1
|
Agulla B, Villaescusa A, Sainz Á, Díaz‐Regañón D, Rodríguez‐Franco F, Calleja‐Bueno L, Olmeda P, García‐Sancho M. Peripheral and intestinal T lymphocyte subsets in dogs with chronic inflammatory enteropathy. J Vet Intern Med 2024; 38:1437-1448. [PMID: 38472110 PMCID: PMC11099799 DOI: 10.1111/jvim.17036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Dysregulated T lymphocyte response is thought to play a key role in chronic intestinal inflammation (CIE). OBJECTIVES To evaluate the presence of changes in peripheral and intestinal T lymphocyte subsets and to describe potential immune and inflammatory biomarkers in dogs with CIE. ANIMALS Sixteen healthy dogs and 26 dogs were diagnosed with CIE. METHODS Prospective case-control study evaluating peripheral and intestinal T lymphocytes using flow cytometry and inflammatory markers obtained from complete blood cell counts. RESULTS Dogs with CIE had higher peripheral activated T helper (Th) lymphocytes (87/μL [18-273] CIE, 44/μL [16-162] healthy control (HC, P = .013) and regulatory T cells (Treg; 108/μL [2-257] CIE, 34/μL [1-114] HC, P = .004). In the intestinal epithelium, CIE dogs presented lower percentages of Th (4.55% [1.75-18.67] CIE, 8.77% [3.79-25.03] HC, P = .002), activated Th cells (0.16% [0.02-0.83] CIE, 0.33% [0.05-0.57] HC, P = .03) and CD4/CD8 ratio (0.08 [0.02-0.39] CIE, 0.21 [0.07-0.85] HC, P = .003). Conversely, higher percentage of activated T cytotoxic cells (20.24% [3.12-77.12] CIE, 12.32% [1.21-39.22] HC, P = .04) and interferon-gamma (IFN-γ) producing T lymphocytes (7.36% [0.63-55.83] CIE, 1.44% [0.00-10.56] HC, P = .01) within the epithelium was observed. In the lamina propria the percentage of Treg lymphocytes was higher (6.02% [1.00-21.48] CIE, 3.52% [0.18-10.52] HC, P = .02). CONCLUSIONS AND CLINICAL IMPORTANCE Systemic and intestinal immune alterations occur in dogs with CIE suggesting that blood IFN-γ producing T lymphocytes and the systemic immune-inflamation index (SII) could potentially serve as biomarkers for the disease.
Collapse
Affiliation(s)
- Beatriz Agulla
- Department Medicina i Cirurgia Animals, Facultat de VeterinàriaUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Alejandra Villaescusa
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| | - Ángel Sainz
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| | - David Díaz‐Regañón
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| | - Fernando Rodríguez‐Franco
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| | - Lydia Calleja‐Bueno
- Facultad de VeterinariaUniversidad Alfonso X El Sabio (UAX), Avenida de la Universidad 1MadridSpain
| | - Patricia Olmeda
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| | - Mercedes García‐Sancho
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| |
Collapse
|
2
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
3
|
Adoptive cell therapy of patient-derived renal cell carcinoma xenograft model with IL-15-induced γδT cells. Med Oncol 2021; 38:30. [PMID: 33598783 DOI: 10.1007/s12032-021-01474-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Adoptive transfer of γδ T cells is an attractive approach for cell-based immunotherapy in treatment of renal cell carcinoma (RCC). Interleukin-15 (IL-15) is the key physiological cytokine that regulates γδ T cell differentiation, proliferation and survival. In this work, we determined that IL-15 have the capacity to enhance the anti-tumoral functions of γδ T cells. IL-15 can induce the upregulation of cytotoxicity-associated molecules on the γδ T cell surface, incite γδ T cell proliferation and decrease apoptosis. Moreover, the enhanced cytotoxicity of IL-15-induced γδ T cell was dependent on the interaction of NKG2D and MICA. Most importantly, we found that IL-15-induced γδ T cells effectively suppressed the tumor growth in vivo and prolonged the survival time of RCC-bearing patient‑derived xenograft (PDX) mice. These results are important for the prospective use of γδ T cells in clinical practice when designing novel cell-based immunotherapies against RCC.
Collapse
|
4
|
Jung JW, Lee AR, Kim J, Kim YR, Lazarte JMS, Lee JS, Thompson KD, Kim H, Jung TS. Elucidating the Functional Roles of Helper and Cytotoxic T Cells in the Cell-Mediated Immune Responses of Olive Flounder ( Paralichthys olivaceus). Int J Mol Sci 2021; 22:ijms22020847. [PMID: 33467734 PMCID: PMC7829854 DOI: 10.3390/ijms22020847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
In higher vertebrates, helper and cytotoxic T cells, referred to as CD4 and CD8 T lymphocytes, respectively, are mainly associated with adaptive immunity. The adaptive immune system in teleosts involves T cells equivalent to those found in mammals. We previously generated monoclonal antibodies (mAbs) against olive flounder (Paralichthys olivaceus) CD4 T cells, CD4-1 and CD4-2, and used these to describe the olive flounder’s CD4 Tcell response during a viral infection. In the present study, we successfully produced mAbs against CD8 T lymphocytes and their specificities were confirmed using immuno-blotting, immunofluorescence staining, flow cytometry analysis andreverse transcription polymerase chain reaction (RT-PCR). The results showed that these mAbs are specific for CD8 T lymphocytes. We also investigated variations in CD4 and CD8 T cells populations, and analyzed the expression of immune-related genes expressed by these cells in fish infected with nervous necrosis virus or immunized with thymus dependent and independent antigens. We found that both CD4 and CD8 T lymphocyte populations significantly increased in these fish and Th1-related genes were up-regulated compared to the control group. Collectively, these findings suggest that the CD4 and CD8 T lymphocytes in olive flounder are similar to the helper and cytotoxic T cells found in mammals, and Th1 and cytotoxic immune responses are primarily involved in the early adaptive immune response against extracellular antigens.
Collapse
Affiliation(s)
- Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Ae Rin Lee
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Young Rim Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Jassy Mary S. Lazarte
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Jung Suk Lee
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK;
| | - Hyeongsu Kim
- Inland Aquaculture Research, National Institute of Fisheries Science, #55, 25gil, Yeomyeong-ro, Jinhae-gu, Changwon-si 51688, Korea;
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
- Centre for Marine Bioproducts Development, Flinders University, Bedford Park 5042, Australia
- Correspondence: ; Tel.: +82-10-8545-9310; Fax: +82-55-762-6733
| |
Collapse
|
5
|
Arranz E, De Prado Á, Fiz-López A, Arribas E, Garrote JA, Bernardo D. Human intestinal dendritic cell and macrophage subsets in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:85-104. [PMID: 33707058 DOI: 10.1016/bs.ircmb.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DC) and macrophages (Mϕ) constitute the most abundant antigen presenting cells in the human intestinal mucosa. In resting conditions, they are essential to maintain the mechanisms of immune tolerance toward food antigens and commensals, at the time that they keep the capacity to initiate and maintain antigen-specific pro-inflammatory immune responses toward invading pathogens. Nevertheless, this delicate equilibrium between immunity and tolerance is not perfect, like in coeliac disease (CD), where DC and Mϕ drive the development of antigen-specific immune responses toward dietary gluten peptides. In this review, we provide therefore a comprehensive discussion about CD pathogenesis, the human intestinal immune system and the biology of intestinal DC and Mϕ both in resting conditions and in CD. Last, but not least, we discuss about all the remaining issues pending to be studied regarding DC and Mϕ contribution toward CD pathogenesis. This may allow the identification of unique and specific factors which may be useful in the clinical practice, as well as identify new therapeutic targets in order to reestablish the loss intestinal homeostasis in CD.
Collapse
Affiliation(s)
- Eduardo Arranz
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Ángel De Prado
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Aida Fiz-López
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Elisa Arribas
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - José A Garrote
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain; Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Valladolid, Spain
| | - David Bernardo
- Mucosal Immunology Lab. Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain.
| |
Collapse
|
6
|
Bartolomé-Casado R, Landsverk OJB, Chauhan SK, Richter L, Phung D, Greiff V, Risnes LF, Yao Y, Neumann RS, Yaqub S, Øyen O, Horneland R, Aandahl EM, Paulsen V, Sollid LM, Qiao SW, Baekkevold ES, Jahnsen FL. Resident memory CD8 T cells persist for years in human small intestine. J Exp Med 2019; 216:2412-2426. [PMID: 31337737 PMCID: PMC6781004 DOI: 10.1084/jem.20190414] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/13/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Bartolomé-Casado et al. demonstrate that human gut contains large numbers of resident memory CD8 T cells that survive for years. Intestinal CD8 Trm cells have a clonally expanded immune repertoire that is stable over time and exhibit enhanced protective capabilities. Resident memory CD8 T (Trm) cells have been shown to provide effective protective responses in the small intestine (SI) in mice. A better understanding of the generation and persistence of SI CD8 Trm cells in humans may have implications for intestinal immune-mediated diseases and vaccine development. Analyzing normal and transplanted human SI, we demonstrated that the majority of SI CD8 T cells were bona fide CD8 Trm cells that survived for >1 yr in the graft. Intraepithelial and lamina propria CD8 Trm cells showed a high clonal overlap and a repertoire dominated by expanded clones, conserved both spatially in the intestine and over time. Functionally, lamina propria CD8 Trm cells were potent cytokine producers, exhibiting a polyfunctional (IFN-γ+ IL-2+ TNF-α+) profile, and efficiently expressed cytotoxic mediators after stimulation. These results suggest that SI CD8 Trm cells could be relevant targets for future oral vaccines and therapeutic strategies for gut disorders.
Collapse
Affiliation(s)
| | - Ole J B Landsverk
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sudhir Kumar Chauhan
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lisa Richter
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Core Facility Flow Cytometry, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Danh Phung
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Louise F Risnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Ying Yao
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Ralf S Neumann
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Sheraz Yaqub
- Department of Gastrointestinal Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ole Øyen
- Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Einar Martin Aandahl
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Vemund Paulsen
- Department of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Espen S Baekkevold
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Hu MD, Edelblum KL. Sentinels at the frontline: the role of intraepithelial lymphocytes in inflammatory bowel disease. ACTA ACUST UNITED AC 2017; 3:321-334. [PMID: 29242771 DOI: 10.1007/s40495-017-0105-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of review Intestinal mucosal immunity is tightly regulated to ensure effective host defense against invasive microorganisms while limiting the potential for aberrant damage. In inflammatory bowel disease (IBD), an imbalance between effector and regulatory T cell populations results in an uncontrolled inflammatory response to commensal bacteria. Intraepithelial lymphocytes (IEL) are perfectly positioned within the intestinal epithelium to provide the first line of mucosal defense against luminal microbes or rapidly respond to epithelial injury. This review will highlight how IELs promote protective intestinal immunity and discuss the evidence indicating that altered IEL responses contribute to the pathogenesis of IBD. Recent findings Although the role of IELs in mucosal homeostasis has been largely underappreciated, many of the same factors that contribute to the dysregulation of host defense in IBD also adversely affect IELs. For example, IL-23 and the endoplasmic reticulum stress response can enhance IEL lytic activity toward enterocytes. Microbial dysbiosis or defective microbial recognition results in the loss of regulatory IELs, further amplifying these pro-inflammatory effects. Migration of T cells into or within the intraepithelial compartment has a profound effect on their differentiation or effector function demonstrating that IELs are exquisitely sensitive to changes in the local intestinal microenvironment. Summary Enhanced mechanistic insight into the regulation of IEL survival, differentiation and effector function may provide useful tools to modulate IEL surveillance or enhance IEL regulatory function. Elucidation of these processes may result in the development of novel therapeutics to reduce intestinal inflammation and reinforce the mucosal barrier in IBD.
Collapse
Affiliation(s)
- Madeleine D Hu
- Center for Immunity and Inflammation, Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
8
|
Altmeyer S, Zentek J, Vahjen W, Scharek-Tedin L. The expression of NKG2D on porcine IEL and its possible relation to the adaptive intestinal immune system. Vet Immunol Immunopathol 2017; 187:89-95. [PMID: 28494934 DOI: 10.1016/j.vetimm.2017.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/12/2017] [Accepted: 03/23/2017] [Indexed: 01/15/2023]
Abstract
The gastrointestinal tract contains a multitude of components which include intraepithelial lymphocytes (IEL). IELs have been reported to express a variety of surface receptors that enable cross talk among various cell populations. The purpose of the reported investigation was to determine which IEL populations express the natural killer cell receptor NKG2D which is an activating receptor that plays a role in cytolytic responses. In a feeding experiment with piglets, IELs were isolated from jejunal tissue at three different stages post weaning. The time dependent development of different cell populations was evaluated and an elevated number of lymphocytes (CD45+) shortly after weaning was observed compared to later time points. The number of T cells (CD3), including cytotoxic T cells (CD8β/CD16-), appeared to be particularly affected by the weaning period. Correlation analysis revealed an association between the NKG2D expression in jejunal tissue and the frequency of lymphocytes, esp. CD8β+ cytotoxic T cells. Gene expression analysis of NKG2D were performed on several isolated IEL populations and support the hypothesis that cytotoxic T cells (CD8β) in the porcine gut epithelium are capable of communicating with the surrounding enterocytes and inducing immune reactions via NKG2D. Unlike previous observations in porcine blood, the γδ T cells of the gut epithelium also showed expression of the stress factor binding NKG2D receptor. Subsequent analysis of the isolated IELs revealed that T cells appear to only express the receptor after isolation with an anti-CD3 mab, indicating that a previous stimulation of the TCR/CD3 complex may reinforce this signal transduction pathway.
Collapse
Affiliation(s)
- Sara Altmeyer
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany.
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - Lydia Scharek-Tedin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| |
Collapse
|
9
|
Qiu Y, Peng K, Liu M, Xiao W, Yang H. CD8αα TCRαβ Intraepithelial Lymphocytes in the Mouse Gut. Dig Dis Sci 2016; 61:1451-60. [PMID: 26769056 DOI: 10.1007/s10620-015-4016-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
The epithelium of the mouse small intestine harbors an abundant CD8αα(+)TCRαβ(+) intraepithelial lymphocyte (IEL) population. This unique IEL subset is a self-reactive population that requires exposure to self-agonists for selection in the thymus, similarly to other regulatory T cell populations. After leaving the thymus, these cells directly seed the intestinal epithelium, which provides a unique combination of cellular interactions together with cytokines, nutrients, and antigens that guide the lineage-specific differentiation and function of these IELs. For instance, epithelial cells and nearby immune cells secrete a number of cytokines, including interleukin-15 (IL-15), IL-7, and transforming growth factor-β, resulting in an assortment of cellular responses, including activation of master transcription factors, cell proliferation, and cytokine secretion. Recent advances have also highlighted the importance of diet-derived substances and commensal metabolites, such as the aryl hydrocarbon receptor ligands and vitamin D, in controlling the survival and gene expression of CD8αα(+)TCRαβ(+) IELs. Furthermore, these cells function in the epithelium and require constant communication between cells in the form of cell-to-cell contacts. These interactions tune the antigen sensitivity of the TCR and maintain the quiescence of the CD8αα(+)TCRαβ(+) IELs. Finally, we discuss how these cells might contribute to tolerance and immunopathological responses in the gut. Therefore, an increased understanding of CD8αα(+)TCRαβ(+) IELs in the gut will help us understand how these cells participate in immune regulation and protection.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Ke Peng
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Minqiang Liu
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China.
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Shapingba, Chongqing, 400037, China.
| |
Collapse
|
10
|
Jabri B, Abadie V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol 2015; 15:771-83. [PMID: 26567920 PMCID: PMC5079184 DOI: 10.1038/nri3919] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this Opinion article, we discuss the function of tissues as a crucial checkpoint for the regulation of effector T cell responses, and the notion that interleukin-15 (IL-15) functions as a danger molecule that communicates to the immune system that the tissue is under attack and poises it to mediate tissue destruction. More specifically, we propose that expression of IL-15 in tissues promotes T helper 1 cell-mediated immunity and provides co-stimulatory signals to effector cytotoxic T cells to exert their effector functions and drive tissue destruction. Therefore, we think that IL-15 contributes to tissue protection by promoting the elimination of infected cells but that when its expression is chronically dysregulated, it can promote the development of complex T cell-mediated disorders associated with tissue destruction, such as coeliac disease and type 1 diabetes.
Collapse
Affiliation(s)
- Bana Jabri
- Departments of Medicine, Pathology and Pediatrics, University of Chicago, Knapp Center for Biomedical Discovery (KCBD), Chicago, Illinois 60637, USA
| | - Valérie Abadie
- Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, and the Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
11
|
Implication of fructans in health: immunomodulatory and antioxidant mechanisms. ScientificWorldJournal 2015; 2015:289267. [PMID: 25961072 PMCID: PMC4417592 DOI: 10.1155/2015/289267] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/29/2015] [Accepted: 03/06/2015] [Indexed: 12/30/2022] Open
Abstract
Previous studies have shown that fructans, a soluble dietary fiber, are beneficial to human health and offer a promising approach for the treatment of some diseases. Fructans are nonreducing carbohydrates composed of fructosyl units and terminated by a single glucose molecule. These carbohydrates may be straight or branched with varying degrees of polymerization. Additionally, fructans are resistant to hydrolysis by human digestive enzymes but can be fermented by the colonic microbiota to produce short chain fatty acids (SCFAs), metabolic by-products that possess immunomodulatory activity. The indirect role of fructans in stimulating probiotic growth is one of the mechanisms through which fructans exert their prebiotic activity and improve health or ameliorate disease. However, a more direct mechanism for fructan activity has recently been suggested; fructans may interact with immune cells in the intestinal lumen to modulate immune responses in the body. Fructans are currently being studied for their potential as “ROS scavengers” that benefit intestinal epithelial cells by improving their redox environment. In this review, we discuss recent advances in our understanding of fructans interaction with the intestinal immune system, the gut microbiota, and other components of the intestinal lumen to provide an overview of the mechanisms underlying the effects of fructans on health and disease.
Collapse
|
12
|
Franco-Robles E, López MG. Implication of fructans in health: immunomodulatory and antioxidant mechanisms. ScientificWorldJournal 2015. [PMID: 25961072 DOI: 10.1155/2015/289367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Previous studies have shown that fructans, a soluble dietary fiber, are beneficial to human health and offer a promising approach for the treatment of some diseases. Fructans are nonreducing carbohydrates composed of fructosyl units and terminated by a single glucose molecule. These carbohydrates may be straight or branched with varying degrees of polymerization. Additionally, fructans are resistant to hydrolysis by human digestive enzymes but can be fermented by the colonic microbiota to produce short chain fatty acids (SCFAs), metabolic by-products that possess immunomodulatory activity. The indirect role of fructans in stimulating probiotic growth is one of the mechanisms through which fructans exert their prebiotic activity and improve health or ameliorate disease. However, a more direct mechanism for fructan activity has recently been suggested; fructans may interact with immune cells in the intestinal lumen to modulate immune responses in the body. Fructans are currently being studied for their potential as "ROS scavengers" that benefit intestinal epithelial cells by improving their redox environment. In this review, we discuss recent advances in our understanding of fructans interaction with the intestinal immune system, the gut microbiota, and other components of the intestinal lumen to provide an overview of the mechanisms underlying the effects of fructans on health and disease.
Collapse
Affiliation(s)
- Elena Franco-Robles
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821 Irapuato, GTO, Mexico
| | - Mercedes G López
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821 Irapuato, GTO, Mexico
| |
Collapse
|
13
|
Abstract
The intestine represents the largest compartment of the immune system. It is continually exposed to antigens and immunomodulatory agents from the diet and the commensal microbiota, and it is the port of entry for many clinically important pathogens. Intestinal immune processes are also increasingly implicated in controlling disease development elsewhere in the body. In this Review, we detail the anatomical and physiological distinctions that are observed in the small and large intestines, and we suggest how these may account for the diversity in the immune apparatus that is seen throughout the intestine. We describe how the distribution of innate, adaptive and innate-like immune cells varies in different segments of the intestine and discuss the environmental factors that may influence this. Finally, we consider the implications of regional immune specialization for inflammatory disease in the intestine.
Collapse
|
14
|
Gomes AC, Bueno AA, de Souza RGM, Mota JF. Gut microbiota, probiotics and diabetes. Nutr J 2014; 13:60. [PMID: 24939063 PMCID: PMC4078018 DOI: 10.1186/1475-2891-13-60] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 06/12/2014] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a condition of multifactorial origin, involving several molecular mechanisms related to the intestinal microbiota for its development. In type 2 diabetes, receptor activation and recognition by microorganisms from the intestinal lumen may trigger inflammatory responses, inducing the phosphorylation of serine residues in insulin receptor substrate-1, reducing insulin sensitivity. In type 1 diabetes, the lowered expression of adhesion proteins within the intestinal epithelium favours a greater immune response that may result in destruction of pancreatic β cells by CD8+ T-lymphocytes, and increased expression of interleukin-17, related to autoimmunity. Research in animal models and humans has hypothesized whether the administration of probiotics may improve the prognosis of diabetes through modulation of gut microbiota. We have shown in this review that a large body of evidence suggests probiotics reduce the inflammatory response and oxidative stress, as well as increase the expression of adhesion proteins within the intestinal epithelium, reducing intestinal permeability. Such effects increase insulin sensitivity and reduce autoimmune response. However, further investigations are required to clarify whether the administration of probiotics can be efficiently used for the prevention and management of diabetes.
Collapse
Affiliation(s)
- Aline Corado Gomes
- Laboratório de Investigação em Nutrição Clínica e Esportiva (Labince). Faculdade de Nutrição, Universidade Federal de Goiás, Rua 227 Qd. 68s/nº - Setor Leste Universitário, Goiânia, Goiás, Brazil
| | - Allain Amador Bueno
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - Rávila Graziany Machado de Souza
- Laboratório de Investigação em Nutrição Clínica e Esportiva (Labince). Faculdade de Nutrição, Universidade Federal de Goiás, Rua 227 Qd. 68s/nº - Setor Leste Universitário, Goiânia, Goiás, Brazil
| | - João Felipe Mota
- Laboratório de Investigação em Nutrição Clínica e Esportiva (Labince). Faculdade de Nutrição, Universidade Federal de Goiás, Rua 227 Qd. 68s/nº - Setor Leste Universitário, Goiânia, Goiás, Brazil
| |
Collapse
|
15
|
Cortez VS, Cervantes-Barragan L, Song C, Gilfillan S, McDonald KG, Tussiwand R, Edelson BT, Murakami Y, Murphy KM, Newberry RD, Sibley LD, Colonna M. CRTAM controls residency of gut CD4+CD8+ T cells in the steady state and maintenance of gut CD4+ Th17 during parasitic infection. ACTA ACUST UNITED AC 2014; 211:623-33. [PMID: 24687959 PMCID: PMC3978276 DOI: 10.1084/jem.20130904] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interactions between cell adhesion molecules CRTAM and Cadm1 regulate the residency and maintenance of CD4+CD8+ and CD4+ T cells in the gut that can influence the immune response to infection. Retention of lymphocytes in the intestinal mucosa requires specialized chemokine receptors and adhesion molecules. We find that both CD4+CD8+ and CD4+ T cells in the intestinal epithelium, as well as CD8+ T cells in the intestinal mucosa and mesenteric lymph nodes, express the cell adhesion molecule class I–restricted T cell–associated molecule (Crtam) upon activation, whereas the ligand of Crtam, cell adhesion molecule 1 (Cadm1), is expressed on gut CD103+DCs. Lack of Crtam–Cadm1 interactions in Crtam−/− and Cadm1−/− mice results in loss of CD4+CD8+ T cells, which arise from mucosal CD4+ T cells that acquire a CD8 lineage expression profile. After acute oral infection with Toxoplasma gondii, both WT and Crtam−/− mice mounted a robust TH1 response, but markedly fewer TH17 cells were present in the intestinal mucosa of Crtam−/− mice. The almost exclusive TH1 response in Crtam−/− mice resulted in more efficient control of intestinal T. gondii infection. Thus, Crtam–Cadm1 interactions have a major impact on the residency and maintenance of CD4+CD8+ T cells in the gut mucosa in the steady state. During pathogenic infection, Crtam–Cadm1 interactions regulate the dynamic equilibrium between newly formed CD4+ T cells and their retention in the gut, thereby shaping representation of disparate CD4+ T cell subsets and the overall quality of the CD4+ T cell response.
Collapse
Affiliation(s)
- Victor S Cortez
- Department of Pathology and Immunology, 2 Department of Internal Medicine, 3 Department of Molecular Microbiology, and 4 Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
August KJ, Chiang KY, Qayed M, Dulson A, Worthington-White D, Cole CR, Horan JT. Relative defects in mucosal immunity predict acute graft-versus-host disease. Biol Blood Marrow Transplant 2014; 20:1056-9. [PMID: 24641826 DOI: 10.1016/j.bbmt.2014.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/11/2014] [Indexed: 01/14/2023]
Abstract
Impairment of gut mucosal immunity by the transplant process could facilitate translocation of commensal bacteria and thereby augment the graft-versus-host response. To begin to assess the influence of gut mucosal immunity on the development of acute graft-versus-host disease (GVHD), we conducted a prospective study in 24 pediatric allogeneic hematopoietic cell transplant recipients, assessing 4 fecal markers of mucosal immunity: calprotectin, soluble CD8 (sCD8), soluble intracellular adhesion molecule 1, and β-defensin-2. Stool samples were collected prospectively on transplant days 0, +5, +10, and +15 and analyzed by ELISA. Lower levels on day +5 (calprotectin and β-defensin-2) and day +10 (calprotectin, β-defensin-2, and sCD8) were associated with subsequent acute GVHD. The most striking difference was with calprotectin on day +10. Patients with levels below 424 mg/kg had an incidence of 77.8%, whereas those with levels above this threshold had a cumulative incidence of 0% (P = .002). Relative defects in gut mucosal immunity may be important in the pathogenesis of acute GVHD.
Collapse
Affiliation(s)
- Keith J August
- Division of Pediatric Hematology-Oncology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - K-Y Chiang
- Division of Pediatric Hematology-Oncology, Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Muna Qayed
- Division of Pediatric Hematology-Oncology, Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Ashley Dulson
- Division of Pediatric Hematology-Oncology, Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Diana Worthington-White
- Division of Pediatric Hematology-Oncology, Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Conrad R Cole
- Division of Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - John T Horan
- Division of Pediatric Hematology-Oncology, Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia.
| |
Collapse
|
17
|
Walker CR, Hautefort I, Dalton JE, Overweg K, Egan CE, Bongaerts RJ, Newton DJ, Cruickshank SM, Andrew EM, Carding SR. Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge. PLoS One 2013; 8:e84553. [PMID: 24358364 PMCID: PMC3866140 DOI: 10.1371/journal.pone.0084553] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/-) mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+) γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion.
Collapse
Affiliation(s)
- Catherine R. Walker
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Isabelle Hautefort
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
| | - Jane E. Dalton
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Karin Overweg
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
| | - Charlotte E. Egan
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Pediatric Surgery, Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Roy J. Bongaerts
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
| | - Darren J. Newton
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Cancer & Pathology, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds, United Kingdom
| | - Sheena M. Cruickshank
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth M. Andrew
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Simon R. Carding
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
18
|
La Scaleia R, Stoppacciaro A, Oliva S, Morrone S, Di Nardo G, Santoni A, Cucchiara S, Palmieri G. NKG2D/Ligand dysregulation and functional alteration of innate immunity cell populations in pediatric IBD. Inflamm Bowel Dis 2012; 18:1910-1922. [PMID: 22294522 DOI: 10.1002/ibd.22899] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/03/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dysregulated innate immune responses play an important role in inflammatory bowel disease (IBD). NKG2D innate immunity receptor is a major sensor of tissue damage that, by recognizing multiple stress-induced, cell-associated ligands (MIC-A/B and ULBP1-5), potentiates the effector functions of "innate-like" (γ/δ TcR+, and natural killer receptor+ [NKR+]) T-cell populations. We analyzed the representivity, NKG2D/ligand expression pattern, and functional ability of the major innate immunity cell populations in pediatric IBD patients. METHODS We analyzed 41 Crohn's disease (CD) patients, 33 ulcerative colitis (UC) patients, and 51 age-matched non-IBD controls. The expression of NKG2D and its ligands, interferon-gamma (IFN-γ) production, and cytotoxic granule release were assessed by immunostaining and multiparameter cytofluorimetric analysis on circulating and mucosal mononuclear subsets; the inflammatory infiltrate was also characterized by immunohistochemistry. RESULTS The expression pattern of NKG2D receptor and its ligands on mucosal and circulating innate immunity populations is severely disturbed in IBD; NKG2D and ligands are upregulated on immune infiltrate in both CD and UC active lesions; receptor/ligand upregulation also occurs on circulating leukocyte populations, where it depends on both disease activity and type (UC vs. CD). Finally, the frequency and effector capability of peripheral blood "innate-like" T-cell populations are also altered in IBD patients. CONCLUSIONS The circulating and mucosal innate immunity compartment is phenotypically and functionally altered in pediatric IBD; some alterations may represent a distinctive feature of the pediatric disease condition. The disturbance of NKG2D/ligand pathway may play a role in sustaining immune activation which leads to chronic inflammatory tissue damage.
Collapse
Affiliation(s)
- Raffaella La Scaleia
- Department of Experimental Medicine, La Sapienza, University of Rome, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hidaka M, Nakamura M, Ohmichi Y, Itoh J, Fukuzawa K, Masuko T, Yagi H. Involvement of intestinal intraepithelial lymphocytes in turnover of intestinal epithelial cells: Morphological and functional alterations due to daily administration of FK506. Cell Immunol 2012; 279:124-33. [DOI: 10.1016/j.cellimm.2012.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/29/2012] [Accepted: 10/02/2012] [Indexed: 12/21/2022]
|
20
|
Abstract
Celiac disease results from the interplay of genetic, environmental, and immunologic factors. An understanding of the pathophysiology of celiac disease, in which the trigger (wheat, rye, and barley) is known, will undoubtedly reveal basic mechanisms that underlie other autoimmune diseases (eg, type 1 diabetes) that share many common pathogenic perturbations. This review describes seminal findings in each of the 3 domains of the pathogenesis of celiac disease, namely genetics, environmental triggers, and immune dysregulation, with a focus on newer areas of investigation such as non-HLA genetic variants, the intestinal microbiome, and the role of the innate immune system.
Collapse
Affiliation(s)
- Sonia S Kupfer
- University of Chicago Celiac Disease Center, Chicago, IL, USA.
| | | |
Collapse
|
21
|
Immune development and intestinal microbiota in celiac disease. Clin Dev Immunol 2012; 2012:654143. [PMID: 23008734 PMCID: PMC3447214 DOI: 10.1155/2012/654143] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/06/2012] [Accepted: 08/13/2012] [Indexed: 01/06/2023]
Abstract
Celiac disease (CD) is an immune-mediated enteropathy, triggered by dietary wheat gluten and similar proteins of barley and rye in genetically susceptible individuals. The etiology of this disorder is complex, involving both environmental and genetic factors. The major genetic risk factor for CD is represented by HLA-DQ genes, which account for approximately 40% of the genetic risk; however, only a small percentage of carriers develop the disease. Gluten is the main environmental factor responsible for the signs and symptoms of the disease, but exposure to gluten does not fully explain the manifestation of CD. Epidemiological and clinical data suggest that environmental factors other than gluten might play a role in disease development, including early feeding practices (e.g., breast milk versus formula and duration of breastfeeding), infections, and alterations in the intestinal microbiota composition. Herein, we review what is known about the influence of dietary factors, exposure to infectious agents, and intestinal microbiota composition, particularly in early life, on the risk of developing CD, as well as the possible dietary strategies to induce or increase gluten tolerance.
Collapse
|
22
|
La Scaleia R, Barba M, Di Nardo G, Bonamico M, Oliva S, Nenna R, Valitutti F, Mennini M, Barbato M, Montuori M, Porzia A, Petrarca L, Battella S, Cucchiara S, Piccoli M, Santoni A, Mainiero F, Palmieri G. Size and dynamics of mucosal and peripheral IL-17A+ T-cell pools in pediatric age, and their disturbance in celiac disease. Mucosal Immunol 2012; 5:513-523. [PMID: 22569303 DOI: 10.1038/mi.2012.26] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mucosal interleukin (IL)-17A-producing T cells contribute to protective antimicrobial responses and to epithelial barrier integrity; their role in celiac disease (CD) is debated. We analyzed the frequency and developmental dynamics of mucosal (intraepithelial lymphocytes (IEL)) and circulating (peripheral blood (PB)) IL-17A (T17) and/or interferon (IFN)-γ-producing (T1, T1/T17) T-cell populations in 86 pediatric controls and 116 age-matched CD patients upon phorbol myristate acetate/ionomycin or CD3/CD28 stimulation. T17 and T1/17 are physiologically present among IEL and PB populations, and their frequency is selectively and significantly reduced in CD IEL. The physiological age-dependent increase of Th17 IEL is also absent in CD, while IFN-γ-producing PB-T cells significantly accumulate with patient's age. Finally, the amplitude of IL-17A+ and IFN-γ+ T-cell pools are significantly correlated in different individuals; this relationship only applies to CD4+ T cells in controls, while it involves also the CD4- counterpart in CD patients. In conclusion, both size and dynamics of mucosa-associated and circulating IL-17A+ T-cell pools are finely regulated in human pediatric subjects, and severely disturbed in CD. The impaired IL-17A+ IEL-T pool may negatively impact on epithelial barrier efficiency, and contribute to CD mucosa damage; the disturbed dynamics of circulating IL-17A+ and IFN-γ+ T-cell pools may be involved in the extraintestinal autoimmune manifestations associated with CD.
Collapse
Affiliation(s)
- R La Scaleia
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abadie V, Discepolo V, Jabri B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin Immunopathol 2012; 34:551-66. [PMID: 22660791 DOI: 10.1007/s00281-012-0316-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 12/21/2022]
Abstract
Celiac disease is a T cell-mediated immune disorder induced by dietary gluten that is characterized by the development of an inflammatory anti-gluten CD4 T cell response, anti-gluten antibodies, and autoantibodies against tissue transglutaminase 2 and the activation of intraepithelial lymphocytes (IELs) leading to the destruction of the intestinal epithelium. Intraepithelial lymphocytes represent a heterogeneous population of T cells composed mainly of cytotoxic CD8 T cells residing within the epithelial layer, whose main role is to maintain the integrity of the epithelium by eliminating infected cells and promoting epithelial repair. Dysregulated activation of IELs is a hallmark of CD and is critically involved in epithelial cell destruction and the subsequent development of villous atrophy. In this review, we compare and contrast the phenotype and function of human and mouse small intestinal IELs under physiological conditions. Furthermore, we discuss how conditions of epithelial distress associated with overexpression of IL-15 and non-classical MHC class I molecules induce cytotoxic IELs to become licensed killer cells that upregulate activating NKG2D and CD94/NKG2C natural killer receptors, acquiring lymphokine killer activity. Pathways leading to dysregulated IEL activation could eventually be targeted to prevent villous atrophy and treat patients who respond poorly to gluten-free diet.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Centre, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1C5, Canada.
| | | | | |
Collapse
|
24
|
Small intestinal intraepithelial lymphocytes expressing CD8 and T cell receptor γδ are involved in bacterial clearance during Salmonella enterica serovar Typhimurium infection. Infect Immun 2011; 80:565-74. [PMID: 22144492 DOI: 10.1128/iai.05078-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intestinal immune system is crucial for the maintenance of mucosal homeostasis and has evolved under the dual pressure of protecting the host from pathogenic infection and coexisting with the dense and diverse commensal organisms in the lumen. Intestinal intraepithelial lymphocytes (iIELs) are the first element of the host T cell compartment available to respond to oral infection by pathogens. This study demonstrated that oral infection by Salmonella enterica serovar Typhimurium promoted the expansion of iIELs, particularly CD8(+) TCRγδ(+) IELs, enhanced expression of NKG2D on iIELs, increased expression of MULT1, and decreased expression of Qa-1 by intestinal epithelial cells (IECs), leading to activation of, particularly, CD8(+) TCRγδ(+) iIELs and cytolytic activity against S. Typhimurium-infected IECs. Blockade of NKG2D recognition or depletion of TCRγδ(+) cells using a depleting monoclonal antibody significantly attenuated the clearance of S. Typhimurium in the intestine and other tissues. This study suggests that iIELs, particularly CD8(+) TCRγδ(+) iIELs, play important roles in the detection of pathogenic bacteria and eradication of infected epithelial cells and, thus, provide protection against invading pathogens. These data further our understanding of the mechanisms by which the immune system of the intestinal mucosa discriminates between pathogenic and commensal organisms.
Collapse
|
25
|
Takizawa F, Dijkstra JM, Kotterba P, Korytář T, Kock H, Köllner B, Jaureguiberry B, Nakanishi T, Fischer U. The expression of CD8α discriminates distinct T cell subsets in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:752-63. [PMID: 21352850 DOI: 10.1016/j.dci.2011.02.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 05/08/2023]
Abstract
CD8, belonging to the TCR complex, is the main marker molecule of CTLs. Although CD8 genes have been detected in many fish species, the analysis of teleost CD8+ cells has been limited because of the lack of antibodies. Using newly established mAbs against rainbow trout CD8α, we found high ratios of CD8α+ cells in trout thymus, gill and intestine, but relatively low abundance in pronephros, spleen and blood. Accordingly, tissue sections revealed many CD8α+ cells in thymus, numerous intra- and subepithelial CD8α+ cells in intestine and gill and few scattered CD8α+ cells in spleen and pronephros. In secondary lymphoid tissues, CD8α+ lymphocytes, which did not react with anti-thrombocyte or anti-IgM mAbs, expressed CD8α, CD8β and TCRα, while Ig and CD4 transcripts were found in CD8α⁻ lymphocytes. In contrast, considerable CD4 expression in CD8α+ thymocytes suggests the presence of double-positive early T cells. Highly expressed TCRγ, LAG3 and CTLA4 in CD8α+ lymphocytes imply that they constitute a heterogeneous population different from found in non-mucosal tissues. PHA stimulation resulted in an up-regulation of CTL effector genes (perforin, granulysin and IFN-γ) in CD8α+ pronephrocytes, while both Th1 (IFN-γ) and Th2 (IL-4/13A) cytokines were up-regulated in CD8α⁻ pronephrocytes. Although the basic characteristics of CD8α+ lymphocytes seem similar in teleost and mammals, features such as the low proportion of teleost CD8α+ lymphocytes in blood and their high abundance in respiratory tissue reveal a unique dynamics and distribution.
Collapse
Affiliation(s)
- Fumio Takizawa
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Always one step ahead: How pathogenic bacteria use the type III secretion system to manipulate the intestinal mucosal immune system. JOURNAL OF INFLAMMATION-LONDON 2011; 8:11. [PMID: 21539730 PMCID: PMC3094202 DOI: 10.1186/1476-9255-8-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/03/2011] [Indexed: 01/01/2023]
Abstract
The intestinal immune system and the epithelium are the first line of defense in the gut. Constantly exposed to microorganisms from the environment, the gut has complex defense mechanisms to prevent infections, as well as regulatory pathways to tolerate commensal bacteria and food antigens. Intestinal pathogens have developed strategies to regulate intestinal immunity and inflammation in order to establish or prolong infection. The organisms that employ a type III secretion system use a molecular syringe to deliver effector proteins into the cytoplasm of host cells. These effectors target the host cell cytoskeleton, cell organelles and signaling pathways. This review addresses the multiple mechanisms by which the type III secretion system targets the intestinal immune response, with a special focus on pathogenic E. coli.
Collapse
|
27
|
Tjon JML, Kooy-Winkelaar YMC, Tack GJ, Mommaas AM, Schreurs MWJ, Schilham MW, Mulder CJ, van Bergen J, Koning F. DNAM-1 Mediates Epithelial Cell-Specific Cytotoxicity of Aberrant Intraepithelial Lymphocyte Lines from Refractory Celiac Disease Type II Patients. THE JOURNAL OF IMMUNOLOGY 2011; 186:6304-12. [DOI: 10.4049/jimmunol.1003382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Henderson P, van Limbergen JE, Schwarze J, Wilson DC. Function of the intestinal epithelium and its dysregulation in inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:382-395. [PMID: 20645321 DOI: 10.1002/ibd.21379] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The intestinal epithelium not only acts as a physical barrier to commensal bacteria and foreign antigens but is also actively involved in antigen processing and immune cell regulation. The inflammatory bowel diseases (IBDs) are characterized by inflammation at this mucosal surface with well-recognized defects in barrier and secretory function. In addition to this, defects in intraepithelial lymphocytes, chemokine receptors, and pattern recognition receptors promote an abnormal immune response, with increased differentiation of proinflammatory cells and a dysregulated relationship with professional antigen-presenting cells. This review focuses on recent developments in the structure of the epithelium, including a detailed account of the apical junctional complex in addition to the role of the enterocyte in antigen recognition, uptake, processing, and presentation. Recently described cytokines such as interleukin-22 and interleukin-31 are highlighted as is the dysregulation of chemokines and secretory IgA in IBD. Finally, the effect of the intestinal epithelial cell on T effector cell proliferation and differentiation are examined in the context of IBD with particular focus on T regulatory cells and the two-way interaction between the intestinal epithelial cell and certain immune cell populations.
Collapse
Affiliation(s)
- Paul Henderson
- Department of Child Life and Health, University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
29
|
van Wijk F, Cheroutre H. Mucosal T cells in gut homeostasis and inflammation. Expert Rev Clin Immunol 2010; 6:559-66. [PMID: 20594129 DOI: 10.1586/eci.10.34] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The antigen-rich environment of the gut interacts with a highly integrated and specialized mucosal immune system that has the challenging task of preventing invasion and the systemic spread of microbes, while avoiding excessive or unnecessary immune responses to innocuous antigens. Disruption of the mucosal barrier and/or defects in gut immune regulatory networks may lead to chronic intestinal inflammation as seen in inflammatory bowel disease. The T-cell populations of the intestine play a critical role in controlling intestinal homeostasis, and their unique phenotypes and diversities reflect the sophisticated mechanisms that have evolved to maintain the delicate balance between immune activation and tolerance at mucosal sites. In this article, we will discuss the specialized properties of mucosal T cells in the context of immune homeostasis and inflammation.
Collapse
Affiliation(s)
- Femke van Wijk
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
30
|
Tjon JML, van Bergen J, Koning F. Celiac disease: how complicated can it get? Immunogenetics 2010; 62:641-51. [PMID: 20661732 PMCID: PMC2944025 DOI: 10.1007/s00251-010-0465-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 02/06/2023]
Abstract
In the small intestine of celiac disease patients, dietary wheat gluten and similar proteins in barley and rye trigger an inflammatory response. While strict adherence to a gluten-free diet induces full recovery in most patients, a small percentage of patients fail to recover. In a subset of these refractory celiac disease patients, an (aberrant) oligoclonal intraepithelial lymphocyte population develops into overt lymphoma. Celiac disease is strongly associated with HLA-DQ2 and/or HLA-DQ8, as both genotypes predispose for disease development. This association can be explained by the fact that gluten peptides can be presented in HLA-DQ2 and HLA-DQ8 molecules on antigen presenting cells. Gluten-specific CD4+ T cells in the lamina propria respond to these peptides, and this likely enhances cytotoxicity of intraepithelial lymphocytes against the intestinal epithelium. We propose a threshold model for the development of celiac disease, in which the efficiency of gluten presentation to CD4+ T cells determines the likelihood of developing celiac disease and its complications. Key factors that influence the efficiency of gluten presentation include: (1) the level of gluten intake, (2) the enzyme tissue transglutaminase 2 which modifies gluten into high affinity binding peptides for HLA-DQ2 and HLA-DQ8, (3) the HLA-DQ type, as HLA-DQ2 binds a wider range of gluten peptides than HLA-DQ8, (4) the gene dose of HLA-DQ2 and HLA-DQ8, and finally,(5) additional genetic polymorphisms that may influence T cell reactivity. This threshold model might also help to understand the development of refractory celiac disease and lymphoma.
Collapse
Affiliation(s)
- Jennifer May-Ling Tjon
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, RC Leiden, The Netherlands.
| | | | | |
Collapse
|
31
|
Pantenburg B, Castellanos-Gonzalez A, Dann SM, Connelly RL, Lewis DE, Ward HD, White AC. Human CD8(+) T cells clear Cryptosporidium parvum from infected intestinal epithelial cells. Am J Trop Med Hyg 2010; 82:600-7. [PMID: 20348507 DOI: 10.4269/ajtmh.2010.09-0590] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intracellular protozoans of the genus Cryptosporidium are a major cause of diarrheal illness worldwide, especially in immunocompromised individuals. CD4(+) T cells and interferon-gamma are key factors in the control of cryptosporidiosis in human and murine models. Previous studies led us to hypothesize that CD8(+) T cells contribute to clearance of intestinal epithelial Cryptosporidium infection in humans. We report here that antigen expanded sensitized CD8(+) T cells reduce the parasite load in infected intestinal epithelial cell cultures and lyse infected intestinal epithelial cells. These effects are most likely mediated by the release of cytotoxic granules. Elimination of parasites seems to require antigen presentation through both human leukocyte antigen (HLA)-A and HLA-B. These data suggest that cytotoxic CD8(+) T cells play a role in clearing Cryptosporidium from the intestine, a previously unrecognized feature of the human immune response against this parasite.
Collapse
Affiliation(s)
- Birte Pantenburg
- Division of Infectious Diseases, Department of Internal Medicine, Department of Microbiology, University of Texas Medical Branch, Galveston, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 2010; 10:131-44. [PMID: 20098461 DOI: 10.1038/nri2707] [Citation(s) in RCA: 907] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A single layer of epithelial cells lines the small and large intestines and functions as a barrier between commensal bacteria and the rest of the body. Ligation of Toll-like receptors (TLRs) on intestinal epithelial cells by bacterial products promotes epithelial cell proliferation, secretion of IgA into the gut lumen and expression of antimicrobial peptides. As described in this Review, this establishes a microorganism-induced programme of epithelial cell homeostasis and repair in the intestine. Dysregulation of this process can result in chronic inflammatory and over-exuberant repair responses, and it is associated with the development of colon cancer. Thus, dysregulated TLR signalling by intestinal epithelial cells may explain how colonic bacteria and inflammation promote colorectal cancer.
Collapse
|
33
|
Ebert EC. Interleukin 21 up-regulates perforin-mediated cytotoxic activity of human intra-epithelial lymphocytes. Immunology 2009; 127:206-15. [PMID: 19489126 DOI: 10.1111/j.1365-2567.2008.02941.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human intra-epithelial lymphocytes (IELs) are predominantly T-cell receptor-alphabeta(+) (TCR-alphabeta(+)) CD8(+) CD45RO(+) memory T cells located between intestinal epithelial cells. They respond to a greater extent to stimulation with interleukin (IL)-15 than to CD3/TCR triggering, suggesting that they react to the cytokine milieu in their local environment rather than to cognate antigen. A newly described member of the gammac cytokine family, IL-21, has potent antitumor effects. As IELs resemble lymphocytes infiltrating neoplastic lesions, their response to IL-21 may be relevant in vivo. Here, IL-21 was shown to increase perforin-mediated cytotoxicity and serine esterase release by IELs. This IL-21-mediated up-regulation occurred without changes in IEL survival or cell division. Interestingly, the effects of IL-21 occurred without increased phosphorylation of signal transducer and activator of transcription (STAT)1, STAT3, STAT4, STAT5, extracellular signal-regulated kinase (ERK), or p38. IL-21 had no effect on Fas ligand (FL)- or tumour necrosis factor-alpha (TNF-alpha)-mediated cytotoxicity, but it down-regulated IL-15-stimulated expression of CD25 and CD94, indicating that it has both positive and negative actions. This functional profile is unique to human IELs, emphasizing that they are a distinct compartment of lymphocytes and that IL-21 may promote their role in tumour immunosurveillance.
Collapse
Affiliation(s)
- Ellen C Ebert
- UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
34
|
Agace WW. T-cell recruitment to the intestinal mucosa. Trends Immunol 2009; 29:514-22. [PMID: 18838302 DOI: 10.1016/j.it.2008.08.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 01/02/2023]
Abstract
The intestinal epithelium and underlying lamina propria contains large numbers of T cells that play an important role in maintaining intestinal homeostasis and defense against intestinal pathogens. Recent years have seen several significant advances in our understanding of the mechanisms regulating T-cell localization to the intestinal mucosa. For instance, we now know that the small intestine 'imprints' gut homing properties on T cells by inducing the expression of specific integrins and chemokine receptors. Further studies have identified distinct subsets of intestinal dendritic cells that use retinoic acid to generate both gut-tropic and regulatory T cells. As our understanding of the mechanisms regulating the generation of gut tropic T-cell populations evolves, the possibility of targeting these processes for mucosal vaccine development and treatment of intestinal immune pathology become more apparent.
Collapse
|
35
|
Correia MP, Cardoso EM, Pereira CF, Neves R, Uhrberg M, Arosa FA. Hepatocytes and IL-15: a favorable microenvironment for T cell survival and CD8+ T cell differentiation. THE JOURNAL OF IMMUNOLOGY 2009; 182:6149-59. [PMID: 19414768 DOI: 10.4049/jimmunol.0802470] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human intrahepatic lymphocytes are enriched in CD1d-unrestricted T cells coexpressing NKR. Although the origin of this population remains controversial, it is possible to speculate that the hepatic microenvironment, namely epithelial cells or the cytokine milieu, may play a role in its shaping. IL-15 is constitutively expressed in the liver and has a key role in activation and survival of innate and tissue-associated immune cells. In this in vitro study, we examined whether hepatocyte cell lines and/or IL-15 could play a role in the generation of NK-like T cells. The results show that both HepG2 cells and a human immortalized hepatocyte cell line increase survival and drive basal proliferation of T cells. In addition, IL-15 was capable of inducing Ag-independent up-regulation of NKR, including NKG2A, Ig-like receptors, and de novo expression of CD56 and NKp46 in CD8(+)CD56(-) T cells. In conclusion, our study suggests that hepatocytes and IL-15 create a favorable microenvironment for T cells to growth and survive. It can be proposed that the increased percentage of intrahepatic nonclassical NKT cells could be in part due to a local CD8(+) T cell differentiation.
Collapse
|
36
|
Ebert EC, Panja A, Praveen R. Human intestinal intraepithelial lymphocytes and epithelial cells coinduce interleukin-8 production through the CD2-CD58 interaction. Am J Physiol Gastrointest Liver Physiol 2009; 296:G671-7. [PMID: 19109405 DOI: 10.1152/ajpgi.90497.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human intestinal CD3+TCRalphabeta+CD8+ intraepithelial lymphocytes (IELs) are intimately associated with epithelial cells (ECs) through binding of CD103 to E-cadherin. How these two cell types functionally interact is largely unknown. IEL-EC cross talk was determined using HT-29 cells as the model EC and IL-8 as the readout. IL-8 was derived from both cell types and synergistically increased when the cells were combined. This synergistic effect required active transcription by both IELs and HT-29 cells. Cell contact was required as shown by the loss of the synergistic increase in IL-8 when the two cell types were separated by Transwells. Specifically, IL-8 release required the binding of CD2 on the IELs to CD58 on the HT-29 cells. The association of the CD3/TCR complex with major histocompatibility antigen class I antigens was not involved. Antibody neutralization of tumor necrosis factor-alpha (TNF-alpha), but not interferon-gamma (IFN-gamma), resulted in increased IL-8 production by the coculture. Although both TNF-alpha and IFN-gamma increased IL-8 synthesis and CD58 expression by the HT-29 cells, only IFN-gamma reduced IL-8 production by IELs. IL-8 production by either cell type involved phosphorylation of p38 and JNK. In summary, the synergistic synthesis of IL-8 occurs when IELs are stimulated through the CD2 pathway by CD58 on HT-29 cells, resulting in TNF-alpha release that, in turn, augments IL-8 synthesis and CD58 expression by the HT-29 cells.
Collapse
Affiliation(s)
- Ellen C Ebert
- University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA.
| | | | | |
Collapse
|
37
|
Meresse B, Cerf-Bensussan N. Innate T cell responses in human gut. Semin Immunol 2009; 21:121-9. [PMID: 19231234 DOI: 10.1016/j.smim.2009.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/20/2009] [Indexed: 01/27/2023]
Abstract
One arm of the gut-associated immune system is represented by a vast collection of T lymphocytes which participate in the subtle interplay between innate and adaptive immune mechanisms and maintain homeostasis at the main body external surface. Mounting data are providing exciting new insight into the innate-like mechanisms which enable intestinal T cells to rapidly sense local conditions and which broaden the spectrum of their functions and regulation at this strategic location. Herein we discuss how innate-like T cell recognition by unconventional T cell subsets and expression of innate NK receptors might modulate immune T cell responses in the human normal or diseased intestine.
Collapse
Affiliation(s)
- Bertrand Meresse
- INSERM U793, Université Paris Descartes, Medical School, 156 rue de Vaugirard, 75737 Paris Cedex 15, France.
| | | |
Collapse
|
38
|
Baker K, Foulkes WD, Jass JR. MSI-H colorectal cancers preferentially retain and expand intraepithelial lymphocytes rather than peripherally derived CD8+ T cells. Cancer Immunol Immunother 2009; 58:135-44. [PMID: 18488217 PMCID: PMC11030911 DOI: 10.1007/s00262-008-0534-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 05/06/2008] [Indexed: 01/07/2023]
Abstract
The healthy colorectal mucosa contains many resident intraepithelial lymphocytes (IELs) consisting of partially activated yet hyporesponsive CD8(+) T cells. A predominant feature of colorectal cancers (CRCs) characterized by high levels of microsatellite instability (MSI-H) is heavy infiltration by an intraepithelial population of tumor infiltrating lymphocytes (iTILs). While it has been assumed that these iTILs originate from tumor infiltration by peripheral CD8(+) effector T cells, their origin remains unknown. In light of the phenotypic and functional differences exhibited by IELs and peripheral T cells, elucidation of the precursor population of iTILs in MSI-H CRCs could clarify the role played by these lymphocytes in tumor progression. The aim of the present study was to investigate whether MSI-H CRCs interact differently with IEL- versus peripherally-derived CD8(+) T cells. Using a Transwell assay system to mimic basolateral infiltration of tumor cells by lymphocytes, T cell migration, retention, proliferation and phenotypic alterations were investigated. Results indicate that MSI-H CRCs preferentially retain and expand IEL-derived cells to a greater degree than their microsatellite stable (MSS) counterparts. While MSI-H CRCs also retained more peripherally derived T cells, this number was considerably less than that from the IEL population. While interaction of IELs with either CRC type led to baseline lymphocyte activation, MSS CRCs induced upregulation of additional activation markers on retained IELs compared to MSI-H CRCs. These results suggest that the abundant iTILs present in MSI-H CRCs result from expansion of the preexisting mucosal IEL population and imply a limited prognostic role for iTILs in MSI-H CRC.
Collapse
Affiliation(s)
- Kristi Baker
- Department of Pathology, McGill University, Montréal, QC, Canada.
| | | | | |
Collapse
|
39
|
Lan RY, Mackay IR, Gershwin ME. Regulatory T cells in the prevention of mucosal inflammatory diseases: patrolling the border. J Autoimmun 2007; 29:272-80. [PMID: 17889505 PMCID: PMC2692919 DOI: 10.1016/j.jaut.2007.07.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regulatory T (Treg) cells are important contributors to the maintenance of immune tolerance in the periphery, and deficiency of Tregs is associated with various immunopathic diseases. Murine models of autoimmune and autoinflammatory disorders have helped to elucidate how Tregs are involved in these diseases. A feature in common between human and mice that lack one or another of the key Treg subsets is the occurrence of mucosal inflammation. The relatively fragile mucosal surface represents a complex system that is normally well equipped to ward off harmful pathogens yet at the same time is inhibitory to destructive inflammatory responses to biologically needed (probiotic) microorganisms, or other common environmental antigens e.g. nutrients. We here discuss the importance of Tregs in maintaining tolerance at mucosal surfaces and the outcomes of deficiency of Treg function. The intestinal tract and its inflammatory diseases provide the "point of departure" for discussion, but similar considerations could apply to other mucosal linings exposed to the environment such as other members of the digestive system. However, the lungs, bile ducts, urogenital tract and other mucosal surfaces are susceptible to poorly understood inflammatory states that possibly depend on dysfunction of Treg cells. Finally there are now potential therapies predicated on reconstitution of effective function of Treg cells.
Collapse
Affiliation(s)
- Ruth Y. Lan
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616
| | - Ian R. Mackay
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - M. Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616
| |
Collapse
|
40
|
|