1
|
Zhao K, Sun Y, Zhong S, Luo JL. The multifaceted roles of cathepsins in immune and inflammatory responses: implications for cancer therapy, autoimmune diseases, and infectious diseases. Biomark Res 2024; 12:165. [PMID: 39736788 DOI: 10.1186/s40364-024-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
The cathepsin family comprises lysosomal proteases that play essential roles in various physiological processes, including protein degradation, antigen presentation, apoptosis, and tissue remodeling. Dysregulation of cathepsin activity has been linked to a variety of pathological conditions, such as cancer, autoimmune diseases, and neurodegenerative disorders. Understanding the functions of cathepsins is crucial for gaining insights into their roles in both health and disease, as well as for developing targeted therapeutic approaches. Emerging research underscores the significant involvement of cathepsins in immune cells, particularly T cells, macrophages, dendritic cells, and neutrophils, as well as their contribution to immune-related diseases. In this review, we systematically examine the impact of cathepsins on the immune system and their mechanistic roles in cancer, infectious diseases, autoimmune and neurodegenerative disorders, with the goal of identifying novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Kexin Zhao
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Yangqing Sun
- Department of Oncology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hengyang, Hunan, 410008, China.
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Yang S, Chen K, Yu J, Jin Z, Zhang M, Li Z, Yu Y, Xuan N, Tian B, Li N, Mao Z, Wang W, Chen T, Wu Y, Zhao Y, Zhang M, Fei X, Ying S, Li W, Yan F, Zhang X, Zhang G, Shen H, Chen Z. Inhibition of cathepsin L ameliorates inflammation through the A20/NF-κB pathway in endotoxin-induced acute lung injury. iScience 2024; 27:111024. [PMID: 39559762 PMCID: PMC11570319 DOI: 10.1016/j.isci.2024.111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/07/2024] [Accepted: 09/20/2024] [Indexed: 11/20/2024] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a severe inflammatory condition that remains refractory; however, its molecular mechanisms are largely unknown. Previous studies have shown numerous compounds containing 4-indolyl-2-aminopyrimidine that display strong anti-inflammatory properties. In our research, we identified that a 4-Indole-2-Arylaminopyrimidine derivative named "IAAP" suppressed lipopolysaccharide (LPS)-induced inflammation. Immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified that IAAP interacts with a lysosomal cysteine protease, cathepsin L (CTSL), and restrains its activity. The nuclear factor kappa B (NF-κB) family plays a central role in controlling innate immunity. Canonical NF-κB activation, such as stimulation with lipopolysaccharide (LPS), typically involves the degradation of A20. We observed that IAAP suppression of CTSL prevented the LPS-induced degradation of A20, thereby ameliorating NF-κB activation. This study identifies CTSL as a crucial regulator of A20/NF-κB signaling and suggests IAAP as a potential lead compound for developing drugs to treat ALI/ARDS.
Collapse
Affiliation(s)
- Shiyi Yang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Kaijun Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jinkang Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhangchu Jin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Min Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yang Yu
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Nanxia Xuan
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Baoping Tian
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Na Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhengtong Mao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wenbing Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Tianpeng Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Min Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xia Fei
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Pharmacology & Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xingxian Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- State Key Lab of Respiratory Disease, Key Cite of National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
3
|
Coene J, Wilms S, Verhelst SHL. Photopharmacology of Protease Inhibitors: Current Status and Perspectives. Chemistry 2024; 30:e202303999. [PMID: 38224181 DOI: 10.1002/chem.202303999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
Proteases are involved in many essential biological processes. Dysregulation of their activity underlies a wide variety of human diseases. Photopharmacology, as applied on various classes of proteins, has the potential to assist protease research by enabling spatiotemporal control of protease activity. Moreover, it may be used to decrease side-effects of protease-targeting drugs. In this review, we discuss the current status of the chemical design of photoactivatable proteases inhibitors and their biological application. Additionally, we give insight into future possibilities for further development of this field of research.
Collapse
Affiliation(s)
- Jonathan Coene
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| | - Simon Wilms
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| |
Collapse
|
4
|
ElAbd H, Franke A. Mass Spectrometry-Based Immunopeptidomics of Peptides Presented on Human Leukocyte Antigen Proteins. Methods Mol Biol 2024; 2758:425-443. [PMID: 38549028 DOI: 10.1007/978-1-0716-3646-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Human leukocyte antigen (HLA) proteins are a group of glycoproteins that are expressed at the cell surface, where they present peptides to T cells through physical interactions with T-cell receptors (TCRs). Hence, characterizing the set of peptides presented by HLA proteins, referred to hereafter as the immunopeptidome, is fundamental for neoantigen identification, immunotherapy, and vaccine development. As a result, different methods have been used over the years to identify peptides presented by HLA proteins, including competition assays, peptide microarrays, and yeast display systems. Nonetheless, over the last decade, mass spectrometry-based immunopeptidomics (MS-immunopeptidomics) has emerged as the gold-standard method for identifying peptides presented by HLA proteins. MS-immunopeptidomics enables the direct identification of the immunopeptidome in different tissues and cell types in different physiological and pathological states, for example, solid tumors or virally infected cells. Despite its advantages, it is still an experimentally and computationally challenging technique with different aspects that need to be considered before planning an MS-immunopeptidomics experiment, while conducting the experiment and with analyzing and interpreting the results. Hence, we aim in this chapter to provide an overview of this method and discuss different practical considerations at different stages starting from sample collection until data analysis. These points should aid different groups aiming at utilizing MS-immunopeptidomics, as well as, identifying future research directions to improve the method.
Collapse
Affiliation(s)
- Hesham ElAbd
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany.
| |
Collapse
|
5
|
Ferreira GM, Clarindo FA, Ribeiro ÁL, Gomes-de-Pontes L, de Carvalho LD, Martins-Filho OA, da Fonseca FG, Teixeira MM, Sabino ADP, Eapen MS, Morris DL, Valle SJ, Coelho-dos-Reis JGA. Taming the SARS-CoV-2-mediated proinflammatory response with BromAc ®. Front Immunol 2023; 14:1308477. [PMID: 38193087 PMCID: PMC10773902 DOI: 10.3389/fimmu.2023.1308477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction In the present study, the impact of BromAc®, a specific combination of bromelain and acetylcysteine, on the SARS-CoV-2-specific inflammatory response was evaluated. Methods An in vitro stimulation system was standardized using blood samples from 9 healthy donors, luminex assays and flow cytometry were performed. Results and discussion BromAc® demonstrated robust anti-inflammatory activity in human peripheral blood cells upon SARS-CoV-2 viral stimuli, reducing the cytokine storm, composed of chemokines, growth factors, and proinflammatory and regulatory cytokines produced after short-term in vitro culture with the inactivated virus (iSARS-CoV-2). A combined reduction in vascular endothelial growth factor (VEGF) induced by SARS-CoV-2, in addition to steady-state levels of platelet recruitment-associated growth factor-PDGFbb, was observed, indicating that BromAc® may be important to reduce thromboembolism in COVID-19. The immunophenotypic analysis of the impact of BromAc® on leukocytes upon viral stimuli showed that BromAc® was able to downmodulate the populations of CD16+ neutrophils and CD14+ monocytes observed after stimulation with iSARS-CoV-2. Conversely, BromAc® treatment increased steady-state HLA-DR expression in CD14+ monocytes and preserved this activation marker in this subset upon iSARS-CoV-2 stimuli, indicating improved monocyte activation upon BromAc® treatment. Additionally, BromAc® downmodulated the iSARS-CoV-2-induced production of TNF-a by the CD19+ B-cells. System biology approaches, utilizing comprehensive correlation matrices and networks, showed distinct patterns of connectivity in groups treated with BromAc®, suggesting loss of connections promoted by the compound and by iSARS-CoV-2 stimuli. Negative correlations amongst proinflammatory axis and other soluble and cellular factors were observed in the iSARS-CoV-2 group treated with BromAc® as compared to the untreated group, demonstrating that BromAc® disengages proinflammatory responses and their interactions with other soluble factors and the axis orchestrated by SARS-CoV-2. Conclusion These results give new insights into the mechanisms for the robust anti-inflammatory effect of BromAc® in the steady state and SARS-CoV-2-specific immune leukocyte responses, indicating its potential as a therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
- Geovane Marques Ferreira
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Alves Clarindo
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ágata Lopes Ribeiro
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Letícia Gomes-de-Pontes
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Debortoli de Carvalho
- Departamento de Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Rene Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia em Vacinas (CT-Vacinas), Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- CT Terapias Avançadas e Inovadoras (CT-Terapias), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano de Paula Sabino
- Laboratório de Hematologia Clínica, Experimental e Molecular, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mathew Suji Eapen
- Research & Development Department, Mucpharm Pty Ltd, Sydney, NSW, Australia
| | - David L. Morris
- Research & Development Department, Mucpharm Pty Ltd, Sydney, NSW, Australia
- St George and Sutherland Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Surgery, St George Hospital, Sydney, NSW, Australia
| | - Sarah J. Valle
- Research & Development Department, Mucpharm Pty Ltd, Sydney, NSW, Australia
- St George and Sutherland Hospital Clinical School, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, St George Hospital, Sydney, NSW, Australia
| | - Jordana Grazziela Alves Coelho-dos-Reis
- Laboratório de Virologia Básica e Aplicada (LVBA), Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- CT Terapias Avançadas e Inovadoras (CT-Terapias), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
de Lavergne M, Maisonneuve L, Podsypanina K, Manoury B. The role of the antigen processing machinery in the regulation and trafficking of intracellular -Toll-like receptor molecules. Curr Opin Immunol 2023; 84:102375. [PMID: 37562076 DOI: 10.1016/j.coi.2023.102375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Intracellular Toll-like receptors (TLRs) are key components of the innate immune system. Their expression in antigen-presenting cells (APCs), and in particular dendritic cells (DCs), makes them critical in the induction of the adaptive immune response. In DCs, they interact with the chaperone UNC93B1 that mediates their trafficking from the endoplasmic reticulum (ER) to endosomes where they are cleaved by proteases and activated. All these different steps are also shared by major histocompatibility complex class-II (MHCII) molecules. Here, we will discuss the tight relationship intracellular TLRs have with the antigen processing machinery in APCs for their trafficking and activation.
Collapse
Affiliation(s)
- Moïse de Lavergne
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France
| | - Lucie Maisonneuve
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France
| | - Katrina Podsypanina
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Faculté de Médecine Necker, France.
| |
Collapse
|
7
|
Santambrogio L. Molecular Determinants Regulating the Plasticity of the MHC Class II Immunopeptidome. Front Immunol 2022; 13:878271. [PMID: 35651601 PMCID: PMC9148998 DOI: 10.3389/fimmu.2022.878271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
In the last few years, advancement in the analysis of the MHC class II (MHC-II) ligandome in several mouse and human haplotypes has increased our understanding of the molecular components that regulate the range and selection of the MHC-II presented peptides, from MHC class II molecule polymorphisms to the recognition of different conformers, functional differences in endosomal processing along the endocytic tract, and the interplay between the MHC class II chaperones DM and DO. The sum of all these variables contributes, qualitatively and quantitatively, to the composition of the MHC II ligandome, altogether ensuring that the immunopeptidome landscape is highly sensitive to any changes in the composition of the intra- and extracellular proteome for a comprehensive survey of the microenvironment for MHC II presentation to CD4 T cells.
Collapse
Affiliation(s)
- Laura Santambrogio
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Laura Santambrogio,
| |
Collapse
|
8
|
Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol 2022; 22:751-764. [PMID: 35418563 DOI: 10.1038/s41577-022-00707-2] [Citation(s) in RCA: 331] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Antigen processing and presentation are the cornerstones of adaptive immunity. B cells cannot generate high-affinity antibodies without T cell help. CD4+ T cells, which provide such help, use antigen-specific receptors that recognize major histocompatibility complex (MHC) molecules in complex with peptide cargo. Similarly, eradication of virus-infected cells often depends on cytotoxic CD8+ T cells, which rely on the recognition of peptide-MHC complexes for their action. The two major classes of glycoproteins entrusted with antigen presentation are the MHC class I and class II molecules, which present antigenic peptides to CD8+ T cells and CD4+ T cells, respectively. This Review describes the essentials of antigen processing and presentation. These pathways are divided into six discrete steps that allow a comparison of the various means by which antigens destined for presentation are acquired and how the source proteins for these antigens are tagged for degradation, destroyed and ultimately displayed as peptides in complex with MHC molecules for T cell recognition.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Society of Fellows, Harvard University, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Chiang YR, Wang LC, Lin HT, Lin JHY. Bioactivity of orange-spotted grouper (Epinephelus coioides) cathepsin L: Proteolysis of bacteria and regulation of the innate immune response. FISH & SHELLFISH IMMUNOLOGY 2022; 122:399-408. [PMID: 35176469 DOI: 10.1016/j.fsi.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Cathepsin L (CTSL) is a cysteine endopeptidase involved in protein degradation mainly in lysosomes. Following activation in an acidic environment, it plays a key role in a variety of physiological, immunological, and pathological processes. The biological function of CTSL in teleost remains unclear. Immunohistochemical analysis revealed that CTSL was expressed mainly in lymphoid organs, head kidney, trunk kidney, and liver, which particularly was expressed in leukocyte-like cells. We performed two forms of recombinant CTSL (rCTSL and rTCTSL) derived from orange-spotted grouper (Epinephelus coioides) to elucidate the role of CTSL in teleost innate immunity, based on differences in immune-related gene expression. We determined that rCTSL has a proteolytic function whereas rTCTSL does not. Under CTSL activation, we observed increases in IL-1β, IL-6, IL-12, IFNγ, CCL-1, CCL-3, epinecidin-1, lysozyme, and IgM. The bacteriolytic activity of rCTSL was more pronounced against Gram-positive bacteria than Gram-negative bacteria. Our findings indicate CTSL plays multiple roles in the reactions of innate immunity.
Collapse
Affiliation(s)
- Yun-Ru Chiang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Lih-Chiann Wang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Tso Lin
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Fukuda Y, Bustos MA, Cho SN, Roszik J, Ryu S, Lopez VM, Burks JK, Lee JE, Grimm EA, Hoon DSB, Ekmekcioglu S. Interplay between soluble CD74 and macrophage-migration inhibitory factor drives tumor growth and influences patient survival in melanoma. Cell Death Dis 2022; 13:117. [PMID: 35121729 PMCID: PMC8816905 DOI: 10.1038/s41419-022-04552-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Soluble forms of receptors play distinctive roles in modulating signal-transduction pathways. Soluble CD74 (sCD74) has been identified in sera of inflammatory diseases and implicated in their pathophysiology; however, few relevant data are available in the context of cancer. Here we assessed the composition and production mechanisms, as well as the clinical significance and biological properties, of sCD74 in melanoma. Serum sCD74 levels were significantly elevated in advanced melanoma patients compared with normal healthy donors, and the high ratio of sCD74 to macrophage-migration inhibitory factor (MIF) conferred significant predictive value for prolonged survival in these patients (p = 0.0035). Secretion of sCD74 was observed primarily in melanoma cell lines as well as a THP-1 line of macrophages from monocytes and primary macrophages, especially in response to interferon-γ (IFN-γ). A predominant form that showed clinical relevance was the 25-KDa sCD74, which originated from the 33-KDa isoform of CD74. The release of this sCD74 was regulated by either a disintegrin and metalloproteinase-mediated cell-surface cleavage or cysteine-protease-mediated lysosomal cleavage, depending on cell types. Both recombinant and THP-1 macrophage-released endogenous sCD74 suppressed melanoma cell growth and induced apoptosis under IFN-γ stimulatory conditions via inhibiting the MIF/CD74/AKT-survival pathway. Our findings demonstrate that the interplay between sCD74 and MIF regulates tumor progression and determines patient outcomes in advanced melanoma.
Collapse
Affiliation(s)
- Yasunari Fukuda
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Sung-Nam Cho
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jason Roszik
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Suyeon Ryu
- Department of Genome Sequencing, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Victor M Lopez
- Department of Genome Sequencing, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dave S B Hoon
- Department of Genome Sequencing, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Partnering for the major histocompatibility complex class II and antigenic determinant requires flexibility and chaperons. Curr Opin Immunol 2021; 70:112-121. [PMID: 34146954 DOI: 10.1016/j.coi.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
Cytotoxic, or helper T cells recognize antigen via T cell receptors (TCRs) that can see their target antigen as short sequences of peptides bound to the groove of proteins of major histocompatibility complex (MHC) class I, and class II respectively. For MHC class II epitope selection from exogenous pathogens or self-antigens, participation of several accessory proteins, molecular chaperons, processing enzymes within multiple vesicular compartments is necessary. A major contributing factor is the MHC class II structure itself that uniquely offers a dynamic and flexible groove essential for epitope selection. In this review, I have taken a historical perspective focusing on the flexibility of the MHC II molecules as the driving force in determinant selection and interactions with the accessory molecules in antigen processing, HLA-DM and HLA-DO.
Collapse
|
12
|
van Leeuwen T, Araman C, Pieper Pournara L, Kampstra ASB, Bakkum T, Marqvorsen MHS, Nascimento CR, Groenewold GJM, van der Wulp W, Camps MGM, Janssen GMC, van Veelen PA, van Westen GJP, Janssen APA, Florea BI, Overkleeft HS, Ossendorp FA, Toes REM, van Kasteren SI. Bioorthogonal protein labelling enables the study of antigen processing of citrullinated and carbamylated auto-antigens. RSC Chem Biol 2021; 2:855-862. [PMID: 34212151 PMCID: PMC8190914 DOI: 10.1039/d1cb00009h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Proteolysis is fundamental to many biological processes. In the immune system, it underpins the activation of the adaptive immune response: degradation of antigenic material into short peptides and presentation thereof on major histocompatibility complexes, leads to activation of T-cells. This initiates the adaptive immune response against many pathogens. Studying proteolysis is difficult, as the oft-used polypeptide reporters are susceptible to proteolytic sequestration themselves. Here we present a new approach that allows the imaging of antigen proteolysis throughout the processing pathway in an unbiased manner. By incorporating bioorthogonal functionalities into the protein in place of methionines, antigens can be followed during degradation, whilst leaving reactive sidechains open to templated and non-templated post-translational modifications, such as citrullination and carbamylation. Using this approach, we followed and imaged the post-uptake fate of the commonly used antigen ovalbumin, as well as the post-translationally citrullinated and/or carbamylated auto-antigen vinculin in rheumatoid arthritis, revealing differences in antigen processing and presentation.
Collapse
Affiliation(s)
- Tyrza van Leeuwen
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Can Araman
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Linda Pieper Pournara
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Arieke S B Kampstra
- Department of Rheumatology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Thomas Bakkum
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Mikkel H S Marqvorsen
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Clarissa R Nascimento
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - G J Mirjam Groenewold
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Willemijn van der Wulp
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Marcel G M Camps
- Department of Immunology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Gerard J P van Westen
- Computational Drug Discovery, Drug Discovery and Safety, LACDR, Leiden University Leiden The Netherlands
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry and the Oncode Institute, Leiden University Leiden The Netherlands
| | - Bogdan I Florea
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Herman S Overkleeft
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| | - Ferry A Ossendorp
- Department of Immunology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center P.O. Box 9600 2300 RC Leiden The Netherlands
| | - Sander I van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry and the Institute of Chemical Immunology, Leiden University Leiden The Netherlands
| |
Collapse
|
13
|
Pišlar A, Mitrović A, Sabotič J, Pečar Fonović U, Perišić Nanut M, Jakoš T, Senjor E, Kos J. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathog 2020; 16:e1009013. [PMID: 33137165 PMCID: PMC7605623 DOI: 10.1371/journal.ppat.1009013] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last 2 decades, several coronaviruses (CoVs) have crossed the species barrier into humans, causing highly prevalent and severe respiratory diseases, often with fatal outcomes. CoVs are a large group of enveloped, single-stranded, positive-sense RNA viruses, which encode large replicase polyproteins that are processed by viral peptidases to generate the nonstructural proteins (Nsps) that mediate viral RNA synthesis. Papain-like peptidases (PLPs) and chymotrypsin-like cysteine 3C-like peptidase are essential for coronaviral replication and represent attractive antiviral drug targets. Furthermore, CoVs utilize the activation of their envelope spike glycoproteins by host cell peptidases to gain entry into cells. CoVs have evolved multiple strategies for spike protein activation, including the utilization of lysosomal cysteine cathepsins. In this review, viral and host peptidases involved in CoV cell entry and replication are discussed in depth, with an emphasis on papain-like cysteine cathepsins. Furthermore, important findings on cysteine peptidase inhibitors with regard to virus attenuation are highlighted as well as the potential of such inhibitors for future treatment strategies for CoV-related diseases.
Collapse
Affiliation(s)
- Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Urša Pečar Fonović
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Tanja Jakoš
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Senjor
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
14
|
Kühn H, Kolkhir P, Babina M, Düll M, Frischbutter S, Fok JS, Jiao Q, Metz M, Scheffel J, Wolf K, Kremer AE, Maurer M. Mas-related G protein-coupled receptor X2 and its activators in dermatologic allergies. J Allergy Clin Immunol 2020; 147:456-469. [PMID: 33071069 DOI: 10.1016/j.jaci.2020.08.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The Mas-related G protein-coupled receptor X2 (MRGPRX2) is a multiligand receptor responding to various exogenous and endogenous stimuli. Being highly expressed on skin mast cells, MRGPRX2 triggers their degranulation and release of proinflammatory mediators, and it promotes multicellular signaling cascades, such as itch induction and transmission in sensory neurons. The expression of MRGPRX2 by skin mast cells and the levels of the MRGPRX2 agonists (eg, substance P, major basic protein, eosinophil peroxidase) are upregulated in the serum and/or skin of patients with inflammatory and pruritic skin diseases, such as chronic spontaneous urticaria or atopic dermatitis. Therefore, MRGPRX2 and its agonists might be potential biomarkers for the progression of cutaneous inflammatory diseases and the response to treatment. In addition, they may represent promising targets for prevention and treatment of signs and symptoms in patients with skin diseases or drug reactions. To assess this possibility, this review explores the role and relevance of MRGPRX2 and its activators in cutaneous inflammatory disorders and chronic pruritus.
Collapse
Affiliation(s)
- Helen Kühn
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pavel Kolkhir
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; I.M. Sechenov First Moscow State Medical University (Sechenov University), Division of Immune-mediated Skin Diseases, Moscow, Russia
| | - Magda Babina
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Miriam Düll
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jie Shen Fok
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Respiratory Medicine, Box Hill Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Qingqing Jiao
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Martin Metz
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Wolf
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
15
|
Yuan XY, Li M, Yu X, Li H. Structural analysis, simulation, and molecular docking of aza-nitrile into cathepsins to explain the high selectivity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Eckert WA, Wiener JJM, Cai H, Ameriks MK, Zhu J, Ngo K, Nguyen S, Fung-Leung WP, Thurmond RL, Grice C, Edwards JP, Chaplan SR, Karlsson L, Sun S. Selective inhibition of peripheral cathepsin S reverses tactile allodynia following peripheral nerve injury in mouse. Eur J Pharmacol 2020; 880:173171. [PMID: 32437743 DOI: 10.1016/j.ejphar.2020.173171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Cathepsin S (CatS) is a cysteine protease found in lysosomes of hematopoietic and microglial cells and in secreted form in the extracellular space. While CatS has been shown to contribute significantly to neuropathic pain, the precise mechanisms remain unclear. In this report, we describe JNJ-39641160, a novel non-covalent, potent, selective and orally-available CatS inhibitor that is peripherally restricted (non-CNS penetrant) and may represent an innovative class of immunosuppressive and analgesic compounds and tools useful toward investigating peripheral mechanisms of CatS in neuropathic pain. In C57BL/6 mice, JNJ-39641160 dose-dependently blocked the proteolysis of the invariant chain, and inhibited both T-cell activation and antibody production to a vaccine antigen. In the spared nerve injury (SNI) model of chronic neuropathic pain, in which T-cell activation has previously been demonstrated to be a prerequisite for the development of pain hypersensitivity, JNJ-39641160 fully reversed tactile allodynia in wild-type mice but was completely ineffective in the same model in CatS knockout mice (which exhibited a delayed onset in allodynia). By contrast, in the acute mild thermal injury (MTI) model, JNJ-39641160 only weakly attenuated allodynia at the highest dose tested. These findings support the hypothesis that blockade of peripheral CatS alone is sufficient to fully reverse allodynia following peripheral nerve injury and suggest that the mechanism of action likely involves interruption of T-cell activation and peripheral cytokine release. In addition, they provide important insights toward the development of selective CatS inhibitors for the treatment of neuropathic pain in humans.
Collapse
Affiliation(s)
- William A Eckert
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - John J M Wiener
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Hui Cai
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Michael K Ameriks
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Jian Zhu
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Karen Ngo
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Steven Nguyen
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Wai-Ping Fung-Leung
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Robin L Thurmond
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Cheryl Grice
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - James P Edwards
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Sandra R Chaplan
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Lars Karlsson
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Siquan Sun
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| |
Collapse
|
17
|
Priego N, Valiente M. The Potential of Astrocytes as Immune Modulators in Brain Tumors. Front Immunol 2019; 10:1314. [PMID: 31244853 PMCID: PMC6579886 DOI: 10.3389/fimmu.2019.01314] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
The neuro-immune axis has emerged as a key aspect to understand the normal function of the Central Nervous System (CNS) as well as the pathophysiology of many brain disorders. As such, it may represent a promising source for novel therapeutic targets. Glial cells, and in particular the extensively studied microglia, play important roles in brain disorders. Astrocytes, in their reactive state, have been shown to positively and negatively modulate the progression of multiple CNS disorders. These seemingly opposing effects, might stem from their underlying heterogeneity, an aspect that has recently come to light. In this article we will discuss the link between reactive astrocytes and the neuro-immune axis with a perspective on their potential importance in brain tumors. Based on the gained knowledge from studies in other CNS disorders, reactive astrocytes are undoubtfully emerging as a key component of the neuro-immune axis, with ability to modulate both the innate and adaptive branches of the immune system. Lastly, we will discuss how we can exploit our improved understanding of the basic biology of astrocytes to further enhance the efficacy of emerging immune-based therapies in primary brain tumors and brain metastasis.
Collapse
Affiliation(s)
- Neibla Priego
- Brain Metastasis Group, Molecular Oncology Programme, National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Molecular Oncology Programme, National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
18
|
Wartenberg M, Saidi A, Galibert M, Joulin-Giet A, Burlaud-Gaillard J, Lecaille F, Scott CJ, Aucagne V, Delmas AF, Lalmanach G. Imaging of extracellular cathepsin S activity by a selective near infrared fluorescence substrate-based probe. Biochimie 2019; 166:84-93. [PMID: 30914255 DOI: 10.1016/j.biochi.2019.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/19/2019] [Indexed: 02/05/2023]
Abstract
We designed a near-infrared fluorescent substrate-based probe (SBP), termed MG101, for monitoring extracellular cathepsin S (CatS) activity. We conceived a fused peptide hairpin loop-structure, combining a CatS recognition domain, an electrostatic zipper (with complementary charges of a polyanionic (D-Glu)5 segment and a polycationic (D-Arg)5 motif, as well as a N and C terminal Förster resonance energy transfer pair (donor: AlexaFluor680; quencher: BHQ3) to facilitate activity-dependent imaging. MG101 showed excellent stability since no fluorescence release corresponding to a self-dequenching was observed in the presence of either 2 M NaCl or after incubation at a broad range of pH (2.2-8.2). Cathepsins B, D, G, H, and K, neutrophil elastase and proteinase 3 did not cleave MG101, while CatS, and to a lesser extent CatL, hydrolysed MG101 at pH 5.5. However MG101 was fully selective for CatS at pH 7.4 (kcat/Km = 140,000 M-1 s-1) and sensitive to low concentration of CatS (<1 nM). The selectivity of MG101 was successfully endorsed ex vivo, as it was hydrolysed in cell lysates derived from wild-type but not knockout CatS murine spleen. Furthermore, application of the SBP probe with confocal microscopy confirmed the secretion of active CatS from THP-1 macrophages, which could be abrogated by pharmacological CatS inhibitors. Taken together, present data highlight MG101 as a novel near-infrared fluorescent SBP for the visualization of extracellular active CatS from macrophages and other cell types.
Collapse
Affiliation(s)
- Mylène Wartenberg
- Université de Tours, Tours, France; INSERM, UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", Tours, France
| | - Mathieu Galibert
- CNRS UPR 4301, Center for Molecular Biophysics (CBM), Team: "Molecular, Structural and Chemical Biology", Orléans, France
| | - Alix Joulin-Giet
- Université de Tours, Tours, France; INSERM, UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", Tours, France
| | - Julien Burlaud-Gaillard
- Université de Tours, Tours, France; Plateforme IBiSA de Microscopie Electronique, Université de Tours, Tours, France
| | - Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", Tours, France
| | - Christopher J Scott
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Vincent Aucagne
- CNRS UPR 4301, Center for Molecular Biophysics (CBM), Team: "Molecular, Structural and Chemical Biology", Orléans, France
| | - Agnès F Delmas
- CNRS UPR 4301, Center for Molecular Biophysics (CBM), Team: "Molecular, Structural and Chemical Biology", Orléans, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", Tours, France.
| |
Collapse
|
19
|
Abstract
The ability of B lymphocytes to capture external antigens (Ag) and present them as peptide fragments, loaded on major histocompatibility complex (MHC) class II molecules, to CD4+ T cells is a crucial part of the adaptive immune response. This allows for T-B cooperation, a cellular communication that is required for B cells to develop into germinal centers (GC) and form mature high affinity antibody producing cells and to further develop B cell memory. MHC class II antigen presentation by B lymphocytes is a multistep process involving (1) Recognition and capture of external Ag by B lymphocytes through their B cell receptor (BCR), (2) Ag processing, which comprises the degradation of Ag in internal compartments within the B cell and loading of the corresponding peptide fragments on MHC class II molecules, and (3) Presentation of MHCII-peptide complexes to CD4+ T cells. Here, we describe how to study the biochemical and morphological changes that occur in B lymphocytes at these three major levels.
Collapse
|
20
|
Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 2018; 71:171-187. [PMID: 30421030 DOI: 10.1007/s00251-018-1095-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Presentation of peptide antigens by MHC-II proteins is prerequisite to effective CD4 T cell tolerance to self and to recognition of foreign antigens. Antigen uptake and processing pathways as well as expression of the peptide exchange factors HLA-DM and HLA-DO differ among the various professional and non-professional antigen-presenting cells and are modulated by cell developmental state and activation. Recent studies have highlighted the importance of these cell-specific factors in controlling the source and breadth of peptides presented by MHC-II under different conditions. During inflammation, increased presentation of selected self-peptides has implications for maintenance of peripheral tolerance and autoimmunity.
Collapse
|
21
|
Ju Y, Janga SR, Klinngam W, MacKay JA, Hawley D, Zoukhri D, Edman MC, Hamm-Alvarez SF. NOD and NOR mice exhibit comparable development of lacrimal gland secretory dysfunction but NOD mice have more severe autoimmune dacryoadenitis. Exp Eye Res 2018; 176:243-251. [PMID: 30201519 PMCID: PMC6215720 DOI: 10.1016/j.exer.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
The male Non-Obese Diabetic (NOD) mouse is an established model of autoimmune dacryoadenitis characteristic of Sjögren's Syndrome (SS), but development of diabetes may complicate studies. The Non-Obese Diabetes Resistant (NOR) mouse is a MHC-II matched diabetes-resistant alternative, but development of autoimmune dacryoadenitis is not well-characterized. We compare features of SS in male NOD and NOR mice at 12 and 20 weeks. Stimulated tear secretion was decreased in 12 week NOD relative to BALB/c mice (p < 0.05), while by 20 weeks both NOD and NOR showed decreased stimulated tear secretion relative to BALB/c mice (p < 0.001). Tear CTSS activity was elevated in NOD and NOR relative to BALB/c mice (p < 0.05) at 12 and 20 weeks. While NOD and NOR lacrimal glands (LG) showed increased LG lymphocytic infiltration at 12 and 20 weeks relative to BALB/c mouse LG (p < 0.05), the percentage in NOD was higher relative to NOR at each age (p < 0.05). Gene expression of CTSS, MHC II and IFN-γ in LG were significantly increased in NOD but not NOR relative to BALB/c at 12 and 20 weeks. Redistribution of the secretory effector, Rab3D in acinar cells was observed at both time points in NOD and NOR, but thinning of myoepithelial cells at 12 weeks in NOD and NOR mice was restored by 20 weeks in NOR mice. NOD and NOR mice share features of SS-like autoimmune dacryoadenitis, suggesting common disease etiology. Other findings suggest more pronounced lymphocytic infiltration in NOD mouse LG including increased pro-inflammatory factors that may be unique to this model.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Srikanth Reddy Janga
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wannita Klinngam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Dillon Hawley
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Driss Zoukhri
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
22
|
Aper SJA, den Hamer A, Wouters SFA, Lemmens LJM, Ottmann C, Brunsveld L, Merkx M. Protease-Activatable Scaffold Proteins as Versatile Molecular Hubs in Synthetic Signaling Networks. ACS Synth Biol 2018; 7:2216-2225. [PMID: 30125482 PMCID: PMC6154215 DOI: 10.1021/acssynbio.8b00217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protease signaling and scaffold-induced control of protein-protein interactions represent two important mechanisms for intracellular signaling. Here we report a generic and modular approach to control the activity of scaffolding proteins by protease activity, creating versatile molecular platforms to construct synthetic signaling networks. Using 14-3-3 proteins as a structurally well-characterized and important class of scaffold proteins, three different architectures were explored to achieve optimal protease-mediated control of scaffold activity, fusing either one or two monovalent inhibitory ExoS peptides or a single bivalent ExoS peptide to T14-3-3 using protease-cleavable linkers. Analysis of scaffolding activity before and after protease-induced cleavage revealed optimal control of 14-3-3 activity for the system that contained monovalent ExoS peptides fused to both the N-and C-terminus, each blocking a single T14-3-3 binding site. The protease-activatable 14-3-3 scaffolds were successfully applied to construct a three-step signaling cascade in which dimerization and activation of FGG-caspase-9 on an orthogonal supramolecular platform resulted in activation of a 14-3-3 scaffold, which in turn allowed 14-3-3-templated complementation of a split-luciferase. In addition, by combining 14-3-3-templated activation of caspase-9 with a caspase-9-activatable 14-3-3 scaffold, the first example of a synthetic self-activating protease signaling network was created. Protease-activatable 14-3-3 proteins thus represent a modular platform whose properties can be rationally engineered to fit different applications, both to create artificial in vitro synthetic molecular networks and as a novel signaling hub to re-engineer intracellular signaling pathways.
Collapse
Affiliation(s)
- Stijn J. A. Aper
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anniek den Hamer
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Simone F. A. Wouters
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lenne J. M. Lemmens
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
23
|
de Mingo Pulido Á, de Gregorio E, Chandra S, Colell A, Morales A, Kronenberg M, Marí M. Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion. Front Immunol 2018. [PMID: 29541077 PMCID: PMC5836516 DOI: 10.3389/fimmu.2018.00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Natural killer T (NKT) cells exhibit a specific tissue distribution, displaying the liver the highest NKT/conventional T cell ratio. Upon antigen stimulation, NKT cells secrete Th1 cytokines, including interferon γ (IFNγ), and Th2 cytokines, including IL-4 that recruit and activate other innate immune cells to exacerbate inflammatory responses in the liver. Cysteine cathepsins control hepatic inflammation by regulating κB-dependent gene expression. However, the contribution of cysteine cathepsins other than Cathepsin S to NKT cell activation has remained largely unexplored. Here we report that cysteine cathepsins, cathepsin B (CTSB) and cathepsin S (CTSS), regulate different aspects of NKT cell activation. Inhibition of CTSB or CTSS reduced hepatic NKT cell expansion in a mouse model after LPS challenge. By contrast, only CTSS inhibition reduced IFNγ and IL-4 secretion after in vivo α-GalCer administration. Accordingly, in vitro studies reveal that only CTSS was able to control α-GalCer-dependent loading in antigen-presenting cells (APCs), probably due to altered endolysosomal protein degradation. In summary, our study discloses the participation of cysteine cathepsins, CTSB and CTSS, in the activation of NKT cells in vivo and in vitro.
Collapse
Affiliation(s)
- Álvaro de Mingo Pulido
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Shilpi Chandra
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
24
|
Høglund RA, Lossius A, Johansen JN, Homan J, Benth JŠ, Robins H, Bogen B, Bremel RD, Holmøy T. In Silico Prediction Analysis of Idiotope-Driven T-B Cell Collaboration in Multiple Sclerosis. Front Immunol 2017; 8:1255. [PMID: 29038659 PMCID: PMC5630699 DOI: 10.3389/fimmu.2017.01255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/20/2017] [Indexed: 12/02/2022] Open
Abstract
Memory B cells acting as antigen-presenting cells are believed to be important in multiple sclerosis (MS), but the antigen they present remains unknown. We hypothesized that B cells may activate CD4+ T cells in the central nervous system of MS patients by presenting idiotopes from their own immunoglobulin variable regions on human leukocyte antigen (HLA) class II molecules. Here, we use bioinformatics prediction analysis of B cell immunoglobulin variable regions from 11 MS patients and 6 controls with other inflammatory neurological disorders (OINDs), to assess whether the prerequisites for such idiotope-driven T–B cell collaboration are present. Our findings indicate that idiotopes from the complementarity determining region (CDR) 3 of MS patients on average have high predicted affinities for disease associated HLA-DRB1*15:01 molecules and are predicted to be endosomally processed by cathepsin S and L in positions that allows such HLA binding to occur. Additionally, complementarity determining region 3 sequences from cerebrospinal fluid (CSF) B cells from MS patients contain on average more rare T cell-exposed motifs that could potentially escape tolerance and stimulate CD4+ T cells than CSF B cells from OIND patients. Many of these features were associated with preferential use of the IGHV4 gene family by CSF B cells from MS patients. This is the first study to combine high-throughput sequencing of patient immune repertoires with large-scale prediction analysis and provides key indicators for future in vitro and in vivo analyses.
Collapse
Affiliation(s)
- Rune A Høglund
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Lossius
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Faculty of Medicine, Department of Immunology and Transfusion Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jorunn N Johansen
- Faculty of Medicine, Department of Immunology and Transfusion Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jane Homan
- EigenBio LLC, Madison, WI, United States
| | - Jūratė Šaltytė Benth
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
| | - Harlan Robins
- Adaptive Biotechnologies, Seattle, WA, United States
| | - Bjarne Bogen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Faculty of Medicine, Department of Immunology and Transfusion Medicine, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway.,Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | | | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Increased cathepsin S in Prdm1 -/- dendritic cells alters the T FH cell repertoire and contributes to lupus. Nat Immunol 2017; 18:1016-1024. [PMID: 28692065 PMCID: PMC5568473 DOI: 10.1038/ni.3793] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Aberrant population expansion of follicular helper T cells (TFH cells) occurs in patients with lupus. An unanswered question is whether an altered repertoire of T cell antigen receptors (TCRs) is associated with such expansion. Here we found that the transcription factor Blimp-1 (encoded by Prdm1) repressed expression of the gene encoding cathepsin S (Ctss), a cysteine protease that cleaves invariant chains and produces antigenic peptides for loading onto major histocompatibility complex (MHC) class II molecules. The increased CTSS expression in dendritic cells (DCs) from female mice with dendritic cell-specific conditional knockout of Prdm1 (CKO mice) altered the presentation of antigen to CD4+ T cells. Analysis of complementarity-determining region 3 (CDR3) regions containing the β-chain variable region (Vβ) demonstrated a more diverse repertoire of TFH cells from female CKO mice than of those from wild-type mice. In vivo treatment of CKO mice with a CTSS inhibitor abolished the lupus-related phenotype and reduced the diversity of the TFH cell TCR repertoire. Thus, Blimp-1 deficiency in DCs led to loss of appropriate regulation of Ctss expression in female mice and thereby modulated antigen presentation and the TFH cell repertoire to contribute to autoimmunity.
Collapse
|
26
|
The Immunogenicity of HLA Class II Mismatches: The Predicted Presentation of Nonself Allo-HLA-Derived Peptide by the HLA-DR Phenotype of the Recipient Is Associated with the Formation of DSA. J Immunol Res 2017; 2017:2748614. [PMID: 28331856 PMCID: PMC5346368 DOI: 10.1155/2017/2748614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/17/2017] [Accepted: 02/02/2017] [Indexed: 12/02/2022] Open
Abstract
The identification of permissible HLA class II mismatches can prevent DSA in mismatched transplantation. The HLA-DR phenotype of recipients contributes to DSA formation by presenting allo-HLA-derived peptides to T-helper cells, which induces the differentiation of B cells into plasma cells. Comparing the binding affinity of self and nonself allo-HLA-derived peptides for recipients' HLA class II antigens may distinguish immunogenic HLA mismatches from nonimmunogenic ones. The binding affinities of allo-HLA-derived peptides to recipients' HLA-DR and HLA-DQ antigens were predicted using the NetMHCIIpan 3.1 server. HLA class II mismatches were classified based on whether they induced DSA and whether self or nonself peptide was predicted to bind with highest affinity to recipients' HLA-DR and HLA-DQ. Other mismatch characteristics (eplet, hydrophobic, electrostatic, and amino acid mismatch scores and PIRCHE-II) were evaluated. A significant association occurred between DSA formation and the predicted HLA-DR presentation of nonself peptides (P = 0.0169; accuracy = 80%; sensitivity = 88%; specificity = 63%). In contrast, mismatch characteristics did not differ significantly between mismatches that induced DSA and the ones that did not, except for PIRCHE-II (P = 0.0094). This methodology predicts DSA formation based on HLA mismatches and recipients' HLA-DR phenotype and may identify permissible HLA mismatches to help optimize HLA matching and guide donor selection.
Collapse
|
27
|
Invariant Chain Complexes and Clusters as Platforms for MIF Signaling. Cells 2017; 6:cells6010006. [PMID: 28208600 PMCID: PMC5371871 DOI: 10.3390/cells6010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/24/2022] Open
Abstract
Invariant chain (Ii/CD74) has been identified as a surface receptor for migration inhibitory factor (MIF). Most cells that express Ii also synthesize major histocompatibility complex class II (MHC II) molecules, which depend on Ii as a chaperone and a targeting factor. The assembly of nonameric complexes consisting of one Ii trimer and three MHC II molecules (each of which is a heterodimer) has been regarded as a prerequisite for efficient delivery to the cell surface. Due to rapid endocytosis, however, only low levels of Ii-MHC II complexes are displayed on the cell surface of professional antigen presenting cells and very little free Ii trimers. The association of Ii and MHC II has been reported to block the interaction with MIF, thus questioning the role of surface Ii as a receptor for MIF on MHC II-expressing cells. Recent work offers a potential solution to this conundrum: Many Ii-complexes at the cell surface appear to be under-saturated with MHC II, leaving unoccupied Ii subunits as potential binding sites for MIF. Some of this work also sheds light on novel aspects of signal transduction by Ii-bound MIF in B-lymphocytes: membrane raft association of Ii-MHC II complexes enables MIF to target Ii-MHC II to antigen-clustered B-cell-receptors (BCR) and to foster BCR-driven signaling and intracellular trafficking.
Collapse
|
28
|
Veerappan Ganesan AP, Eisenlohr LC. The elucidation of non-classical MHC class II antigen processing through the study of viral antigens. Curr Opin Virol 2017; 22:71-76. [PMID: 28081485 PMCID: PMC5346044 DOI: 10.1016/j.coviro.2016.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022]
Abstract
By convention, CD4+ T cells are activated predominantly by Major Histocompatibility Complex class II-bound peptides derived from extracellular (exogenous) antigens. It has been known for decades that alternative sources of antigen, particularly those synthesized within the antigen-presenting cell, can also supply peptides but the impact on TCD4+ responses, sometimes considerable, has only recently become appreciated. This review focuses on the contributions that studies of viral antigen have made to this shift in perspective, concluding with discussions of relevance to rational vaccine design, autoimmunity and cancer immunotherapy.
Collapse
Affiliation(s)
- Asha Purnima Veerappan Ganesan
- Department of Pathology and Laboratory Medicine at the Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, United States
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine at the Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
29
|
Ackerman WE, Buhimschi IA, Eidem HR, Rinker DC, Rokas A, Rood K, Zhao G, Summerfield TL, Landon MB, Buhimschi CS. Comprehensive RNA profiling of villous trophoblast and decidua basalis in pregnancies complicated by preterm birth following intra-amniotic infection. Placenta 2016; 44:23-33. [PMID: 27452435 PMCID: PMC11583243 DOI: 10.1016/j.placenta.2016.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/11/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION We performed RNA sequencing with the primary goal of discovering key placental villous trophoblast (VT) and decidua basalis (DB) transcripts differentially expressed in intra-amniotic infection (IAI)-induced preterm birth (PTB). METHODS RNA was extracted from 15 paired VT and DB specimens delivered of women with: 1) spontaneous PTB in the setting of amniocentesis-proven IAI and histological chorioamnionitis (n = 5); 2) spontaneous idiopathic PTB (iPTB, n = 5); and 3) physiologic term pregnancy (n = 5). RNA sequencing was performed using the Illumina HiSeq 2500 platform, and a spectrum of computational tools was used for gene prioritization and pathway analyses. RESULTS In the VT specimens, 128 unique long transcripts and 7 mature microRNAs differed significantly between pregnancies complicated by IAI relative to iPTB (FDR<0.1). The up-regulated transcripts included many characteristic of myeloblast-derived cells, and bioinformatic analyses revealed enrichment for multiple pathways associated with acute inflammation. In an expanded cohort including additional IAI and iPTB specimens, the expression of three proteins (cathepsin S, lysozyme, and hexokinase 3) and two microRNAs (miR-133a and miR-223) was validated using immunohistochemistry and quantitative PCR, respectively. In the DB specimens, only 11 long transcripts and no microRNAs differed significantly between IAI cases and iPTB controls (FDR<0.1). Comparison of the VT and DB specimens in each clinical scenario revealed signatures distinguishing these placental regions. DISCUSSION IAI is associated with a transcriptional signature consistent with acute inflammation in the villous trophoblast. The present findings illuminate novel signaling pathways involved in IAI, and suggest putative therapeutic targets and potential biomarkers associated with this condition.
Collapse
Affiliation(s)
- William E Ackerman
- Department of Obstetrics and Gynecology, The Ohio State College of Medicine, Columbus, OH, USA.
| | - Irina A Buhimschi
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Haley R Eidem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - David C Rinker
- Program in Human Genetics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Program in Human Genetics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Kara Rood
- Department of Obstetrics and Gynecology, The Ohio State College of Medicine, Columbus, OH, USA.
| | - Guomao Zhao
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Taryn L Summerfield
- Department of Obstetrics and Gynecology, The Ohio State College of Medicine, Columbus, OH, USA.
| | - Mark B Landon
- Department of Obstetrics and Gynecology, The Ohio State College of Medicine, Columbus, OH, USA.
| | - Catalin S Buhimschi
- Department of Obstetrics and Gynecology, The Ohio State College of Medicine, Columbus, OH, USA.
| |
Collapse
|
30
|
Maji M, Mazumder S, Bhattacharya S, Choudhury ST, Sabur A, Shadab M, Bhattacharya P, Ali N. A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8(+) T Cells. Sci Rep 2016; 6:27206. [PMID: 27251373 PMCID: PMC4890172 DOI: 10.1038/srep27206] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+ cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for long-term protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal antigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine.
Collapse
Affiliation(s)
- Mithun Maji
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Saumyabrata Mazumder
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Souparno Bhattacharya
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Somsubhra Thakur Choudhury
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Abdus Sabur
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Md Shadab
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Pradyot Bhattacharya
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Nahid Ali
- Indian Institute of Chemical Biology, Infectious Diseases and Immunology Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
31
|
Blazekovic F, Odukoya D, Butler SN, Mauro JA, Ramsamooj M, Puleo E, Szekeres K, Dana D, Kumar S, Ragupathi G, Blanck G. HLA-DR peptide occupancy can be regulated with a wide variety of small molecules. Hum Vaccin Immunother 2016; 12:593-8. [PMID: 26453454 DOI: 10.1080/21645515.2015.1089370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
HLA-DR is the most commonly expressed and likely the most medically important human MHC class II, antigen presenting protein. In a normal immune response, HLA-DR binds to antigenic peptide and the HLA-DR/peptide complex binds to a T-cell receptor, thus contributing to T-cell activation and stimulation of an immune response against the antigen. When foreign antigen is not present, HLA-DR binds endogenous peptide which, under normal conditions does not stimulate an immune response. In most cases, the human peptide is CLIP, but a certain percentage of HLA-DR molecules will be present at the cell surface with other human peptides. We have recently shown that cell surface, CLIP/HLA-DR ratios are a measure of peptide heterogeneity, and in particular, changes in CLIP/HLA-DR ratios represent changes in the occupancy of HLA-DR by other, endogenous peptides. For example, treatment of cells with the HDAC inhibitor, Entinostat, leads to an upregulation of Cathepsin L1 and replacement of Cathepsin L1 senstitive peptides with HLA-DR binding, Cathepsin L1 resistant peptides, an alteration that can be at least partially assessed via assessment of CLIP/HLA-DR cell surface ratios. Here we assay for CLIP/HLA-DR ratios following treatment of immortalized B-cells with a variety of common drugs, almost all of which indicate significant changes in the CLIP/HLA-DR ratios. Furthermore, the CLIP/HLA-DR ratio changes parallel the impact of the drug panoply on cell viability, suggesting that alterations in the HLA-DR peptidome are governed by a variety of mechanisms, rather than exclusively dependent on a dedicated peptide loading process. These results raise questions about how FDA approved drugs may affect the immune response, and whether any of these drugs could be useful as vaccine adjuvants?
Collapse
Affiliation(s)
- Francesca Blazekovic
- a Department of Molecular Medicine , Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - Dana Odukoya
- a Department of Molecular Medicine , Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - Shanitra N Butler
- a Department of Molecular Medicine , Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - James A Mauro
- a Department of Molecular Medicine , Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - Michael Ramsamooj
- a Department of Molecular Medicine , Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - Erika Puleo
- a Department of Molecular Medicine , Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - Karoly Szekeres
- a Department of Molecular Medicine , Morsani College of Medicine, University of South Florida , Tampa , FL , USA
| | - Dibyendu Dana
- b Department of Chemistry and Biochemistry , Queens College and the Graduate Center of the City University of New York , Queens , NY , USA
| | - Sanjai Kumar
- b Department of Chemistry and Biochemistry , Queens College and the Graduate Center of the City University of New York , Queens , NY , USA
| | - Govind Ragupathi
- c Department of Medicine ; Melanoma and Immunotherapeutic Service, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - George Blanck
- a Department of Molecular Medicine , Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,d Immunology Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| |
Collapse
|
32
|
Unanue ER, Turk V, Neefjes J. Variations in MHC Class II Antigen Processing and Presentation in Health and Disease. Annu Rev Immunol 2016; 34:265-97. [PMID: 26907214 DOI: 10.1146/annurev-immunol-041015-055420] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MHC class II (MHC-II) molecules are critical in the control of many immune responses. They are also involved in most autoimmune diseases and other pathologies. Here, we describe the biology of MHC-II and MHC-II variations that affect immune responses. We discuss the classic cell biology of MHC-II and various perturbations. Proteolysis is a major process in the biology of MHC-II, and we describe the various components forming and controlling this endosomal proteolytic machinery. This process ultimately determines the MHC-II-presented peptidome, including cryptic peptides, modified peptides, and other peptides that are relevant in autoimmune responses. MHC-II also variable in expression, glycosylation, and turnover. We illustrate that MHC-II is variable not only in amino acids (polymorphic) but also in its biology, with consequences for both health and disease.
Collapse
Affiliation(s)
- Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, SI-1000 Ljubljana, Slovenia;
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; .,Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
33
|
Epsilon-caprolactone modified polyethylenimine for highly efficient antigen delivery and chemical exchange saturation transfer functional MR imaging. Biomaterials 2015; 56:219-28. [DOI: 10.1016/j.biomaterials.2015.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/21/2022]
|
34
|
Schmitz J, Furtmann N, Ponert M, Frizler M, Löser R, Bartz U, Bajorath J, Gütschow M. Active Site Mapping of Human Cathepsin F with Dipeptide Nitrile Inhibitors. ChemMedChem 2015; 10:1365-77. [PMID: 26119278 DOI: 10.1002/cmdc.201500151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 11/09/2022]
Abstract
Cleavage of the invariant chain is the key event in the trafficking pathway of major histocompatibility complex class II. Cathepsin S is the major processing enzyme of the invariant chain, but cathepsin F acts in macrophages as its functional synergist which is as potent as cathepsin S in invariant chain cleavage. Dedicated low-molecular-weight inhibitors for cathepsin F have not yet been developed. An active site mapping with 52 dipeptide nitriles, reacting as covalent-reversible inhibitors, was performed to draw structure-activity relationships for the non-primed binding region of human cathepsin F. In a stepwise process, new compounds with optimized fragment combinations were designed and synthesized. These dipeptide nitriles were evaluated on human cysteine cathepsins F, B, L, K and S. Compounds 10 (N-(4-phenylbenzoyl)-leucylglycine nitrile) and 12 (N-(4-phenylbenzoyl)leucylmethionine nitrile) were found to be potent inhibitors of human cathepsin F, with Ki values <10 nM. With all dipeptide nitriles from our study, a 3D activity landscape was generated to visualize structure-activity relationships for this series of cathepsin F inhibitors.
Collapse
Affiliation(s)
- Janina Schmitz
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany).,Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg von-Liebig-Straße 20, 53359 Rheinbach (Germany)
| | - Norbert Furtmann
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany).,Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Dahlmannstraße 2, 53113 Bonn (Germany)
| | - Moritz Ponert
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Maxim Frizler
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany)
| | - Reik Löser
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany).,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden (Germany)
| | - Ulrike Bartz
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg von-Liebig-Straße 20, 53359 Rheinbach (Germany)
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Dahlmannstraße 2, 53113 Bonn (Germany)
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn (Germany).
| |
Collapse
|
35
|
Yuseff MI, Lennon-Duménil AM. B Cells use Conserved Polarity Cues to Regulate Their Antigen Processing and Presentation Functions. Front Immunol 2015; 6:251. [PMID: 26074919 PMCID: PMC4445385 DOI: 10.3389/fimmu.2015.00251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/07/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of B cells to produce high-affinity antibodies and to establish immunological memory in response to a wide range of pathogenic antigens is an essential part of the adaptive immune response. The initial step that triggers a humoral immune response involves the acquisition of antigens by B cells via their surface immunoglobulin, the B cell receptor (BCR). BCR-engaged antigens are transported into specialized lysosomal compartments where proteolysis and production of MHC class II-peptide complexes occur, a process referred to as antigen processing. Expression of MHC class II complexes at the B cell surface allows them to interact with T cells and to receive their help to become fully activated. In this review, we describe how B cells rely on conserved cell polarity mechanisms to coordinate local proteolytic secretion and mechanical forces at the B cell synapse enabling them to efficiently acquire and present extracellular antigens. We foresee that the mechanisms that dictate B cell activation can be used to tune B cell responses in the context of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Maria-Isabel Yuseff
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile , Santiago , Chile
| | | |
Collapse
|
36
|
Kim A, Hartman IZ, Poore B, Boronina T, Cole RN, Song N, Ciudad MT, Caspi RR, Jaraquemada D, Sadegh-Nasseri S. Divergent paths for the selection of immunodominant epitopes from distinct antigenic sources. Nat Commun 2014; 5:5369. [PMID: 25413013 PMCID: PMC4241505 DOI: 10.1038/ncomms6369] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/24/2014] [Indexed: 01/25/2023] Open
Abstract
Immunodominant epitopes are few selected epitopes from complex antigens that initiate T cell responses. Here, to provide further insights into this process, we use a reductionist cell-free antigen processing system composed of defined components. We use the system to characterize steps in antigen processing of pathogen-derived proteins or autoantigens and we find distinct paths for peptide processing and selection. Autoantigen-derived immunodominant epitopes are resistant to digestion by cathepsins, whereas pathogen-derived epitopes are sensitive. Sensitivity to cathepsins enforces capture of pathogen-derived epitopes by Major Histocompatibility Complex class II (MHC class II) prior to processing, and resistance to HLA-DM-mediated-dissociation preserves the longevity of those epitopes. We show that immunodominance is established by higher relative abundance of the selected epitopes, which survive cathepsin digestion either by binding to MHC class II and resisting DM-mediated-dissociation, or being chemically resistant to cathepsins degradation. Non-dominant epitopes are sensitive to both DM and cathepsins and are destroyed.
Collapse
Affiliation(s)
- AeRyon Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Isamu Z Hartman
- The Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Brad Poore
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Tatiana Boronina
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Robert N Cole
- Department of Biological Chemistry, Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Nianbin Song
- The Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - M Teresa Ciudad
- Department of Cell Biology, Physiology and Immunology, Laboratori d'Immunologia Cellular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, Maryland 20892, USA
| | - Dolores Jaraquemada
- Department of Cell Biology, Physiology and Immunology, Laboratori d'Immunologia Cellular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Scheherazade Sadegh-Nasseri
- 1] Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] The Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
37
|
van Kasteren SI, Overkleeft HS. Endo-lysosomal proteases in antigen presentation. Curr Opin Chem Biol 2014; 23:8-15. [PMID: 25213682 DOI: 10.1016/j.cbpa.2014.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 02/04/2023]
Abstract
Endo-lysosomal proteases have long been attractive, yet elusive, targets for medicinal chemistry. They have found to play key roles in health and disease; with protease under- and over-activity having been implicated in cancer, osteoporosis and Alzheimer's disease. Here we will discuss their role in the adaptive immune response. The crucial roles of these enzymes multiple processes in antigen presentation will be discussed: from activating MHC-II receptors, to the production of epitopes from antigens and the activation of Toll-like receptors. The early efforts at pharmacological interventions in these pathways will also be discussed.
Collapse
Affiliation(s)
- Sander I van Kasteren
- Division of Chemical Biology, Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratory, The Netherlands.
| | - Herman S Overkleeft
- Division of Chemical Biology, Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratory, The Netherlands
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW To summarize the recent knowledge regarding intestinal proteases and the gut barrier. RECENT FINDINGS It is now well established that intestinal proteases, such as matrix metalloproteinase (MMP)-1, MMP-3, MMP-10 and MMP-12, are key players in the development of ulcers in inflammatory bowel disease, have direct effects on epithelial barrier function and are involved in epithelial restitution. However, more recent work has suggested that the membrane-anchored epithelial cell serine protease matriptase is critical in maintaining the gut barrier, and roles have also been described for elastase, MMP-13, gelatinases, mast cell proteases and proteases derived from parasites and gut bacteria. Interestingly, epithelial proteases often co-localize with epithelial adherens junctions, and nonepithelial-derived proteases have junctional proteins as targets. SUMMARY The role of proteases in controlling normal barrier function in the gut is now becoming very clear, to go alongside their role in intestinal inflammation.
Collapse
|
39
|
Sant AJ, Chaves FA, Krafcik FR, Lazarski CA, Menges P, Richards K, Weaver JM. Immunodominance in CD4 T-cell responses: implications for immune responses to influenza virus and for vaccine design. Expert Rev Vaccines 2014; 6:357-68. [PMID: 17542751 DOI: 10.1586/14760584.6.3.357] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD4 T cells play a primary role in regulating immune responses to pathogenic organisms and to vaccines. Antigen-specific CD4 T cells provide cognate help to B cells, a requisite event for immunoglobulin switch and affinity maturation of B cells that produce neutralizing antibodies and also provide help to cytotoxic CD8 T cells, critical for their expansion and persistence as memory cells. Finally, CD4 T cells may participate directly in pathogen clearance via cell-mediated cytotoxicity or through production of cytokines. Understanding the role of CD4 T-cell immunity to viruses and other pathogens, as well as evaluation of the efficacy of vaccines, requires insight into the specificity of CD4 T cells. This review focuses on the events within antigen-presenting cells that focus CD4 T cells toward a limited number of peptide antigens within the pathogen or vaccine. The molecular events are discussed in light of the special challenges that the influenza virus poses, owing to the high degree of genetic variability, unpredictable pathogenicity and the repeated encounters that human populations face with this highly infectious pathogenic organism.
Collapse
Affiliation(s)
- Andrea J Sant
- David H Smith Center for Vaccine Biology and Immunology, Aab Institute and Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Yuseff MI, Pierobon P, Reversat A, Lennon-Duménil AM. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol 2013; 13:475-86. [PMID: 23797063 DOI: 10.1038/nri3469] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
B cells are key components of the adaptive immune response. Their differentiation into either specific memory B cells or antibody-secreting plasma cells is a consequence of activation steps that involve the processing and presentation of antigens. The engagement of B cell receptors by surface-tethered antigens leads to the formation of an immunological synapse that coordinates cell signalling events and that promotes antigen uptake for presentation on MHC class II molecules. In this Review, we discuss membrane trafficking and the associated molecular mechanisms that are involved in antigen extraction and processing at the B cell synapse, and we highlight how B cells use cell polarity to coordinate the complex events that ultimately lead to efficient humoral responses.
Collapse
|
41
|
Bauersachs S, Wolf E. Immune aspects of embryo-maternal cross-talk in the bovine uterus. J Reprod Immunol 2013; 97:20-6. [PMID: 23432868 DOI: 10.1016/j.jri.2012.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/14/2012] [Accepted: 11/26/2012] [Indexed: 12/13/2022]
Abstract
This mini-review summarizes the results of recent transcriptome studies of bovine endometrium during the estrous cycle and during the pre-implantation phase, with a focus on immune response genes. Gene expression changes in the bovine endometrium during the estrous cycle were compared to a similar study in equine endometrium. The results indicate species-specific expression patterns, particularly for genes with immune functions. These are presumably the consequence of adaptations to differences in the physiology of reproduction in each species, including development of the conceptus, hormone profiles during the estrous cycle, and insemination. The results from a number of transcriptome studies during the pre-implantation phase, as well as comparison to the effects of human interferon alpha on bovine endometrial gene expression, suggest that during pregnancy there is no general suppression of the maternal immune system, but rather a fine-tuned regulation of immune cells. This presumably facilitates tolerance to the immunologically 'foreign' conceptus and at the same time activation of the immune system to defend against microbial and viral infections. Furthermore, comparison of differentially expressed genes in bovine endometrium to similar studies in human endometrial samples reveals a number of similar changes, indicating the existence of shared mechanisms in preparation for embryo implantation.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | |
Collapse
|
42
|
Recognition of higher order patterns in proteins: immunologic kernels. PLoS One 2013; 8:e70115. [PMID: 23922927 PMCID: PMC3726486 DOI: 10.1371/journal.pone.0070115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/17/2013] [Indexed: 01/28/2023] Open
Abstract
By applying analysis of the principal components of amino acid physical properties we predicted cathepsin cleavage sites, MHC binding affinity, and probability of B-cell epitope binding of peptides in tetanus toxin and in ten diverse additional proteins. Cross-correlation of these metrics, for peptides of all possible amino acid index positions, each evaluated in the context of a ±25 amino acid flanking region, indicated that there is a strongly repetitive pattern of short peptides of approximately thirty amino acids each bounded by cathepsin cleavage sites and each comprising B-cell linear epitopes, MHC–I and MHC-II binding peptides. Such “immunologic kernel” peptides comprise all signals necessary for adaptive immunologic cognition, response and recall. The patterns described indicate a higher order spatial integration that forms a symbolic logic coordinating the adaptive immune system.
Collapse
|
43
|
Tjomsland V, Ellegård R, Burgener A, Mogk K, Che KF, Westmacott G, Hinkula J, Lifson JD, Larsson M. Complement opsonization of HIV-1 results in a different intracellular processing pattern and enhanced MHC class I presentation by dendritic cells. Eur J Immunol 2013; 43:1470-83. [PMID: 23526630 PMCID: PMC3738931 DOI: 10.1002/eji.201242935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 02/20/2013] [Accepted: 03/19/2013] [Indexed: 11/11/2022]
Abstract
Induction of optimal HIV-1-specific T-cell responses, which can contribute to controlling viral infection in vivo, depends on antigen processing and presentation processes occurring in DCs. Opsonization can influence the routing of antigen processing and pathways used for presentation. We studied antigen proteolysis and the role of endocytic receptors in MHC class I (MHCI) and II (MHCII) presentation of antigens derived from HIV-1 in human monocyte-derived immature DCs (IDCs) and mature DCs, comparing free and complement opsonized HIV-1 particles. Opsonization of virions promoted MHCI presentation by DCs, indicating that complement opsonization routes more virions toward the MHCI presentation pathway. Blockade of macrophage mannose receptor (MMR) and β7-integrin enhanced MHCI and MHCII presentation by IDCs and mature DCs, whereas the block of complement receptor 3 decreased MHCI and MHCII presentation. In addition, we found that IDC and MDC proteolytic activities were modulated by HIV-1 exposure; complement-opsonized HIV-1 induced an increased proteasome activity in IDCs. Taken together, these findings indicate that endocytic receptors such as MMR, complement receptor 3, and β7-integrin can promote or disfavor antigen presentation probably by routing HIV-1 into different endosomal compartments with distinct efficiencies for degradation of viral antigens and MHCI and MHCII presentation, and that HIV-1 affects the antigen-processing machinery.
Collapse
Affiliation(s)
- Veronica Tjomsland
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Adam Burgener
- Department of Medical Microbiology, University of ManitobaWinnipeg, Canada
| | - Kenzie Mogk
- Department of Medical Microbiology, University of ManitobaWinnipeg, Canada
| | - Karlhans F Che
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | | | - Jorma Hinkula
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer ResearchFrederick, MD, USA
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| |
Collapse
|
44
|
Foster ES, Kimber I, Dearman RJ. Relationship between protein digestibility and allergenicity: comparisons of pepsin and cathepsin. Toxicology 2013; 309:30-8. [PMID: 23624183 DOI: 10.1016/j.tox.2013.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/06/2013] [Accepted: 04/16/2013] [Indexed: 11/16/2022]
Abstract
An association between protein allergenicity and resistance to pepsin digestion in the gastrointestinal tract has been proposed. However, although widely accepted, such an association is inconsistent with known labile allergens and resistant nonallergens. Given the central role of antigen presenting cells, and in particular dendritic cells (DC), in the development of allergic responses, the stability of allergens to intracellular processing may be more relevant than resistance to extracellular pepsin digestion. We have characterised the expression by DC of cathepsins (proteolytic enzymes), and compared the proteolytic activity of the most highly expressed cathepsin with pepsin for a range of 9 allergens and 4 putative nonallergens. Cathepsin expression in bone marrow-derived DC (BM-DC) derived from BALB/c strain mice was characterised by flow cytometry; cathepsins D, E and S were identified, with cathepsin D being the most highly expressed. Digestion studies revealed that the majority of allergens (5/9) were pepsin resistant, whereas non-allergens (3/4) were labile. If the generation of pepsin-resistant fragments was considered as a feature of allergenicity, this increased to 7/9 allergens and 4/4 nonallergens. In contrast, most of the proteins examined were resistant to cathepsin digestion, with significant digestion recorded for only 2/9 allergens and 2/4 non-allergens. Chemical reduction (to mimic intracellular reducing conditions) increased the susceptibility of proteins to digestion by cathepsins, but did not improve discrimination between allergens and nonallergens on this basis. These data confirm that there is a general relationship between resistance to digestion with pepsin and allergenicity. The relationship is not absolute, but the information gained from this characteristic does provide useful information in a weight of evidence approach for allergenicity assessment. The most abundant cathepsin detected in antigen processing BM-DC, cathepsin D, is not an appropriate substitute for pepsin. The hypothesis that pepsin stability may be a surrogate for stability to digestion within DC may still hold true, but consideration of a single enzyme in this context is possibly an oversimplification.
Collapse
Affiliation(s)
- Emily S Foster
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
45
|
Hirai T, Kanda T, Sato K, Takaishi M, Nakajima K, Yamamoto M, Kamijima R, DiGiovanni J, Sano S. Cathepsin K Is Involved in Development of Psoriasis-like Skin Lesions through TLR-Dependent Th17 Activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4805-11. [DOI: 10.4049/jimmunol.1200901] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Wiener JJ, Wickboldt AT, Nguyen S, Sun S, Rynberg R, Rizzolio M, Karlsson L, Edwards JP, Grice CA. Pyrazole-based arylalkyne Cathepsin S inhibitors. Part III: Modification of P4 region. Bioorg Med Chem Lett 2013; 23:1070-4. [DOI: 10.1016/j.bmcl.2012.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 11/25/2022]
|
47
|
Yuseff MI, Lennon-Dumenil AM. Studying MHC class II presentation of immobilized antigen by B lymphocytes. Methods Mol Biol 2013; 960:529-543. [PMID: 23329512 DOI: 10.1007/978-1-62703-218-6_39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The ability of B lymphocytes to capture external antigens (Ag) and present them as peptide fragments, loaded on Major Histocompatibility complex (MHC) class II molecules, to CD4(+) T cells is a crucial part of the adaptive immune response. This allows T-B cooperation, a cellular communication that is required for B cells to develop into germinal centers (GC) and form mature high-affinity antibody producing cells and to further develop B cell memory. MHC class II antigen presentation by B lymphocytes is a multistep process involving (1) Recognition and capture of external Ag by B lymphocytes through their B cell receptor (BCR); (2) Ag processing, which comprises the degradation of Ag in internal compartments within the B cell and loading of the corresponding peptide fragments on MHC class II molecules and (3) Presentation of MHC II-peptide complexes to CD4(+) T cells. Here, we describe how to study MHC class II antigen presentation by B lymphocytes at these three major levels.
Collapse
Affiliation(s)
- M I Yuseff
- Institut Curie, Inserm U932, Paris, France
| | | |
Collapse
|
48
|
Yuan XY, Fu DY, Ren XF, Fang X, Wang L, Zou S, Wu Y. Highly selective aza-nitrile inhibitors for cathepsin K, structural optimization and molecular modeling. Org Biomol Chem 2013; 11:5847-52. [DOI: 10.1039/c3ob41165f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Bergmann H, Yabas M, Short A, Miosge L, Barthel N, Teh CE, Roots CM, Bull KR, Jeelall Y, Horikawa K, Whittle B, Balakishnan B, Sjollema G, Bertram EM, Mackay F, Rimmer AJ, Cornall RJ, Field MA, Andrews TD, Goodnow CC, Enders A. B cell survival, surface BCR and BAFFR expression, CD74 metabolism, and CD8- dendritic cells require the intramembrane endopeptidase SPPL2A. ACTA ACUST UNITED AC 2012; 210:31-40. [PMID: 23267016 PMCID: PMC3549710 DOI: 10.1084/jem.20121076] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mice lacking activity of the intramembrane protease SPPL2A exhibit humoral immunodeficiency and lack mature B cell subsets. Druggable proteins required for B lymphocyte survival and immune responses are an emerging source of new treatments for autoimmunity and lymphoid malignancy. In this study, we show that mice with an inactivating mutation in the intramembrane protease signal peptide peptidase–like 2A (SPPL2A) unexpectedly exhibit profound humoral immunodeficiency and lack mature B cell subsets, mirroring deficiency of the cytokine B cell–activating factor (BAFF). Accumulation of Sppl2a-deficient B cells was rescued by overexpression of the BAFF-induced survival protein B cell lymphoma 2 (BCL2) but not BAFF and was distinguished by low surface BAFF receptor and IgM and IgD B cell receptors. CD8-negative dendritic cells were also greatly decreased. SPPL2A deficiency blocked the proteolytic processing of CD74 MHC II invariant chain in both cell types, causing dramatic build-up of the p8 product of Cathepsin S and interfering with earlier steps in CD74 endosomal retention and processing. The findings illuminate an important role for the final step in the CD74–MHC II pathway and a new target for protease inhibitor treatment of B cell diseases.
Collapse
Affiliation(s)
- Hannes Bergmann
- Ramaciotti Immunization Genomics Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liang JZ, Rao YZ, Lun ZR, Yang TB. Cathepsin L in the orange-spotted grouper, Epinephelus coioides: molecular cloning and gene expression after a Vibrio anguillarum challenge. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1795-1806. [PMID: 22723013 DOI: 10.1007/s10695-012-9676-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
The orange-spotted grouper, Epinephelus coioides, is an important fish maricultured in many Asian countries. In the present study, the full-length cDNA of cathepsin L, an immunity related gene of fishes, was isolated from E. coioides using rapid amplification of cDNA ends (RACE). It is 1,443 bp in length, including an open reading frame (ORF) of 1,011 bp. The open reading frame encoded a preproprotein of 336 amino acids (aa), which consisted of a signal peptide of 16 aa, a proregion peptide of 98 aa and a mature peptide of 222 aa. The preproprotein contained an oxyanion hole (Gln), a catalytic triad formed by Cys, His and Asn, and the conserved ERWNIN, GNFD and GCNGG motifs, all characteristic of cathepsin L. Homology analysis revealed that the deduced amino acid sequence of E. coioides cathepsin L shared 80.1-94.8 % identity with those of reported fishes. Tissue-dependent mRNA expression analysis showed that the cathepsin L transcript was expressed in all the examined tissues of the healthy E. coioides, being highest in the liver and moderate in the heart, gonad and intestine. After Vibrio anguillarum stimulation, the mRNA expression of cathepsin L in E. coioides was significantly increased in the skin, fin, gills, liver, blood, spleen, head kidney and intestine, with the highest observed in the spleen (10.6-fold) at 12 h post-injection and the next in blood (7.5-fold) at 8 h post-injection. These results provided initial information for further studies on the physiological and immunological roles of the cathepsin L gene in the orange-spotted grouper.
Collapse
Affiliation(s)
- Jing-Zhen Liang
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ying-Zhu Rao
- Life Science and Technology School, Zhanjiang Normal University, Zhanjiang, 524048, China
| | - Zhao-Rong Lun
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ting-Bao Yang
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|