice, compared with free 4HGF treatment. PGA-4HGF significantly increased dermal papilla cell proliferation and induced cell cycle progression. PGA-4HGF also significantly increased the total amount of β-catenin protein expression, a stimulator of the anagen phase, through induction of cyclinD1 and CDK4 protein levels, compared to free 4HGF treatment. Our findings underscore the potential of PGA nanocapsules to efficiently deliver 4HGF into HFs, hence promoting hair-growth. Therefore, PGA-4HGF nanoparticles may be promising therapeutic agents for hair growth disorders.
Collapse
Affiliation(s)
- Hye-Ji Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Ha-Kyoung Kwon
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Hye Su Kim
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Moon Il Kim
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| |
Collapse
|
29
|
Park J, Jun EK, Son D, Hong W, Jang J, Yun W, Yoon BS, Song G, Kim IY, You S. Overexpression of Nanog in amniotic fluid-derived mesenchymal stem cells accelerates dermal papilla cell activity and promotes hair follicle regeneration. Exp Mol Med 2019; 51:1-15. [PMID: 31273189 PMCID: PMC6802618 DOI: 10.1038/s12276-019-0266-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Alopecia, one of the most common chronic diseases, can seriously affect a patient's psychosocial life. Dermal papilla (DP) cells serve as essential signaling centers in the regulation of hair growth and regeneration and are associated with crosstalk between autocrine/paracrine factors and the surrounding environment. We previously demonstrated that amniotic fluid-derived mesenchymal stem cell-conditioned medium (AF-MSC-CM) accelerates hair regeneration and growth. The present study describes the effects of overexpression of a reprogramming factor, Nanog, on MSC properties, the paracrine effects on DP cells, and in vivo hair regrowth. First, we examined the in vitro proliferation and lifespan of AF-MSCs overexpressing reprogramming factors, including Oct4, Nanog, and Lin28, alone or in combination. Among these factors, Nanog was identified as a key factor in maintaining the self-renewal capability of AF-MSCs by delaying cellular senescence, increasing the endogenous expression of Oct4 and Sox2, and preserving stemness. Next, we evaluated the paracrine effects of AF-MSCs overexpressing Nanog (AF-N-MSCs) by monitoring secretory molecules related to hair regeneration and growth (IGF, PDGF, bFGF, and Wnt7a) and proliferation of DP cells. In vivo studies revealed that CM derived from AF-N-MSCs (AF-N-CM) accelerated the telogen-to-anagen transition in hair follicles (HFs) and increased HF density. The expression of DP and HF stem cell markers and genes related to hair induction were higher in AF-N-CM than in CM from AF-MSCs (AF-CM). This study suggests that the secretome from autologous MSCs overexpressing Nanog could be an excellent candidate as a powerful anagen inducer and hair growth stimulator for the treatment of alopecia.
Collapse
Affiliation(s)
- Junghyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Eun Kyoung Jun
- Institute of Regenerative Medicine, STEMLAB, Inc., Seoul, 02841, Republic of Korea
| | - Daryeon Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Wonjun Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jihoon Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Wonjin Yun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Byung Sun Yoon
- Institute of Regenerative Medicine, STEMLAB, Inc., Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| | - In Yong Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea. .,Department of Neurosurgery, College of Medicine, Korea University, Seoul, 02841, South Korea.
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea. .,Institute of Animal Molecular Biotechnology, Korea University, Seoul, 136-701, South Korea.
| |
Collapse
|
30
|
Ginsenoside Rb1 promotes the growth of mink hair follicle via PI3K/AKT/GSK-3β signaling pathway. Life Sci 2019; 229:210-218. [PMID: 31102746 DOI: 10.1016/j.lfs.2019.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
AIMS Hair follicles play a critical role in the process of hair growth. The dermal papilla cells (DPCs) are an important component in the hair follicle regeneration and growth. This study investigated the effects of ginsenoside Rb1 on the growth of cultured mink hair follicles and DPCs. MAIN METHODS The mink hair follicles were treated with ginsenoside Rb1 for 9 days and their lengths were measured every three days. Real-time PCR was used to determine the mRNA expression of vascularization endothelial growth factor A (VEGF-A), VEGF receptor 2 (VEGF-R2) and TGF-β1. In addition, the levels of proteins were detected by western blot. Cell proliferation was determined by immunofluorescence staining of proliferation marker Ki-67 and cell cycle analysis was performed on flow cytometry. Moreover, cell migration was evaluated by wound healing assay. KEY FINDINGS Ginsenoside Rb1 promoted the growth of hair follicles, and proliferation and migration of DPCs. Ginsenoside Rb1 improved the expression levels of VEGFA and VEGF-R2, while attenuated the TGF-β1 expression both in hair follicles and DPCs. Furthermore, ginsenoside Rb1 facilitated the activation of PI3K/AKT/GSK-3β signaling pathway in hair follicles and DPCs. SIGNIFICANCE The results reveals a crucial role of PI3K/AKT/GSK-3β signaling pathway in ginsenoside Rb1-induced growth of hair follicles and DPCs.
Collapse
|
31
|
Nam GH, Jo KJ, Park YS, Kawk HW, Yoo JG, Jang JD, Kang SM, Kim SY, Kim YM. Bacillus/Trapa japonica Fruit Extract Ferment Filtrate enhances human hair follicle dermal papilla cell proliferation via the Akt/ERK/GSK-3β signaling pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:104. [PMID: 31088549 PMCID: PMC6518747 DOI: 10.1186/s12906-019-2514-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Despite advances in medical treatments, the proportion of the population suffering from alopecia is increasing, creating a need for new treatments to control hair loss and prevent balding. Treatments based on plant-derived compounds could potentially prevent hair loss. Human hair follicle dermal papilla (HDP) cells, a type of specialized fibroblast in the hair bulb, play an essential role in controlling hair growth and in conditions such as androgenic alopecia. We examined the effect of Bacillus/Trapa japonica fruit ferment filtrate extracts (TJFs) on HDP cells to determine whether activation of the Akt/ERK/GSK-3β signaling pathway improved HDP cell proliferation. METHODS We prepared TJFs using various methods. The extract properties were analyzed using WST-1, Lowry, and cell migration assays as well as immunofluorescence staining. We also determined the cell cycle stage and performed western blotting and an in ovo chick chorioallantoic membrane assay. Last, we constructed an organotypic three-dimensional cell culture model for immunohistochemical use. RESULTS Our study confirmed that the TJFs contained numerous peptides and five unknown fractions. The TJFs stimulated HDP cell proliferation and migration via the Akt/ERK/GSK-3β signaling pathway. To verify that the Akt/ERK/GSK-3β pathway affected HDP cell proliferation, we treated HDP cells with LY294002 (an Akt inhibitor), BIO (a GSK-3β inhibitor), and PD98059 (an ERK inhibitor). The TJFs also induced cell cycle progression, inhibited type І 5α-reductase, decreased apoptosis, and enhanced angiogenesis (vascular expansion). In addition to these signaling pathways, proteins including insulin-like growth factor-1 and keratinocyte growth factor, stimulating hair growth, were detected in the three-dimensional cell culture model. CONCLUSIONS Our results confirmed that TJFs enhance HDP cell proliferation via the Akt/ERK/GSK-3β signaling pathway, suggesting a potential treatment for alopecia.
Collapse
Affiliation(s)
- Gun-He Nam
- Department of Biological science and Biotechnology, College of Life science and Nano technology, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon, 34054 South Korea
| | - Kyung-Jo Jo
- Department of Biological science and Biotechnology, College of Life science and Nano technology, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon, 34054 South Korea
| | - Ye-Seul Park
- Department of Biological science and Biotechnology, College of Life science and Nano technology, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon, 34054 South Korea
| | - Hye Won Kawk
- Department of Biological science and Biotechnology, College of Life science and Nano technology, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon, 34054 South Korea
| | - Je-Geun Yoo
- Department of Biological science and Biotechnology, College of Life science and Nano technology, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon, 34054 South Korea
| | - Jin Dong Jang
- Doori Cosmetics Co.,Ltd., 11F Galaxy Tower, 175, Saimdang-ro, Seocho-gu, Seoul, South Korea
| | - Sang Moon Kang
- ANPEP INC., 13, Oksansandan 1-ro, Oksan-myeon, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do Republic of Korea
| | - Sang-Yong Kim
- Department of Food Science & Bio Technology, Shinansan University, Daehakro Danwon-gu, Ansan City, Gyenggi-do South Korea
| | - Young-Min Kim
- Department of Biological science and Biotechnology, College of Life science and Nano technology, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon, 34054 South Korea
| |
Collapse
|
32
|
Preparation of hair beads and hair follicle germs for regenerative medicine. Biomaterials 2019; 212:55-63. [PMID: 31103946 DOI: 10.1016/j.biomaterials.2019.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/24/2022]
Abstract
Hair regenerative medicine is a promising approach for hair loss, during which autologous follicular stem cells are transplanted into regions of hair loss to regenerate hairs. Because cells transplanted as a single cell suspension scarcely generate hairs, the engineering of three-dimensional (3D) tissues before transplantation has been explored to improve this process. Here, we propose an approach to fabricate collagen-enriched cell aggregates, named hair beads (HBs), through the spontaneous constriction of cell-encapsulated collagen drops. Mouse embryonic mesenchymal cells or human dermal papilla cells were encapsulated in 2-μl collagen microgels, which were concentrated >10-fold in volume during 3 days of culture. Interestingly, HB constriction was attributed to attraction forces driven by myosin II and involved the upregulation of follicular genes. Single HBs with epithelial cells seeded in U-shaped microwells formed dumbbell-like structures comprising respective aggregates (named bead-based hair follicle germs, bbHFGs), during 3 days of culture. bbHFGs efficiently generated hair follicles upon intracutaneous transplantation into the backs of nude mice. Using an automated spotter, this approach was scalable to prepare a large number of bbHFGs, which is important for clinical applications. Therefore, this could represent a robust and practical approach for the preparation of germ-like tissues for hair regenerative medicine.
Collapse
|
33
|
Ohyama M. Use of human intra-tissue stem/progenitor cells and induced pluripotent stem cells for hair follicle regeneration. Inflamm Regen 2019; 39:4. [PMID: 30834027 PMCID: PMC6388497 DOI: 10.1186/s41232-019-0093-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/23/2019] [Indexed: 01/07/2023] Open
Abstract
Background The hair follicle (HF) is a unique miniorgan, which self-renews for a lifetime. Stem cell populations of multiple lineages reside within human HF and enable its regeneration. In addition to resident HF stem/progenitor cells (HFSPCs), the cells with similar biological properties can be induced from human-induced pluripotent stem cells (hiPSCs). As approaches to regenerate HF by combining HF-derived cells have been established in rodents and a huge demand exists to treat hair loss diseases, attempts have been made to bioengineer human HF using HFSPCs or hiPSCs. Main body of the abstract The aim of this review is to comprehensively summarize the strategies to regenerate human HF using HFSPCs or hiPSCs. HF morphogenesis and regeneration are enabled by well-orchestrated epithelial-mesenchymal interactions (EMIs). In rodents, various combinations of keratinocytes with mesenchymal (dermal) cells with trichogenic capacity, which were transplanted into in vivo environment, have successfully generated HF structures. The regeneration efficiency was higher, when epithelial or dermal HFSPCs were adopted. The success in HF formation most likely depended on high receptivity to trichogenic dermal signals and/or potent hair inductive capacity of HFSPCs. In theory, the use of epithelial HFSPCs in the bulge area and dermal papilla cells, their precursor cells in the dermal sheath, or trichogenic neonatal dermal cells should elicit intense EMI sufficient for HF formation. However, technical hurdles, represented by the limitation in starting materials and the loss of intrinsic properties during in vitro expansion, hamper the stable reconstitution of human HFs with this approach. Several strategies, including the amelioration of culture condition or compartmentalization of cells to strengthen EMI, can be conceived to overcome this obstacle. Obviously, use of hiPSCs can resolve the shortage of the materials once reliable protocols to induce wanted HFSPC subsets have been developed, which is in progress. Taking advantage of their pluripotency, hiPSCs may facilitate previously unthinkable approaches to regenerate human HFs, for instance, via bioengineering of 3D integumentary organ system, which can also be applied for the treatment of other diseases. Short conclusion Further development of methodologies to reproduce bona fide EMI in HF formation is indispensable. However, human HFSPCs and hiPSCs hold promise as materials for human HF regeneration.
Collapse
Affiliation(s)
- Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611 Japan
| |
Collapse
|
34
|
Nilforoushzadeh MA, Zare M, Zarrintaj P, Alizadeh E, Taghiabadi E, Heidari-Kharaji M, Amirkhani MA, Saeb MR, Mozafari M. Engineering the niche for hair regeneration - A critical review. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 15:70-85. [PMID: 30201489 DOI: 10.1016/j.nano.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/06/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
Recent progress in hair follicle regeneration and alopecia treatment necessitates revisiting the concepts and approaches. In this sense, there is a need for shedding light on the clinical and surgical therapies benefitting from nanobiomedicine. From this perspective, this review attempts to recognize requirements upon which new hair therapies are grounded; to underline shortcomings and opportunities associated with recent advanced strategies for hair regeneration; and most critically to look over hair regeneration from nanomaterials and pluripotent stem cell standpoint. It is noteworthy that nanotechnology is able to illuminate a novel path for reprogramming cells and controlled differentiation to achieve the desired performance. Undoubtedly, this strategy needs further advancement and a lot of critical questions have yet to be answered. Herein, we introduce the salient features, the hurdles that must be overcome, the hopes, and practical constraints to engineer stem cell niches for hair follicle regeneration.
Collapse
Affiliation(s)
| | - Mehrak Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Taghiabadi
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Kim JE, Oh JH, Woo YJ, Jung JH, Jeong KH, Kang H. Effects of mesenchymal stem cell therapy on alopecia areata in cellular and hair follicle organ culture models. Exp Dermatol 2018; 29:265-272. [PMID: 30372797 DOI: 10.1111/exd.13812] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/30/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cell therapy (MSCT) has been suggested as a new therapeutic strategy for immunological disorders. There have been only a few attempts to treat alopecia areata (AA) with MSCT. MSCT efficacy and mechanism of action in treating AA are not known. We sought to investigate the effect of human hematopoietic mesenchymal stem cells (hHMSCs) on an in vitro model of AA and to explore relevant mechanisms that regulate efficacy. An AA-like environment was induced by pretreatment of human dermal papilla cells (hDPCs) with interferon gamma (IFN-γ). hHMSCs were administered to the hDPCs, and cell viability was determined. Similar studies were also conducted with human hair follicles (HFs) in culture. The change in expression of the Wnt/β-catenin pathway and JAK/STAT pathway-related molecules and growth factors in hHMSC-treated hDPCs was also examined by reverse transcription-PCR, Western blot assay and growth factor array. Immune privilege-related molecules were examined by immunohistochemistry in HF culture models. hHMSCs enhanced the cell viability of the hDPCs. hHMSCs activated several molecules in the Wnt/β-catenin signalling pathway, including ß-catenin and phosphorylated GSK3b, and decreased IFN-γ-induced expression of DKK1 in hDPCs. hHMSCs suppressed IFN-γ-induced expression of caspase-1, caspase-3 and IFN-γ receptor. hHMSCs induced the phosphorylation of STAT1 and STAT3 compared to controls and IFN-γ-pretreated hDPCs. hHMSC-treated HFs enhanced several growth factor mRNAs. hHMSC pretreatment modulated IFN-γ-induced expression of molecules related to HF immune privilege on HFs in organ culture. These data suggest MSCT may be a new potential therapeutic option in treating AA.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jee Hye Oh
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Jun Woo
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hee Jung
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kwan Ho Jeong
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hoon Kang
- Department of Dermatology, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
36
|
Bak SS, Kwack MH, Shin HS, Kim JC, Kim MK, Sung YK. Restoration of hair-inductive activity of cultured human follicular keratinocytes by co-culturing with dermal papilla cells. Biochem Biophys Res Commun 2018; 505:360-364. [PMID: 30253942 DOI: 10.1016/j.bbrc.2018.09.125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022]
Abstract
Hair follicle outer root sheath (ORS) cells can be expanded in vitro, but often lose receptivity to hair-inducing dermal signals. Recent studies have shown hair-inductive activity (trichogenicity) can be restored in rat ORS cells expanded with a fibroblast feeder by co-culturing with rat vibrissae dermal papilla (DP) cells. In this study, we investigated whether the trichogenicity of human ORS cells can be restored by co-culturing with human DP cells. ORS cells from human scalp hair follicles were cultured independently or with DP cells for 5 days and implanted into nude mice alongside freshly isolated neonatal mouse dermal cells. Although there was no hair induction when monocultured ORS cells were implanted, it was observed in co-cultured ORS cells. We also observed differential regulation of a number of genes in ORS cells co-cultured with DP cells compared to monocultured ORS cells as examined by microarray. Taken together, our data strongly suggest that human DP cells restore the trichogenicity of co-cultured ORS cells by influencing ORS gene expression through paracrine factors.
Collapse
Affiliation(s)
- Soon Sun Bak
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Mi Hee Kwack
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun Su Shin
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung Chul Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Moon Kyu Kim
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young Kwan Sung
- Department of Immunology, School of Medicine, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
37
|
Choi YM, Choi SY, Kim H, Kim J, Ki MS, An IS, Jung J. TGFβ family mimetic peptide promotes proliferation of human hair follicle dermal papilla cells and hair growth in C57BL/6 mice. BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-018-0033-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Gupta AC, Chawla S, Hegde A, Singh D, Bandyopadhyay B, Lakshmanan CC, Kalsi G, Ghosh S. Establishment of an in vitro organoid model of dermal papilla of human hair follicle. J Cell Physiol 2018; 233:9015-9030. [DOI: 10.1002/jcp.26853] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/10/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Abhishak C. Gupta
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | - Shikha Chawla
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | - Ashok Hegde
- ITC Life Sciences and Technology Centre, ITC Ltd. Bangalore India
| | - Divya Singh
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| | | | | | - Gurpreet Kalsi
- ITC Life Sciences and Technology Centre, ITC Ltd. Bangalore India
| | - Sourabh Ghosh
- Department of Textile Technology, Regenerative Engineering Laboratory Indian Institute of Technology Delhi India
| |
Collapse
|
39
|
Differential expression of miR-let7a in hair follicle cycle of Liaoning cashmere goats and identification of its targets. Funct Integr Genomics 2018; 18:701-707. [DOI: 10.1007/s10142-018-0616-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
|
40
|
Truong VL, Bak MJ, Lee C, Jun M, Jeong WS. Hair Regenerative Mechanisms of Red Ginseng Oil and Its Major Components in the Testosterone-Induced Delay of Anagen Entry in C57BL/6 Mice. Molecules 2017; 22:molecules22091505. [PMID: 28885585 PMCID: PMC6151708 DOI: 10.3390/molecules22091505] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022] Open
Abstract
Hair loss (alopecia) is a universal problem for numerous people in the world. The present study was conducted to investigate the effects of red ginseng oil (RGO) and its major components on hair re-growth using testosterone (TES)-induced delay of anagen entry in C57BL/6 mice and their mechanisms of action. Seven-week-old C57BL/6 mice were daily treated with TES for 1 h prior to topical application of 10% RGO, 1% linoleic acid (LA), 1% β-sitosterol (SITOS), or 1% bicyclo(10.1.0)tridec-1-ene (BICYCLO) once a day for 28 days. Hair regenerative capacity was significantly restored by treatment of RGO and its major compounds in the TES-treated mice. Histological analysis showed that RGO along with LA and SITOS but not BICYCLO promoted hair growth through early inducing anagen phase that was delayed by TES in mice. Treatment of mice with RGO, LA, or SITOS up-regulated Wnt/β-catenin and Shh/Gli pathways-mediated expression of genes such as β-catenin, Lef-1, Sonic hedgehog, Smoothened, Gli-1, Cyclin D1, and Cyclin E in the TES-treated mice. In addition, RGO and its major components reduced the protein level of TGF-β but enhanced the expression of anti-apoptotic protein Bcl-2. These results suggest that RGO is a potent novel therapeutic natural product for treatment of androgenic alopecia possibly through hair re-growth activity of its major components such as LA and SITOS.
Collapse
Affiliation(s)
- Van-Long Truong
- Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae 50834, Korea.
| | - Min Ji Bak
- Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae 50834, Korea.
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Changook Lee
- Department of Pharmaceutics, College of Pharmacy, Inje University, Gimhae 50834, Korea.
| | - Mira Jun
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea.
| | - Woo-Sik Jeong
- Department of Food and Life Sciences, College of BNIT, Inje University, Gimhae 50834, Korea.
| |
Collapse
|
41
|
Guan W, Yu X, Li J, Deng Q, Zhang Y, Gao J, Xia P, Yuan Y, Gao J, Zhou L, Han W, Yu Y. Anti-CXCL4 monoclonal antibody accelerates telogen to anagen transition and attenuates apoptosis of the hair follicle in mice. Exp Ther Med 2017; 14:1001-1008. [PMID: 28810552 PMCID: PMC5525575 DOI: 10.3892/etm.2017.4578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/10/2017] [Indexed: 11/15/2022] Open
Abstract
Although hair loss or alopecia is a common disease, its exact mechanisms are not yet well understood. The present study investigated the hypothesis that the homeostatic regulation of genes during hair regeneration may participate in hair loss, based on the cyclicity of hair growth. A cluster of such genes was identified by an expression gene-array from the dorsal skin in a depilated mouse model, and CXCL4 was identified as a significantly regulated gene during the hair regeneration process. To elucidate the function of CXCL4 in hair growth, CXCL4 activity was blocked by the administration of an anti-CXCL4 monoclonal antibody (mAb). Histomorphometric analysis indicated that anti-CXCL4 mAb induced an earlier anagen phase and delayed hair follicle regression, in contrast with that in the control group. Moreover, CXCL4 mAb upregulated the transcription levels of several hair growth-related genes, including Lef1, Wnt10b, Bmp4 and Bmp2. In addition, CXCL4 mAb increased the levels of the proliferation-related protein PCNA and Bcl-2 during the anagen phase, while it reduced the expression of pro-apoptotic protein Bax and cleaved caspase-3 during the catagen phase. These findings reveal that CXCL4 plays an important role in hair growth, and that blockade of CXCL4 activity promotes hair growth.
Collapse
Affiliation(s)
- Wen Guan
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaolan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Jingjing Li
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Qing Deng
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Yang Zhang
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Jing Gao
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Peng Xia
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Yunsheng Yuan
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Jin Gao
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Liang Zhou
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Wei Han
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| |
Collapse
|
42
|
Veraitch O, Mabuchi Y, Matsuzaki Y, Sasaki T, Okuno H, Tsukashima A, Amagai M, Okano H, Ohyama M. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells. Sci Rep 2017; 7:42777. [PMID: 28220862 PMCID: PMC5318903 DOI: 10.1038/srep42777] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
The dermal papilla (DP) is a specialised mesenchymal component of the hair follicle (HF) that plays key roles in HF morphogenesis and regeneration. Current technical difficulties in preparing trichogenic human DP cells could be overcome by the use of highly proliferative and plastic human induced pluripotent stem cells (hiPSCs). In this study, hiPSCs were differentiated into induced mesenchymal cells (iMCs) with a bone marrow stromal cell phenotype. A highly proliferative and plastic LNGFR(+)THY-1(+) subset of iMCs was subsequently programmed using retinoic acid and DP cell activating culture medium to acquire DP properties. The resultant cells (induced DP-substituting cells [iDPSCs]) exhibited up-regulated DP markers, interacted with human keratinocytes to up-regulate HF related genes, and when co-grafted with human keratinocytes in vivo gave rise to fibre structures with a hair cuticle-like coat resembling the hair shaft, as confirmed by scanning electron microscope analysis. Furthermore, iDPSCs responded to the clinically used hair growth reagent, minoxidil sulfate, to up-regulate DP genes, further supporting that they were capable of, at least in part, reproducing DP properties. Thus, LNGFR(+)THY-1(+) iMCs may provide material for HF bioengineering and drug screening for hair diseases.
Collapse
Affiliation(s)
- Ophelia Veraitch
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Biochemistry and Biophysics, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Laboratory of Tumor Biology, Department of Life Sciences, Faculty of Medicine, Shimane University, Shiojicho 89-1, Izumo-shi, Shimane, 693-8501, Japan
| | - Takashi Sasaki
- KOSÉ Endowed Program for Skin Care and Allergy Prevention, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hironobu Okuno
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Aki Tsukashima
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Dermatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, Japan
| |
Collapse
|
43
|
Sugiyama-Nakagiri Y, Fujimura T, Moriwaki S. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells. PLoS One 2016; 11:e0168451. [PMID: 27992514 PMCID: PMC5167543 DOI: 10.1371/journal.pone.0168451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022] Open
Abstract
The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.
Collapse
|
44
|
The Hair Growth-Promoting Effect of Rumex japonicus Houtt. Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1873746. [PMID: 27974900 PMCID: PMC5128716 DOI: 10.1155/2016/1873746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023]
Abstract
Rumex japonicus Houtt. is traditionally used as a medicinal plant to treat patients suffering from skin disease in Korea. However, the beneficial effect of Rumex japonicus Houtt. on hair growth has not been thoroughly examined. Therefore, the present study aims to investigate the hair growth-promoting effect of Rumex japonicus (RJ) Houtt. root extract using human dermal papilla cells (DPCs), HaCaT cells, and C57BL/6 mice model. RJ induced antiapoptotic and proliferative effects on DPCs and HaCaT cells by increasing Bcl-2/Bax ratio and activating cellular proliferation-related proteins, ERK and Akt. RJ also increased β-catenin via the inhibition of GSK-3β. In C57BL/6 mice model, RJ promoted the anagen induction and maintained its period. Immunohistochemistry analysis demonstrated that RJ upregulated Ki-67 and β-catenin expressions, suggesting that the hair growth effect of RJ may be mediated through the reinforcement of hair cell proliferation. These results provided important insights for the possible mechanism of action of RJ and its potential as therapeutic agent to promote hair growth.
Collapse
|
45
|
Mohammadi P, Youssef KK, Abbasalizadeh S, Baharvand H, Aghdami N. Human Hair Reconstruction: Close, But Yet So Far. Stem Cells Dev 2016; 25:1767-1779. [PMID: 27649771 DOI: 10.1089/scd.2016.0137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Billions of dollars are annually invested in pharmaceutical industry and cosmetic sector with intent to develop new drugs and treatment strategies for alopecia. Because the hair looks an important characteristic of humans-an effective appendage in perception, expression of beauty, and preservation of self-esteem-the global market for hair loss treatment products is exponentially increasing. However, current methods to treat hair loss endure yet multiple challenges, such as unfavorable outcomes, nonpermanent and patient-dependent results, as well as unpredictable impacts, which limit their application. Over recent years, remarkable advances in the fields of regenerative medicine and hair tissue engineering have raised new hopes for introducing novel cell-based approaches to treat hair loss. Through cell-based approaches, it is possible to produce hair-like structures in the laboratory setting or manipulate cells in their native niche (in vivo lineage reprogramming) to reconstruct the hair follicle. However, challenging issues still exist with the functionality of cultured human hair cells, the proper selection of nonhair cell sources in cases of shortage of donor hair, and the development of defined culture conditions. Moreover, in the case of in vivo lineage reprogramming, selecting appropriate induction factors and their efficient delivery to guide resident cells into a hair fate-with the aim of reconstructing functional hair-still needs further explorations. In this study, we highlight recent advances and current challenges in hair loss treatment using cell-based approaches and provide novel insights for crucial steps, which must be taken into account to develop reproducible, safe, and efficient cell-based treatment.
Collapse
Affiliation(s)
- Parvaneh Mohammadi
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran .,2 Department of Developmental Biology, University of Science and Culture , Tehran, Iran
| | - Khalil Kass Youssef
- 3 Department of Developmental Neurobiology, Instituto de Neurociencias CSIC-UMH , San Juan de Alicante, Spain
| | - Saeed Abbasalizadeh
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran
| | - Hossein Baharvand
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran .,2 Department of Developmental Biology, University of Science and Culture , Tehran, Iran
| | - Nasser Aghdami
- 1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology , ACECR, Tehran, Iran
| |
Collapse
|
46
|
Kim YE, Choi HC, Lee IC, Yuk DY, Lee H, Choi BY. 3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling. Biomol Ther (Seoul) 2016; 24:572-580. [PMID: 27795451 PMCID: PMC5098535 DOI: 10.4062/biomolther.2016.183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 11/07/2022] Open
Abstract
3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of β-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of WNT/β-catenin and STAT signaling.
Collapse
Affiliation(s)
- Young Eun Kim
- Cosmecutical R&D Center, HP&C, Seowon University, Cheongju 28674, Republic of Korea
| | - Hyung Chul Choi
- Cosmecutical R&D Center, HP&C, Seowon University, Cheongju 28674, Republic of Korea
| | - In-Chul Lee
- Department of Cosmetic Science & Engineering, Seowon University, Cheongju 28674, Republic of Korea
| | - Dong Yeon Yuk
- Cosmecutical R&D Center, HP&C, Seowon University, Cheongju 28674, Republic of Korea
| | - Hyosung Lee
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju 28674, Republic of Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju 28674, Republic of Korea
| |
Collapse
|
47
|
Lee EY, Choi EJ, Kim JA, Hwang YL, Kim CD, Lee MH, Roh SS, Kim YH, Han I, Kang S. Malva verticillata seed extracts upregulate the Wnt pathway in human dermal papilla cells. Int J Cosmet Sci 2015; 38:148-54. [PMID: 26249736 DOI: 10.1111/ics.12268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/28/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Mesenchymal-epithelial interactions are important in controlling hair growth and the hair cycle. The β-catenin pathway of dermal papilla cells (DPCs) plays a pivotal role in morphogenesis and normal regeneration of hair follicles. Deletion of β-catenin in the dermal papilla reduces proliferation of the hair follicle progenitor cells that generate the hair shaft and induces an early onset of the catagen phase. In this study, a modulator of the Wnt/β-catenin activity was studied in oriental herb extracts on cultured human DPCs. METHODS The effect of Malva verticillata (M. verticillata) seeds on human DPCs was investigated by a Wnt/β-catenin reporter activity assay system (β-catenin-TCF/LEF reporter gene) and cell proliferation analysis. The synthesis of the factors related to hair growth and cycling was measured at both the mRNA and the protein level by semi-quantitative PCR and Western blot analysis, respectively. RESULTS An extract from M. verticillata seeds increased Wnt reporter activity in a concentration-dependent manner and also led to increased β-catenin levels in cultured human DPCs. Myristoleic acid, identified as an effective compound of M. verticillata seeds, stimulated the proliferation of DPCs in a dose-dependent manner and increased transcription levels of the downstream targets: IGF-1, KGF, VEGF and HGF. Myristoleic acid also enhanced the phosphorylation of MAPKs (Akt and p38). CONCLUSION Overall, the data suggest that this extract of M. verticillata seeds could be a good candidate for treating hair loss by modulating the Wnt/β-catenin pathway in DPCs.
Collapse
Affiliation(s)
- E Y Lee
- Department of Biotechnology, CHA University, Seongnam, Korea
| | - E-J Choi
- Department of Biotechnology, CHA University, Seongnam, Korea
| | - J A Kim
- College of Pharmacy, Kyungpook National University, Daegu, Korea
| | | | - C-D Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - M H Lee
- OBM Laboratory, Daejeon, Korea
| | - S S Roh
- OBM Laboratory, Daejeon, Korea
| | - Y H Kim
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - I Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam, Korea
| | - S Kang
- Department of Biotechnology, CHA University, Seongnam, Korea
| |
Collapse
|
48
|
Human placental extract exerts hair growth-promoting effects through the GSK-3β signaling pathway in human dermal papilla cells. Int J Mol Med 2015; 36:1088-96. [PMID: 26311045 DOI: 10.3892/ijmm.2015.2316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/23/2015] [Indexed: 11/05/2022] Open
Abstract
Human placental extract (HPE) is widely used in Korea to relieve fatigue. However, its effects on human dermal papilla cells (hDPCs) remain unknown. In the present study, in an effort to develop novel therapies to promote hair growth, we screened HPE. We demonstrate that HPE has hair growth‑promoting activities and induces β‑catenin expression through the inhibition of glycogen synthase kinase‑3β (GSK‑3β) by phosphorylation in hDPCs. Treatment with HPE significantly increased the viability of the hDPCs in a concentration‑dependent manner, as shown by bromodeoxyuridine (BrdU) assay. HPE also significantly increased the alkaline phosphatase (ALP) expression levels. The increased β‑catenin levels and the inhibition of GSK‑3β (Ser9) by phosphorylation suggested that HPE promoted the hair-inductive capacity of hDPCs. We compared the effects of treatment with HPE alone and treatment with HPE in conjunction with minoxidil (MXD). We found that HPE plus MXD effectively inhibited GSK‑3β by phosphorylation (Ser9) in the hDPCs. Moreover, we demonstrated that HPE was effective in inducing root hair elongation in rat vibrissa hair follicles, and that treatment with HPE led to a delay in catagen progression. Overall, our findings suggest that HPE promotes hair growth and may thus provide the basis of a novel therapeutic strategy for the clinical treatment of hair loss.
Collapse
|
49
|
Faniku C, Wright CS, Martin PE. Connexins and pannexins in the integumentary system: the skin and appendages. Cell Mol Life Sci 2015; 72:2937-47. [PMID: 26091749 PMCID: PMC11113313 DOI: 10.1007/s00018-015-1969-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
The integumentary system comprises the skin and its appendages, which includes hair, nails, feathers, sebaceous and eccrine glands. In this review, we focus on the expression profile of connexins and pannexins throughout the integumentary system in mammals, birds and fish. We provide a picture of the complexity of the connexin/pannexin network illustrating functional importance of these proteins in maintaining the integrity of the epidermal barrier. The differential regulation and expression of connexins and pannexins during skin renewal, together with a number of epidermal, hair and nail abnormalities associated with mutations in connexins, emphasize that the correct balance of connexin and pannexin expression is critical for maintenance of the skin and its appendages with both channel and non-channel functions playing profound roles. Changes in connexin expression during both hair and feather regeneration provide suggestions of specialized communication compartments. Finally, we discuss the potential use of zebrafish as a model for connexin skin biology, where evidence mounts that differential connexin expression is involved in skin patterning and pigmentation.
Collapse
Affiliation(s)
- Chrysovalantou Faniku
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA UK
| | - Catherine S. Wright
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA UK
| | - Patricia E. Martin
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA UK
| |
Collapse
|
50
|
Niemann C, Schneider MR. Hair type-specific function of canonical Wnt activity in adult mouse skin. Exp Dermatol 2015; 23:881-3. [PMID: 25039641 DOI: 10.1111/exd.12509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2014] [Indexed: 12/19/2022]
Abstract
Wnt/β-catenin signalling is a key regulator of hair follicle (HF) morphogenesis and life-long HF regeneration. In a recently published issue of Experimental Dermatology, Lei et al. report that sustained WNT10B supply and pathway activation in regenerating mouse HF increased the width of hair bulbs, hair shafts and the dermal papilla (DP), and enlarged the CD34(+) HF bulge cell compartment. Notably, WNT10B affected primarily zigzag HFs, while size and morphology of other HF types remained largely unaffected. Thus, these findings raise a number of questions regarding a HF type-specific function of Wnt/β-catenin and on the role of the WNT-stimulated DP in this process.
Collapse
Affiliation(s)
- Catherin Niemann
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | |
Collapse
|